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Abstract: This article presents new measurements of the fragmentation properties of
jets in both proton–proton (pp) and heavy-ion collisions with the ALICE experiment at
the Large Hadron Collider (LHC). We report distributions of the fraction zr of transverse
momentum carried by subjets of radius r within jets of radius R. Charged-particle jets
are reconstructed at midrapidity using the anti-kT algorithm with jet radius R = 0.4, and
subjets are reconstructed by reclustering the jet constituents using the anti-kT algorithm
with radii r = 0.1 and r = 0.2. In proton–proton collisions, we measure both the inclusive
and leading subjet distributions. We compare these measurements to perturbative calcu-
lations at next-to-leading logarithmic accuracy, which suggest a large impact of threshold
resummation and hadronization effects on the zr distribution. In heavy-ion collisions, we
measure the leading subjet distributions, which allow access to a region of harder jet frag-
mentation than has been probed by previous measurements of jet quenching via hadron
fragmentation distributions. The zr distributions enable extraction of the parton-to-subjet
fragmentation function and allow for tests of the universality of jet fragmentation functions
in the quark–gluon plasma (QGP). We find no significant modification of zr distributions
in Pb–Pb compared to pp collisions. However, the distributions are also consistent with a
hardening trend for zr < 0.95, as predicted by several jet quenching models. As zr → 1
our results indicate that any such hardening effects cease, exposing qualitatively new pos-
sibilities to disentangle competing jet quenching mechanisms. By comparing our results
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to theoretical calculations based on an independent extraction of the parton-to-jet frag-
mentation function, we find consistency with the universality of jet fragmentation and no
indication of factorization breaking in the QGP.
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1 Introduction

Measurements of high-energy jets produced in scattering experiments offer opportunities
to test perturbative calculations in quantum chromodynamics (QCD) [1–9] and to probe
the properties of the quark–gluon plasma (QGP) [10–15]. Heavy-ion collisions can be
used to produce short-lived droplets of QGP, serving as a laboratory system to study
the emergence of this high-temperature, strongly-coupled, deconfined system of quarks
and gluons in QCD. While several of its transport coefficients have been constrained by
experimental measurements [16–26], the detailed physical properties of the QGP, including
the nature of its degrees of freedom as a function of resolution scale, remain unknown.

Properties of the QGP can be inferred by comparing jets in heavy-ion collisions, which
traverse the QGP, to their counterparts in proton–proton collisions. Significant experi-
mental and theoretical effort has been made to measure and calculate the modification of
jet observables in heavy-ion collisions, known as jet quenching, in an ongoing attempt to
achieve a unified description of the jet–QGP interaction [27–29]. It has been established
that jets traversing the QGP emit soft medium-induced radiation outside of the jet cone,
causing their observed yields to be significantly suppressed as compared to pp collisions,
and that the fragmentation pattern of the resulting observed jets can be both narrowed
and hardened in certain regions of phase space [30–43]. However, the precise role of several
theoretical mechanisms of jet quenching, such as quark vs. gluon energy loss, factorization
breaking, and color coherence remains unclear. It is essential to understand and disentangle
these mechanisms in order to use jet quenching to reveal physical properties of the QGP.
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In this article, we consider measurements of charged-particle subjets, defined by first
clustering inclusive charged-particle jets with the anti-kT algorithm [44] with radius R,
and then reclustering the jet constituents with the anti-kT algorithm with subjet radius
r < R, as illustrated in figure 1 [45]. We focus on the fraction of charged-particle transverse
momentum (pT) carried by the subjet:

zr = pch subjet
T
pch jet

T
,

where pch (sub)jet
T is the transverse momentum of the charged-particle (sub)jet.

In pp collisions, both the inclusive and leading subjet zr distributions have been cal-
culated perturbatively for a variety of r and R values [46, 47]. These calculations involve
several interesting aspects that can be studied experimentally such as the role of threshold
resummation, and, in the leading subjet case, nonlinear evolution of the jet fragmentation
function. Similar effects have recently been examined in e+e− collisions [8, 47].

In heavy-ion collisions, subjet observables have been proposed as sensitive probes of
jet quenching [46–49]. The subjet zr observable presents several unique opportunities to
study jet quenching:

1. Probe high-z fragmentation. The subjet fragmentation distribution zr is comple-
mentary to the longitudinal momentum fraction z of hadrons in jets [36–39]. The
subjet fragmentation distribution can be understood as a generalization of the hadron
fragmentation distribution, where in the limit r → 0 the two become equal. By gen-
eralizing to r > 0, subjet measurements offer the benefit of probing higher z values
than hadron measurements; even for small subjet aperture the zr distribution ex-
hibits a peak at large zr, whereas the hadron z distribution populates much lower z
values. This enables a more precise handle on the overall hardness of jet fragmenta-
tion, and thereby makes it possible to access a quark-dominated sample of jets [47]
at high zr. This in turn provides an opportunity to expose the interplay of soft
medium-induced radiation with the relative suppression of gluon vs. quark jets, and
introduces a method to do so based on inclusive jet samples alone, complementary
to existing methods comparing inclusive and photon-tagged jet observables [37, 39].

