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Sveučilište u Zagrebu

Prirodoslovno-matematički fakultet
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Abstract

The physics of graphite intercalated compounds (GIC), in spite of the fact that these materials
were synthesised quite long ago, is still the focus of modern theoretical and experimental re-
search. The interest of the scientific community is focused on GIC, mostly due to the possibility
of forming unusual superconducting (SC) and charge density wave (CDW) ground states. We
focus on one of these materials, CaC6, in which experiments clearly demonstrate the existence
of CDWs. The very existence of the CDW is quite unusual due to the fact that the graphene
Fermi surface, chemically doped by calcium intercalates, shows no so-called "nesting property,"
i.e., no Peierls mechanism, which has been the paradigmatic mechanism behind the CDW in-
stability since the 1950s and was experimentally realised during the 1980s in highly anisotropic
materials with open Fermi surfaces. We show that the CaC6 Fermi surface undergoes a different
CDW stabilisation mechanism based on the topological reconstruction (of the Fermi Surface)
and critical strength of the electron-phonon interaction. Such topological reconstruction, which
transforms the set of closed Fermi pockets into open Fermi sheets, has profound effects on
transport and magnetotransport properties. In this thesis, we show how the Fermi surface re-
construction stabilises the CDW ground state. Furthermore, we present the magnetotransport
properties, taking into account magnetic breakdown.

Keywords:
Charge density wave (CDW), Fermi surface reconstruction, intercalated graphite, magnetocon-
ductivity, magnetic breakdown
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Ključne riječi:
Val gustoće naboja, topološka rekonstrukcija Fermijeve površine, interkalirani grafit, magne-
tovodljivost, magnetski proboj

Uvod

Valovi gustoće naboja statička su modulacija elektronske gustoće koja uobičajeno dolazi u paru
s periodičkom distorzijom kristalne rešetke materijala. U ovom poglavlju daje se povijesni
pregled od prvih spomena valova gustoće naboja davnih pedesetih godina prošlog stoljeća, nji-
hovog opisa pomoću Peierlsove nestabilnosti, pa do početnih eksperimentalnih otkrića. Dan je
bitan uvid u to kako je objašnjavanje pojave vala gustoće naboja strogo vezana uz pojam gni-

ježd̄enja Fermijeve površine do te razine da je takvo objašnjenje postalo praktički paradigma.

Interkalirani grafiti - materijali razmatrani u ovom radu

Grafen je materijal koji već godinama fascinira znanstvenu zajednicu. Prvi put je sintetiziran i
karakteriziran 2004. godine, što je rezultiralo Nobelovom nagradom iz fizike 2010. Taj dvodi-
menzionalni materijal pokazuje fascinantne karakteristike i on je temelj za materijal kojime se
ovaj rad bavi. U prvom dijelu ovog poglavlja opisana su mu sinteza, svojstva i struktura.

Ugljik poprima mnoštvo alotropskih modifikacija, a interkalirani grafit CaC6 sazdan je od
dvodimenzionalnih slojeva grafena izmed̄u kojih su smješteni kalcijevi atomi. U drugom dijelu
poglavlja daje se uvid u sintezu interkaliranog grafita CaC6, te njegova svojstva i strukturu.

Motivacija za ovaj rad

U ovom poglavlju prolazimo kroz opažanja iz dva eksperimentalna rada koji opisuju pojavu
valova gustoće naboja u interkaliranom grafitu CaC6, te u dvoslojnom spoju C6CaC6, popraćenu
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pojavom pseudo-procijepa u elektronskom spektru . Radovi predstavljeni u ovom poglavlju:

• K.C. Rahnejat, C.A. Howard, N.E. Shuttleworth, S.R. Schofield, K. Iwaya, C.F. Hir-
jibehedin, Ch. Renner, G. Aeppli & M. Ellerby, Charge density waves in the graphene
sheets of the superconductor CaC6. Nat. Communication 2, 558 (2011).

• R. Shimizu, K. Sugawara, K. Kanetani, K. Iwaya, T. Sato, T. Takahashi & T. Hitosugi,
Charge-density wave in Ca-intercalated bilayer graphene induced by commensurate lat-
tice matching. Phys. Rev. Lett. 114 146103 (2015).

Naša glavna motivacija proizlazi iz činjenice da interkalirani grafit ne posjeduje Fermijevu
površinu s mogućnosti gniježd̄enja, stoga, moramo pronaći novo teorijsko objašnjenje za eksper-
imentalno opažene pojave.

Minimalni model

Cilj ovog rada je opisati i objasniti pojavu nastanka valova gustoće naboja u interkaliranom
grafitu CaC6 tzv. minimalnim modelom, koji sadrži samo fizikalne odlike nužne za samu egzis-
tenciju pojave vala gustoće naboja.

Inicijalni problem sustava vezanih elektrona i fonona opisujemo dvodimenzionalnim Fröhli-
chovim hamiltonijanom. Njega tretiramo u aproksimaciji srednjeg polja i uvodimo kompleksni
parametar ured̄enja. Nakon tretmana aproksimacijom srednjeg polja dobivamo izraz za elek-
tronske vrpce.

Kako bismo dobili oblik rekonstruiranih elektronskih vrpci, posežemo za posebno razvi-
jenim metodama razvoja podintegralnih funkcija kako bismo dobili analitički rezultat za kon-
denzacijsku energiju sustava. Da bi novonastalo stanje s valom gustoće naboja bilo stabilno,
kondenzacijska energija mora biti pozitivna, a njezina maksimizacija vrši se optimizacijom
izraza po samosuglasnom valnom vektoru vala gustoće i po njegovom parametru ured̄enja.

Nadalje, odred̄ujemo koji je fononski mod kristalne rešetke u CaC6 strukturi zaslužan za
pojavu vala gustoće. Pokazuje se da je to TA mod titranja kalcijeve superrešetke u njezinoj
ravnini. Ovaj mod je "najmekši", odnosno ima najmanju energiju, ali i najjače vezan je vezan
na grafenske elektrone čime su eliminirani svi grafenski vibracijski modovi, kao i kalcijevi
fleksuralni modovi titranja.
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Diskusija

Ovaj teorijski rad inspiriran je eksperimentalnim opažanjima. Ovo poglavlje bavi se uspored-
bom predstavljenih teorijskih rezultata s eksperimentalnim opažanja iz gore navedenih članaka.
Predstavljena teorijska objašnjenja pokazuju iznimno dobro slaganje s ključnim eksperimen-
talno opaženim činjenicama: (1) pojava, period i orijentacija vala gustoće s obzirom na grafen-
sku rešetku; (2) pojava pseudo-procijepa u elektronskom spektru; (3) statička deformacija kalci-
jeve superrešetke koja odgovara teorijski predvid̄enom fononskom TA modu.

Magnetovodljivost u uvjetima koherentnog magnetskog proboja

U ovom poglavlju računamo tenzor magnetovodljivosti za interkalirani grafit CaC6 u kojem se
pojavljuje val gustoće naboja, u uvjetima magnetskog proboja. Magnetski proboj je pojava gdje
dolazi do tuneliranja izmed̄u različitih elektronskih vrpci vodljivih elektrona nekog metala.

Dan je opis pojave koherentnog magnetskog proboja, u okviru koje će se računati tenzor
magnetovodljivosti. Potom, opisuje se ponašanje elektrona u sustavu Fermijevih površina koje
se med̄usobno malo preklapaju, opisanih u semiklasičnoj aproksimaciji, dok je tretman regija
gdje dolazi do magnetskog proboja potpuno kvantnomehanički.

Uvodi se osnovni model sustava CaC6 u homogenom vanjskom magnetskom polju, okomitom
na ravninu uzorka. Za takav sustav nalazimo semiklasične valne funkcije, te elektronski spektar.

Tenzor magnetovodljivosti za dvodimenzionalni sustav izračunat je u okviru formalizma
kvantne matrice gustoće. Taj tenzor je anizotropan, te sadrži komponentu duž hrbata vala
gustoće naboja koja je okomita na otvorene elektronske trajektorije u recipročnom prostoru,
komponentu duž smjera periodičnosti vala gustoće naboja koja je duž otvorenih elektronskih
trajektorija u recipročnom prostoru, te Hallove komponente magnetovodljivosti. Komponenta
magnetovodljivosti okomita na otvorene trajektorije u recipročnom prostoru, te Hallove kompo-
nente ponašaju se kao za klasične sustave u odsustvu magnetskog proboja, dok komponenta duž
otvorenih elektronskih trajektorija pokazuje vrlo snažne kvantne oscilacije koje nisu korekcija
klasičnoj komponenti, već njezin inherentni dio.

Zaključak

U ovoj tezi predloženo je teorijsko objašnjenje za pojavu vala gustoće naboja u interkali-
ranom grafitu CaC6, alternativno paradigmatskom pristupu temeljenom na gniježd̄enju Fer-
mijeve površine koji u ovom sustavu nije primijenjiv. Predloženi mehanizam temelji se na
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topološkoj rekonstrukciji Fermijeve površine elektrona vezanih na TA fononski mod kalcijeve
superrešetke. Pojava vala gustoće ostvaruje se kao kvantni fazni prijelaz pri elektron-fonon
vezanju jačem od kritičnog.

Magnetovodljivost ovog sustava u uvjetima koherentnog magnetskog proboja karakterizirana
je komponentama tenzora: (1) komponenta okomita na otvorene elektronske trajektorije u re-
cipročnom prostoru pokazuje standardnu klasičnu ovisnost proporcionalnu 1/B2; (2) Hallove
komponente takod̄er pokazuju klasičnu ovisnost proporcionalnu 1/B; (3) komponenta duž otvorenih
trajektorija u recipročnom prostoru pokazuje snažne kvantne oscilacije u jakom magnetskom
polju B. Ove oscilacije, periodične s 1/B, inherentne su glavnom doprinosu, a ne tek njegova
korekcija, koji se svodi na konstantni klasični rezultat u granici odsustva magnetskog proboja.

i
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Chapter 1

Introduction

The exploration of charge density waves (CDW) in CaC6 has been both challenging and re-
warding. This thesis delves into the intricate mechanisms underlying the formation of these
phenomena, aiming to contribute to the understanding of CDWs in quasi-two-dimensional ma-
terials.

The thesis unfolds with an introduction to CDWs, offering a comprehensive overview of
their historical development and initial research to provide context for the subsequent chapters.
Following this, a detailed exploration of the materials under investigation, graphene and the
intercalated graphite CaC6, sets the stage for the subsequent analysis.

A review of relevant experimental work is then presented, examining studies that inspired
and guided the research, providing a foundation for the theoretical and computational aspects
discussed in later chapters. The theoretical framework is explained, highlighting the modelling
approach adopted and emphasizing the topological reconstruction of the Fermi surface, pro-
vided the electron-phonon coupling is larger than critical, as key factors in understanding the
emergence of CDWs in CaC6.

The thesis concludes with a comprehensive examination of the magnetoconductivity tensor
under magnetic breakdown conditions, offering insights into the behavior of the system in this
specific regime. Through this systematic exploration, the thesis aims to contribute to the specific
understanding of CDWs in two-dimensional materials.

1



1.1. Charge density waves Chapter 1. Introduction

1.1 Charge density waves

A charge density wave (CDW) is a static modulation of conduction electrons and is a Fermi
surface-driven phenomenon usually accompanied by a periodic distortion of the crystal lattice
[1]. It was initially described by Rudolf Peierls in 1955 [2] and by Herbert Fröhlich in 1954 [3].

The significance of highly anisotropic band structures in the emergence of these ground
states was acknowledged at an early stage [4]. It is not surprising that experimental evidence
for these ground states was discovered at a later time, coinciding with the discovery and ex-
amination of materials possessing a highly anisotropic, quasi-one-dimensional linear chained
structure and metallic characteristics. Various groups of organic and inorganic materials have
become established as typical instances of density wave ground states [4].

1.2 CDWs - a historical overview

It has been over six decades since the basic concepts of the phenomenon under our consideration
first emerged. Peierls (1955) initially predicted that a one-dimensional metal, with electrons
coupled to the underlying lattice, lacks stability at low temperatures [2]. The ground state of
the coupled electron-phonon system exhibits a gap in the spectrum of single-particle excitations
exactly at the Fermi energy. Additionally, there exists a collective mode consisting of electron-
hole pairs with a wave vector q = 2kF , kF being the Fermi wave vector [5]. The charge density
associated with the collective mode along coordinate r is given as

ρ(r) = ρ0 +ρ1 cos(2kF · r+φ), (1.1)

where ρ0 is the unperturbed electron density of the system, while ρ1 is an amplitude periodic
density deformation, and this condensate is called the charge density wave [5]. Similarly to
superconductors, the order parameter is complex and the phase φ of the condensate is of great
importance; its time and spatial derivatives are related to the electric current and to the conden-
sate density [5].
The reemergence of these merely theoretical initial concepts occurred when the first materials
possessing highly anisotropic crystal and electronic structures were accessible [5]. The occur-
rence of charge density wave ground states has been extensively documented in a wide spectrum
of low-dimensional materials.
Although certain organic materials and the pseudo-organic compound potassium platinocyanide
(KCP) have shown evidence of collective dynamical effects through optical and dielectric mea-
surements [6], transport phenomena clearly associated with the dynamics of the collective mode

2



1.2. CDWs - a historical overview Chapter 1. Introduction

have been found to date mainly in various inorganic linear-chain compounds [5]. The phe-
nomenon of moving charge density waves (CDWs) was probably first documented by Fogle
and Perlstein in 1972 [7]. They observed non-linear electrical conduction at low electric fields
in a compound known as K0.3MoO3, commonly referred to as the blue bronze. These obser-
vations were made at temperatures below a metal-insulator transition [7]. Despite receiving
limited attention, previous studies on the material NbSe3 have shown that nonlinear conduction
and the anomalous microwave conductivity provide clear evidence of the collective nature of
electrical conduction [5, 8]. This is evident because the energy scale associated with the applied
direct current (DC) field or alternating current (AC) frequency is significantly smaller compared
to the energy scales required for energy- and frequency-dependent single-particle conduction.
The rapid advancement in the field and the emergence of numerous experimental observations,
which were only partially explained by theories of the time, were triggered by the discovery
of additional inorganic and organic linear-chain compounds exhibiting a charge density wave
ground state and displaying an unusual reaction to combinations of DC and AC excitations [5].

Although the charge density waves were later observed in materials that have two- or
three-dimensional band structures, they were primarily considered as a one-dimensional phe-
nomenon. Consequently, most of the discussions concerning the ground state and the phase
transition were based on idealised, one-dimensional models [5].

1.2.1 The Peierls transition

The aforementioned idealised model is a one-dimensional metallic system at zero temperature.
In the absence of electron-electron or electron-phonon interaction, the ground state is repre-
sented by the configuration shown in Fig. 1.1 (a). The electron states are occupied up to the
Fermi level, denoted as εF . The lattice is a periodic array of atoms with a lattice constant a [5].
When an electron-phonon interaction is present, an emerging periodic lattice distortion with a
period Λ is energetically favourable. This period Λ is related to the Fermi wave vector kF by

Λ =
π

kF
. (1.2)

The presence of this distortion results in the creation of a gap at the Fermi level, as shown in
Fig. 1.1 (b), where the situation for a half-filled band is illustrated. Since the occupation of
states is limited to a maximum of ±kF , the presence of a gap in the system results in a decrease
in electronic energy. In one dimension, the magnitude of the single-particle gap ∆ is propor-
tional to the amplitude of the periodic lattice distortion, denoted as u, and the decrease of the
electronic energy is proportional to u2ln(u) for small displacements. The distortion also leads to

3
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Figure 1.1: Peierls distortion in a one-dimensional metal with a half-filled band, shown in the first Bril-
louin zone where k is an electron wave vector, a is the initial lattice constant, kF is the Fermi wave vector:
(a) undistorted metal; (b) Peierls insulator with dimerised lattice (periodicity Λ = 2a) and periodic dis-
tribution of electron density. Image from [5].

a corresponding increase in elastic energy proportional to u2 [9]. As a result, for a small but op-
timal distortion, the overall energy of the electron-phonon system, that is coupled, is lower than
that of the undistorted metal [5]. The determination of the gap size and distortion magnitude
can be achieved by examining the condition that leads to the maximum of condensation energy.
The modification of the dispersion relation results in a spatially varying electron density, similar
to the nearly-free-electron theory of metals [5]. The density will be a periodic function of the
position with the period given by Λ.

