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Abstract: The first measurements of elliptic flow of π±, K±, p+p̄, K0
S, Λ+Λ, φ, Ξ−+Ξ+,

and Ω− + Ω+ using multiparticle cumulants in Pb–Pb collisions at √sNN = 5.02TeV are
presented. Results obtained with two- (v2{2}) and four-particle cumulants (v2{4}) are
shown as a function of transverse momentum, pT, for various collision centrality inter-
vals. Combining the data for both v2{2} and v2{4} also allows us to report the first
measurements of the mean elliptic flow, elliptic flow fluctuations, and relative elliptic flow
fluctuations for various hadron species. These observables probe the event-by-event eccen-
tricity fluctuations in the initial state and the contributions from the dynamic evolution
of the expanding quark–gluon plasma. The characteristic features observed in previous
pT-differential anisotropic flow measurements for identified hadrons with two-particle cor-
relations, namely the mass ordering at low pT and the approximate scaling with the number
of constituent quarks at intermediate pT, are similarly present in the four-particle correla-
tions and the combinations of v2{2} and v2{4}. In addition, a particle species dependence
of flow fluctuations is observed that could indicate a significant contribution from final state
hadronic interactions. The comparison between experimental measurements and CoLBT
model calculations, which combine the various physics processes of hydrodynamics, quark
coalescence, and jet fragmentation, illustrates their importance over a wide pT range.
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1 Introduction

The primary goal of the ultra-relativistic heavy-ion collision programme at the Large
Hadron Collider (LHC) is to study the properties of the quark–gluon plasma (QGP), a
novel state of strongly interacting matter at high temperatures and energy densities [1, 2].
Studies of the azimuthal anisotropy of particle production have contributed significantly to
the characterization of the system created in heavy-ion collisions [3, 4]. Anisotropic flow
reflects the conversion of the initial state spatial anisotropy into final state anisotropies in
momentum space. This translation is facilitated by interactions between the constituents
of the quark–gluon plasma (QGP) [5–7] and at later stages, after hadronisation, between
the produced particles. Anisotropic flow is quantified by studying the azimuthal distribu-
tion of particles emitted in the plane transverse to the beam direction [3]. This is usually
expressed in terms of a Fourier series in the azimuthal angle ϕ [8, 9] according to

E
d3N

dp3 = 1
2π

d2N

pTdpTdη

{
1 + 2

∞∑
n=1

vn(pT, η) cos[n(ϕ−Ψn)]
}
, (1.1)
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where E, N , p, pT, ϕ, and η are the energy, yield, momentum, transverse momentum,
azimuthal angle, and pseudorapidity of particles, respectively, and Ψn is the azimuthal
angle of the symmetry plane of order n [10, 11]. The vn coefficients are given by

vn = 〈cos[n(ϕ−Ψn)]〉, (1.2)

where 〈〉 denote an average over all particles in a single event. The second Fourier coeffi-
cient, v2, is usually referred to as elliptic flow. It is the dominant harmonic in heavy-ion
collisions with large values of impact parameter (i.e. non-central collisions). Its value is
sensitive to some of the basic transport coefficients of the QGP, e.g. the shear viscosity
over entropy density ratio (η/s). The study of elliptic flow has been instrumental in es-
tablishing the strongly-coupled QGP paradigm, first in collisions at the Relativistic Heavy
Ion Collider (RHIC) [12–15] and, since 2010, in collisions at the Large Hadron Collider
(LHC) [16–18].

Around the start of the LHC heavy-ion program, it was realised that elliptic flow is also
a sensitive probe of the initial state of heavy-ion collisions [19]. Its magnitude fluctuates
from one event to the other, reflecting the event-by-event fluctuating energy-density pro-
files of the nuclear overlap region prior to the formation of the QGP. Initial event-by-event
geometry fluctuations lead to the fluctuations of even-harmonic anisotropic flow and gener-
ate non-zero odd harmonics. In fact, the initial geometry fluctuations lead to 〈vk

n〉 6= 〈vn〉k

and the development of different order symmetry planes Ψn in different kinematic regions
in pT or η [20–22]. Thus, a comprehensive investigation of the final state flow fluctuations
is crucial for understanding the event-by-event initial geometry fluctuations and their im-
pact on the system dynamic evolution. Studies of charged particles in Pb–Pb collisions
at LHC energies indicated non-Gaussian initial state fluctuations and, consequently, made
it possible to constrain their probability distribution function (p.d.f.) [23, 24]. Studies of
flow fluctuations have so far been performed both experimentally and in theoretical model
calculations for the measurements integrated over a large kinematic range [25–28]. On
the other hand, a pT-differential study, and in particular with identified hadrons, has not
been done before. These studies can provide insights on the interplay between the expan-
sion of the system and its late-stage, highly-dissipative hadronic phase, as well as particle
production mechanisms.

Similar studies in the past for various flow coefficients have been pivotal in establish-
ing the need to include viscous corrections in hydrodynamic models and, consequently, in
constraining the value of η/s to be very close to the conjectured lower limit of 1/4π calcu-
lated for infinitely strongly coupled gauge theories via the AdS/CFT correspondence [29].
Detailed studies of how anisotropic flow develops for different particle species as a func-
tion of pT for various centrality intervals (i.e. an estimate of the degree of overlap between
the two colliding nuclei) of Pb–Pb collisions at LHC energies [26–28] confirmed a number
of qualitative features already observed at RHIC [12–15]: the mass ordering of vn at low
pT and the particle type (i.e. mesons versus baryons) grouping at intermediate pT. The
former originates from the interplay between radial flow and the anisotropic expansion of
the system because of a thermalized expanding source with a common flow velocity for the
produced particles [30], while the latter is interpreted as an indication of hadron formation
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via quark coalescence in this momentum range [31, 32]. These studies also revealed, for the
first time, similar qualitative features in the 1% most central Pb–Pb collisions [27], a cat-
egory of events known as ultracentral with no prevailing ellipsoidal geometry. In addition,
new results on the non-linear flow modes of higher harmonics [33] illustrated unambigu-
ously that the aforementioned features can still be observed after the non-linear response
of the system, the latter being proportional to the product of lower-order initial spatial
anisotropies [34–37].