2. Test the universality of jet fragmentation in the QGP. In vacuum, it is expected that
the parton-to-jet fragmentation function, J(z), is equal to the parton-to-subjet frag-
mentation function Jr(z) [46]. However, it is unknown whether this universality of
jet fragmentation functions holds in the QGP independently of the observable con-
sidered [50]. Measurements of zr distributions are directly sensitive to the medium-
modified parton-to-subjet fragmentation function, Jr,med(z), and can be used to ex-
tract it. The extracted Jr,med(z) can then be compared to an independently extracted
medium-modified parton-to-jet fragmentation function, Jmed(z), to test the univer-
sality of in-medium jet fragmentation across different jet observables in heavy-ion
collisions and look for signs of factorization breaking.

3. Measure energy loss at the cross section level. A well-defined method of measuring
out-of-cone energy loss at the cross section level has been proposed by computing

– 2 –



J
H
E
P
0
5
(
2
0
2
3
)
2
4
5

R

r

Figure 1. Cartoon of a subjet of radius r inside a jet of radius R. We consider charged-particle
subjets clustered using the anti-kT algorithm from the constituents of inclusive charged-particle jets.

moments of the leading subjet zr distribution [47]. The first moment or “subjet
energy loss” describes the fraction of jet pT not carried by the leading subjet, and
higher moments describe fluctuations in this energy loss. These quantities can be
computed in both pp and Pb–Pb collisions for a variety of r and R values, and
contrasted with other measures of jet modification.

2 Experimental setup and data sets

A description of the ALICE detector and its performance can be found in refs. [51, 52].
The data sample of pp collisions used in this analysis was collected in 2017 during the LHC
Run 2 at

√
s = 5.02TeV using a minimum-bias (MB) trigger defined by the coincidence

of the signals from the two V0 scintillator arrays in the forward region [53]. The Pb–Pb
data set was collected in 2018 at √sNN = 5.02TeV. A central collision trigger was used
which selects events in the 0–10% centrality interval based on the multiplicity of produced
particles in the V0 detector acceptance [54, 55]. In the event, the primary vertex was
required to be within 10 cm along the beam axis from the center of the detector. Beam-
induced background events were removed using timing information from the V0 detectors
and, in Pb–Pb collisions, from two neutron Zero Degree Calorimeters located ±112.5 m
along the beam axis from the center of the detector. Pileup events were rejected based
on multiple reconstructed vertices and tracking selections [30]. After these selections, the
pp data sample contains 870 million events and corresponds to an integrated luminosity of
18.0± 0.4 nb−1 [56]. The Pb–Pb data sample contains 92 million events in 0–10% central
collisions, corresponding to an integrated luminosity of approximately 0.12 nb−1.

This analysis uses charged-particle tracks reconstructed based on the information from
the Time Projection Chamber (TPC) [57] and the Inner Tracking System (ITS) [58]. While
track-based observables are collinear-unsafe [59–61], they can be measured with greater
precision than calorimeter-based observables, and recent measurements have demonstrated
that for many substructure observables track-based distributions are compatible with the
corresponding collinear-safe distributions [4]. We define two types of tracks: global tracks
and complementary tracks [52]. Global tracks are required to include at least one hit in the
Silicon Pixel Detector (SPD) comprising the two innermost layers of the ITS and to satisfy
multiple criteria on the quality of track reconstruction in the TPC and its pointing to the
collision vertex. Complementary tracks are all those satisfying all the selection criteria
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of global tracks except for the request of a point in the SPD. They are refitted using
the primary vertex to constrain their trajectory in order to preserve good momentum
resolution, especially at high transverse momentum (pT). Including this second class of
tracks ensures approximately uniform azimuthal acceptance, while providing similar pT
resolution to tracks with SPD hits. Tracks with pT > 0.15 GeV/c were accepted over
the pseudorapidity range |η| < 0.9 and azimuthal angle 0 < ϕ < 2π. The momentum
resolution σ(pT)/pT of the accepted tracks was estimated from the covariance matrix of
the track fit parameters [52], and is approximately 1% at track pT = 1 GeV/c and 4% at
pT = 50 GeV/c.

The instrumental performance of the detector was estimated with a simulation per-
formed using PYTHIA8 Monash 2013 [62, 63] for the event generation and the GEANT3
transport code [64] to propagate particles through the simulated ALICE apparatus. The
tracking efficiency in pp collisions is approximately 67% at track pT = 0.15 GeV/c, and
rises to approximately 84% at pT = 1 GeV/c, and remains above 75% at higher pT. Studies
of the centrality dependence of the tracking efficiency in a HIJING [65] simulation demon-
strated that the tracking efficiency is approximately 2% lower in 0–10% central Pb–Pb
collisions compared to pp collisions, independent of track pT.