The electron-phonon interaction is screened at finite temperatures by normal electrons ex-
cited across the single-particle gap. This, in turn, reduces the gap [10] and the degree of the
lattice distortion, finally leading to a second-order transition at the so-called Peierls tempera-
ture Tc. Above the transition, the material is a metal, whereas below Tc, it is a semiconductor
with a temperature-dependent gap ∆(T ). The mean-field treatment of the 1D electron-phonon

4



1.2. CDWs - a historical overview Chapter 1. Introduction

Hamiltonian can be used to define the key characteristics of this so-called Peierls transition and
collective mode [5]

H = ∑
k,s

εkc+k,sck,s +∑
k,s

~ωqb+q bq + ∑
k,q,s

gqc+k+q,sck,s
(
bq +b+−q

)
, (1.3)

where c+k (ck), b+k (bk) are the electron and phonon creation (annihilation) operators with mo-
menta k and q, s denotes the spin, εk and ωk are the electron and phonon dispersions, and gk is
the electron-phonon coupling constant [5].
Defining a complex order parameter

∆eiφ = g2kF 〈b2kF +b+−2kF
〉, (1.4)

where ∆ and φ are real, while 〈...〉 denotes an average, the displacement field of the ions is given
by

〈b2kF +b+−2kF
〉e2ikF x + c.c.=

2∆

g2kF

cos(2kFx+φ). (1.5)

The electronic part of the Hamiltonian can be diagonalized by setting up a self-consistent equa-
tion in the mean-field (MF) approximation by replacing b2kF with 〈b2kF 〉 and using a linear
dispersion relation to describe the electron band near the Fermi energy εF ,

εk = vF (|k|− kF) , (1.6)

where vF is the Fermi velocity. The thermodynamic properties of the charge density wave state
have strong similarities to those of a superconducting ground state [10, 11]. The gap, denoted
as ∆, in terms of the dimensionless electron-phonon coupling constant λ = g2

2kF
(ω2kF εF)

−1, is
determined by the BCS gap equation at T = 0,

∆ = 2De−1/λ, (1.7)

where the cutoff energy D is the one-dimensional band-width, εF is the Fermi energy, ω2kF is
the phonon mode frequency at 2kF . The temperature dependence of ∆ is also BCS-like and
vanishes at the transition temperature Tc = ∆(T = 0)/1.76kB [5]. The spatial dependence of the
electron density can be evaluated, and at T = 0,

ρ(x) = ρ0 +ρ0
∆

λvFkF
cos(2kFx+φ) (1.8)
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where ρ0 is the electron density with no electron-phonon interaction, and in one-dimension is
given by ρ0 = π/kF . Superconductivity-like characteristics include the emergence of a gap in
the single-particle excitation spectrum and the collective mode, which is characterised by a com-
plex order parameter [5]. On the other hand, the collective mode here is formed by electron-hole
pairs, involving the wave vector 2kF , as electrons and holes on the opposite side of the Fermi
surface are combined to form the CDW and the accompanying lattice distortion [5]. More-
over, in contrast to the characteristic phonon frequency that enters the superconducting gap, the
transition temperatures are significantly higher than those of superconductors due to the large
cutoff frequency D that appears in the gap equation. The fact that in 1D the CDW state is stable
at T = 0 for whatever small electron-phonon coupling constant λ is due to the logarithmically
divergent response function in the static (ω = 0) limit. Subsequently, materials exhibiting a
pronounced anisotropic band structure have an increased propensity for CDW formation; this
is typically the result of a crystal structure in which chains are formed along one direction [5].

In the following part, we will explore more about how this divergent response function
influences the formation of a CDW ground state for an electron gas in one dimension.

1.2.2 A 1D electron gas

The Fermi surface of a one-dimensional electron gas is very simple. It consists of two points,
one at +kF , and the other at −kF . In the case of a very anisotropic metal, the Fermi surface
consists of two sheets separated by a mean distance of 2kF . The dispersion relation of a 1D free
electron gas is ε(k) = ~2k2/2m, and the Fermi energy can be written as:

εF =
~2

2m

(
N0π

2L

)2

=
~2k2

F
2m

(1.9)

where N0 is the number of electrons, L is the length od the 1D chain, and m is the free electron
mass [4]. Then, we can write the Fermi wave vector as kF = N0π

2L , where N0 is the number of
electrons per unit length. The density of states is

n(ε) =
L

π~

(m
2ε

)1/2
. (1.10)

The distinct configuration of the Fermi surface gives rise to a distinct reaction to an external
disturbance that is significantly different to the response observed in higher dimensions. The
response of an electron gas to a time independent potential in d dimensions (d = 1,2,3) is,
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within the linear response theory, described by the Lindhard function:

χ(q) =
∫ dk

(2π)d
fk− fk+q

εk− εk+q
(1.11)

where fk = f (εk) is the Fermi function. For a three-dimensional spherical Fermi surface a
simple calculation gives

χ(q) =−e2nF

[
1+

1− x2

2x
ln
∣∣∣∣1+ x
1− x

∣∣∣∣] (1.12)

where nF is the density of states at the Fermi level, and x = q/2kF . Susceptibility χ(q), given
by (1.12), decreases with increasing q and the derivative has a logarithmic singularity at the
point q = 2kF [4]. For a one-dimensional electron gas, the situation becomes different. For

Figure 1.2: The dispersion relation for a free electron gas. The linearised dispersion ε−εF =±vF(k−kF)

is used to evaluate the response function in (1.14). The image shows schematically electron - hole pairing
by the 2kF perturbation around the Fermi surface. Image from [4].

wave vectors around 2kF , we can evaluate χ(q) assuming a linear dispersion relation around the
Fermi energy εF , as shown in Fig. 1.2,

ε− εF = ~vF(k− kF). (1.13)

Evaluating the integral in (1.11) near 2kF , we obtain:

χ(q) =−e2nF ln
∣∣∣∣q+2kF

q−2kF

∣∣∣∣ . (1.14)

In comparison to a 3D electron gas, it is seen that the response function in a one-dimensional
system exhibits a divergence at the wave vector q = 2kF . For small values of q, χ(q) is given
by the Thomas-Fermi approximation, χ(q) = −e2nF . The response function, evaluated for
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Figure 1.3: Wave vector-dependent Lindhard response function for a 1D, 2D, and 3D free electron gas
at zero temperature. Image from [4].

arbitrary values of q is shown in Fig. 1.3, where χ(q) for a two- and three- dimensional electron
gas is also shown for the sake of completeness. The fact that χ(q) diverges for q = 2kF in the
1D case has several important consequences [4].

Equation (1.14) indicates a divergent response. This suggests through self-consistency, that
at T = 0 the electron gas itself is unstable with respect to the formation of a periodically varying
electron charge (or electron spin) density [4] with the period Λ related to kF by the relation
(1.2). The reason for the divergence of the response function at q = 2kF can be attributed to
the specific topology of the Fermi surface, which is commonly referred to as the perfect nesting

[4]. Equation (1.11) shows that, the most significant contributions to the integral come from
pairs of states - one full, one empty - related by the single wave vector q = 2kF and have the
same energy, so they give a divergent contribution to χ(q). However, in higher dimensions, the
quantity of these states is noticeably diminished, as shown in Fig. 1.3, resulting in the removal
of the singularity at 2kF . The quasi-1D character of the Fermi surface can be modeled within
the tight binding approximation (TBA) by including a dispersion corresponding to the directions
perpendicular to the chains. The dispersion relation

ε(kx,ky) = ε0 +2ta cos(kxa)+2tb cos(kyb) (1.15)

where a and b are the lattice constants in the x and y directions, ε0 is the unperturbed atomic
energy, leads to the first neighbour TBA 2D band structure. For ta � tb, and again using a
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Figure 1.4: Fermi surface topology of a 1D and 2D free electron gas. The arrows indicate pairs of states,
one full and one empty, differing by the wave vector |q|= 2kF . Image from [4].

linearised dispersion in the x direction, this dispersion, close to the Fermi energy, reduces to

ε(k) = ε0 + vFδk−2tb cos(kyb) (1.16)

where δk = k− kF . The Fermi surface is determined by the condition

kx = kF +
2tb
vF

cos(kyb)+O(t2
b cos2(kyb))+ ... (1.17)

Taking into account only the first-order approximation in tb (with the omission of the third
term in (1.17)) [4], the approximation yields a sinusoidal Fermi surface in the kx− ky plane,
as shown in Fig. 1.5. As for one dimension, a significant quantity of electron-hole pairs with
similar energies can be observed. The condition for this is now given by the wave vector Q =

(2kF ,π/b), as shown in Fig. 1.5. The response function χ(q) exhibits a singularity at q = Q
which leads to a periodic modulation characterised by a wave vector q‖ = 2kF in the x direction
and q⊥ = π/b in the y direction.

The achievement of perfect nesting, as illustrated in Fig. 1.5, occurs only in the limit when
the ratio tb/ta→ 0 and is expected to be appropriate for materials with a substantial anisotropy.
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Figure 1.5: Fermi surface of a quasi-1D electron gas. The arrows indicate perfect nesting for small
dispersion in one direction as discussed in the text. With increased dispersion, perfect nesting is no
longer possible. Image from [4].

With increasing tb/ta the last term in (1.17) becomes progressively more important and the
nesting condition applies for a smaller number of electron-hole pairs. This leads to the gradual
removal of the singularity of the response function [4].

The results shown in this section work for explaining the emergence of a CDW ground
state in quasi-1D materials, based on the FS nesting, being the paradigmatic mechanism for
explanation of the CDW instability.

1.2.3 Early experimental discoveries

The early studies of quasi-1D conductors were driven by a proposition put forth in 1964 by W.
A. Little, suggesting that some polymer chain compounds may potentially demonstrate super-
conductivity at a notably elevated critical temperature [12].

Monceau et al. provided the first experimental observations of the CDW transport in linear
chain compounds composed of transition metal trichalcogenides. This discovery, published in
1976, marked the first documented proof of CDW transport in inorganic materials of this nature
[8]. They reported the suppression of longitudinal resistivity anomalies by electric fields at
temperatures of 145 and 59K. They attributed the observed suppression to Zener breakdown
[13] across extremely small gaps introduced by the presence of charge density waves.
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Chapter 2

The intercalated graphite compounds -
materials considered in this work

2.1 Graphene

Graphene is a substance that holds considerable scientific significance. The monolayer, consist-
ing of a solitary arrangement of carbon atoms, was first introduced to the scientific community
in 2004 through the groundbreaking study conducted by Sir Andre Geim and Sir Konstantin
Novoselov, esteemed scholars affiliated with the University of Manchester [14]. By utilising a
straightforward yet innovative methodology involving the use of adhesive tape, the researchers
effectively achieved the isolation and characterisation of this remarkable substance. This ac-
complishment then initiated a novel phase of scientific investigation, ultimately leading to the
recognition of their endeavours through the prestigious Nobel Prize in Physics in the year 2010.

Graphene exhibits extraordinary characteristics. The material in question demonstrates re-
markable mechanical strength, despite its thickness of only one atom [15]. This characteristic
establishes novel benchmarks for the field of materials. The electronic properties of this material
are of considerable interest due to its distinctive band structure, which exhibits a resemblance
to the electronic dispersion of a Dirac cone. This characteristic has sparked significant attention
from both theoretical and practical perspectives.

Furthermore, it should be noted that graphene exhibits exceptional thermal conductivity [16]
and impermeability [17], rendering it highly advantageous for various applications spanning
from nanoelectronics to composite materials. The relevance of this finding extends beyond its
initial identification, exerting influence on various industries such as electronics, energy storage,
and materials science.
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2.1.1 Basics of graphene structure

Carbon, the sixth element in the periodic table, possesses a ground-state electrical structure of
1s22s22p1

x2p1
y2p0

z , as shown in Fig. 2.1 under (b) [18]. For convenience, the energy level of the
2pz orbital is maintained in an unoccupied state, despite its equivalence to the energy levels of
the 2px and 2py orbitals. As depicted in Fig. 2.1 (a), the nucleus of a carbon atom is surrounded
by six electrons, with four of them being valence electrons. The valence shell of a carbon atom
has the ability to undergo three distinct types of hybridisation, specifically sp, sp2, and sp3. The
development of sp2 hybrids is depicted in Fig. 2.1 (c). Monolayer graphene is formed when car-
bon atoms share sp2 electrons with their three adjacent carbon atoms, resulting in a honeycomb
lattice [18]. The graphene crystal unit cell, as indicated by a purple parallelogram in Fig.2.1 (d),
consists of two carbon atoms. The unit-cell vectors a1 and a2 determine an identical lattice con-
stant of 2.46 Å. The stability of the planar ring is attributed to the resonance and delocalisation
of the electrons [18]. In the context of a standard sp2 hybridization process between adjacent

Figure 2.1: (a) Atomic structure of a carbon atom. (b) Energy levels of outer electrons in carbon atoms.
(c) The formation of sp2 hybrids. (d) The crystal lattice of graphene, where A and B are carbon atoms
belonging to different sub-lattices, a1 and a2 are unit-cell vectors. (e) σ-bond, π-bond formed by sp2

hybridisation. Image from [18].

carbon atoms inside a graphene layer (as shown in Fig. 2.1 (e)), a perpendicular out-of-plane
π-bond is established through the utilisation of 2pz orbitals. These orbitals are perpendicular
to the planar structure. Simultaneously, an in-plane σ-bond is formed by the sp2 (2s, 2px and
2py) hybridized orbitals [18]. The covalent σ-bond that forms as a result has a relatively small
interatomic length of approximately 1.42 Å. This characteristic makes it stronger than the sp3
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hybridised carbon-carbon bonds found in diamonds. Consequently, monolayer graphene ex-
hibits exceptional mechanical properties, such as a Young’s modulus of 1 TPa and an intrinsic
tensile strength of 130.5 GPa [15, 18]. The formation of the conduction band and valence band
with a zero band gap in monolayer graphene can be attributed to the presence of a half-filled
π-band, which allows for the unrestricted movement of electrons. Moreover, the π-bonds facil-
itate a relatively weak van der Waals interaction between adjacent layers of graphene in bilayer
and multi-layer graphenes [18].

2.1.2 Electronic band structure of graphene

In the hexagonal lattice of monolayer graphene, as seen in Fig. 2.2 (a), the two primitive lattice
vectors are:

a1 =
a
2
(1,
√

3) (2.1)

a2 =
a
2
(1,−

√
3) (2.2)

where a =
√

3a0 ≈
√

3× 1.42 Å= 2.46 Å is the lattice constant (a0 is the the interatomic
distance). The position vector of atom Bl , l = 1,2,3 relative to the atom Ai is denoted by

Figure 2.2: (a) Honeycomb lattice of monolayer graphene, where white (black) circles indicate carbon
atoms on A (B) sites, and (b) the reciprocal lattice of monolayer graphene, where the shaded hexagon is
the corresponding first Brillouin zone [19]. Image from [18, 19].
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δl , and the vectors for the three closest neighbours of an atom in real space are given by

δ1 =

(
0,

a√
3

)
(2.3)

δ2 =

(
a
2
,− a

2
√

3

)
(2.4)

δ3 =

(
−a

2
,− a

2
√

3

)
(2.5)

It is noted that |δ1|= |δ2|= |δ3|= a√
3

is the spacing between two nearest-neighbouring carbon
atoms. In Fig. 2.2(b) we can see an illustration of the reciprocal lattice of monolayer graphene,
where the crosses are reciprocal lattice points, and the first Brillouin zone is represented by the
shaded hexagon. The primitive reciprocal lattice vectors b1 and b2 satisfy the condition

ai ·bj = 2πδi, j i, j ∈ 1,2 (2.6)

therefore, we get the expressions for the primitive reciprocal lattice vectors as:

b1 =

(
2π

a
,

2π√
3a

)
(2.7)

b2 =

(
2π

a
,− 2π√

3a

)
. (2.8)

Normally, the electronic band structure of graphene can be calculated using the tight-binding
approach (TBA) [20], and after a well known calculation, one gets the electron dispersion [18]:

E j(k)λ =
ε2p +λγ0 | f (k)|
1−λs0 | f (k)|

(2.9)

where ε2p is the energy of the 2pz orbitals of carbon atoms, γ0 is the value of the transfer integral
matrix element between each nearest-neighbouring A and B atom, s0 is the overlap parameter,
the function f(k) describes the nearest-neighbour hopping:

f(k) =
3

∑
l=1

eik·δl = eikya/
√

3 +2e−ikya/2
√

3cos(kxa/2), (2.10)

and λ = ±1 represents the conduction and valence bands respectively in (2.9)[18]. The three
parameters ε2p, γ0 and s0 can be found by comparing this tight-binding model with fitting ex-
periments, or by ab initio methods, such as density functional theory (DFT) [21, 18]. According
to a review by Saito et al. [22] the values of ε2p, γ0 and s0 are suggested to be 0 eV, 3.033 eV
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and 0.129 eV. In this context, the notation ε2p = 0 indicates that the energy associated with the
2pz orbital is defined as the energy origin [18]. The band structure of graphene, as depicted in

Figure 2.3: (a) Band structure of graphene calculated with a tight-binding method with ε2p = 0 eV,
γ0 = 3.033 eV and s0 = 0.129eV . (b) Cross-section through the band structure, where the energy bands
are plotted as a function of wave vector component kx along the line ky = 0. Image from [18].