All these studies relied on measuring various flow harmonics using variations of two-
particle correlation techniques. One of the disadvantages of such approaches is that they are
sensitive to non-flow effects, i.e. correlations between (mainly two) particles not associated
with the common symmetry plane. In order to suppress such contributions, one could
measure multiparticle cumulants which need a larger data sample to reach the same level
of uncertainties as to their two-particle counterpart measurements. This is possible now
by combining the entire data set of Pb–Pb collisions at the centre-of-mass energy per
nucleon pair √sNN = 5.02TeV from the LHC Run 2. Furthermore, the usage of higher-
order cumulants opens up the possibility to study, for the first time, the particle species
dependence of flow fluctuations.

The first measurements of elliptic flow and flow fluctuations using two- and four-particle
cumulants for π±, K±, p+p, K0

S, Λ+Λ, φ, Ξ−+Ξ+, and Ω−+Ω+ in Pb–Pb collisions at
√
sNN = 5.02TeV are presented in this article. Results obtained with the generic frame-

work [38–40], which corrects detector inefficiencies and non-uniformities in the azimuthal
acceptance, are reported for a wide range of transverse momenta (0.2 < pT < 6 GeV/c)
in the 10–60% centrality interval. Centrality is expressed as percentiles of the inelastic
hadronic cross section, with low percentage values corresponding to head-on collisions.
The studies are performed separately for particles and antiparticles, and the results are
compatible within the statistical uncertainties. Therefore, v2 is the average between re-
sults for particles and antiparticles which for the rest of the article will be denoted as π±,
K±, p+p, etc.

This article is organized as follows: the experimental setup is presented in section 2,
while the analysis procedure, particle identification (PID), reconstruction methods, and
flow measurement techniques are described in section 3. Section 4 outlines the evaluation
of systematic uncertainties. The v2 of π±, K±, p+p, K0

S, Λ+Λ, φ, Ξ−+Ξ+, and Ω−+Ω+

and the corresponding flow fluctuations are reported and compared to hydrodynamic cal-
culations in section 5. The article concludes with a summary in section 6.

2 Experimental setup

The ALICE detector [41, 42] has been designed to allow detailed physics studies under
the extreme conditions created in heavy-ion collisions. ALICE consists of a central barrel
that contains several detectors with full or limited azimuthal coverage and a set of forward
detectors. The central region is located in a solenoid magnet which generates up to a 0.5 T
field parallel to the beam direction.
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The main tracking detectors, positioned in the central barrel, are the Inner Tracking
System (ITS) [41] and the Time Projection Chamber (TPC) [43]. The ITS consists of six
layers of silicon detectors employing three different technologies. The two innermost layers
are Silicon Pixel Detectors (SPD), followed by two layers of Silicon Drift Detectors (SDD).
Finally, the two outermost layers are double-sided Silicon Strip Detectors (SSD). The SPD
is also used for event selection and vertex reconstruction. The TPC surrounds the ITS and
is also employed for precise tracking of charged particles and for particle identification via
the specific energy loss, dE/dx. The dE/dx is extracted using a truncated-mean procedure,
resulting in a dE/dx resolution for the 5% most central Pb–Pb collisions of around 6.5%,
which improves for more peripheral collisions [42]. The detector provides a separation by at
least 2 standard deviations (σ) for π±, K±, and p+p at pT < 0.7 GeV/c and the possibility
to identify particles on a statistical basis for pT > 2 GeV/c [42]. The Time of Flight detector
(TOF) [44] is located around the TPC and is used for particle identification by measuring
the flight time of particles from the collision point with a resolution of about 80 ps [42]. The
start time for the TOF measurement is provided by the T0 detector with a resolution of
about 25 ps [42, 45], two arrays of Cherenkov counters covering the pseudorapidity ranges
−3.3 < η < −3.0 (T0C) and 4.6 < η < 4.9 (T0A), or from a combinatorial algorithm
that uses the particle arrival times at the TOF detector itself [42, 44]. Both methods of
estimating the start time are fully efficient for the 60% most central Pb–Pb collisions. The
TOF provides a 3σ separation between π±–K± and K±–p+p up to pT = 2.5 GeV/c and
pT = 4 GeV/c, respectively [42]. The ITS, TPC, and TOF detectors cover the full azimuth
within |η| < 0.9.

In the forward region, two scintillator arrays (V0) [46] are used for triggering, event
selection, and the determination of the collision centrality [47]. The V0 consists of two
systems, the V0C and V0A, positioned at −3.7 < η < −1.7 and 2.8 < η < 5.1, respectively.
In addition, two tungsten-quartz neutron Zero Degree Calorimeters (ZDCs), installed 112.5
meters from the interaction point on each side, are used for event selection.

More details on the ALICE setup and the performance of the detectors can be found
in refs. [41, 42].

3 Analysis procedure

3.1 Event and track selection

The data sample used in this analysis consists of Pb–Pb collisions at √sNN = 5.02TeV
recorded by the ALICE detector in the years 2015 and 2018 LHC data-taking campaigns.
A minimum bias trigger was provided by requiring signals in both V0A and V0C scintillator
arrays. In addition, the sample of semi-central collisions was enhanced by an online selec-
tion based on the V0 signal amplitudes. Beam-induced background events (i.e. beam–gas
interactions) were removed offline utilizing the V0 and ZDC timing information. Pileup of
collisions from different bunch crossings in the TPC was rejected by comparing multiplicity
estimates from the V0 detector to those of tracking detectors at midrapidity, exploiting the
difference in readout times between the systems. The primary vertex position, determined
from tracks reconstructed in the ITS and TPC, was required to be within ±10 cm from the
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nominal interaction point along the beam direction. These selection criteria were met by
approximately 245 million events in the 10–60% centrality interval. The collision centrality
was estimated from the amplitudes of the signals measured in the V0 detector [47].