3 Analysis method

Jets were reconstructed from charged-particle tracks with FastJet 3.2.1 [66] using the anti-
kT algorithm with E-scheme recombination and radius (or resolution parameter) R =
0.4 [44, 67]. Subjets were reconstructed by reclustering the jet constituents using the anti-
kT algorithm with E-scheme recombination and radii r = 0.1 and r = 0.2. The pion
mass was assumed for all jet constituents. Jets containing tracks with pT > 100 GeV/c,
corresponding to < 1% of the jet sample in the considered kinematic range, were discarded
in order to ensure good momentum determination. Jets in heavy-ion collisions have a large
uncorrelated background contribution due to the underlying event (UE) [68]. The event-by-
event constituent subtraction method was used before jet finding was performed [69, 70].
This corrects the overall jet pT and its substructure simultaneously by subtracting UE
energy constituent by constituent. A maximum recombination distance Rmax = 0.25 was
used [70]. In pp collisions, the UE was not subtracted and must be included as a model
component in all theory comparisons. According to PYTHIA8, the impact of the UE in
pp collisions on the leading zr distribution is <3% for zr < 0.95, and grows up to 13% as
zr → 1. The jet axis is required to be within the fiducial volume of the TPC, |ηjet| < 0.9−R,
where ηjet is the jet axis pseudorapidity.

The jet reconstruction performance is studied by simulating pp events and particle
transport through the ALICE detector material as described in section 2. We compare
PYTHIA8 generated jets at “truth level” (before the particles undergo interactions with
the detector) to those at “detector level” (after detector simulation). The truth-level jet
was constructed from the charged primary particles of the PYTHIA8 event, defined as all
particles with a mean proper lifetime larger than 1 cm/c, and excluding the decay products
of these particles [71]. For the Pb–Pb data analysis, we embedded the simulated pp events
after track reconstruction into 0–10% centrality Pb–Pb measured events to account for
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background effects, and applied the constituent subtraction procedure described above. A
jet matching procedure is used in order to associate jets at the truth level to jets at the
detector level. In pp collisions, this matching procedure is based on geometrically matching
jets within ∆R < 0.6 R, where ∆R =

√
∆y2 + ∆ϕ2 is their rapidity-azimuth separation.

In Pb–Pb collisions, the matching procedure includes both this geometrical requirement
and further requires that the jet contains at least 50% of the total track pT of the associated
reconstructed jet from the embedded pp event at detector level. To study the subjet zr
reconstruction performance, a similar matching procedure was adopted. In order to match
inclusive subjets at the truth level with their counterparts at the detector level, we apply
the same matching procedure as described above for jets, except with the subjet radius
r replacing the jet radius R in the geometrical matching criteria. In the case of leading
subjets, however, we match the leading subjet at the truth level to the leading subjet at the
detector level, without requiring geometrical criteria. The jet energy scale shift (pch jet

T,det −
pch jet

T,truth)/pch jet
T,truth is a long-tailed asymmetric distribution due to tracking inefficiency with a

peak at zero, corresponding to pch jet
T,det = pch jet

T,truth, where p
ch jet
T,det is the detector-level p

ch jet
T , and

pch jet
T,truth is the truth-level pch jet

T [72]. The mean jet energy scale shift for R = 0.4 charged-
particle jets in pp collisions is approximately −13% at pch jet

T,truth = 20 GeV/c and decreases
to −21% at pch jet

T,truth = 100 GeV/c. The jet energy resolution is approximately constant at
21% in pp collisions; in Pb–Pb collisions an additional contribution from the underlying
event fluctuations further broadens the distribution of the jet energy scale shift, with
the standard deviation of the background fluctuation contribution to the shift σδpT [68]
being equal to approximately 11 GeV/c, independent of pch jet

T,truth. The zr reconstruction
performance behaves qualitatively similarly as the jet pT described above, with a peak
near zero in the relative residual distribution corresponding to zr,det = zr,truth. The zr
reconstruction resolution is O(10%), with asymmetric tails that are broader for small zr
than for large zr, and broader in Pb–Pb compared to pp collisions.

Local fluctuations in the underlying event of a heavy-ion collision can result in an
incorrect subjet (unrelated to the hard scattering) being identified by the reclustering
algorithm. This “mistagging” effect is in exact analogy to the case of identifying groomed
jet splittings in the presence of a large underlying event [73], although with improved
robustness to mistagging effects [74]. In order to address this issue, the measurement was
performed by restricting to zr,det > 0.5, which mitigates these effects. The subjet purity due
to these background effects was evaluated by embedding jets simulated with the PYTHIA8
event generator [62] into measured Pb–Pb collisions and following the procedure in ref. [73]
. The residual background contribution remains below 5% for zr > 0.6 and increases up
to approximately 20% at zr = 0.5, for the pch jet

T,det range considered in this measurement.
This level of background contamination is small enough to allow the results to be unfolded
for detector effects and background fluctuations. The corresponding contamination in pp
collisions is negligible.

The reconstructed pch jet
T and zr differ from their true values due to tracking ineffi-

ciency, particle-material interactions, and track pT resolution. Moreover, in Pb–Pb col-
lisions, background fluctuations significantly smear the reconstructed distributions of zr.