Figure 2.3 (a), is determined by substituting these three values into equation (2.9). Due to con-
siderations of symmetry, the formation of two energy bands, namely the upper conduction band
and the lower valence band, occurs in the monolayer graphene crystal structure due to electron
hopping between the two equivalent carbon triangular sub-lattices. These energy bands inter-
sect at points where the energy function E j(k) is identically zero. Furthermore, the Fermi level
is located at these points commonly referred to as Dirac points [18]. Figure 2.3 (b) displays a
specific line scan of the band structure, depicting the energy bands as a function of the wave
vector component kx along the line ky = 0. In the inserted graph, the centre of the Brillouin zone
is labeled Γ, while two opposite corners in which the two opposite Dirac points are located are
labeled K+ and K− respectively. The dispersion in the vicinity of point K+(K−) exhibits a linear
behaviour and can be described by a Dirac-like Hamiltonian [18, 23, 24, 25]

H =−i~vFσ ·∇ (2.11)

where ~ is the reduced Planck constant, vF ≈ 106 m/s is the Fermi velocity, σ = (σx,σy) are
the Pauli matrices, and ∇ is the the gradient operator. The non-zero overlap parameter s0 is
responsible for the considerable asymmetry between the conduction band (E+) and the valence
band (E−), particularly in the neighbourhood of the Γ point [18]. Nevertheless, the manipulation
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of the electronic band structure of graphene can be easily achieved through the application of
an electric field [14, 18, 26, 27, 28, 29, 30] or the utilisation of substrates [31, 32] and precisely
engineered by introducing disorders into the hexagonal lattice [18, 33, 34].

2.1.3 Synthesis

Recently, multiple techniques have emerged for the synthesis of graphene. This synthesis pro-
cess involves extracting graphene based on factors such as purity and the intended end product
[35]. Following the discovery of graphene in 2004, various methods have been devised to gen-
erate graphene layers and thin films [36].

There are two primary methods for synthesising graphene, which can be classified as (i)
top-down and (ii) bottom-up approaches. Top-down methodologies involve the conversion of
bulk materials, such as graphite, into its smallest constituents in order to produce graphene
[37, 38]. Several prominent top-down approaches have been identified in the literature [39].
These techniques encompass liquid-phase exfoliation [40], plasma etching [41], electrochemi-
cal exfoliation [42], laser ablation [43], ball milling [44], and chemical reduction [45].

On the other hand, under the bottom-up synthesis approach, the production of graphene
involves the decomposition of carbon-containing precursors, which can be in the form of gases
or liquids. This decomposition process is then followed by the construction of a hexagonal
structure consisting of graphene layers [46]. Chemical vapour deposition (CVD) [47], thermal
pyrolysis [48], and epitaxial growth [49] are often employed bottom-up methodologies in the
fabrication of graphene.

2.2 The intercalated graphite CaC6

Carbon exhibits various allotropic forms, with diamond, graphite, carbynes, fullerenes, and
carbon nanotubes being some notable examples. At standard room conditions, graphite, char-
acterised as a lamellar solid, is the most stable form. It consists of sp2 hybridized carbon atoms
forming two-dimensional graphene layers interconnected by relatively weak van der Waals
bonds. The short carbon-carbon distance within the graphene planes (about 1.42 Å) arises from
robust covalent bonds linking adjacent carbon atoms. In practice, two types of bonds stack: a
σ-bond and a πz-bond. All the πz-bonds within the same graphene plane are delocalized on that
plane. The weaker van der Waals bonds in the perpendicular direction result in a significantly
larger distance of approximately 3.35 Å between the graphene planes [50].

The presence of both strong covalent and weak van der Waals bonds imparts highly anisotropic
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properties to graphite. This property allows for soft chemical reactions, where reagents can se-
lectively target areas of weak cohesion, commonly referred to as van der Waals gaps, without
disrupting the covalent bonds. These gaps, often termed interplanar galleries, can expand to
accommodate the necessary space for the reagent’s action [50].

These particular soft reactions are known as intercalation reactions. In most instances, they
are reversible, and the pristine graphite structure can often be restored through moderate heat-
ing. Carbon, owing to its intermediate electronegativity, exhibits amphoteric behaviour in these
intercalation reactions, meaning it can either provide or accept electrons. The transfer of elec-
trons plays a pivotal role in facilitating intercalation reactions [50].

2.2.1 Synthesis

It is well known that vapour phase intercalation of alkaline earth metals into graphite is more
difficult than that of alkali metals. Additionally, compared to calcium (Ca), barium (Ba) and
strontium (Sr) in the category of alkaline earth metals demonstrate a very simple intercalation
process [51]. For instance, only superficial intercalation occurs when attempting to intercalate
calcium vapour with a pyrolytic graphite platelet. In order to avoid the creation of calcium
acetylide, it is also imperative to maintain a low reaction temperature. As a result, bulk calcium-
graphite materials have not been made through a vapour phase reaction, and nothing is known
about their crystal structure and other characteristics [50].

Innovative methods were employed in 2004 to successfully synthesise bulk and highly pure
CaC6. The experimental procedure consisted of submerging pyrolytic graphite into a molten
Li-Ca alloy with a predetermined composition, as described by Pruvost et al. [52]. The efficacy
of this reaction is contingent upon four pivotal factors: temperature, the exact composition
of the alloy, the duration of the reaction, and the purity of the reagents. The significance of
the reaction temperature lies in its impact on the structural integrity of graphene planes, which
undergo degradation above the threshold of 450 °C. Fortunately, the introduction of lithium (Li)
into calcium (Ca) has the advantageous effect of reducing the elevated melting point of calcium,
which is recorded to be 839 °C according to Emery et al. (2009) in their synthesis study [50].

In order to achieve reproducibility of the reaction, it is crucial to utilise metallic reagents of
exceptional purity and exercise meticulous handling techniques within a glove box that is filled
with argon of high purity. Lithium (Li) and calcium (Ca) are precisely quantified in order to
create an alloy with a Li/Ca ratio that falls within the specified range of 3 to 4. The process
of melting occurs within a stainless steel tube, which is positioned in a vertical tubular furnace
with the capability of attaining temperatures ranging from 400 to 450°C. In this particular stage,
the alloy undergoes extensive agitation in order to attain a homogeneous liquid state [50].
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Subsequently, a graphite platelet with dimensions of 5x15x0.2-0.5 mm is submerged into
the molten alloy, and the reactor is tightly sealed in a regulated argon atmosphere. Following
this, the reaction is carried out for a duration of ten days at a temperature of around 350°C. After
the completion of this phase, the sample is extracted from the reactor and subjected to surface
cleansing procedures, such as centrifugation within a temperature range of 300 to 350°C or
cleavage. The generation of pure first-stage CaC6 is ensured by a rigorous attention to the
experimental conditions [50].

The intercalation mechanisms that result in the formation of CaC6 were investigated us-
ing x-ray diffraction (XRD) techniques [53]. The dual role of lithium (Li) in this process is
widely acknowledged. First and foremost, it serves as a flux for calcium (Ca), facilitating the
reaction between liquid and solid phases to take place at reduced temperatures. Furthermore,
Li facilitates the process of intercalating Ca by initially causing the expansion of the graphitic
galleries during the early stages of the reaction. Indeed, throughout the initial hour of the re-
action, compounds formed by the combination of lithium and graphite undergo a sequential
progression through the fifth, fourth, third, second, and first stages. The utilisation of staging
mechanisms is a prevalent phenomenon observed in intercalation reactions that involve pure
metals and graphite [50].

2.2.2 Structure

The utilisation of the innovative approach introduced in the previous section significantly expe-
dited the resolution of the CaC6 crystal structure, enabling the synthesis of bulk CaC6 [54]. It is
well-known that during the initial phase, binary intercalation compounds of graphite and metal
exhibit a very specific stoichiometry [50]. It has been experimentally shown that it corresponds
to MC8 for the biggest metals and to MC6 for the smallest ones [50]. The stoichiometry of MC8

(where M = K, Rb, and Cs) is observed when the interlayer distance is above 5.30 Å. Conversely,
at interlayer distances smaller than this threshold, the composition MC6 (where M = Li, Sr, Ba,
Eu, Yb, and Ca) is observed. The latter stoichiometry corresponds to an AAA. . . stacking of the
successive graphene planes, so that the metal atoms are located in prismatic hexagonal sites, and
the adjacent graphene and metal planes are epitaxial [50]. In each graphitic gallery, only one
out of three prismatic sites is occupied by a metal atom. Therefore, the metal plane can occupy
three different positions in the graphitic interval denoted α, β and γ, so that three different c-axis
stacking possibilities can be considered [50, 54], as shown in Fig. 2.5 In the initial scenario, it
is evident that the parameter of the unit cell c = di, for the second stacking c = 2di, and for the
third one c = 3di. The first stacking option results in hexagonal crystal symmetry, whereas the
second stacking option also leads to hexagonal crystal symmetry. On the other hand, the third
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Figure 2.4: Possible stacking scenarios, image from [50].

stacking option corresponds to rhombohedral symmetry [50]. The initial stacking arrangement
was just found in the case of LiC6, whereas the remaining MC6 compounds (SrC6, BaC6, EuC6,
SmC6, and YbC6) exhibit the second stacking configuration. CaC6 exhibits distinct characteris-
tics, with its rhombohedral symmetry aligning with the third stacking [50]. The X-ray diagram
depicting the 001 reflections of CaC6 reveals an interlayer spacing of 452.4 pm, as illustrated
in Figure 2.5 [50]. The unambiguous establishment of the CaC6 chemical formula is facilitated

Figure 2.5: (a) [001] x-ray diffraction pattern. Reflexions are indexed in the hexagonal [001] and rhom-
bohedral [hkl] representations (rhombohedral structure can be represented in both systems). (b) Crystal
structure of CaC6 (rhombohedral unit cell) [54] with a, b, c axis marked. Image from [50].

by the depiction of its c-axis electronic density profile. Finally, the stoichiometry was verified
with a high level of accuracy using a nuclear microprobe [55, 56].
The lattice parameter of CaC6 structure, determined by analysing the diffraction pattern ac-
quired by the rotating crystal method, is approximately equal to 4.33 Å. It is very close to a

√
3,

where a corresponds to pristine graphite. This result additionally confirms the CaC6 stoichiom-
etry [50].
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Motivation for this work

Charge density waves were observed experimentally by Rahnejat et al. in 2011 [57]. The phe-
nomenon of electronic stripes in the graphitic superconductor CaC6 has been seen and analysed
by researchers through the utilisation of scanning tunnelling microscopy and spectroscopic tech-
niques [57]. The observed stripes are in the form of a uniaxial charge density wave exhibiting a
periodicity that is three times larger than that of the Ca superlattice along one of its unit vectors.
The Ca intercalants exhibit positional modulation visible on Fig. 3.1, but no deformations of the
carbon lattice are seen, suggesting that the graphene sheets can host a charge density wave. The
utilisation of graphene, a really simple material, serves as a first foundation for comprehending
the correlation between so called charge stripes and superconductivity. The experimental find-
ings propose a methodology for investigating the presence of superconductivity in graphene.
The material has also exceptional superconducting properties within its category, including the
highest recorded superconducting temperature (Tc = 11.5 K) among all intercalated graphite
compounds [57]. Atomic resolution STM imaging has been used to determine the structure
and electronic local density of states (LDOS) of CaC6 at 78 K (shown in Fig. 3.2), above the su-
perconducting transition but below the anomalous transition. The technique accesses structural
information and the electronic spectrum, including the CDW gap. The principal finding of the
experiment is a stripe phase (CDW), with the underlying structure of the expected phase with
an extra superposed long-range one-dimensional uniaxial modulation [57]. The Ca atomic res-
olution for the stripe phase is ∼ 0.020 nm, much lower than the X-ray-measured C-Ca distance
and the Ca2+ ionic radius. High-resolution imaging of the stripe phase requires a high-purity
sample and a large flat graphene-terminated surface. The Ca superlattice is less prominent in
real-space imaging at 300 mV than at 400 mV, allowing for individual analysis of each lattice.
Higher resolution momentum space techniques, such as X-ray or neutron scattering, could be
used to detect smaller average modulations [57].
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Figure 3.1: Surface structure and the broken symmetry of the Ca superlattice. (a) 5 nm × 5 nm drift-
corrected topographic STM image with line profiles in the Ca-parallel-to-stripe symmetry direction
marked on B, the stripe apex, and off A, C. (b) Correlation of line profiles shown in (a) demonstrate
a 0.06 ± 0.02 nm perturbation of the Ca atoms along the stripe apex. (c) A schematic illustrating the
distortion of the Ca lattice (green) and the resultant stripe modulation (blue scale) on the graphene sheet
as seen in positive sample bias imaging oriented to match (a). (d) Topographic height distributions for
three different striped surface areas at a number of sample biases (as indicated in the legend) and three
expected phase surface regions at + 300 mV. Image from [57].
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Figure 3.2: (a) Numerically differentiated and averaged (60000 spectra) spectroscopy, spatially averaged
conductivity g(V ) recorded at +800 mV, 50 pA set point on CaC6. (b) Numerically differentiated spectra
recorded at the same set point on pristine graphite. (c) g(q,V ) Fourier transform scanning tunnelling
spectroscopic image at 0 mV. (d-f) g(q,V ) Fourier intensity plotted as a function of energy for the stripe
(d, blue) and Superlattices A and B (e, green and f, yellow) spots marked in (b) respectively. Faint lines
represent individual datasets, bold lines represent average. Red dotted line is the background intensity
(already subtracted from all lines presented). Image from [57].

The presence of a charge density wave has also been observed by Shimizu et al. in Ca-
intercalated bilayer graphene C6CaC6, which is the lowest possible thickness of the supercon-
ducting C6Ca material [58]. The CDW is induced by the potential modulation due to the com-
mensurate lattice matching between the C6CaC6 film and the SiC substrate. The phenomenon
of superconductivity was not detected in the epitaxial growth of C6CaC6 on a SiC substrate.
However, an alternative charge density wave arrangement, distinct from the surface of bulk
C6Ca, was discovered [58].

ARPES measurements were conducted at Tohoku University utilising a VG-Scienta SES2002
electron analyser equipped with a high-intensity helium discharge lamp and a toroidal grating
monochromator. The confirmation of the gap structure occurred exclusively at a temperature of
5 K and remained unaffected by the presence of an external magnetic field [58]. The investiga-
tion conducted an analysis of the scanning tunnelling spectroscopy (STS) spectrum of C6CaC6

in the absence of a magnetic field, which resulted in the identification of a distinct energy gap
with a magnitude of around 70 meV at a temperature of 5 K.

The energy-gap value in bulk C6Ca is 6-7 times larger than that of C6CaC6, and the transition
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Figure 3.3: Comparison of STM results for bilayer epitaxial graphene (BEG), C6LiC6, and C6CaC6.
(a)-(c) STM images of (a) BEG, obtained with a sample bias voltage (Vs) of -500 mV and a tunnelling
current (It) of 30 pA. (b) C6LiC6 (Vs = −100 mV, It = 30 pA), and (c) C6CaC6 (Vs = -100 mV, It = 30
pA). All the images were taken at 5 K in 6 nm × 6 nm. The arrows indicate the unit vectors. The insets
show the schematic illustrations of each material. (d)-(f) FFT images of the corresponding STM images
(a)–(c). Each FFT image is characterised by (d) the reciprocal lattice spot of GBEG with the (6

√
3×6
√

3)
-R30◦ satellite, (e) the additional spot (GC6LiC6) with (

√
3×
√

3) R30◦ periodicity, and (f) the (
√

3×
√

3)
- R30◦ spot (GC6CaC6) with a distinct spot corresponding to 2

5 GC6CaC6 . Image from [58].

temperature is much higher in the bulk crystal than in the thin film [58]. Although theoretical
studies have predicted the possibility of superconductivity in C6CaC6 [59, 60], no supercon-
ducting transition has been observed in epitaxially grown C6CaC6 on SiC [58].