Charged-particle tracks, used to measure the v2 of π±, K±, p+p, φ-mesons, and in-
clusive charged particles, were reconstructed using the ITS and TPC within |η| < 0.8 and
0.2 < pT < 10 GeV/c. Each track was required to have a minimum number of 70 TPC
space points (out of a maximum of 159) with a χ2 per TPC space point lower than 4
and at least 2 hits in the ITS with a χ2 per ITS hit smaller than 36. Moreover, tracks
with a distance of closest approach (DCA) larger than 2 cm in the longitudinal direc-
tion were rejected. In the transverse plane, a pT-dependent DCA selection of the form
0.0105+0.0350 p−1.1

T cm was applied. These selection criteria lead to an efficiency of about
80% for primary tracks at pT > 0.5 GeV/c and contamination from fake tracks (random
associations of space points) and secondary charged particles (i.e. particles originating from
weak decays, conversions, and secondary hadronic interactions in the detector material) of
about 5% at pT ≈ 1 GeV/c.

3.2 Selection of π±, K±, and p+p

Particle identification of π±, K±, and p+p is performed using the dE/dx from the TPC
and the time of flight from the TOF system, if available. The identification is based on
the normalised difference between the measured and the expected signal for a given species
(σTPC and σTOF, respectively). It uses the correlation between nσTPC and nσTOF in a
Bayesian approach [48], where the signals converted into probabilities are folded with the
expected abundances (priors) of each particle species. The minimal probability threshold
has been set to 0.95 for π± and 0.85 for K± and p+p. In addition, particles are selected
by requiring |nσTPC| < 3 and |nσTOF| < 3 for each species in the whole pT range. This
procedure ensures a high purity of the studied sample, thus reducing the uncertainties
due to particle misidentification. The resulting purity, estimated using Monte Carlo (MC)
simulations, is higher than 95% for π± for 0.2 < pT < 10 GeV/c, above 80% for K± for
0.3 < pT < 6 GeV/c, and reaches values larger than 90% for p+p for 0.5 < pT < 6 GeV/c.

3.3 Reconstruction of φ mesons

The φ meson is reconstructed in the decay channel φ → K+ + K− with a branching
ratio of 49.2% [49]. Its decay products are selected using the same criteria for primary
K± (see section 3.2). The φ meson yield is obtained from the invariant mass (MK+K−)
reconstructed from all possible K± pairs after subtracting the combinatorial background
evaluated using the like-sign kaon pairs in each pT and centrality interval. The resulting
MK+K− distribution is parametrised as a sum of a Breit–Wigner (BW) distribution and
a third-order polynomial function that accounts for residual contamination within the
invariant mass range of 0.99 < MK+K− <1.07 GeV/c2. The pT-differential yield of φ
mesons is extracted by integration of the BW distribution and used for the v2 extraction
together with the background yield (see eq. 3.14). The procedure of the reconstruction of
φ meson is identical to the previous measurements [28], while the extraction of v2{4}(pT)
is slightly different and explained in section 3.7.
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3.4 Reconstruction of K0
S and Λ+Λ

The reconstruction of K0
S and Λ+Λ is based on identifying their secondary vertices called

V0s in the decay channels K0
S → π+ + π− and Λ→ p + π− (Λ→ p + π+) with branching

ratios of 69.2% and 63.9% [49], respectively. Selection criteria related to the distinctive V-
shaped decay topology and requirements on the characteristics of the daughter particles are
applied to suppress the large combinatorial background. The invariant mass is calculated
assuming that the daughter particles, identified using the TPC (|nσTPC| < 3) over the entire
pT range, are either a π+π− pair or a pπ− (pπ+) pair. The V0 candidates are selected with
an invariant mass between 0.4 and 0.6 GeV/c2 for K0

S and 1.08 and 1.16 GeV/c2 for Λ+Λ.
The daughter tracks are reconstructed within |η| < 0.8 using the same TPC track quality
requirements described in section 3.1 for charged tracks. In addition, the ratio between the
number of space points and the number of crossed rows in the TPC is required to be larger
than 0.8, the minimum DCA of daughter tracks to the primary vertex is 0.1 cm, and the
maximum DCA of daughter tracks to the secondary vertex is 0.5 cm. Only V0 candidates
produced at a radial distance between 5 and 100 cm from the beam line and with a cosine of
the pointing angle (the angle between the line connecting the primary and V0 vertices and
the V0 momentum vector) larger than 0.998 are accepted. To reduce the contamination
from Λ+Λ and electron–positron pairs coming from γ conversions, an additional selection
is applied in the Armenteros–Podolanski variables [50] of the K0

S candidates, similar to
what is done in ref. [28]. To obtain the pT-differential yield of K0

S and Λ+Λ, the invariant
mass distributions in various pT intervals are parametrised as a sum of two Gaussian
distributions with the same mean and a third-order polynomial function which accounts
for residual background. The K0

S and Λ+Λ yields are extracted by integration of the
Gaussian distributions and are not corrected for feed-down from higher mass baryons (e.g.
Ξ±, Ω±), but these have a negligible effect on v2 [26].

3.5 Reconstruction of Ξ−+Ξ+ and Ω−+Ω+

The Ξ−+Ξ+ and Ω−+Ω+ are reconstructed through the cascade topology of the following
weak decays: Ξ− → Λ + π− (Ξ+ → Λ + π+) and Ω− → Λ + K− (Ω+ → Λ + K+) with
branching ratios of 99.9% and 67.8% [49], respectively, with a subsequent Λ (Λ) decay.
Candidates are found by applying topological and kinematic criteria first to select the V0

with an invariant mass between 1.08 and 1.16 GeV/c2 and then to match it with one of
the remaining secondary tracks. They are selected by requiring the DCA between the V0

and the track to be less than 0.3 cm, the cosine of the pointing angle to be at least 0.999
and 0.998 for the cascade and V0, respectively, the DCA between the V0 and primary
vertex to be larger than 0.05 cm, the minimum DCA of V0 daughter tracks to the primary
vertex to be 0.1 cm, the maximum DCA of V0 daughter tracks to be 1.0 cm, and the
minimum DCA of the daughter track to the primary vertex to be 0.03 cm. Only Ξ−+Ξ+

and Ω−+Ω+ candidates produced at a radial distance between 0.9 and 100 cm from the
beam line with the same radial distance reported in section 3.4 for V0 are accepted. Each
of the three daughter tracks is also required to have pT > 0.15 GeV/c within |η| < 0.8 and
to pass the TPC track quality criteria detailed above for charged tracks. In addition, the
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daughter tracks are checked for compatibility with the pion, kaon, or proton hypotheses by
selecting particles with |nσTPC| < 3 for each species. The pT-differential yield of Ξ−+Ξ+

and Ω−+Ω+ is obtained by fitting the invariant mass distributions with a sum of two
Gaussian distributions with the same mean and a third-order polynomial function that
describe the signal and the background, respectively.