– 5 –



J
H
E
P
0
5
(
2
0
2
3
)
2
4
5

To account for these effects, we simulated events at the truth level and detector level and
matched both jets and subjets at the truth level and detector level as described above.
We constructed a 4D response matrix (RM) that describes the detector and background
response in pch jet

T and zr: R
(
pch jet

T,det, p
ch jet
T,truth, zr,det, zr,truth

)
. For both the pp and Pb–Pb

results, we use PYTHIA8 to generate the RM since previous studies indicate that the effect
of changing fragmentation patterns on the response is small. This is due to the fact that
there is only an indirect dependence via the response matrix [34, 38, 75]; an uncertainty
due to this model dependence is assessed in section 4. A simultaneous unfolding was then
performed in pch jet

T and zr using the iterative Bayesian unfolding algorithm [76, 77] imple-
mented in the RooUnfold package [78]. The prior distribution for the unfolding procedure
is taken to be the truth-level distribution from PYTHIA8. In Pb–Pb collisions, lower limits
of pch jet

T,det > 60 GeV/c and zr,det > 0.5 are imposed on the data that is input to the unfolding,
in order to reject combinatorial jets and mistagged subjets. No such limitation is imposed
on pch jet

T,truth or zr,truth during the unfolding process. The distributions were corrected for
“misses”, in which a jet was generated inside the considered truth-level range but not inside
the detector-level range. In pp collisions the rate of misses is < 3%, whereas in Pb–Pb
collisions the rate of misses ranges from 24−40% due to the aforementioned fluctuations in
the UE. The rate of “fakes”, in which a jet exists inside the considered detector-level range
but not inside the truth-level range, is < 1% and therefore negligible. The number of iter-
ations, which sets the strength of regularization, was chosen by minimizing the quadratic
sum of the statistical and systematic unfolding uncertainties described in section 4. This
results in the optimal number of iterations equal to 3 in all cases.

To validate the performance of the unfolding procedure, we performed refolding tests,
in which the RM is multiplied by the unfolded solution and compared to the original
detector-level spectrum. We also did closure tests, in which the shape of the input MC
spectrum is modified to account for the possibility that the true distribution may be differ-
ent from the MC input spectrum (using the same scalings as for the systematic variations
in the unfolding prior described below in section 4). In all cases, successful closure was
obtained within statistical uncertainties. Additionally, we performed a closure test to
quantify the sensitivity of the final result to combinatorial jets and background subjets.
This consisted of redoing the entire analysis on “combined” events containing a PYTHIA8
event and a thermal background, in which “combined” jets were clustered from the combi-
nation of PYTHIA8 detector-level particles and thermal background particles. The back-
ground was modeled by generating N particles with pT taken from a Gamma distribution,
fΓ (pT;β) ∝ pTe

−pT/β , where N and β were fixed to roughly fit the R = 0.4 δpT distribu-
tion in Pb–Pb data [68]. This background model was verified to describe the subjet purity
to percent-level accuracy. The test consisted of constructing the combined detector-level
jet spectrum, building the RM, unfolding the combined jets, and comparing the spectrum
to the truth-level PYTHIA8 spectrum. Because the background does not contain hard jets,
this test is able to quantify the extent to which the analysis procedure recovers the signal
distribution and is free of background contamination. The unfolded combined jet spectrum
was found to be consistent with the truth-level spectrum within statistical uncertainties,
thus confirming a successful closure.
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4 Systematic uncertainties

The systematic uncertainties in this measurement are due to the tracking efficiency, the un-
folding procedure, the model dependence of the event generator, and in the case of Pb–Pb
collisions, the background subtraction procedure. Table 1 summarizes the systematic un-
certainty contributions for pp and Pb–Pb collisions for the two considered values of r. The
total systematic uncertainty is calculated as the sum in quadrature of all of the individual
sources described below.

The systematic uncertainty due to the uncertainty in tracking efficiency is evaluated by
randomly discarding charged tracks before jet finding. The tracking efficiency uncertainty,
estimated from the variation of the track selection criteria and a detailed study of the
ITS–TPC track-matching efficiency uncertainty, is 4%. In order to assign a systematic
uncertainty to the final result, we constructed an alternative RM with this random track
rejection and repeated the unfolding procedure. The result was compared to the default
result, with the differences in each bin taken as the systematic uncertainty. The uncertainty
on the track momentum resolution is a sub-leading effect to the tracking efficiency and is
negligible.

Several variations of the unfolding procedure are performed in order to estimate the
systematic uncertainty arising from the unfolding correction:

• The number of iterations in the unfolding was varied by ±2 units and the average
difference with respect to the nominal result is taken as the systematic uncertainty.

• The prior distribution was simultaneously scaled by (pch jet
T )±0.5 and a linear scaling

in zr by ±50% over its reported range. The average difference between the result
unfolded with this prior and the original is taken as the systematic uncertainty.

• The detector-level binnings in zr were varied to be finer and coarser than the nominal
binning.

• The lower bound in the detector level charged-particle jet transverse momentum
pch jet

T,det range was varied by ±5 GeV/c.

The total unfolding systematic uncertainty is then the standard deviation of the results
from the variations,

√∑N
i=1 σ

2
i /N , where N = 4 and σi is the systematic uncertainty due

to a single variation, since they each comprise independent measurements of the same
underlying systematic uncertainty in the unfolding correction.