The findings in this work that sparked our interest for future theoretical investigation were
both the STM results for C6CaC6 that show a clear CDW phase shown in Fig. 3.1, 3.2 (a),
3.3 (c), (f). As seen from Fig. 3.3, C6LiC6 does not exhibit a striped ground state, contrary to
C6CaC6, we also aim to provide an explanation for these observed differences.
To summarise, the experiments show:

1. The uniaxial CDW ordering is established below 250 K in the graphene sheets which are
chemically doped by electrons from the Ca atoms with 0.2 electrons per carbon atom. Due
to the CDW formation, the CaC6 unit cell gets tripled along one of its primitive vectors
inclined by 30 degrees with respect to the direction perpendicular to the charge lines.
The charge lines are formed along the graphene armchair direction and are periodically
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distributed with a distance equal to 4.5 graphene lattice constants along the graphene
zig-zag direction.

2. The pseudo-gap appears around the Fermi energy in the CDW-ordered phase.

3. The Ca-superlattice is distorted in a way that every Ca atom along the CDW apex is
shifted by 0.06± 0.02 nm in the same direction, with respect to the other two parallel
lines of Ca atoms between the CDW peaks.

It is important to note that the pseudo-gap at the Fermi energy does not necessarily need to
appear only due to the formation of the CDW state. In doped graphene it can also appear in the
STS signal due to phonon-assisted electron tunneling [61]. Therefore, in a quantitative analysis
of the CDW, aiming to compare with STS experiments, that contribution should be subtracted.

Among earlier experimental findings of charge ordering in intercalated graphites e.g. [62,
63] we find experimental studies described in this section providing us sufficient information to
base our minimal theoretical model on. The next step is to set up the theoretical framework for
further analysis and construction of the model.
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The minimal model

4.1 Geometry of the problem and the initial Hamiltonian

The geometry of the problem in real and reciprocal space is presented schematically in Fig. 4.1
and Fig. 4.2 respectively. The graphene crystal lattice is defined by the primitive vectors a1 and
a2, and the calcium superlattice is defined by the primitive vectors b1 and b2.

Figure 4.1: Left panel: Carbon atoms form the honeycomb lattice (unit vectors are a1,2,a≡ |a1,2|= 2.5Å,
the area of the cell is AC = 5.41Å2. Ca atoms (circles) form the hexagonal superlattice (unit vectors are
b1,2,b ≡ |b1,2| =

√
3a = 4.32Å , the area of the cell is ACaC6 = 16.16Å2 ). The CDW charge stripes

(shaded) are formed along the armchair direction, characterised by the vector W = 3b1 that triples the
CaC6 cell along b1 . The Ca-lattice distortion (shift of the Ca atoms under the CDW peaks by 0.06± 0.02
nm) due to CDW formation is depicted by the dashed circles. The unit cell of the CDW-reconstructed
system is marked by the dashed orange rhombus. Right panel: The intercalating Ca atoms (red dots) form
the hexagonal superlattice upon the honeycomb graphene lattice (grey). The electron CDW (blue) in the
π-bonds of graphene (chemically doped) spreads periodically along the graphene zig–zag direction.

We describe a coupled system of electrons and phonons by the 2D Fröhlich Hamiltonian
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(a)

 Γ

K

Q
b1
*

b2
*

a1
*

*a2

K'M

(b)

Figure 4.2: A schematic representation of the reciprocal space (a) The carbon Brillouin zone (BZ) is
depicted by the dashed hexagon, with standard Γ,K,K′,M points (unit vectors are a∗1,2,a ≡ |a1,2| =
2.9Å−1 ). The triangles at the K,K′ points represent the Fermi surfaces (FS) of the chemically doped
carbon layer [64]. The Ca-superlattice (unit vectors are b∗1,2, b ≡ |b1,2| = 1.68Å−1 ) folds the carbon
BZ to a three times smaller CaC6 BZ (solid hexagon). All 6 FSs, from carbon K and K′ points, fall into
the Γ point (shaded), approximated by a circle of the same area SF0 depicted by the dashed red circle.
The chemical doping of ξ ≈ 0.2 electrons per carbon atom is related to the area of the Fermi pocket
SF0 = 2π2ξ/ACaC6 = 0.244 Å−2 , which gives an average Fermi wave number kF0 = 0.28Å−1. (b) The
CDW potential, with the wave vector Q||b∗1 of periodicity Q = b∗/3 = 0.56Å−1 , folds the CaC6 BZ,
bringing the FSs into touch (or slight overlap). The orange rhombus represents the reciprocal primitive
cell of the reconstructed system.

[65, 66, 67]:

H = ∑
k

ε(k)a†
kak +∑

q
~ω(q)b†

qbq +
1√
A ∑

k,q
gqa†

k+qak

(
b†
−q +bq

)
, (4.1)

where ak and bq are the standard electron and phonon field operators with the corresponding 2D
wave vectors k and q respectively, ε(k) = ~vF |k| is the Dirac-like electron dispersion with the
Fermi velocity vF , ωq is the phonon frequency and gq is the electron-phonon coupling constant
at wave vector q, A is the area of the 2D sample. The first term in the Hamiltonian (4.1)
describes the noninteracting 2D electrons, the second term represents noninteracting phonons,
and the third term describes electron-phonon coupling.
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The formation of the CDW with the wave vector Q implies a static lattice deformation, i.e.
the nonvanishing phonon operator expectation value 〈bq=Q〉 with corresponding complex order
parameter

∆eiΦ =
2gQ〈bQ〉√

A
, (4.2)

where ∆ and Φ are its amplitude and phase. Q and ∆ are to be determined self-consistently by
the maximisation of the total condensation energy of the CDW state, while phase Φ is not im-
portant in the model considering only the ground state, i.e. not considering processes involving
some aspects of collective dynamics of the CDW. The Hamiltonian (4.1) is treated within the
mean-field approximation [68], which appears sufficient to provide a minimal zero-temperature
model to reveal the analytical picture explaining the above-counted experimental facts, i.e.

HMF = ∑
k

[
ε(k)a†

kak +∆eiΦa†
k+Qak +∆e−iΦa†

k−Qak

]
+

A~ωQ

2g2
Q

∆
2. (4.3)

The final term in Eq. (4.3) accounts for the elastic energy of the statically deformed lattice,
whereas the first term is simply diagonalised, providing the new electron bands

E±(k) =
1
2

[
ε(k− Q

2 )+ ε(k+ Q
2 )±

√(
ε(k− Q

2 )− ε(k+ Q
2 )
)2

+4∆2

]
, (4.4)

where we conveniently choose the origin of the reciprocal space at the edge of the new BZ, i.e.
the crossing point of the initial electron bands

ε1,2(k)≡ ε

(
k± Q

2

)
= ~vF

√(
kx±

Q
2

)2

+ k2
y , (4.5)

in which the wave vector Q = (Q,0) is taken along the kx-axis. The finite ∆ lifts the degeneracy
in the band crossing area, leading to the reconstruction of the FS.

In Fig. 4.3 (a) we illustrate the CaC6 Brillouin zone, showing the Fermi surface at energy
εF after its reconstruction according to Eq. (4.4) and initial FS overlap (see Fig. 4.2), where
kx ∈ (−Q/2,Q/2) with origin at the initial band-crossing point. We choose the coordinate
system in which k̂x ‖ Q. The reconstruction region shows two peculiar points in the E±(k)
spectrum, a hyperbolic point at energy εH = ε0−∆ in the lower band E−(k), and an elliptic
point at energy εE = ε0 +∆ in the upper band E+(k), where ε0 = ~vFQ/2 is the energy of the
initial band-crossing point (see Fig 4.3 (b)). The contours are cross-sections at constant energy,
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i.e. E±(k) = εF . The upper band FS (dashed yellow in panel (a)) appears for Fermi energy
εF > εE .

Figure 4.3: (a) The CaC6 Brillouin zone, showing the Fermi surface at energy εF after the reconstruction
and initial FS overlap (see Fig. 4.2 (b), (b) The reconstruction region (shaded in (a)) with two peculiar
points in the E±(k) spectrum, a hyperbolic point at energy εH in the lower band E−(k), and an elliptic
point at energy εE in the upper band. (c) The density of states (DOS) ν(ε) of the reconstructed system
(red) exhibiting a pseudo-gap appearing between εH and εE , with a diverging van Hove singularity at εH .
The dashed blue line is DOS of the non-reconstructed system, ν0(ε) = 6ε/(π~2v2

F). Image from [67].

The most fundamental requirement in the reconstruction process of the Fermi surface is the
conservation of the number of electrons, i.e.

N0(εF0) = N(εF), (4.6)

where εF0, εF are the Fermi energies, and N0(ε), N(ε) are numbers of electrons of the 2D CaC6

system before and after the reconstruction, respectively. The number of electrons is determined
by the area of the corresponding (reconstructed or non-reconstructed) Fermi surface S(ε), i.e.
N(ε)∼ S(ε)/(2π)2. Taken per unit area in the real space (A = 1) and assuming the 2-fold spin
degeneracy as well as 6-fold FS degeneracy in the Γ-point of the CaC6 BZ (Fig. 4.2 (a)), they
are

N0(ε) =3ε
2/(π~2v2

F),

N(ε) =
12
π2 ∑

l=±

∫ Q
2

0
ky,l(kx;ε,Q,∆)Θ [l (Kl(ε,Q,∆)− kx)]dkx. (4.7)

28



4.1. Geometry of the problem and the initial Hamiltonian Chapter 4. The minimal model

Here, ky±(kx;ε,Q,∆) should be obtained from Eq. (4.4) by setting

E±(k) = ε. (4.8)

The Heaviside theta function Θ(...) in

Kl(ε,Q,∆)≡ 1
vF

√
(ε−~vFQ/2)2−∆2Θ[l(ε−~vFQ/2)−∆], (4.9)

ensures the real domain of integration over kx of the l =± branch of ky,l depending on parame-
ters ε, Q, ∆ (see Fig. 4.3 (a)).

The density of states (DOS) ν(ε) of the reconstructed system is obtained numerically from
Eq. (4.7), simply as ν(ε) = ∂N(ε)/∂ε, clearly exhibiting a pseudo-gap in the band-crossing
region and with a diverging van Hove singularity at εH for a fixed ∆ (see Fig. 4.3 (c)). The
bottom band, E−(k), is filled for any Q, whereas the upper one, E+(k), is only filled for

Q < QE ≡
2(εF −∆)

~vF
(4.10)

which corresponds to energies ε > εE (see Fig. 4.3 (b)).
The analytical properties of the dispersion (4.4) make it impossible to obtain ky±(kx;ε,Q,∆)

in a closed analytical form. We will employ a specially devised expansion technique to achieve
analytical results, which we will describe in the following section 4.2.
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4.2 Reconstructed band structure - expansion

We define the dimensionless variables

κx,y ≡
kx,y

Q/2
, ξ1,2 ≡

ε1,2

ε0
, e± ≡

E±
ε0

, δ≡ ∆

ε0
, eF0,F ≡

εF0,F

ε0
, (4.11)

where ε0 ≡ ~vFQ/2 is the energy scale, in which the above expressions read

ξ1,2(κ) =
√

(κx±1)2 +κ2
y ,

e±(κ,δ) =
1
2

[
ξ1(κ)+ξ2(κ)±

√
(ξ1(κ)−ξ2(κ))

2 +4δ2
]
. (4.12)

Since only the lower band e−(κ,δ) ≡ e(κ,δ) contribution takes part in the final result (will
be shown later), for simplicity we present only the corresponding expressions further on. We
divide the κx ∈ (0,1) domain by an arbitrary κ0 obeying only the condition δ� κ0� 1, for the
lower band contribution at the energy close to ε0, and perform the Taylor expansion within each
interval with respect to the small parameter characteristic for that particular interval.

Figure 4.4: Schematic presentation of the division of the κx ∈ (0,1) domain by κ0 for which δ� κ0� 1.
κy(κx) is approximated by κ<

y (κx) within κx ∈ (0,κ0) and by κ>
y (κx) within κx ∈ (κ0,1) subintervals.

Image from [67].
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4.2.1 κ<
y limit:

In this limit we use expansion in small (κx,κy)� 1, yielding

ξ1,2(κx,κy)≈ 1±κx +
1
2

κ
2
y +

1
2

κx|κ|2,

e±(~κ,δ)≈ 1+
1
2

κ
2
y±
√

κ2
x +δ2, (4.13)

from which we finally obtain

κ
<
y (κx,e,δ)≈

√
2

√
e−1+

√
κ2

x +δ2. (4.14)

4.2.2 κ>
y limit:

In this limit we use expansion in small δ� (κx,κy), yielding

κ
>
y (κx;e,δ) =

√
e2− (κx−1)2 +

e2 + e
√

e2 +4κx

4κx
√

e2− (κx−1)2
δ

2 + ...,

for which, after one more expansion in the additional small parameter of the order of δ, i.e.

∆e≡ e−1� 1, (4.15)

we get

κ
>
y (κx;e,δ) =

√
e2− (κx−1)2 +

1+
√

1+4κx

4κ2
x
√

2−κx
δ

2+

+

(
1+ 1+2κx√

1+4κx

2κ2
x

√
2−κ2

x
− 1+

√
1+4κx

4κx(2κx−κ2
x)

3/2

)
∆eδ

2 + ...,

and, keeping accuracy up to ∼ δ2 (which is later shown to be sufficient), we finally obtain

κ
>
y (κx;e,δ)≈

√
e2− (κx−1)2 +

1+
√

1+4κx

4κ2
x
√

2−κx
δ

2. (4.16)
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4.3 Area of the reconstructed Fermi surface

We define the integral (area of the reconstructed Fermi surface)

I =
∫ 1

0
κy(κx;e,δ)dκx = I<+ I>, (4.17)

where

I< =
∫

κ0

0
κ
<
y (κx;e,δ)dκx,

I> =
∫ 1

κ0

κ
>
y (κx;e,δ)dκx. (4.18)

a) I<:

I< =
∫

κ0

0

√
2

√
∆e+

√
κ2

x +δ2 dκx{
supst. t ≡ κx

δ
, a≡ ∆e

δ
> 0, r ≡ κ0

δ
� 1

}
=
√

2δ
3/2

∫ r

0

√
a+
√

t2 +1dt (4.19)

In the Eq. (4.19), the indefinite integral evaluates to

Ĩ<(t) =
∫ √

a+
√

t2 +1dt =
2
3

t(2a+
√

t2 +1)√
a+
√

t2 +1
+

+
2
3

√
a+1

[
aE

(
arcsin

√
a+1√

a+
√

t2 +1
,
a−1
a+1

)

−F

(
arcsin

√
a+1√

a+
√

t2 +1
,
a−1
a+1

)]
, (4.20)

where F(φ,m) and E(φ,m) are the incomplete elliptic integrals of the first and second kind,
respectively. Inserting the limits of integration and performing the asymptotic expansion in
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r� 1, we obtain

Ĩ<(r)|r�1 ≈
2
3

r3/2 +a
√

r−
(

1
2
− a2

4

)
1√
r
+ ...,

Ĩ<(0)≈ 2
3

√
a+1

[
aE
(

π

2
,
a−1
a+1

)
−F

(
π

2
,
a−1
a+1

)]
=

2
3

√
a+1

[
aE
(

a−1
a+1

)
−K

(
a−1
a+1

)]
, (4.21)

where K(η) and E(η) are the complete elliptic integrals of the first and second kind, respec-
tively. Using the fact that η ≡ (a− 1)/(a+ 1)� 1 is small, we expand the complete elliptic
integrals

E(η)' π

2
− π

8
η− 3π

128
η

2− ...,

K(η)' π

2
+

π

8
η+

9π

128
η

2 + ..., (4.22)

which give

Ĩ<(0) =
π

4

√
a+1

[
1− 1

16
(a−1)(a+3)

(a+1)2

]
' π

4

√
a+1(a−1) , (4.23)

where we used a = ∆e/δ and (∆e− δ)/δ� 1. Using the above, we finally obtain the integral
(4.19), up to the leading terms,

I< ≈
√

2δ
3/2
[

2
3

r3/2 +a
√

r−
(

1
2
− a2

4

)
1√
r
− π

4

√
a+1(a−1)+ ...