3.6 Flow observables

A common approach to study the event-by-event flow fluctuations for a given flow coefficient
is by using the two- and multiparticle cumulants [51, 52], which have different sensitivities
to effects stemming from non-flow and flow fluctuations,

vn{2} = 〈v2
n〉1/2 + δn, (3.1)

vn{4} =
[
2〈v2

n〉2 − 〈v4
n〉

]1/4
, (3.2)

where δn denotes the two-particle non-flow effects.
Assuming that flow fluctuation σvn is relatively small compared to vn, which was

found to be true for non-central heavy-ion collisions at the LHC [53–55], and also assuming
that non-flow effects can be experimentally removed (or largely suppressed, e.g. by using
appropriate η gaps) in two-particle correlation measurements, the vn can be written as [56]

v2
n{2} = 〈vn〉2 + σ2

vn , (3.3)
v2

n{4} ≈ 〈vn〉2 − σ2
vn , (3.4)

where 〈vn〉 and σvn are the mean and fluctuations of the anisotropic flow coefficient, re-
spectively. These two quantities correspond to the first and second moments of the event-
by-event vn distribution. The observable 〈vn〉 is expected to be free from flow fluctuations
and to only reflect the true elliptic flow from the flow symmetry plane.

Both 〈vn〉 and σvn can be calculated using the measured vn{2} and vn{4} as

〈vn〉 ≈

√
v2

n{2}+ v2
n{4}

2 , (3.5)

σvn ≈

√
v2

n{2} − v2
n{4}

2 . (3.6)

Furthermore, the relative flow fluctuations F (vn) are defined as

F (vn) = σvn

〈vn〉
. (3.7)

3.7 Flow extraction methods

The measurement of the pT-differential vn coefficients of identified hadrons is performed
using two- and four-particle cumulant method [51], according to

vn{2}(pT) = dn{2}√
cn{2}

, (3.8)

vn{4}(pT) = −dn{4}
(−cn{4})3/4 . (3.9)

– 7 –
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Here cn{m} and dn{m} are the reference and differential m-particle cumulants, respectively,
which can be obtained from m-particle correlations. For the specific case of two and four
particles, they are given by

cn{2} = 〈〈2〉〉n, (3.10)
dn{2} = 〈〈2′〉〉n, (3.11)
cn{4} = 〈〈4〉〉n − 2 〈〈2〉〉n2, (3.12)
dn{4} = 〈〈4′〉〉n − 2 〈〈2′〉〉n · 〈〈2〉〉n, (3.13)

where 〈〈m〉〉 and 〈〈m′〉〉 are the event-averaged reference and differential m-particle corre-
lations, respectively. In order to suppress two-particle non-flow correlations, a pseudora-
pidity gap of |∆η| > 0.8 between the two particles (subevents) is applied when computing
the correlations of eqs. 3.10 and 3.11. The relevant flow coefficients will be denoted as
v2{2, |∆η| > 0.8} later in the text.

The multiparticle correlation technique with the generic framework implementa-
tion [38] allows for correcting for detector inefficiencies and non-uniformities in the az-
imuthal particle distribution using weights. Using this method, one can measure the pT-
differential flow with two- and four-particle cumulants of inclusive charged hadrons, π±,
K±, and p+p for each centrality percentile. For K0

S, Λ+Λ, φ, Ξ−+Ξ+, and Ω−+Ω+, the
identification on a particle-by-particle basis is not possible. Besides a signal component
(true particles), the candidates contain a non-negligible combinatorial background. Con-
sidering the fact that the corresponding pT-differential multiparticle cumulants of both
signal and background might not be easily decomposed into individual contributions, the
invariant mass method [57] was developed exploiting the additivity of correlation. This
method has been used in previous anisotropic flow measurements for reconstructed parti-
cles with the two-particle correlation method [26, 28, 33] and is also used in this analysis.
The two- and four-particle correlations are measured as a function of both invariant mass
and candidate pT. The relation between the signal and background components is given
for each pT interval by

〈〈m′〉〉total
n (minv) = f signal(minv) 〈〈m′〉〉signal

n + fbg 〈〈m′〉〉bg
n (minv), (3.14)

where the total m-particle correlation 〈〈m′〉〉total
n can be regarded as the sum of the m-

particle correlations of signal particles 〈〈m′〉〉signal
n and the correlations of the background

〈〈m′〉〉bg
n . Here the signal function is weighted by its corresponding fraction f signal defined as

f signal(minv) = N signal(minv)
N signal(minv) +Nbg(minv) , (3.15)

where N signal(minv) and Nbg(minv) are signal and background yields, respectively. Corre-
spondingly, the weight of the background function is determined with fbg = 1− f sig. Both
N signal(minv) and Nbg(minv) are obtained from the invariant mass distribution of K0

S, Λ+Λ,
φ, Ξ−+Ξ+, and Ω−+Ω+ for each pT interval and centrality class following the procedures
outlined in sections 3.3, 3.4, and 3.5. After measuring 〈〈m′〉〉total

n (minv) via multiparticle
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Figure 1. Simultaneous fits on invariant mass distribution, 〈〈2′〉〉, and 〈〈4′〉〉 correlations of K0
S me-

son at 1.1< pT <1.3GeV/c for centrality 40–50% in √sNN = 5.02TeV Pb–Pb collisions.

correlations, the 〈〈m′〉〉signal
n can be determined for a given centrality class and pT inter-

val using a simultaneous fit to the 〈〈m′〉〉total
n (minv) and N total(minv) distributions, where

〈〈m′〉〉bg
n (minv) is parametrised as a first-order polynomial function. An example of such a

procedure with distributions of minv, 〈〈2′〉〉, and 〈〈4′〉〉 together with fit functions is shown
in figure 1 for K0

S in 1.1< pT <1.3GeV/c and centrality 40–50%. The result of the fit
makes it possible to calculate the corresponding v2{2}(pT) and v2{4}(pT) using eqs. 3.8
and 3.9.