The constituent subtraction introduces a bias in the observed distributions, since it
implicitly makes a choice of how much pT to subtract from soft particles compared to the
hard particles, and similarly for their angular distributions. To estimate the size of the
systematic uncertainty related to the background subtraction, we varied Rmax from “under-
subtraction” (Rmax = 0.05) to “over-subtraction” (Rmax = 0.7), around the nominal value
of Rmax = 0.25. The maximum deviation of these two variations was assigned as the
systematic uncertainty.
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Relative uncertainty (%)
pp Trk. eff. Unfolding Generator Total
r = 0.1 0–8% 1–6% 0–4% 2–10%
r = 0.2 0–10% 1–7% 0–3% 1–11%
Pb–Pb 0–10% Trk. eff. Unfolding Generator Bkgd. sub. Total
r = 0.1 1–24% 3–17% 1–22% 5–10% 10–33%
r = 0.2 1–18% 1–10% 1–20% 1–6% 7–25%

Table 1. Summary of systematic uncertainties on unfolded zr distributions for 80 < pch jet
T <

120 GeV/c. The ranges correspond to the minimum and maximum systematic uncertainties ob-
tained.

The systematic uncertainty due to the model-dependence of the generator used to
construct the RM is estimated by comparing results obtained with PYTHIA8 [62] to those
obtained with HERWIG7 [79] (in the pp case) or JEWEL 2.2.0 [80, 81] (in the Pb–Pb
case). For HERWIG7, the default tune was used, and for JEWEL, we adopted the settings
described in ref. [82], with an initial temperature Ti = 590 MeV and no recoils. These RMs
are then used to unfold the measured data, and the differences between PYTHIA8 and
HERWIG7 (in the pp case) or PYTHIA8 and JEWEL (in the Pb–Pb case) are taken as
a symmetric uncertainty. We note that in the Pb–Pb case, the results continue to exhibit
little-to-no-modification when unfolded with the JEWEL-based response matrix despite
that JEWEL itself exhibits large modifications as shown in figures 5, 6 confirming that
the experimental results remain under good control despite the large variations in the jet
quenching models themselves.

5 Results

We report the zr distributions for r = 0.1 and r = 0.2 in both pp and Pb–Pb collisions. All
presented results use R = 0.4 jets reconstructed from charged particles at midrapidity, and
are corrected for detector effects and (in Pb–Pb collisions) underlying-event fluctuations.
We report results for pch jet

T between 80 and 120GeV/c in both pp and Pb–Pb collisions,
as well as a result with finer binning in zr for pch jet

T between 100 and 150GeV/c in Pb–Pb
collisions. The distributions are reported as normalized differential cross sections,

1
σjet

dσ
dzr

= 1
Njet

dN
dzr

, (5.1)

where Njet (σjet) is the number (cross section) of inclusive charged-particle jets within
the given pch jet

T interval, and N (σ) is the number (cross section) of subjets. With this
normalization, the integral of eq. (5.1) is equal to the average number of subjets per jet:〈

N subjets
〉

=
∫ 1

0
dzr

1
σjet

dσ
dzr

. (5.2)

Using the leading subjet distributions, we also compute the average “subjet en-
ergy loss”:

〈zloss〉 = 1−
∫ 1

0
dzr zr

1
σ

dσ
dzr

, (5.3)
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Figure 2. ALICE measurements of inclusive subjet zr distribution in pp collisions for two different
subjet radii, compared to PYTHIA8 [62, 63].

which describes the fraction of pT inside the jet that is not contained within the leading
subjet [47].

5.1 Subjet fragmentation in proton–proton collisions

Figures 2 and 3 show the measured zr distributions in pp collisions at
√
s = 5.02 TeV for

inclusive and leading subjets, respectively. For zr > 0.5 the leading and inclusive subjet
distributions are identical, as expected. In this region, the amplitude of the zr distribution
increases with zr, with a more pronounced peak at large zr for r = 0.2 than for r = 0.1
since larger subjets are more likely to capture a larger fraction of the jet energy. It is
expected that as zr → 1, the distributions will eventually decrease due to the increased
splitting probability of soft emissions [47]. This is, however, not visible in the data due
to the coarseness of the bin sizes. As zr becomes small, the inclusive subjet distribution
grows due to soft radiations emitted from the leading subjet, whereas the leading subjet
distribution falls to zero. The fraction of pT inside the jet that is not contained within the
leading subjet is 〈zloss〉 = 0.21 for r = 0.1 and decreases to 〈zloss〉 = 0.10 for r = 0.2.

The distributions are generally well described by PYTHIA8 [62, 63], however some
tension is observed in the largest zr bin. This may be due to threshold logarithms of 1− z,
which may contribute significantly at all orders in the strong coupling constant αs and are
not directly included in PYTHIA8 [47]. In addition, hadronization effects are expected to
be significant at large zr, since hadronization causes a smearing of the fragmentation across
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Figure 3. ALICE measurements of leading subjet zr distribution in pp collisions for two different
subjet radii, compared to PYTHIA8 [62, 63].

the boundary of the subjet and away from zr = 1. However, due to ill-defined perturbative
accuracy in general-purpose MC generators such as PYTHIA and the fact that they are
tuned to reproduce data, it is difficult to draw detailed physics conclusions from their
comparison to data. In order to study these effects in greater detail, we turn our attention
to comparisons with analytical calculations based on perturbative QCD (pQCD).