]
=

2
√

2
3

κ
3/2
0 +

√
2∆e
√

κ0−
√

2
2

δ2
√

κ0
+

∆e2

2
√

2
1
√

κ0
−
√

2
π

4

√
∆e+δ(∆e−δ)+ ... (4.24)

b) I> : We express the integral as

I> = I>0 + I>2 , (4.25)
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where

I>0 =
∫ 1

κ0

√
e2 +(κx−1)2dκx,

I>2 = δ
2
∫ 1

κ0

1+
√

1+4κx

4κ2
x
√

2−κx
dκx. (4.26)

To evaluate the integrals (4.26), first we take the corresponding indefinite integrals. The first
integral is

Ĩ0
>
(κx) =

∫ √
e2− (κx−1)2dκx

=
1
2
(κx−1)

√
e2− (κx−1)2 +

1
2

e2 arctan
κx−1√

e2− (κx−1)2
, (4.27)

in which we insert limits of integration and expand in terms of κ0� 1,

Ĩ0
>
(1) = 0,

Ĩ0
>
(κ0)|κ0�1 ≈−

π

4
e2 +

∆e2

2
√

2
√

κ0
−
√

2
√

κ0∆e−

− 5
8
√

2

√
κ0∆e2 +

2
√

2
3

κ
3/2
0 +

√
2

12
∆eκ

3/2
0 + ... (4.28)

which finally yields the value of the first integral (4.26) up to the leading terms

I>0 ≈
π

4
e2− ∆e2

2
√

2
√

κ0
−
√

2
√

κ0∆e−

− 5
8
√

2

√
κ0∆e2− 2

√
2

3
κ

3/2
0 − 1

6
√

2
κ

3/2
0 ∆e+ ... (4.29)

The second integral is

Ĩ2
>
(κx) =

∫ 1+
√

1+4κx

4κ2
x
√

2−κx
dκx =

=−1
4

√
2−κx(1+

√
1+4κx)√

κx
+

+
3
4

[
E

(
arcsin

√
1− κx

2
,
8
9

)
−F

(
arcsin

√
1− κx

2
,
8
9

)]
, (4.30)
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in which we insert limits of integration and expand in terms of κ0� 1,

Ĩ2
>
(1) =−1

4

[
1+
√

5+3
(
F
(

π

4
,
8
9

)
−E

(
π

4
,
8
9

))]
,

Ĩ2
>
(κ0)|κ0�1 ≈

3
4

(
E
(

8
9

)
−K

(
8
9

))
− 1√

2
√

κ0
+

5
4
√

2

√
κ0−

− 7
32
√

2
κ

3/2
0 + ..., (4.31)

which finally yields the value of the second integral (4.26) up to the leading terms

I>2 = δ
2

[
−1+

√
5

4
− 3

4

(
F
(

π

4
,
8
9

)
−E

(
π

4
,
8
9

)
+E

(
8
9

)
−K

(
8
9

))
+

+
1√

2
√

κ0
− 5

4
√

2

√
κ0 +

7
32
√

2
κ

3/2
0 + ...

]
. (4.32)

Collecting all the terms (4.18), we obtain the integral (4.17)

I ≈ I<+ I>0 + I>2

≈ π

4
e2−
√

2
π

4

√
∆e+δ(∆e−δ)+

1
4

αδ
2, (4.33)

where

α = 3
(
E
(

π

4
,
8
9

)
−F

(
π

4
,
8
9

)
−E

(
8
9

)
+K

(
8
9

))
−1−

√
5

≈ 0.5568. (4.34)

It should be noted that the final result does not include contributions with the arbitrary parameter
κ0, which cancel each other. Here we explicitly demonstrate it for the terms of desired accuracy
(i.e. ∼ 1/

√
κ0,∼∆e

√
κ0,∼ κ0

3/2), neglecting the remaining terms exceeding it (i.e. ∼√κ0∆e2,
∼ κ0

3/2∆e, ∼ κ0δ2, ∼ κ0
3/2δ2, ... ). That also serves as a test of the controlled expansion of the

same function across parameter regimes.
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4.4 Condensation energy

The condensation energy (per unit area) of the CDW state is the difference between the initial
(band) energy

E0 =
∫

εF0

0
ν0(ε)εdε =

2ε3
F0

π~2v2
F
, (4.35)

and the final energy of the system, which includes contributions from the reconstructed band
and the elastic deformation energy of the lattice

ν0(εF0)∆
2

2λ
, (4.36)

where ν0(ε) is the density of states of system before the reconstruction at energy ε. The recon-
structed band energy is determined by

N(ε) = ∑
k,s,ZCaC6

1 =
12

(2π)2

∫
d2k =

3
π2 S(ε) (4.37)

Eband(ε) =
∫

ε

0

dN
dε′

ε
′dε
′ = εN(ε)− 3

π2

∫
ε

0
S(ε′)dε

′, (4.38)

where k is the 2D electron momentum (the summation and integration in (4.37) are taken over
the states k up to the energy ε), s = 2 and ZCaC6 = 6 are the spin and CaC6 degeneracies, and
S(ε) is the 2D equienergy surface (i.e. the Fermi surface for ε = εF ). The condensation energy
normalised to E0 is

ECDW

E0
= 1− 3

2

(
Q

2kF0

)3

∑
l=±

4
∫ 1

0
dκx

∫
κy,l(κx;eF ,δ)

0
el(κx,κy,δ)dκy−

3
2λ

(
∆

εF0

)2

, (4.39)

where

λ≡ ν0(εF0)g2

~ωQ
(4.40)

represents the dimensionless electron-phonon coupling. Maximising the condensation energy
with respect to εF , Q, and ∆ results in an optimal positive condensation energy that stabilises
the CDW. The optimisation approach considers the Q-dependence of the coupling constant and
order parameter to be slow enough to be neglected. The optimisation with respect to Q involves
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only the electron band contribution to the condensation energy, for a fixed ∆ that has yet to be
determined. Q decreases, causing the occupied parts of the original electron bands ε(k+Q/2)
and ε(k−Q/2) to overlap and reconstruct the Fermi surface. The formation of a hyperbolic
peculiar point in the lower reconstructed band, at energy εH now below the initial Fermi energy
εF0 > εH , significantly increases the number of states below εF0 due to the formation of the van
Hove singularity at εH (also evident as the increase of the FS area - see Fig. 4.3). As a result, the
Fermi energy of the reconstructed system should in principle decrease, lowering the total energy
of the reconstructed band. The next step in our calculation is to optimise the reconstructed band
energy with respect to εF0, εF and Q.
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4.5 Optimisation of the reconstructed band energy with re-
spect to εF0, εF and Q

We start with general expressions for the number of particles (electrons) N(ε) and the band
energy Eband(ε) at energy ε,

N(ε) =
∫

ε

0
ν(ε′)dε

′

Eband(ε) =
∫

ε

o
ν(ε′)ε′dε

′, (4.41)

in terms of the density of states ν(ε). The band contribution to the condensation energy is
defined as

E(c)
band ≡ E0−Eband, (4.42)

where E0 is the initial band energy, and Eband is the reconstructed band energy, defined by the
expressions (4.35) (4.38). Using the expressions above it reads

E(c)
band = εF0N0(εF0)− εFNr(εF)+

3
π2

[∫
εF

0
Sr(ε)dε−

∫
εF0

0
S0(ε)dε,

]
, (4.43)

where S0 and Sr are the initial and reconstructed Fermi surfaces, N0 and Nr are the numbers
of electrons in the initial and reconstructed system, and εF0 and εF are the Fermi energies
of the initial and reconstructed system. Sr and εF are dependent on Q and ∆, but we keep
∆ fixed in this case (it is optimised later in the total condensation energy). E(c)

band must be
optimised (maximised) with respect to εF and Q, while preserving the number of particles in
the reconstruction process. In that regard, we define the Lagrange function

L = E(c)
band−µ∆N, (4.44)
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where µ is the Lagrange multiplier and ∆N =Nr(εF)−N0(εF0). Using the standard optimisation
process, we get the three following conditions:

1.) 0 =
∂L

∂εF0
= ν0(εF0)(εF0−µ)

2.) 0 =
∂L
∂εF

= ν(εF)(εF0− εF)

3.) 0 =
∂L
∂Q

=
∫

εF

0

∂Sr(ε,Q)

∂Q
dε. (4.45)

The system (4.45) shows that the optimal value of the Fermi energy of the reconstructed system
is equal to the initial one, i.e. εF = εF0 as long as there is Q = Qopt for which

∂Sr(Q)

∂Q

∣∣∣∣
Q=Qopt

= 0 (4.46)

i.e. Sr(Q) has a maximum (which is checked by taking the second derivative). This occurs only
when the maximum is attained in the lower band before reaching the upper band. Fig. 4.5 de-
picts the Fermi surface reconstruction process as Q varies. For clarity, the process is illustrated
schematically before calculation. Taking only the lower band (red contour) into account, it is
clear that as Q is reduced, the enclosed area S(Q) first remains constant, then begins to increase
due to the finite gap parameter, and finally begins to decrease due to the fact that the size of
the Brillouin zone (−Q/2,Q/2) is reduced by the reduction of Q. This competition provides a
maximum of area Smax

r at Q = Qopt , as shown schematically in Fig. 4.6.

The scenario given above is appropriate as long as the maximum Smax
r (Qopt) appears, by reduc-

ing Q, before the formation of the second (upper) band. If the second band is formed before
reaching Qopt , i.e. when Q > Qopt , then E(c)

band instantly begins to decrease, establishing a max-
imum at that value of Q. The reconstruction process continues by reducing Q until εF = εF0,
where Sr(εF) is maximum, unless the upper band is achieved first. In this scenario, the recon-
struction ends at Q = Qopt , when the upper band is formed and εF < εF0.
Using the conservation of the number of particles

N0(εF0) = Nr(εF), (4.47)

i.e. the surface S0(εF0) = Sr(εF) in dimensionless variables (4.11), and integral (4.33), we get

πe2
F0 = 4I, (4.48)
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Figure 4.5: Schematic presentation of the 2D Fermi surface reconstruction process at the same Fermi
energy (characterised by the Fermi wave number kF ) while Q is varied. Reduction of Q controls the
overlap of the initial Fermi surfaces (dashed curve) and size of the new Brillouin zone. The full red curve
represents the contour of the reconstructed Fermi surface as Q is reduced, i.e. (a) Q > 2kF , (b) Q = 2kF ,
(c) Q < 2kF , (d) Q < 2kF and the second (upper) band is formed (blue).

Figure 4.6: Schematic presentation of the change of area of the reconstructed Fermi surface Sr(Q), as
Q is varied, of the lower band (only) - see also Fig. 4.5. For Q significantly larger than 2kF , gap
parameter has no contribution, yielding the Sr(Q) being equal to πk2

F . As Q is reduced to Q ∼ 2kF ,
lifting of degeneracy takes place by the (pseudo)gap opening and Sr(Q) increases. By further reduction
of Q, Sr(Q) finally starts to decrease because size of the Brillouin zone (−Q/2,Q/2) is decreased by
reduction of Q. Therefore, Sr(Q) has a maximum Smax

r at Q = Qopt .

i.e.

πe2
F0 = πe2

F −
√

2π

√
∆eF +δ(∆eF −δ)+αδ

2, (4.49)

40



4.5. Optimisation for εF0, εF , Q Chapter 4. The minimal model

where ∆eF = eF −1, which, in the original (non-scaled) variables, reads

ε
2
F − ε

2
F0 =

√
2

√
~vF

Qopt

2

√
εF −~vF

Qopt

2
+∆

(
εF −~vF

Qopt

2
−∆

)
− α

π
∆

2. (4.50)

The constraint (4.50) illustrates that at εF = εF0, it provides Q < QE , indicating that the top
band would be filled. To carry out the proper optimisation we apply the new, natural scaling
that normalizes to the initial Fermi energy

εF0 = ~vFkF0 (4.51)

i.e.

ẽ =
εF

εF0

qopt =
Qopt

2kF0

δ̃ =
∆

εF0
, (4.52)

ẽF0 ≡ 1, and write the expression (4.50) in the form

ẽ2
F − ẽ2

F0 =
√

2
√

qopt

√
ẽF −qopt + δ̃

(
ẽF −qopt− δ̃

)
− α

π
δ̃

2. (4.53)

Using Eq. (4.53), we determine whether ẽF = ẽF0 occurs before the upper band is reached.
Using perturbation theory for qopt = q(0)opt +q(1)opt , q(1)opt � 1, we get qopt ≈ 1− δ̃− α

2π
δ̃3/2, which

means that the overlap of the initial FS is larger than the critical qopt = 1− δ̃ for which the upper
band is reached. This implies that the reduction of q ends at qopt = 1− δ̃. For that value, using
perturbation theory in ẽF = ẽ(0)F + ẽ(1)F , ẽ(1)F � 1, we find ẽF ≈ 1− α

2π
δ̃2. This yields the optimal

wave vector of the CDW and the Fermi energy of the reconstructed system for a fixed ∆, i.e.

Qopt = 2kF0

[
1−
(

∆

εF0

)]
,

εF = εF0

[
1− α

2π

(
∆

εF0

)2
]
. (4.54)

This value of the reconstruction vector is preferably commensurate with the reciprocal lattice
constant of the CaC6 structure in the corresponding direction (see Fig. 4.2), that is, b∗ = mQopt ,
where m ∈ N. The incommensurability implications will be discussed in Chapter 5.

41



4.6. Optimisation with respect to ∆ Chapter 4. The minimal model

4.6 Optimisation of the total condensation energy with re-
spect to ∆

4.6.1 The reconstructed band energy

We calculate the band energy of the reconstructed system, first for an arbitrary Q and ∆, as

E(r)
band = sZCaC6

4
(2π)2

∫ Q/2

0
dkx

∫ k(F)
y (kx,εF ,Q,∆)

0
dkyε(kx,ky,Q,∆), (4.55)

where s = 2 and ZCaC6 = 6 are the spin and CaC6 degeneracy respectively, k(F)
y (kx,εF ,Q,∆) =

ky−(kx,ε,Q,∆)|ε=εF and ε(kx,ky,Q,∆) = ε−(kx,ky,Q,∆) from the Eq. (4.4). The scaling (4.11)
yields

E(r)
band =

3
π2~vF

(
Q
2

)3

4
∫ 1

0
dκx

∫
κ
(F)
y (κx,eF ,δ)

0
dκye(κx,κy,δ) (4.56)

where e(κx,κy,δ) = e−(κx,κy,δ) from Eq. (4.12). Using the ideal value of the wave vector
determined in the previous section, Q = Qopt = 2kF0(1− δ̃), where δ̃≡ ∆/εF0, we get

E(r)
band =

3
π2~vFk3

F0q3
optJ, (4.57)

where qopt ≡ 1− δ̃ and

J ≡ 4
∫ 1

0
dκx

∫
κ
(F)
y (κx,eF ,δ)

0
e(κx,κy,δ)dκy. (4.58)

To calculate the integral J as a function of δ, we develop the following procedure:

dJ
dδ

=
∂J

∂eF

∂eF

∂δ
+

∂J
∂δ

. (4.59)

Previously, Eq. (4.54) we found that εF = εF0

(
1− α

2π
δ̃2
)

, i.e. eF = eF0

(
1− α

2π
δ̃2
)

, from

where we can write ∂/∂eF =
(

1− α

2π
δ̃2
)−1

∂/∂eF0, i.e. we can change the derivative for a
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more convenient one. The terms of the expression (4.59) are computed below. First, we find

∂J
∂eF0

= 4
∫ 1

0
dκx

(
∂κ

(F)
y

∂eF0

)
e(κx,κ

(F)
y ,δ)

= eF
∂

∂eF0
4
∫ 1

0
dκx,κ

(F)
y (κx,eF ,δ)

= eF
∂

∂eF0
Sr(eF ,δ), (4.60)

for which, using the conservation of the number of particles Sr(eF ,δ)= S0(eF0), where S0(eF0)=

πe2
F0, after taking the derivative, we finally get

∂J
∂eF0

= 2πeFeF0. (4.61)

Using this result (after modifying derivatives), we calculate the first term in Eq. (4.59)

∂J
∂eF

∂eF

∂δ
= 2πeFeF0

∂eF0

∂δ

= 2π

(
1− α

2π
δ̃

2
)

e2
F0

∂eF0

∂δ

=
2π

3

(
1− α

2π
δ̃

2
)

∂e3
F0

∂δ
. (4.62)

The second term in Eq. (4.59) is

∂J
∂δ

= 4
∫ 1

0
dκx

(
∂κ

(F)
y

∂δ

)
e(κx,κ

(F)
y ,δ)+4

∫ 1

0
dκx

∫
κ
(F)
y (κx,eF ,δ)

0
dκy

∂

∂δ
e(κx,κy,δ)

= eF
∂

∂δ
Sr(eF ,δ)+4

∫ 1

0
dκx

∫
κ
(F)
y (κx,eF ,δ)

0
dκy

−2δ√
(ξ1(~κ)−ξ2(~κ))

2 +4δ2
. (4.63)

Using the conservation of particle number, Sr(eF ,δ) = S0(eF0) = const, we evaluate the first
term of the expression above to zero. The second term expands in powers of δ, and a linear
term ∼ δ appears from δ in the numerator of the formula (setting it to zero elsewhere). The
additional contributions (from the denominator and the boundaries of the integral) are of higher
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order, ∼ δ3. The linear term is satisfactory for the final result, therefore we take

∂J
∂δ
≈ lim

δ→0

4
∫ 1

0
dκx

∫
κ
(F)
y (κx,eF ,δ)

0

1√
(ξ1(~κ)−ξ2(~κ))

2 +4δ2

(−2δ)

=−2βδ (4.64)

where

β = 4
∫ 1

0
dκx

∫ √2κx−κ2
x

0
dκy

1√
(κx +1)2 +κ2

y−
√

(κx−1)2 +κ2
y

=
1
2

∫ 1

0

dκx

κx

[√
2κx−κ2

x

(
1+
√

1+4κx

)
+

+(1+κx)
2 arcsinh

√
2κx−κ2

x
1+κx

+(1−κx)
2 arcsinh

√
2κx−κ2

x
1−κx

]
= 5.57802. (4.65)

Collecting the terms above, we assemble Eq. (4.59)

dJ
dδ
≈ 2π

3

(
1− α

2π
δ̃

2
) de3

F0
dδ
−2βδ (4.66)

from which we calculate J from Eq. (4.58) simply by integrating with respect to δ, i.e.