4 Systematic uncertainties

The systematic uncertainties were evaluated by varying the selection criteria for each par-
ticle species, in every pT range and centrality interval, such as track quality criteria for
π±, K±, and p+p or topological reconstruction requirements for φ, K0

S, Λ+Λ, Ξ−+Ξ+, and
Ω−+Ω+. Only statistically significant differences between the nominal data points and
the systematic variations, where significance is evaluated based on the recommendations in
ref. [58], were assigned as systematic uncertainties. The uncertainties from the independent
sources were added in quadrature to obtain the final systematic uncertainties on the mea-
surements. For each particle species, a pT-dependent systematic uncertainty is reported for
pT < 3 GeV/c, while a pT-independent average uncertainty is assigned at higher transverse
momenta to suppress statistical fluctuations. Tables 1, 2, and 3 summarise the minimum
and maximum values of the relative systematic uncertainties per particle species for all pT
and centrality ranges.
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v2{2, |∆η| > 0.8} v2{4}
Uncertainty source π± K± p+p π± K± p+p
Centrality estimator 0–1% 0–1% 0–1% 0–1% 0–1% 0–1%
Magnetic field polarity 0–1% 0–1% 0–1% 0–1% 1–3% 0–3%
Tracking mode 0–2% 0–5% 0–5% 0–1% 0–1% 0–2%
Bayesian particle identification 0–5% 0–5% 0–4% 0–5% 0–4% 0–4%

Table 1. The minimum and maximum values of the relative systematic uncertainties from each
individual source for π±, K±, and p+p. Percentage ranges are given to account for variations with
pT and centrality.

For the event selection criteria, the primary vertex position along the beam line was
varied from 10 cm to 8 cm, and the centrality determination was changed from energy
deposition in the V0 scintillator to the number of hits in the first layer of the ITS. Addi-
tionally, for π±, K±, and p+p, the event sample was separated based on the polarity of
the ALICE solenoid, and the two sub-samples were studied independently.

Systematic uncertainties arising from the selection criteria imposed at the track level
were investigated by requiring only tracks that have at least three hits per track in the ITS
complemented by tracks without hits in the first two layers of the ITS (in which case the
primary interaction vertex is used as an additional constraint for the momentum determi-
nation). In addition, systematics uncertainties in the measurements were investigated by
increasing the minimum number of TPC space points from 70 to 90, and by varying the
DCA from the strict pT-dependent selection to 0.15 cm in the transverse plane and from
2 cm to 0.2 cm in the longitudinal direction, in order to estimate the impact of secondary
particles. These variations are referred as “tracking mode" in tables 1 and 3. Furthermore,
the minimal probability threshold in the Bayesian particle identification was increased from
0.95 to 0.98 for π± and from 0.85 to 0.9 for K± and p+p.

For K0
S and Λ+Λ, the topological requirements on the V0s themselves were varied by

changing the maximum DCA of the V0 daughter tracks to the secondary vertex from 0.5
cm to 0.3 cm and the minimum DCA of the V0 daughter tracks to the primary vertex
from 0.1 cm to 0.3 cm. In addition, the minimum radial distance to the primary vertex at
which the V0 can be produced was changed from 5 cm to 1 cm and 10 cm. The selection
criteria imposed on the daughter tracks were varied by increasing the minimum number of
TPC space points from 70 to 90, requiring the ratio between the number of space points
and the number of crossed rows in the TPC to be larger than 0.9 or 1.0 instead of 0.8
(denoted as “track quality" in table 2), and requiring a minimum pT of 0.2 GeV/c. Finally,
the strategy for reconstructing V0 was changed from online, where V0s were reconstructed
during the track fitting procedure, to offline, which took place after all the tracks have
been reconstructed.

The Ξ−+Ξ+ and Ω−+Ω+ finding criteria were varied by changing the maximum DCA
between the V0 and bachelor track from 0.3 cm to 0.25 cm, increasing the minimum DCA
between the V0 and primary vertex from 0.05 cm to 0.06 cm, decreasing the minimum
DCA of V0 bachelor tracks to the primary vertex from 0.1 cm to 0.08 cm. In addition,
the criteria were changed by requiring the maximum DCA of V0 bachelor tracks to be 0.8
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v2{2, |∆η| > 0.8} v2{4}
Uncertainty source K0

S Λ+Λ φ meson K0
S Λ+Λ φ meson

Centrality estimator 0–1% 0–1% 2–3% 1–3% 1% 2–5%
Track quality 1–3% 0–2% negl. 1–5% 0–4% negl.
Background fit function negl. negl. negl. negl. negl. negl.
Signal fit function negl. negl. negl. negl. negl. negl.
V0 finding strategy 0–1% 0–1% – 0–2% 0–1% –
DCA decay products to primary vertex 0–1% 0–1% – 1% 0–1% –
DCA between decay products 0–1% 0–1% – 0–1% 0–1% –
Minimum pT of daughter tracks negl. 0–1% – 0–1% 0–1% –
Decay vertex (radial position 1 cm) 1% 0–1% – 2% 0–1% –
Decay vertex (radial position 10 cm) 1–2% 1% – 1–5% 1%

Table 2. The minimum and maximum values of the relative systematic uncertainties from each
individual source for K0

S, Λ+Λ, and φ meson. Percentage ranges are given to account for all pT and
centrality intervals. The fields marked as “negl.” (negligible) denote that the uncertainties were
tested but are not statistically significant.

cm instead of 1.0 cm, increasing the minimum DCA of the bachelor track to the primary
vertex from 0.03 cm to 0.035 cm, and decreasing the minimum value of the cosine of the
pointing angle for the cascade from 0.999 to 0.995. For the V0, the invariant mass range
was changed from (1.08–1.16) GeV/c2 to (1.10–1.14 ) GeV/c2, while the minimum radial
distance was varied from 5 cm to 1 cm and 10 cm. A minimum value of 0.995 instead of
0.998 was used for the cosine of the pointing angle. For each of the three daughter tracks,
the PID criterion was varied from |nσTPC| < 3 to |nσTPC| < 2 and the minimum pT was
increased to 0.2 GeV/c.