Theoretical calculations of the zr distribution in pp collisions have been carried out
within the Soft-Collinear Effective Theory (SCET) framework [83] for both inclusive and
leading subjets for a variety of r and R values [46, 47]. These calculations include all-order
resummations of large logarithms of the jet radius and threshold logarithms to next-to-
leading logarithmic (NLL′) accuracy. In order to compare these predictions to our mea-
surement using charged-particle jets, a “forward folding” procedure based on MC event
generators is applied to account for the fact that we measure only the charged compo-
nent of jets [6]. Although the calculations are provided with hadronization corrections
included [47], we additionally applied a bin-by-bin correction to account for multi-parton
interactions using the procedure outlined in ref. [6].

Figure 4 compares the measured zr distributions to NLL′ calculations for inclusive and
leading subjets [46, 47]. Two sets of NLL′ results are reported in the figure, which are
obtained using either PYTHIA8 [62] or HERWIG7 [79] to account for charged-particle cor-
rections, which show generally similar behavior. Uncertainties on the analytical predictions
were estimated in refs. [46, 47] by varying the combinations of scales that emerge in the
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calculation. The softest of these scales determines a transition between the perturbative
and non-perturbative regimes:

zNP
r ≈ 1−

( Λ
pTr

)
, (5.4)

where Λ is the energy scale at which αs becomes non-perturbative. To denote this tran-
sition, we draw a dashed vertical blue line at Λ = 1 GeV/c, taking pT to be the weighted
average pch jet

T in the considered interval scaled by 120% to approximately translate the pT
scale from charged-particle jets to full jets. While we draw the line at a discrete value
in order to provide guidance, we remind the reader that the transition from values of zr
that are dominated by perturbative versus non-perturbative physics is actually smooth.
Note that we display the non-perturbative transition only at large zr, although a similar
transition occurs at small zr which is not addressed in this study [84, 85]. In the results
shown in figure 4, the cross section is scaled according to the integral of the distribution
in a subset of the perturbative region,

1
σ0.7<zr<zNP

r

dσ
dzr

, where σ0.7<zr<zNP
r

=
∫ zNP

r

0.7

dσ
dzr

dzr. (5.5)

In the inclusive subjet case, the measured zr distributions are generally in agreement
with the SCET calculations within uncertainties in the intermediate region 0.1 . zr .
0.9. The calculations begin to diverge from the data at large zr in the non-perturbative
regime, where the theoretical calculations are expected to break down. For r = 0.1, the
calculations can, in fact, describe the data at large zr within the systematic uncertainties of
the calculation, whereas for r = 0.2 this is no longer the case. At small zr, the calculations
diverge from the data, with a large overestimate of the peak at zr < 0.02 relative to the
magnitude of the theoretical uncertainties. The calculations do not include a resummation
of large logarithms of small zr, which suggests that such a resummation is needed to describe
the data. The measured distributions can serve to test future calculations that include
small zr resummation, which is relevant for attempts to calculate hadron observables using
perturbatively calculable jet functions in the r → 0 limit [84, 85].

In the leading subjet case, we observe identical behavior to the inclusive subjet case in
the region zr > 0.5, since the distributions coincide. For zr < 0.5, where the inclusive and
leading distributions differ, the calculations involve nonlinear evolution of the jet fragmen-
tation function. In this region, the NLL′ results are consistent with the data within the
uncertainties of the calculation. Note that this comparison involves only a single bin due to
the fact that the zr distributions fall steeply as zr decreases. More differential data would
allow for stricter tests of the non-linear evolution of leading jet fragmentation functions.
A test of related calculations of leading dijet energy spectra have recently been examined
in e+e− collisions [8], finding good agreement. Finally, we note that the quantity 〈zloss〉
described in eq. 5.3 is strongly affected by the non-perturbative region zr > zNP

r , since a
significant fraction of the integral is located in this interval. This presents a challenge to
the prospects for theoretically calculating 〈zloss〉, and calls for further theoretical studies.
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Figure 4. ALICE measurements of inclusive (top) and leading (bottom) subjet zr distributions
in pp collisions at

√
s = 5.02TeV, compared to NLL′ predictions carried out with SCET [46,

47] and corrected for missing neutral-particle energy and multi-parton interaction effects using
PYTHIA8 [62] or HERWIG7 [79]. The shaded bands denote systematic uncertainty on the NLL′
calculations. The distributions are normalized such that the integral of the region defined by
0.7 < zr < zNP

r is unity, where zNP
r is denoted by the dashed vertical blue lines. The non-

perturbative scale in eq. 5.4 is taken to be Λ = 1 GeV/c. In determining the normalization, bins
that overlap with the dashed blue line are considered to be in the non-perturbative (right) region.
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5.2 Subjet fragmentation in Pb–Pb collisions

Figures 5 and 6 show the leading subjet zr distributions in pp and 0–10% central Pb–Pb
collisions for r = 0.1 and r = 0.2, respectively, with their ratios displayed in the bottom
panels. We report a restricted range in zr in Pb–Pb collisions due to the contamination
from the underlying event at low-zr, as explained in section 3, although we note that this
excludes only a small portion of the leading subjet distribution. The reported distributions
are accordingly normalized to the cross section of inclusive charged-particle jets conditioned
with zr in the reported range. The relative uncertainties are assumed to be uncorrelated
between pp and Pb–Pb collisions, and are added in quadrature in the ratio.