J(δ)≈ 2π

3

(
1− α

2π
δ̃

2
)

e3
F0−βδ

2. (4.67)

The energy of the reconstructed band (4.57) may now be determined using eF0 = εF0/(~vFQopt/2)=
q−1

opt ,

E(r)
band =

3
π2~vFk3

F0q3
opt

[
2π

3

(
1− α

2π
δ̃

2
)

q−3
opt−β

δ̃2

q2
opt

]

= E0−
3

2π
E0

[(
α

3
+β

)(
∆

εF0

)2

−β

(
∆

εF0

)3
]
, (4.68)

where E0 = 2~vFk3
F0/π = 2ε3

F0/(π~
2v2

F) is the energy of the initial, unreconstructed band as
shown in Eq. (4.35), and the constants α and β are defined in the expressions (4.34) and (4.65),
respectively.
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4.6.2 "Elastic" energy of the deformed Ca lattice

The last term in the mean-field Hamiltonian (taken per unit area), usually called "the elastic
energy", describes the gain in the energy of the mechanically deformed crystal lattice due to the
established CDW ground state coupled to the phonon mode with wave vector Q and frequency
ωQ. It reads

Elatt =
~ωQ
2g2 ∆

2 = ν0
∆2

2λ
=

3
2

E0
1
λ

(
∆

εF0

)2

, (4.69)

where λ≡ ν0g2/(~ωQ) is the dimensionless electron-phonon coupling constant for the phonon
mode ωQ and ν0 is the initial DOS at the Fermi energy. Here we used ν0 = 2εF0/(π~2v2

F) and
E0 = 2ε3

F0/(π~
2v2

F) to relate the last two expressions in Eq. (4.69).

4.6.3 The condensation energy of the CDW state

The condensation energy of the CDW ground state is defined as the difference of the initial and
final energy of the system

ECDW = E0−
(

E(r)
band +Elatt

)
.

Using expressions (4.68) and (4.69), we get

ECDW

E0
=

3
2

[
1
λc
− 1

λ

](
∆

εF0

)2

− 3β

2π

(
∆

εF0

)3

, (4.70)

where

λc ≡ π

[
α

3
+β

]−1
' 0.54, (4.71)

and α ≈ 0.5568 and β ≈ 5.578 are defined in expressions (4.34) and (4.65), respectively. λc

appears to be the critical value of the electron-phonon coupling constant, determined by the
reconstructed electron band. Above this value, the maximisation of condensation energy (4.70)
with respect to the order parameter ∆, yields its positive maximum. Thus, for electron-phonon
coupling λ > λc, the zero-temperature CDW is stabilised by the order parameter

∆ =
2π

3β

[
1
λc
− 1

λ

]
εF0, (4.72)
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obtained by maximisation ∂ECDW/∂∆ = 0 for a given electron-phonon coupling λ.
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4.7 The phonon mode responsible for the CDW stabilisation

The phonon mode coupled to the electron system and responsible for the CDW stabilisation is
to be found among the in-plane vibrations of the Ca lattice placed between the graphene sheets,
being the softest "at hand to nature" to maximise the electron-phonon coupling

λ∼ g2

ωQ
, (4.73)

consequently increasing the CDW condensation energy. All graphene vibration modes, as well
as flexural Ca modes, have significantly higher frequencies and so are excluded as such from
this consideration. The coupling constant g will be discussed subsequently. Figure 4.7 (a)
illustrates the geometry of the problem. Vibrational modes (phonons) of the 2D Ca lattice are

Figure 4.7: Phonon modes in the 2D hexagonal Ca-lattice (see Fig. 4.1(a)). (a) Ca atoms of mass M in
the real space hexagonal structure where (n,m) are atomic positions Rnm = nb1 +mb2, n, m are integers,
where b1 =

1
2 b(
√

3,−1) and b2 = b(0,1) are the unit vectors of the structure in the Cartesian basis (x̂, ŷ).
Vibrations of the Ca atoms are described by the first-neighbour harmonic forces, with elastic constant ζ,
along three characteristic directions determined by the symmetry, described by unit vectors v1 = (0,1),
v2,3 =

1
2(∓
√

3,1). Displacement of the atom from the equilibrium position Rnm is dnm. (b) Phonon LA
and TA in-plane modes ω(k) for the 2D hexagonal lattice in units

√
ζ/M. The wave vector k is taken

along direction between characteristic points in the Brillouin zone (inset) Γ−M−K−Γ. The Ca BZ
(see also Fig. 4.2) is spanned by reciprocal vectors b∗1 = 4π√

3b
(1,0) and b∗2 = 2π√

3b
(1,
√

3) in Cartesian
reciprocal space (x̂∗, ŷ∗). Q is the wave vector of the phonon mode (red dot) related to the CDW. (c)
Displacements of the Ca atoms (red arrows) d(Q) determined by the ωTA(Q) phonon mode: atoms
along the CDW peaks are displaced by d, while the others are displaced by −d/2 along the ŷ-direction
(ηLA and ηTA are directions of LA and TA polarisation, respectively).
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represented using the harmonic first-neighbour approximation. The displacement of the atom
from equilibrium at Rnm is:

Rnm = nb1 +mb2, (4.74)

where n and m are integers, and

b1 =
1
2

b

( √
3
−1

)

b2 = b

(
0
1

)
(4.75)

are the unit vectors of the structure in the Cartesian basis (x̂, ŷ). Ca atom vibrations are char-
acterised by the first-neighbor harmonic forces, with elastic constant ζ, along three distinctive
directions determined by the symmetry of the problem, expressed by unit vectors

v1 =(0,1)

v2,3 =
1
2(∓
√

3,1). (4.76)

The displacement of a Ca atom, denoted by dnm, is described by the equation

M
d2

dt2 dnm =−ζ

3

∑
i=1

[(2d(Rnm)−d(Rnm +bvi)−d(Rnm−bvi)) ·vi]vi, (4.77)

where M is the mass of the atom, ζ is the linear elasticity constant, b is the lattice constant,
while vi, i = 1,2,3, are the unit vectors along three characteristic directions of motion for the
hexagonal symmetry (see Fig. 4.7 (a)). Assuming a solution of Eq. (4.77) in the standard form,
i.e.

dnm = ηexp{i[k ·Rnm−ωt]}, (4.78)

where k is the wave vector, ω is the frequency and η = (ηx,ηy) is the polarisation vector of the
phonon mode, Eq. (4.77) reduces to the secular equation[

3 ζ

M (1−h1(k))−ω2 −
√

3 ζ

M h2(k)
−
√

3 ζ

M h2(k) ζ

M (3−h1(k)−2h3(k))−ω2

][
ηx

ηy

]
= 0, (4.79)
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where

h1(k)≡ cos(
√

3
2 kxb)cos(1

2kyb)

h2(k)≡ sin(
√

3
2 kxb)sin(1

2kyb)

h3(k)≡ cos(kyb). (4.80)

It yields the dispersion relation of phonon modes

ω±(k) =
√

ζ

M

[
3−2h1(k)−h3(k)±

√
(h1(k)−h3(k))2 +3h2(k)2

] 1
2

(4.81)

(see Fig. 4.7 (b)). The phonon mode related to the CDW has a wave vector:

Q =
1
3

b∗1 =
4π

3
√

3b

(
1
0

)
, (4.82)

which inserted into Eq. (4.81) yields two frequencies:

ω− =
√

3ζ/2M

ω+ =
√

9ζ/2M, (4.83)

and by virtue of Eq. (4.79), the corresponding polarisation unit vectors:

η− = (0,1)

η+ = (1,0) (4.84)

for TA and LA modes respectively. To maximise λ∼ g2/ωQ, we compare g in both the TA and
LA directions. The coupling g is created by the ionic shift of the phonon, which changes the
electron-ion potential. In the spirit of tight binding approximation (TBA) [69, 70, 71, 72],

g∼ ∇R−R′ t(R−R′) ·η, (4.85)

where t(R−R′) is the TBA transfer integral of electron hopping between sites at positions R
(Ca) and R′ (C) within the first neighbour approximation. Fig. 4.8 shows that Ca is centred
below the carbon hexagon (so all ∇t are equal), yet the sum of their projections along the TA
is greater than the sum along the LA direction. The reason for this is that Ca "strikes" directly
into the carbon orbital along the TA, but not in the perpendicular LA direction, resulting in
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Figure 4.8: Illustration of te ηLA and ηTA polarisations inside the CaC6 lattice. The calcium atom is
illustrated as a blue circle, while the carbon atoms are located in a hexagonal lattice, each illustrated by
a black circle and t is a Ca-C position-dependent TBA electron transfer integral.

gTA > gLA. The softer phonon mode between the two, ω− (lower frequency, see Fig. 4.7 (b)),
also corresponds to the TA mode with polarisation vector ηTA ∼ η− ‖ ŷ, indicating the TA
phonon responsible for the CDW. The displacement of atoms, or the distortion of the Ca lattice:

dnm = ηTA cos [Q ·Rnm] (4.86)

that corresponds to such polarisation and periodicity, is in a way that atoms along the CDW
maxima (every 4th column along ŷ-direction) are shifted by ηTA while all others are shifted by
−1

2ηTA (see Fig. 4.7 (c)) in terms of amplitude d = |ηTA| proportional to the order parameter ∆.
The amplitude of zero-point vibrations can be approximated using the mean value of a typical
phonon displacement operator a0(bQ +b†

−Q):

d = 2〈bQ〉a0 = a0∆/g = a0∆

√
ν0(εF0)/(~ωQλ). (4.87)
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Discussion

To bring together the results of the aforementioned methods, we must place them in the context
of a realistic material to the greatest extent possible. It is critical to emphasise that the onset
of the CDW is due to electron band instability caused by the FS reconstruction, which opens
the pseudo-gap and decreases band energy, as well as the accompanying softest phonon mode,
which promotes this mechanism. As a result, the ability of a given system, with its specific
geometry of the Brillouin zone, shape and size of the FS, and phonon modes reflecting the
symmetry of the lattice, to be compatible with exactly such a self-consistent CDW wave vector
that relates the FSs in the neighbouring Brillouin zones to touch or very slightly overlap is
crucial. The CDW wave vector, which determines the overlap for a given FS, should not be too
large or too short. In the first scenario, there is no overlap, therefore no FS reconstruction occurs,
however in the second case, the overlap is so large that the upper energy band is filled. The CDW
condensation energy vanishes in both scenarios. It is well known that a gap in a band, deep
below the Fermi energy, has no effect on the ground state. The softened phonon mode must end
up resulting in a static deformation of the crystal lattice that is geometrically and periodically
compatible with the CDW. Furthermore, the electron-phonon coupling to that specific mode
must be strong enough, larger than the critical value, which is rather high compared to weakly
coupled Q1D materials [5, 73, 74, 75]. This is why most materials do not display the CDW
ground state.

Ca intercalants chemically dope the carbon π− band with 0.2 electrons per carbon atom,
resulting in a Fermi surface with an average size of 2kF0 ≈ 0.56Å−1. This is the characteristic
scale of the CDW wave vector Q, which is approximately equal to one third of the CaC6 re-
ciprocal unit vector b∗1, representing the phonon state on the Γ−M line, close to the M-point
of the CaC6 Brillouin zone, as seen in Fig. 4.2. On the other hand, the Ca-intercalated lattice
in CaC6 appears to be particularly appropriate to promote the CDW instability for two reasons:
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(1) The Ca lattice has a single phonon mode at the wave vector Q that is exactly compatible
with the CDW geometry, minimising the "cost" in elastic deformation energy of the lattice (see
Figs. 4.7 and 4.8). (2) While there are ab initio studies on electron-phonon coupling that con-
sider intercalating atoms [76, 77, 78, 79, 80, 81, 82], few of them focus on momentum-resolved
values. Unlike the well-studied problem of superconductivity in CaC6, where the cumulative
value or some momentum-averaged value of electron-phonon coupling is significant, the onset
of the CDW instability requires sufficient coupling to the specific phonon mode at wave vector
Q. Among the above-mentioned studies, some recognise the role of soft Cax−y vibrations (∼ 10
meV) compared to carbon vibrations (∼ 100 meV) [81, 82] and some indicate the possibility of
a significant value of the coupling constant between carbon band and Ca-lattice phonons [78].

The last-mentioned study shows that this electron-phonon coupling is very anisotropic and
may attain large value at Q in proximity of the M-point of the CaC6 Brillouin zone (see Fig.
4.7 (b)), presumably significantly larger than the required critical value of 0.54 predicted by this
model. Any coupling greater than critical from one side directly adds to the rise of the CDW
order parameter ∆ ∼ λ− λc, but it also allows for fine-tuning of the CDW wave vector. Eq.
(4.54) determines the optimal value of the CDW wave number Qopt which is 2kF0 reduced by
the quantity proportional to the order parameter. This value of Qopt might not be commensurate
to the reciprocal unit vectors of the lattice. This would result in incommensurability effects,
which decrease the CDW order parameter, shorten the correlation length, produce domains, and
otherwise inhibit CDW ordering. It is known to happen in high temperature superconducting
cuprates by modifying the doping [83, 84, 85, 86] or in TMDs by pressure or intercalation
[87, 88, 89]. With high electron-phonon coupling, it is not necessary to provide exactly Q =

Qopt , since the system may self-consistently fine-tune the CDW wave vector near to that value
to minimise negative incommensurability effects. In the CaC6 system, the (average) diameter of
the FS is commensurate by factor 3 with the reciprocal unit vector b∗1 of the reciprocal lattice.
The deviations from the circular form of the FS utilised in this model, assuming minimal in
relation to the ∆/~vF scale, are not crucial for suppressing the CDW ordering (as it is in the
"nesting" scenario). It explains the experimentally observed CDW wave vector Q = b∗1/3. That
phonon mode is "frozen" by the Kohn anomaly, resulting in static deformation of the Ca lattice,
which stabilises the CDW. It is a transverse acoustic mode (TA) that displaces the Ca atoms
in the direction ηTA parallel to the CDW peaks. The displacement is proportional to the order
parameter, i.e. d ∼ 〈bQ〉 ∼ ∆. Fig. 5.1 displays the above-mentioned results, which are directly
compared to the experimental findings [57]. The length of the CDW wave vector is determined
by the electron band-driven CDW instability Q = |b∗1|/3 ≈ 2kF0 directed along direction of
b∗1, which is one of the reciprocal unit vectors (b∗1,b

∗
2) of the CaC6 Brillouin zone that gets
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Figure 5.1: Comparison of experimental results (upper panel, from Ref. [57], Figs. 2d, 3a and 6a
respectively, under Licence by courtesy of Springer Nature) with our theoretical results (lower panel).

shrunken three times (orange rhombus in Fig. 5.1) due to the onset of the CDW. In real space,
this corresponds to the tripling of the CaC6 unit cell, with unit vectors (b1,b2), along the b1

direction (orange rhombus) in the CDW phase

W = 3b1. (5.1)

Charge stripes create peaks (shaded) along the b2 direction. Those peaks occur periodically at
a distance of 4.5 graphene unit constants a along the zig-zag direction of the graphene lattice.
In the STM experimental image (upper left panel), the stripe peak is along the yellow line, and
the orange rhombus is the CDW-extended CaC6 unit cell corresponding to the one in the lower
panel where b =

√
3a.