An additional contribution from fitting parameter variations was studied for all the
reconstructed particles, following the same approach used in previous works [26, 33]. The
resulting systematic uncertainties, negligible for K0

S, Λ+Λ, and φ mesons, but significant
for Ξ−+Ξ+ and Ω−+Ω+, are summarized in table 3.

5 Results

In this section, the results for the pT-differential v2 and its relative fluctuations mea-
sured in various collision centrality intervals of Pb–Pb collisions at √sNN = 5.02TeV are
presented. The v2 measured with two- and four-particle cumulants and the correspond-
ing results for flow fluctuations for different particle species are reported in section 5.1
and section 5.2, respectively. In section 5.3, the experimental data are compared with a
state-of-the-art hydrodynamic model calculations, namely, the coupled linear Boltzmann
transport (CoLBT) [59], that applies TRENTo initial state model and incorporates the
bulk expansion of the medium with a specific shear viscosity η/s = 0.10 and interactions
of energetic partons with it, as well as a coalescence mechanism for particle production.
Note that the same data will be shown in different representations to highlight the various
physics implications of the measurements. The data points will be drawn together with
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v2{2, |∆η| > 0.8} v2{4}
Uncertainty source Ξ−+Ξ+ Ω−+Ω+ Ξ−+Ξ+ Ω−+Ω+

Centrality estimator 0–1% 0–4% 1% 2–6%
Number of TPC space points 0–1% 0–2% negl. 0–2%
Tracking mode for bachelor track negl. 0–1% negl. 1–3%
Particle identification of decay products negl. 1–2% negl. 1– 3%
V0 invariant mass range negl. 1–2% negl. 1– 3%
DCA between V0 decay products 0–1% 1–2% 0–1% 0– 1%
DCA between V0 and primary vertex negl. 0–1% 0–1% 1– 2%
Decay vertex of V0 (radial position 10 cm) negl. 0–1% negl. 0–1%
Background fit function negl. negl. 0–1% negl.
Signal fit function 1–3% 1–2% 1–3% 1– 2%

Table 3. The minimum and maximum values of the relative systematic uncertainties from each
individual source for Ξ−+Ξ+ and Ω−+Ω+. Percentage ranges are given to account for all pT and
centrality intervals. The fields marked as “negl.” (negligible) denote that the uncertainties were
tested but are not statistically significant.
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Figure 2. The pT-differential v2 measured with two-particle correlations with a pseudorapidity gap
of |∆η| > 0.8 for different particle species and centralities in Pb–Pb collisions at √sNN = 5.02TeV.
The vertical error bars and the filled boxes represent statistical and systematic uncertainties, re-
spectively.

their statistical and systematic uncertainties represented by the error bars and shaded
boxes around each marker, respectively.

5.1 Mass ordering and scaling properties

Figure 2 presents the pT-differential v2{2, |∆η| > 0.8} measurements for unidentified
charged hadrons (h±) as well as for π±, K±, p+p, K0

S, Λ+Λ, φ, Ξ−+Ξ+, and Ω−+Ω+

from Pb–Pb collisions at √sNN = 5.02TeV. The five panels show different centrality in-
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Figure 3. The pT-differential v2 measured with four-particle cumulants (v2{4}) for different particle
species and centralities in Pb–Pb collisions at √sNN = 5.02TeV. The vertical error bars and the
filled boxes represent statistical and systematic uncertainties, respectively.

tervals, with the most central and the most peripheral, i.e. 10–20% and 50–60%, drawn
in the top left and bottom right, respectively. This analysis profits from the data samples
collected by ALICE in 2015 and 2018 which allow extending the previous results from
two-particle correlations [25–27, 33] to higher-order cumulants. Figure 3 presents the first
pT-differential v2 measurements using four-particle cumulants (i.e. v2{4}) for the same par-
ticle species as reported in figure 2 from Pb–Pb collisions at √sNN = 5.02TeV. In both
cases, similar features of the pT-differential measurements as reported and discussed in
detail in refs. [26–28, 33] are confirmed. The progressive increase of v2 with the centrality
of the collision for a given pT interval illustrates the final-state anisotropy that originates
from the initial-state ellipsoidal geometry in non-central collisions, quantified by the spa-
tial eccentricity ε2. Furthermore, both the effects known in the literature as mass ordering
and the meson–baryon particle type grouping are present in these new measurements. The
former originates from the radial flow of the system, while the latter is explained in a
dynamical picture where flow develops at the partonic level followed by quark coalescence
into hadrons [32].

The meson–baryon grouping is generally attributed to hadron production via coales-
cence in the intermediate pT region [32], where the direct contribution from hydrodynamic
expansion may no longer be dominant and the path-length dependence of energy loss might
not play a significant role yet [60]. This grouping is further investigated using the number
of constituent quarks (NCQ) scaling, similarly to what was done in refs. [26–28, 33]. The
values of v2{4}/nq reported in figure 4 confirm that the scaling, if it holds at all, is only
approximate. The contributions of v2{4} from different sources will be further discussed in
section 5.3, where detailed comparisons with theoretical model calculations will be shown.
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Figure 4. The dependence of v2{4}/nq on pT/nq, where nq is the number of constituents quarks,
for different particle species and centralities in Pb–Pb collisions at √sNN = 5.02TeV. The vertical
error bars and the filled boxes represent statistical and systematic uncertainties, respectively.
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Figure 5. The dependence of the mean value of v2 (〈v2〉) on pT for different particle species and
centralities in Pb–Pb collisions at √sNN = 5.02TeV. The vertical error bars and the filled boxes
represent statistical and systematic uncertainties, respectively.