For both r = 0.1 and r = 0.2, the distributions are consistent with no modification of
the zr distribution in central Pb–Pb compared to pp collisions. However, the distributions
are also consistent with a hardening effect in Pb–Pb compared to pp collisions that reverses
as zr → 1. For r = 0.1, we observe consistency with stronger hardening effects than for
r = 0.2. To understand the behavior of the zr distribution, we note that in vacuum there
are significant differences in the parton-to-subjet fragmentation functions between quarks
and gluons, with the fraction of quark-initiated jets increasing with zr [47]. If the QGP
suppresses gluon jets more than quark jets, then a hardening of the zr distribution is
expected – in line with previous measurements of hadron fragmentation [86]. On the other
hand, medium-induced radiations will in general shift the distribution to smaller zr. The
competition between these two distinct sources of jet substructure modification — quark vs.
gluon suppression and medium-induced radiation — can result in non-trivial modification
to the shape of the zr distribution in different intervals of zr. As zr → 1, the jet sample in
vacuum becomes almost entirely dominated by quark jets – thereby rendering the quark
vs. gluon fraction modification negligible. This presents an opportunity to expose a region
of quark-initiated jets depleted by soft medium-induced emissions. Our measurements are
qualitatively consistent with such a modification pattern: a hardening of the zr distribution
due to the relative suppression of gluon vs. quark initiated jets, followed by a turnover of
the distribution as zr → 1 due to medium-induced soft radiations.

We compare the ratio of the measurements in pp and Pb–Pb collisions with several
theoretical models of jet quenching:

• Medium jet functions [46, 50] are a SCET-based calculation obtained by modifying
the zr distributions from pp collisions according to the medium-modified parton-
to-jet fragmentation functions extracted in ref. [50]. The quark/gluon fractions in
the extracted medium-modified jet function exhibit a relative suppression factor of
approximately four between gluon jets and quark jets.

• JETSCAPE [87, 90] consists of a medium-modified parton shower calculated with the
MATTER model [89] controlling the high-virtuality phase and the Linear Boltzmann
Transport (LBT) model describing the low-virtuality phase [88]. The version of
JETSCAPE used for this calculation employs a jet transport coefficient, q̂, that
includes dependence on parton virtuality, in addition to dependence on the local
temperature and running of the parton-medium coupling. The calculation includes
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Figure 5. Measurements of subjet zr distributions for subjet radius r = 0.1 in pp and 0–10%
central Pb–Pb collisions. The bottom panel displays the ratio of the distributions in Pb–Pb to pp
collisions, along with comparison to theoretical predictions [46, 50, 80, 81, 87–89].

medium recoil particles, and a subtraction of the thermal component of the recoils is
performed by summing the transverse momentum of the thermal particles within the
jet (subjet) radius and subtracting this from the corresponding jet (subjet) transverse
momentum.

• JEWEL [80, 81] implements BDMPS-based medium-induced gluon radiation in a
medium modeled with a Bjorken expansion. We use JEWEL 2.2.0 with an initial
temperature Ti = 590MeV and initial quenching time τi = 0.4, which provides an
accurate description of a variety of jet quenching observables [82]. The impact of
medium recoil is studied by displaying results both with and without recoils enabled.
In the case with recoils included, the thermal component of the recoils is subtracted
with the same method used in the JETSCAPE calculation (which is similar to the
“4MomSub” method [82]) except randomly discarding 33% of the thermal particles
(which JEWEL assigns to be neutral) in order to account for the fact that our mea-
surement uses charged-particle jets.

For the JETSCAPE and JEWEL simulations, the width of the curves denotes statis-
tical uncertainty. For the “Medium jet functions” calculation, systematic uncertainties are
included but are smaller than the width of the plotted curve.

The comparison of our result to the “Medium jet functions” calculation provides a
test of universality of jet fragmentation functions in the QGP, since the calculation uses
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Figure 6. Measurements of subjet zr distributions for subjet radius r = 0.2 in pp and 0–10%
central Pb–Pb collisions. The bottom panel displays the ratio of the distributions in Pb–Pb to pp
collisions, along with comparison to theoretical predictions [46, 50, 80, 81, 87–89].

a parton-to-jet function extracted from inclusive jet measurements, and employs it as the
parton-to-subjet function in the zr calculation. We find a consistent description of the zr
distribution, and therefore consistency with the universality of jet fragmentation in the
QGP. While this does not exclude process-dependent effects or factorization breaking, it
does place constraints on the magnitude of such effects, and establishes a new avenue to
search for them. These measurements can be used to directly extract the parton-to-subjet
function in future work and serve as input for global tests of factorization breaking in the
QGP (see ref. [50]).