The reconstruction of the Fermi surface opens a pseudo-gap of width 2∆ in the density of
states ν(ε), around the Fermi energy ε = εF0 (Fig. 5.1 (b)), where ∆ is the CDW order param-
eter. The full red and dashed blue curves represent ν(ε) after and before the FS reconstruction,
respectively. The experiment (upper panel) of measuring the differential conductivity of the
STM tunnelling current, which is proportional to LDOS, vs. the bias voltage with respect to the
Fermi energy, reveals a pseudo-gap of width 2∆.
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The CDW causes static deformation of the initial Ca lattice (dashed circles and blue hexagon)
through the "frozen" TA phonon mode (Fig. 5.1 (c)): Ca atomic displacements (red arrows) fol-
low the polarisation direction ηTA ‖ b2, whereas the propagation direction is perpendicular to
it. This phonon mode is the softest one at the wave vector Q (see Fig. 4.7), displacing the Ca
atoms at Rnm by

dnm ∼ ηTA cos(Q ·Rnm) (5.2)

in a way that chains B (CDW peaks) are shifted by +d, whereas A and C are displaced by−d/2
in the ηTA direction (d ∼ ∆). The Ca hexagon in the deformed lattice (full circles) is indicated
by a yellow contour, which corresponds to the experimentally observed STM pattern indicating
Ca atom positions (in the upper panel of Fig. 5.1 (c)).
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Chapter 6

Magnetoconductivity under the conditions
of coherent magnetic breakdown

In this chapter, we focus on the magnetotransport properties in the reconstructed geometry of the
Fermi surface. The spacing between the open contours in the reciprocal space, reconstructed
from closed ones to such due to the CDW, corresponds to the energy scale of the order of
102K. Therefore, in a strong magnetic field, the effects of magnetic breakdown are expected
to be pronounced, profoundly affecting the properties of the electron spectrum and transport
properties.

The phrase "Magnetic Breakdown" (MB) generally refers to a class of phenomena result-
ing from the quantum tunnelling transition between electron trajectories mainly belonging to
different conduction bands of a metal in a magnetic field.

6.1 Semiclassical approximation and Magnetic Breakdown

The motion of conduction electrons in a 3D system can be described within the semiclassical
approximation by the classical equations of motion [90, 91]:

dp
dt

=− evm×B,

vm =
∂εm(p)

∂p
,

dr
dt

=vm(p), (6.1)

where e is an absolute value of electron charge and B is an external magnetic field. Here,
p = ~k is the quasimomentum of an electron related to the wave vector k, which is equivalent
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to momentum in a classical description, r stands for the electron coordinate, εm(p) represents
the electron energy associated with the m-th band and vm is the semiclassical group velocity of
an electron. Equations (6.1) provide a classical trajectory of an electron in p-space, which has
a distinct geometric meaning: it is the line that intersects a plane perpendicular to the magnetic
field and a constant-energy (E) surface. It is determined from the condition

εm(px, py, pz) = E,

pz = pz0, (6.2)

where pz0 is the conserved component of the electron momentum paralell to the magnetic field.
As is customary, the z-axis runs parallel to the magnetic field. A small parameter guarantees
the semiclassical character of motion,

~ωc

ε0
� 1, (6.3)

where

ωc =
eB
m

(6.4)

is the electron cyclotron frequency, ε0 is the typical electron energy, of the order of the Fermi
energy εF [91]. Here, m≡m(ε) is the electron cyclotron mass. Trajectories, determined by Eq.
(6.2), can be closed or open [91]. In the case of closed trajectories, semiclassical quantization
produces discrete energy levels En (for a fixed value of pz), where the level number n has a
physical meaning — it determines quantised section areas of constant-energy surfaces (Lifshitz-
Onsager quantisation). In a semiclassical description, if an electron moves infinitely in a plane
perpendicular to the magnetic field (open paths), the quantization of its motion can be ignored
[91]. Thus, in the semiclassical theory, the periodicity and anisotropy of the dispersion law
(6.2) cause all particular properties of the dynamics of conduction electrons in a magnetic field.
Naturally, some properties of the electron dynamics in a magnetic field become more prominent
when its characteristic Larmor radius RL = pF/eB (radius of cyclotron motion of an electron) is
significantly shorter than its free path l0 = vFτ0, vF is a typical electron velocity i.e. the Fermi
velocity, τ0 is the relaxation time. The inequality

RL

l0
≈ 1

ωcτ0
� 1 (6.5)
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which allows one to ignore details of dissipative processes in the electron gas, combined with the
condition of semiclassical behaviour (6.3), allows one to calculate thermodynamic and kinetic
characteristics and obtain relatively simple expressions. The inequalities (6.3) and (6.5) can be
joined to obtain

1
τ0
� ωc�

εF

~
, (6.6)

defining the physical conditions of validity of the presented model.
Trajectories of different band indices m approach in p-space regions where the interband

energy gap ∆(p) = εm(p)−εm′(p) is significantly smaller than εF , particularly near the lines of
degeneracy, where ∆(p) = 0. According to general quantum mechanical principles [92], such
a line must exist for around half of the metals [90]. If these lines cross the Fermi surface, their
existence is clearly evident in macroscopic features. This condition occurs quite frequently (Zn,
Nb, C, and so on) [91] leading to magnetic breakdown. Magnetic breakdown always occurs
with relatively large groups of electrons involved, hence it changes the qualitative picture of
most electron events in the magnetic field.

Even though the interband tunnelling areas (MB regions) are small, they represent peculiar
centres where substantial quantum scattering of electrons occurs. This MB-scattering contains
two channels and is characterised by a second rank unitary S-matrix. The squared modulus of
its non-diagonal elements represents the probability of an interband transition of an electron in
a magnetic field - the MB probability, w [91].

Without doing consistent computations, the values of B at which the MB probability w be-
comes significant (tends to 1) can be estimated. The momenta px and py play the role of canon-
ically conjugated quantities in a magnetic field directed along the z-axis, and their quantum
uncertainty ∆px and ∆py meet the relation

∆px∆py &
e~B

2
. (6.7)

Interband tunnelling becomes significant when the characteristic uncertainty ∆px and ∆py equal
to (e~B)1/2 ∼ pF(~ωc/εF)

1/2 (Eq. 6.7), is comparable to the minimal distance between trajec-
tories δp∼ ∆/vF . The characteristic scale of the breakdown field is B0 = (1/e~)(∆2/v2

F). The
value B0 ∼ 1−10T corresponds to ∆∼ 10−2eV. For B→ ∞, the probability of MB approaches
unity [91].

Outside of the MB zones, electron motion is semiclassical. However, under MB conditions,
electron dynamics is quantum due to the interference from semiclassical waves. The interfer-
ence of the MB-dynamics significantly affects electron characteristics in the system [91].
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The semiclassical motion between MB areas implies large phases of conduction electron
wave functions, which depend on energy, momentum projection on the magnetic field, and the
magnetic field itself. There is no reason to think that phases and their derivatives (in terms
of energy and momentum projection) should be commensurable across sections. Under MB
circumstances, the electron energy spectrum becomes more complex and similar to that of dis-
ordered systems. The MB-spectrum has qualities that fall in between a strictly ordered (locally
equidistant) spectrum in the semiclassical limit and a completely disordered system with quasir-
andom spectrum [91].

The MB-spectrum becomes semiclassical for both w→ 0 and w→ 1 when electrons mi-
grate onto new classical orbits made up of parts of previous orbits. The motion appears to
be quasi-classical in both weak and strong magnetic fields, which is unusual. This study of
metal characteristics under MB circumstances focuses on the intermediate scenario of devel-
oped breakdown, when the probability w is not close to zero or unity, and quantum interference
plays a substantial role. Under MB conditions, electron motion is primarily quantum in nature
in the sense of pronounced interference effects, making it difficult to understand certain phe-
nomena without a specialised mathematical approach. [91].

6.2 The Model

As shown in section 4.1, we model the CaC6 system as a 2D graphene sheet, chemically doped
by electrons from intercalating atoms to provide finite electron pockets at the Fermi energy,
creating the Fermi surface in the center of the CaC6 Brillouin zone (Γ point). The Fermi surface
in the minimal model can be approximated with a 6-fold degenerate circle, while the details of
the shape of the Fermi pockets can be addressed in the conductivity calculations as parameters
appearing as effective carrier concentrations. The uniaxial CDW potential reduces the BZ and
brings the Fermi pockets from neighbouring BZs to touching or slightly overlap, leading in turn
to the reconstruction of the Fermi surface (see Fig. 6.1 (c)). The Fermi surface is topologically
reconstructed: from the closed pockets, it is turned into set of open sheets. To study the magne-
toconductivity, the system is put into an external homogeneous magnetic field B, perpendicular
to the sample plane. The configuration of the real and reciprocal space is schematically shown
in Fig. 6.1, following from considerations shown in Figs. 4.1 and 4.2. The size of the 6-fold de-
generate unreconstructed Fermi pocket is SF0 ≈ 0.244Å

−2
with an average Fermi wave number

kF0 ≈ 0.28Å
−1

.
The CDW potential, with the wave vector Q ‖ b∗1 of periodicity Q = b∗/3≈ 0.56Å−1, folds
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Figure 6.1: Schematic presentation of a 2D layer in CaC6 in real and reciprocal space (see Figs. 4.1 and
4.2): (a) Real space, (b) Reciprocal space. (c) The Fermi surface reconstructed by the CDW potential
in the semiclassical picture. Arrows show the direction of semiclassical motion of electrons in external
magnetic field B perpendicular to the sample, t and r are probability amplitudes characterising magnetic
breakdown transitions. Image from [93].

the CaC6 BZ, bringing the FSs into touch, i.e. Q ≈ 2kF0. The corresponding unit cell in
reciprocal space is marked by dashed orange rhombus in Fig. 6.1 (b).

The reconstructed Fermi surface consists of open sheets in kx-direction (Fig. 6.1 (c)). The
arrows show the direction of semiclassical motion of electrons in external magnetic field B
perpendicular to the sample. Magnetic breakdown affects the semiclassical motion causing
electrons to pass through the MB-junctions (shaded) with the probability amplitude t(B), or get
reflected from it with the probability amplitude r(B), CI,II

± are coefficients denoting the branches
of the semiclassical wave functions corresponding to the trajectories k±y (kx;ε).
The zero-field electron spectrum in the CDW ground state attains the well known form Eq.
(4.4). Here, the origin of the reciprocal space is conveniently chosen at the crossing point of the
initial electron bands, the edge of the reconstructed BZ (see Fig. 6.1 (c)).
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6.3 Electron spectrum and wave functions

To obtain the electron spectrum in an external magnetic field B perpendicular to the sample,
under conditions of magnetic breakdown, we utilize a semiclassical technique based on the
Lifshitz-Onsager Hamiltonian [94, 95] which describes semiclassical motion of electrons. The
necessary assumption, required to formulate magnetic breakdown problem beyond the mere
perturbative contribution of magnetic field, is that the field is strong enough to provide the Lar-
mor radius of electron motion much smaller that the mean free path of scattering on impurities,
Eq. (6.5). The further assumption is the absence of dislocation fields, required to provide con-
ditions for so-called coherent magnetic breakdown [91] which is in the focus of this work. The
limit of so-called stohastic magnetic breakdown [96] is not a subject of this work. Choosing the
Landau gauge of the vector potential

A = (0,Bx,0), (6.8)

the Lifshitz-Onsager Hamiltonian leads to the Schrödinger equation in the reciprocal space

εl

(
kx,Ky− i

b2
B
~2

d
dkx

)
Gl(kx,Ky) = εGl(kx,Ky),

(6.9)

where εl(kx,ky) is the initial electron dispersion shifted in the reciprocal space to the position
corresponding to trajectories I, II with branches± (see Fig 6.1 (c)), bB =

√
e~B is the "magnetic

length" for electron with charge −e, ~Ky is the conserved generalized momentum of the semi-
classical motion of electron in the used gauge, ε is the eigenvalue of energy. The semiclassical
eigenfunctions are

G±(kx,Ky) =
C±√
|v±y |

exp
[

i
~2

b2
B

∫ kx (
k±y (k

′
x;εF)−Ky

)
dk′x

]
(6.10)

analogous for both regions I, II (we omit writing indices for now), where C± are the correspond-
ing coefficients, v±y ≡ vy(kx;k±y (kx,ε)) are the group velocity components of v = 1

~∇kε(k) along
the semiclassical electron trajectories at energy ε. The coefficients C± are found by matching
the wave functions (6.10) at the MB points. The integral in the exponent is the semiclassical
phase (area enclosed by the trajectory in the reciprocal space, i.e. the semiclassical action) with
the lower limit determined by the starting point of the trajectory along the k±y (kx;εF) at the
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Fermi energy εF . Note that these trajectories in the presented procedure are found from the
equation

ε±(kx,ky) = εF , (6.11)

i.e. from the initial electron dispersion with the gap parameter ∆ neglected (dotted trajectories
in Fig. 6.1 (c)), therefore the solutions are valid far from the MB-regions. In the considered
case this dependence is simply

k±y (kx;ε) =±
√
(ε/~vF)2− k2

x . (6.12)

The semiclassical solutions GI,II
± in regions I and II (see Fig. 6.1 (c)), characterised by coeffi-

cients CI,II
± , are connected in the "MB-junction" by the MB-scattering matrix that relates pairs

of incoming and outgoing electron waves(
CI
−

CII
+

)
= eiθ

(
t r

−r∗ t∗

)(
CII
−

CI
+

)
. (6.13)

Here t(B) and r(B), fulfilling the unitarity condition

|t|2 + |r|2 = 1, (6.14)

are the complex probability amplitudes for electron to pass through the MB-region and to get
reflected on it, respectively, while θ is the phase determined by the problem-specific boundary
conditions. It has been shown [97, 98, 99, 100] that, in the configuration originating form the
very slight overlap of semiclassical trajectories, the probability of passing through the MB-
region is

|t(B)|2 ≈ 1− exp
[
− ∆2

~ωcεF

3

√
εF

~ωc

]
, (6.15)

~ωc = ~eB/m is often called the "magnetic energy". The effective cyclotron mass m is a well-
known quantity, i.e.

m(ε) =
~2

2π

dS(ε)
dε

, (6.16)
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where S(ε) is the area enclosed by electron trajectory in the reciprocal space at energy ε, in the
case of graphene and graphite being m(ε) = ε/v2

F for low enough energy. One can immediately
notice that the exponent in Eq. (6.15) has an additional large factor, i.e. the third root of
ratio of the Fermi energy and magnetic energy, compared with the standard Blount’s result
[101] obtained for an arbitrary large overlap of trajectories. It is the result of the peculiar band
topology in the reconstruction region.
The periodic boundary conditions, imposed upon the semiclassical solutions by the CDW, i.e.

G±(kx,Ky) = G±(kx +Q,Ky), (6.17)

yield two additional relations between four coefficients CI,II
± ,

CI
± =CII

± exp
{[
−i

~2

b2
B

∫ Q

0

(
k±y (kx;εF)−Ky

)
dkx

]}
, (6.18)

constituting, together with (6.13), a homogeneous system of two algebraic equations for two
unknowns CI

+ and CI
−, i.e.

(
CI
−

CI
+

)
= eiθ

(
t r

−r∗ t∗

)CI
− exp

{[
−i~

2

b2
B
(S−+QKy)

]}
CI
+ exp

{[
−i~

2

b2
B
(S+−QKy)

]} .