5.2 Results on flow fluctuations

The measurements of v2 with two- and four-particle cumulants provide the first opportunity
to investigate the first moments of the v2 distribution for different particle species. Figure 5
presents the mean value of v2, denoted as 〈v2〉, as a function of pT for the same combination
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Figure 6. The pT dependence of the standard deviation of v2 (σv2) for different particle species
and centralities in Pb–Pb collisions at √sNN = 5.02TeV. The vertical error bars and the filled boxes
represent statistical and systematic uncertainties, respectively.
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Figure 7. The relative elliptic flow fluctuations (F (v2)) as a function of pT for different particle
species and centralities in Pb–Pb collisions at √sNN = 5.02TeV. The vertical error bars and the
filled boxes represent statistical and systematic uncertainties, respectively.

of hadrons and centrality intervals as in the previous figures. Assuming that the non-
flow contribution in v2

2{2, |∆η| > 0.8} is negligible [21, 36], this mean value is calculated
according to eq. 3.5 by replacing v2

2{2} with v2
2{2, |∆η| > 0.8} measurement.

Figure 6 presents the transverse momentum dependence of the second moment of the
v2 distribution, i.e. the standard deviation σv2 , measured for the first time for different

– 15 –



J
H
E
P
0
5
(
2
0
2
3
)
2
4
3

particle species. As in the previous case, assuming negligible non-flow contribution in
v2

2{2, |∆η| > 0.8}, σv2 is approximated according to eq. 3.6. The data points of both
〈v2〉 and σv2 show, as expected, the same qualitative features as in the previous cases of
figures 2 and 3: namely the mass ordering developing at low values of pT and the particle
type grouping that is evident at higher pT.

Combining 〈v2〉 and σv2 , one can quantify the relative v2 fluctuations (F (v2)) accord-
ing to eq. 3.7. This quantity is displayed in figure 7 as a function of pT and centrality
intervals for the various particle species presented in this article. It can be seen that for
central events, there is no significant pT or particle species dependence. However, for more
peripheral collisions, and in particular starting from the interval 30–40% and above, the
data points exhibit a non-monotonic transverse momentum dependence, with a minimum
in F (v2) that lies at higher values of pT for baryons than for mesons. In addition, the F (v2)
for baryons in 1 < pT < 3 GeV/c is systematically lower than for mesons. Interestingly,
the momentum region where this apparent particle type grouping develops for F (v2) does
not coincide with the region where a similar grouping is reported for measurements of v2.
This could point to a different origin for these two observations. For pT > 3 GeV/c, all
data points converge into a universal band within the uncertainties. The origin of this
characteristic behaviour of F (v2) is studied using hydrodynamical models in the following
section.

Finally, to further study the nature of flow fluctuations, figure 8 presents the pT-
dependence of the ratio v2{4}/v2{2, |∆η| > 0.8}. This ratio is expected to be sensitive
to the fluctuations within the picture of initial state models. Within these models, the
spatial eccentricity ε2 fluctuates from event to event. These fluctuations are transferred
through the low viscosity QGP to the final state and are imprinted in how v2 fluctuates.
Since v2 ∝ ε2, the ratio v2{4}/v2{2, |∆η| > 0.8} is expected to reflect the ratio between
ε2{4} and ε2{2}, which have positive and negative contributions from the initial eccentricity
fluctuations, and thus can provide strong constraints on initial state models. It can be seen
that for central collisions, this ratio does not exhibit any significant pT or particle species
dependence. Starting from the 20–30% centrality interval, however, a decrease in the ratio
can be seen between 1 and 5 GeV/c. It becomes progressively more pronounced for more
peripheral events. In addition, starting from the 30–40% centrality interval, and similar to
the picture that develops for F (v2), the data points indicate a particle type grouping, with
the values for baryons being systematically larger than the ones for mesons. This apparent
dependence on particle species highlights that final state effects play a significant role in
these observables.

5.3 Comparison with models

The comparison of results from anisotropic flow studies with hydrodynamic calculations
has been instrumental in constraining some of the basic transport coefficients of the QGP.
However, such comparisons were limited until now to the low pT region, i.e. in ranges where
the mass ordering discussed in the previous section is prominent. One of the first attempts
to provide a unified physics picture throughout the entire transverse momentum range for
different particle species was presented recently in ref. [60]. In this article, the authors
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Figure 8. The ratio v2{4}/v2{2, |∆η| > 0.8} as a function of pT for different particle species and
centralities in Pb–Pb collisions at √sNN = 5.02TeV. The vertical error bars and the filled boxes
represent statistical and systematic uncertainties, respectively.
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Figure 9. The pT-differential v2{4} for π±, K±, and p+p measured in Pb–Pb collisions at √sNN =
5.02TeV compared with expectations of the same quantity from the CoLBT hydrodynamic model
with quark coalescence [60]. The left and right panels present the comparison for the 10–20% and
40–50% centrality intervals, respectively. The vertical error bars and the filled boxes represent
statistical and systematic uncertainties of the data, respectively. The thickness of the model curves
reflect the uncertainties of the hydrodynamic calculations.

used the CoLBT hydrodynamic model [59] which allows for the simultaneous description
of the evolution of parton showers and the bulk medium. The latter is prescribed by a
(3+1)-D viscous hydrodynamic model that is initialized at τ0 = 0.6 fm/c and uses a value
of specific shear viscosity η/s = 0.10. The freeze-out temperature is set to Tfo = 150MeV,
beyond which a hadronic after-burner describes the interactions between hadrons. The
remaining parameters of the model were adjusted to reproduce the measured yields, pT
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Figure 10. The pT-differential v2{4} for π±, K±, and p+p measured in Pb–Pb collisions at√
sNN = 5.02TeV compared with expectations of the same quantity from the CoLBT hydrodynamic

model without quark coalescence [60] in 40–50% centrality interval. The vertical error bars and
the filled boxes represent statistical and systematic uncertainties of the data, respectively. The
thickness of the model curves reflect the uncertainties of the hydrodynamic calculations.
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Figure 11. The pT-differential (a) 〈v2〉, (b) σv2 , (c) v2{4}/v2{2}, and (d) F (v2) for π±, K±, and
p+p measured in one indicative centrality interval (40–50%) of Pb–Pb collisions at √sNN = 5.02TeV
compared with expectations of the same quantities from the CoLBT hydrodynamic model [60].
The vertical error bars and the filled boxes represent statistical and systematic uncertainties of the
data, respectively. The thickness of the model curves reflect the uncertainties of the hydrodynamic
calculations.