The JETSCAPE model describes the data well within the precision of our measure-
ment. The JEWEL model, on the other hand, describes the data well for r = 0.1 when
recoils are included, but fails to describe the data for r = 0.2 or when recoils are not in-
cluded. For both r = 0.1 and r = 0.2, there are large differences in the JEWEL predictions
depending whether recoils are enabled, suggesting that this observable may be significantly
impacted by medium response. In general, it is expected that medium response will soften
the zr distribution since it tends to broaden reconstructed jets. We indeed observe this in
the results of the JEWEL calculations, where the zr distribution in the largest zr bin is
significantly suppressed when recoils are included compared to when recoils are disabled.
However, it appears that for r = 0.2, this suppression is significantly stronger than the
experimental data allows (noting that the large enhancement observed at smaller zr is
necessitated by the suppression at large zr due to the self-normalization condition). This
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corroborates previous observations that the medium response implementation in JEWEL,
which does not include rescattering of the medium response particles, overestimates the im-
pact of medium recoil, but that the calculations with and without recoil generally bracket
the experimental data (see e.g. refs. [32, 91]).

In order to test the r-dependence of the zr distribution with higher precision, in fig-
ure 7 we compare the zr distributions measured in 0–10% central Pb–Pb collisions with
r = 0.1 and r = 0.2 for the pch jet

T interval between 100 and 150GeV/c. The ratio of the
two distributions is shown in the bottom panel of figure 7. Since the two measurements are
correlated, the systematic uncertainty of the ratio partially cancels out. While separate
values of σzr>0.7 are used to normalize the r = 0.1 and r = 0.2 distributions, the normal-
ization factors only differ by the integral of the zr < 0.7 tails and are therefore within a few
percent. We refrain from constructing the corresponding pp ratio due to sizeable statistical
uncertainties of the recorded pp data set.

We compare the r=0.1
r=0.2 ratio to the JETSCAPE and JEWEL models discussed above.

We find that JEWEL fails to describe the ratio either with recoils on or recoils off, but
that the two implementations bracket most of the data. However, the JEWEL calculations
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predict that at large zr, the r = 0.1 “core” of the jet contains more pT relative to r = 0.2
as compared to the experimental data — i.e. that the large-zr fragmentation is narrower
in JEWEL than in experimental data.

The JETSCAPE model describes the ratio significantly better, however given the pre-
cision of the measurement, we find significant tension in the shape of the distribution with
the JETSCAPE prediction. While this may not be immediately obvious by eye, we note
that due to the self-normalization condition in the zr distributions in the top panel of fig-
ure 7, a shift in one point necessitates an opposite shift in the remaining points to ensure
the distribution integrates to unity. For example, if the value of the ratio in the rightmost
bin 0.98 < zr < 1 of the JETSCAPE calculation were to move down, the leftmost bins
near 0.7 < zr < 0.8 would have to compensate by moving up, rendering the calculation
unable to reproduce the experimental data. The distribution from JETSCAPE simulations
for pp collisions, on the other hand, describes the r=0.1

r=0.2 ratio well; however, one must use
caution in interpreting this, since in section 5.1 we have discussed challenges in achieving
an accurate description of the pp baseline at large zr. The JETSCAPE calculation exhibits
a hint that the r = 0.1 “core” of the jet contains more pT relative to r = 0.2 as compared
to the experimental data, similar to JEWEL although with less significant tension.

6 Conclusions

We have presented new measurements of subjet fragmentation with ALICE. In pp colli-
sions, we find agreement of pQCD calculations with the data in the perturbative regime
at intermediate zr and discrepancies at large zr which may imply that threshold resum-
mation and hadronization play important roles as the distribution becomes increasingly
non-perturbative. The PYTHIA8 event generator generally describes the data well, how-
ever some tension is observed at large zr, which is consistent with these findings given that
threshold resummation is not directly included in PYTHIA8. In the inclusive subjet case,
we find a disagreement of the pQCD calculations with the data at small zr, suggesting a
need to include a small-zr resummation in order to describe the data. These measurements
provide future opportunities to study threshold and small-zr resummations, and motivate
new measurements extended to even smaller values of r, which are relevant for understand-
ing parton-hadron duality and the interplay of jet observables and hadron observables as
r → 0 [84, 85].

In heavy-ion collisions, these measurements serve as a key ingredient to study the
high-z region of jet quenching and test the universality of jet fragmentation in the QGP.
By comparing the zr distributions for r = 0.1 and r = 0.2 to Monte Carlo jet quenching
models, we find indications that quenched jets at large zr are narrower in JEWEL and
JETSCAPE than in experimental data. By probing large zr, these measurements can
isolate a region of quark-dominated jets with an inclusive jet sample alone, offering the
potential to expose a sample of jets depleted by medium-induced soft radiation. Together,
our measurements demonstrate that while the large-zr region is theoretically challenging
to describe in pp collisions due to threshold resummation and hadronization effects, it is a
particularly interesting region to study jet modification in heavy-ion collisions. This calls
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for theoretical investigation of the large-zr region in greater detail. Future measurements
of zr in coincidence with other substructure observables such as the groomed jet radius [34]
offer the potential to disentangle medium-induced soft radiation effects from differences in
the suppression of gluon vs. quark jets. By comparing our measurements to perturbative
calculations based on QCD factorization, we find consistency with the universality of jet
fragmentation and no indication of factorization breaking in the QGP. These measurements
can be used as input to extract the parton-to-subjet fragmentation function in future work
and perform global tests of factorization breaking in the QGP.
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