spectra, and integrated vn of unidentified charged hadrons in Pb–Pb collisions. One of the
important ingredients which is introduced in this model is the way hadrons emerge, with
the typical hydrodynamic freeze-out at low pT being complemented by a quark coalescence
prescription at intermediate pT and fragmentation at high pT [60].
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Figure 9 presents the evolution of v2{4} as a function of pT for π±, K±, and p+p for
two characteristic centrality intervals, 10–20% (central) and 40–50% (peripheral), in the
left and right panels, respectively. The measurements are compared with the expectations
for the same particle species from the CoLBT hydrodynamic model, represented by the
shaded bands. It can be seen that the model describes the pT dependence of v2{4} over the
entire pT range. In particular, at low values of pT (< 2–3 GeV/c) where the hydrodynamic
expansion of the medium plays a dominant role, the model describes both the increase as
a function of pT and the mass ordering. The v2{4} reaches a peak value at around pT
≈ 3 GeV/c for pions and kaons and at pT ≈ 4 GeV/c for protons, before decreasing at
high pT. This can be naturally explained by the interplay between the hydrodynamical
expansion, hadron production through quark coalescence, and jet fragmentation [60].

Within the CoLBT model, the hydrodynamic contribution to v2 is dominant for all
particle species up to pT = 4 GeV/c, whereas the jet fragmentation plays an increasingly
important role for pT > 6 GeV/c. In the intermediate pT region (4–6 GeV/c), quark
coalescence contributes in CoLBT to the development of the value of v2, even though in the
model this mechanism accounts for less than 25% of the total particle yield. This is because
the value of v2 from coalescence is significantly larger than the v2 from fragmentation up
to 6 GeV/c. The additional mechanism of the coalescence prescription in the model is
important to reproduce the experimental results quantitatively and to provide the proper
connection between the low and high pT regions. In the former, the mass ordering develops,
while in the latter the fragmentation is the dominant particle production mechanism and
no significant particle species dependence is observed.

It is known that neither the hydrodynamic expansion nor the fragmentation alone
leads to the precise NCQ scaling development. Such contributions in the final v2 could
consequently give a natural explanation for the significant deviation from a universal NCQ
scaling observed in figure 4. On the other hand, the model calculation with only con-
tributions from hydrodynamic expansion and fragmentation but without the contribution
from quark coalescence significantly underestimates v2{4} for pT above 3GeV/c for π±,
K±, shown in figure 10. Nevertheless, the crossing of v2 of pions, kaons, and protons can
develop according to CoLBT with a combination of the hydrodynamic expansion coupled
only to jet fragmentation (for details refer to figure 4 in ref. [60]). This might challenge
the prevailing idea discussed in the literature (see, e.g., ref. [61]) that the crossing can be
attributed to quark coalescence. It is important to note that the development of the cross-
ing point in the absence of coalescence in CoLBT arises from a particle species-dependent
pT value where fragmentation becomes dominant over hydrodynamics.

To further investigate the coalescence contributions on flow fluctuations, figures 11
and 12 present the comparison of the pT-differential 〈v2〉 (panel a), σv2 (panel b),
v2{4}/v2{2} (panel c), and F (v2) (panel d) for π±, K±, and p+p with the calculation
from CoLBT model with the combinations of hydrodynamics, quark coalescence, and jet
fragmentation as well as with CoLBT model with only the combinations of hydrodynamics
and jet fragmentation, respectively [60]. The 40–50% centrality interval was chosen as
representative for these comparisons. The model without quark coalescence contribution
describes qualitatively the features and the pT dependence of the measurements, but signif-
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Figure 12. The pT-differential (a) 〈v2〉, (b) σv2 , (c) v2{4}/v2{2}, and (d) F (v2) for π±, K±,
and p+p measured in one indicative centrality interval (40–50%) of Pb–Pb collisions at √sNN =
5.02TeV compared with expectations of the same quantities from the CoLBT hydrodynamic model
without quark coalescence [60]. The vertical error bars and the filled boxes represent statistical
and systematic uncertainties of the data, respectively. The thickness of the model curves reflect the
uncertainties of the hydrodynamic calculations.

icantly underestimates 〈v2〉 of pion and kaon for pT above 3GeV/c. This is very different
from what has been observed in figures 9 and 11. Despite the sizable uncertainties of
CoLBT calculations, the contribution from quark coalescence seems non-negligible for σv2 ,
v2{4}/v2{2}, and F (v2), when comparing the calculations of hydro+coal+frag (shown in
figure 11) and hydro+frag (shown in figure 12).

6 Summary

In summary, the first measurement of pT-differential elliptic flow using two- and four-
particle cumulants for π±, K±, p+p, K0

S, Λ+Λ, φ, Ξ−+Ξ+, and Ω−+Ω+ in Pb–Pb collisions
at √sNN = 5.02TeV is presented. The mean elliptic flow, elliptic flow fluctuations, and
relative elliptic flow fluctuations are obtained for various particle species. Differences in
the value of relative flow fluctuations for different particle species are observed, suggesting
that final state hadronic interactions further modify the flow fluctuations. A distinct mass
ordering is found in the 10–60% centrality interval for pT < 3 GeV/c, which arises from the
interplay between the elliptic and radial flow. In the intermediate pT range, the magnitude
of v2{4}, 〈v2〉, and σv2 for baryons is larger than that for mesons by about 50%. In addition,
particles show an approximate constituent quark scaling. This scaling is tested for v2{4},
which is expected to measure flow with little (or no) non-flow contamination. NCQ scaling
describes the data no better than ±20%, an accuracy similar to what was reported for the
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v2 using two-particle correlations. Furthermore, the relative flow fluctuation F (v2) for the
identified hadrons shows an apparent splitting between baryons and mesons for centrality
above 30%, which suggests a significant role for final-state interactions in developing this
observable. Last but not least, CoLBT hydrodynamic calculations with the implementation
of quark coalescence describe the measurements over a large pT range, which confirms the
relevance of the quark coalescence hadronization mechanism in the particle production in
Pb–Pb collisions at the LHC.
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