(6.19)

Here,

S+(ε) =
∫ Q

0
k+y (kx;ε)dkx,

S−(ε) =
∫ 0

Q
k−y (kx;ε)dkx (6.20)

are the semiclassical actions along the corresponding electron trajectories. The determinant of
that system, taken at arbitrary energy ε, reads

D(ε,Ky) = cos
(
~2S0(ε)

2b2
B

+θ

)
−|t|cos

(
~2QKy

b2
B

+µ
)
,

(6.21)
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where

S0(ε) = S+(ε)+S−(ε) (6.22)

is the area of the reciprocal space enclosed by the electron trajectory (dotted circle in Fig. 6.1
(c)). Phase µ, appearing from t = |t|exp(iµ), is, along with the phase θ, determined by the
boundary conditions of the problem, specific for the particular MB configuration depending
on magnetic field, obtained by matching the semiclassical solution to the asymptotic form of
exact quantum-mechanical solution within the MB region [97, 98]. The electron spectrum is
determined from the dispersion equation

D(ε,Ky) = 0. (6.23)

For example, in high enough fields to produce a very strong magnetic breakdown |t(B)| → 0,
|r(B)| → 1, the dominant electron motion is along the closed orbits (dotted circles in Fig. 6.1
(c)) due the maximized over-gap tunnelling between open trajectories k+y (kx) and k−y (kx). The
orbital effect of the magnetic field is then a mere Landau quantization of closed orbits. The
dispersion law reduces to

cos
(
~2S0(ε)

2b2
B

+θ

)
= 0 (6.24)

which, assuming the initial spectrum ε = ~vF |k|b and S0 = π|k|2, yields the Landau-quantized
spectrum in magnetic field

εn =±vFbB
√

2(n+1/2−θ/π) n = 0,1,2, ... (6.25)

In contrast to the monolayer graphene, where the nontrivial geometric (Berry) phase φB = π

appears leading to spectrum with Landau level εn=0 at zero energy, in graphite the geometric
phase is trivial [102]. The |t| = 0 case in graphite yields θ = 0 [97, 98], finally resulting in
spectrum

εn =±vF
√

2e~B(n+1/2), (6.26)
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Figure 6.2: Spectrum (6.27) in the nondispersive |t| → 0 limit, essentially consisting of Landau levels
(left panel), and for |t|= 0.9 where magnetic bands are formed due to magnetic breakdown (right panel).
Energy εn(Ky), n = 0,1, ...,7 is scaled to vF

√
2e~B and displayed along the "magnetic zone" of width

K = 2πb2
B/~2Q = 2πeB/~Q. For the matter of presentation we set phases θ = µ = 0. Image from [93].

which we adopt in our consideration although in our model we use two-dimensional formalism.
The spectrum for arbitrary |t(B)| can be obtained in closed form, reading

εn(Ky) =±vF
√

2e~B
[

n+
1
2
(1− (−1)n)− θ

π
+

(−1)n

π
arccos

(
|t|cos

(
~2QKy

b2
B

+µ
))] 1

2

(6.27)

for n = 0,1,2, ..., shown in Fig. 6.2. Besides the dispersion law, the system (6.19) also deter-
mines relation between coefficients, i.e.

C− =
r exp

{
[i(φ−κy +θ)]

}
1− t exp

{
[i(φ+κy +θ)]

}C+, (6.28)

where

κy ≡
~2QKy

b2
B

(6.29)
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and

φ≡ S+ = S−. (6.30)

The complete semiclassical wave function is

Gη(kx) =
C+√
|v+y |

exp
{[

i
~2

b2
B

∫ kx

0

(
k+y (k

′
x)−Ky

)
dk′x

]}
+

C−√
|v−y |

exp
{[

i
~2

b2
B

∫ kx

Q

(
k−y (k

′
x)−Ky

)
dk′x

]}
.

(6.31)

Constants C+ and C− are also related by the normalisation condition of the wave function

〈Gη(kx) | Gη(kx)〉= 1, (6.32)

where

η = {Ky,n} (6.33)

is a set of all good quantum numbers. Condition (6.32), after neglecting the fast-oscillating
cross-terms, reduces to

|C+|2 + |C−|2 =
(

Lx

2π

∫ Q

0

dkx

|vy(kx)|

)−1

, (6.34)

where Lx is the length of the sample in x-direction [91]. Here we used the fact that due to
symmetry of the ± trajectories, the velocity components are equal by absolute value, i.e. |vy| ≡
|v+y | = |v−y |. For further procedures, it turns convenient to normalize the wave function to the
period of the cyclotron motion around the semiclassical orbit. Assuming this motion to be
governed by the Lorentz force, i.e.

~
dk
dt

=−ev×B, (6.35)

and from there substituting

dkx =−
1
~

eBvydt (6.36)
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into Eq. (6.34), we obtain

|C+|2 + |C−|2 =
(

Lx

2π~
eB

T (ε)
2

)−1

, (6.37)

where T (ε) is the period of electron motion around the circular semiclassical trajectory at energy
ε, i.e. T/2 corresponds to the integral over kx from 0 to Q in Eq. (6.34). T is related to the
cyclotron frequency ωc in the standard way, T = 2π/ωc. |C+|2 and |C−|2 are determined by the
system of equations (6.28,6.37).
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6.4 Magnetoconductivity

The magnetoconductivity tensor of a 2D system is obtained using the quantum density matrix
formalism up to the linear correction to the equilibrium conditions (see Ref. [103] for the
derivation details), with the general form of it reading

σαβ =− 2e2

LxLy
∑
η,η′

〈η|v̂α|η′〉〈η′|v̂β|η〉
i
~
(
εη′− εη

)
+ 1

τ0

d f (ε)
dε

∣∣∣
ε=εη

, (6.38)

where α,β ∈ {x,y} account for directions along the real space (see Fig. 6.1 (a)) containing a
2D sample of the size Lx by Ly and operators are noted with a "hat". The function

f (ε) = (exp [(ε− εF)/kBT ]+1)−1 (6.39)

is a standard Fermi distribution at temperature T . In this expression, τ0 is the relaxation time
due to electron scattering on impurities, with all other channels of relaxation neglected in this
approach at low enough temperatures. It needs to be emphasized that the results that are about
to be presented are derived in the limit in which the impurity scattering rate is much smaller
comparing to the cyclotron frequency, i.e. ωc� τ

−1
0 , in accordance with Eq. (6.6).

Within the coherent magnetic breakdown regime, the width of magnetic bands W (B) versus
the level broadening caused by impurity scattering is the next significant physical scale. The
tunnelling probability amplitude |t(B)| (6.15) through Eq. (6.27) effectively controls W (B),
which is dependent on magnetic field. The structure of magnetic bands and related interference
effects vanish in the limit W (B)� ~τ

−1
0 , and physics is reduced to just the Landau level physics.

The purpose of this study is to investigate the full-scale MB effects, which we predict to be
prominent in the opposite limit

W (B)� ~τ
−1
0 . (6.40)
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The 2×2 magnetoconductivity is anisotropic. It contains:

1. a σxx component along the CDW peaks in real space and perpendicular to the open elec-
tron trajectories in the reciprocal space;

2. a σyy component along the CDW periodicity direction in real space and along the open
electron trajectories in the reciprocal space;

3. σxy =−σyx are the Hall conductivity components.

6.4.1 Diagonal magnetoconductivity σxx

The diagonal magnetoconductivity along x-direction has to be calculated directly from Eq.
(6.38) by evaluating the matrix element

〈η|v̂x|η′〉 (6.41)

due to vanishing semiclassical group velocity along that direction at the apex of the correspond-
ing trajectory (see Fig. 6.1 (c), ky-direction). Using the above-mentioned expression for the
Lorentz force (6.35),

~k̇y = evxB, (6.42)

and equation of motion for the momentum operator

˙̂ky =
i
~

[
Ĥ , k̂y

]
, (6.43)

we obtain

v̂x =
i

eB

[
Ĥ , k̂y

]
, (6.44)

where Ĥ is Hamiltonian of the system with eigenvectors |η〉 and corresponding eigenvalues εη

[91, 104]. The sought for matrix element can be directly evaluated, i.e.

〈η|v̂x|η′〉= i
eB(εη− ε

′
η)〈η|k̂y|η′〉. (6.45)
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Inserting this expression in Eq. (6.38) the η = η′ contributions in double summation vanish.
For η 6= η′ we expand the fraction (

i
~
(εη′− εη)+ τ

−1
0

)−1

(6.46)

under assumption |εη− εη′| � ~τ
−1
0 up to the first term in Taylor series. After performing one

summation over the complete set |η′〉 and using

〈η|k̂y|η〉= 0 (6.47)

for a symmetric trajectory, Eq. (6.38) reduces to

σxx =−
2e2~4

LxLyτ0b4
B
∑
η

〈η|k̂2
y |η〉

d f (ε)
dε

∣∣∣
εη

. (6.48)

To evaluate the matrix element 〈η|k̂2
y |η〉, we use the semiclassical wave functions (6.31), i.e.

|η〉= Gn,Ky(kx) yielding

〈η| k̂2
y |η〉=

Lx

2π

∫ Q

0
dkx

(
k+y (kx,εn(Ky))

)2

|vy(kx,εn(Ky))|
(
|C+(Ky,εn(Ky))|2 + |C−(Ky,εn(Ky))|2

)
.

(6.49)

The fraction in Eq. (6.49) can be further simplified using the relations

ε(kx,ky) = ~vF

√
k2

x + k2
y (6.50)

and ~vy =
∂ε(k)
∂ky

i.e.

k2
y

|vy|
=

m(ε)ky

~
, (6.51)
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where m(ε) ≡ ε/v2
F . Inserting Eq. (6.49) into Eq. (6.48) and changing the variable εn→ ε by

inserting the integral over delta function
∫

dεδ(ε− εn) we obtain

σxx =−
2e2~4

LxLyτ0b4
B

∫
∞

−∞

dε∑
n

δ(ε− εn)
m(ε)

~
d f (ε)

dε

×Lx

2π

∫ Q

0
dkxk+y (kx,ε)

×
Ly

2π

∫ Km
y

0
dKy

(
|C+(Ky,ε)|2 + |C−(Ky,ε)|2

)
. (6.52)

By taking the square of Eq. (6.27), splitting the sum into partial sums over even and odd n to
guarantee argument smoothness, and using the standard definition of the cyclotron frequency
(6.4) to find

dn =
ε

b2
Bv2

F
dε =

dε

~ωc
, (6.53)

the summation over n can be converted into an integral. The result of the summation is :

∑
n

δ(ε− εn) =
∫

dnδ(ε− εn) =
1

~ωc
. (6.54)

Since there are no fast oscillations in expression (6.52), the derivative of the Fermi function can
be approximated using

d f (ε)
dε
≈−δ(ε− εF), (6.55)

maintaining accuracy of the result up to correction of the order of (kBT/εF)
2, which essentially

reflects the T → 0 limit, and sets all energy dependences in the expression to ε = εF after
integration over ε. The integral in the second row of Eq. (6.52) is then simply

∫ Q

0
k+y (kx)dkx ≈

S0(εF)

2
, (6.56)

i.e. it gives the size of the Fermi surface which determines the number of carriers per spin
projection. The integral in the third row of Eq. (6.52) is easily calculated taking into account
the normalisation condition (6.37) and the standard condition in the Landau gauge that the
electron wave package centred at x0 lies within the sample, i.e. 0 < x0 < Lx, which determines

Km
y =

1
~

eBLx. (6.57)
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The integral is then:

∫ Km
y

0
dKy(|C+|2 + |C−|2) = 2ωc. (6.58)

Taking it all together, we finally obtain the result

σxx =
mn0

τ0

1
B2 , (6.59)

where m is an effective cyclotron mass and n0 = 2S0(εF)/(2π)2 is surface concentration of
carries (electrons of both spin projections) taken at the Fermi energy. The magnetoconductivity
has∼B−2 dependence and it does not contain the MB tunnelling amplitude t(B). It is essentially
equal to the classical result for closed orbits.

6.4.2 Diagonal magnetoconductivity σyy

The diagonal magnetoconductivity along y-direction (along the open trajectories in reciprocal
space, see Fig. 6.1 (c), kx-direction) is determined by the nonvanishing group velocity vy.
Therefore, Eq. (6.38) can be expressed in the form

σyy =−
2e2τ0

LxLy
∑
n

Ly

2π

∫
dKyv2

y(Ky,εn(Ky))
d f (ε)

dε

∣∣∣
εn(Ky)

(6.60)

in which we express the velocity in terms of the dispersion law D(ε,Ky), i.e., by following the
method developed by Kaganov and Slutskin in Ref. [91]

vy =
1
~

∂εn(Ky)

∂Ky
=−1

~

∂D(ε,Ky)
∂Ky

∂D(ε,Ky)
∂ε

. (6.61)

Using the same procedure to change the variable εn→ ε as in the previous subsection as well
as well-known decomposition of delta function over zero-points of its argument,

δ(g(x)) = ∑
l

δ(x− xl)

|g′(xl)|
, (6.62)

71



6.4. Magnetoconductivity Chapter 6. Magnetoconductivity

Eq. (6.60) can be expressed as

σyy =−
e2τ0

π~2Lx

∫
dKy

∫
dε

d f (ε)
dε

(
∂D
∂Ky

∣∣∣
ε

)2∣∣∣∂D
∂ε

∣∣∣
Ky

∣∣∣ δ(D(ε,Ky)). (6.63)

Taking the partial derivatives in the expression above using Eq. (6.21),

∂D
∂Ky

∣∣∣
ε

= |t|~
2Q
b2

B
sin
(
~2QKy

b2
B

+µ
)
,

∂D
∂ε

∣∣∣
Ky

=− πε

v2
Fb2

B
sin
(

πε2

2v2
Fb2

B
+θ

)
, (6.64)

following a lengthy yet rather straightforward computation, we get

σyy =−
e2τ0Qv2

F
π2Lx

∫
∞

−∞

dε
d f (ε)

dε

√
|t|2− cos2

(
πε2

2v2
F b2

B
+θ

)
|ε|
∣∣∣sin

(
πε2

2v2
F b2

B
+θ

)∣∣∣
×Θ

[
|t|2− cos2

(
πε2

2v2
Fb2

B
+θ

)]
,

(6.65)

where Θ(...) is the Heaviside theta function. In the general case (for arbitrary t(B)), this magne-
toconductivity includes fast quantum oscillations (see Fig. 6.3). The T = 0 result in the absence
of the MB-induced over-gap electron tunnelling (|t|= 1) reduces to a constant,

σyy =
e2τ0Qv2

F
π2εFLx

, (6.66)

independent of magnetic field, which coincides with the classical result along open trajectories
as expected. We see that Eq. (6.66) is the same constant in front of the integral in Eq. (6.65)
divided by the energy scale from within the integral which reduces to it in the absence of the
MB effects. The MB effects in Eq. (6.65) appear not as a correction to the constant term (6.66),
but rather as inherent to the main contribution in σyy. The opposite limiting case of the maximal
magnetic breakdown effect (|t| = 0, |r| = 1), on the other hand, should be equal to the result
(6.59) for closed trajectories, i.e. σyy = σxx.
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Figure 6.3: Diagonal conductivity σyy (scaled with e2τ0Qv2
F/π2εFLx, see Eq. (6.66)) vs. inverse magnetic

field B−1 (scaled with mεF/e~). Left panel: The upper envelope of fast-oscillating σyy for different
temperatures. The inset shows the MB parameter |t(B)|2 according to Eq. (6.15), where B is scaled to
e~/mεF . Right panel: Oscillations of σyy vs. B−1 at different temperatures, with period determined by
the area of electron trajectory S0(εF). The temperatures (scaled to kB/εF ) in both figures are: 0 (blue),
0.0001 (purple), 0.0005 (orange), 0.001 (red). The gap parameter is everywhere ∆/εF = 0.01. Image
from [93].

6.4.3 Hall magnetoconductivity σxy

As in the case of σxx, due to the vanishing group velocity vx, the corresponding contribution
must be accounted through the matrix element 〈η| v̂x |η′〉 which is expressed in terms of the
Lorentz force operator proportional to ˙̂ky. The expression (6.38) in the case of Hall conductivity
reduces to

σyx =−
2e

LxLyB ∑
η

(
~〈η|k̂yv̂y|η〉−〈η|k̂y|η〉

∂εn(Ky)

∂Ky

)
d f (ε)

dε

∣∣∣
εη

, (6.67)

where |η〉= |n,Ky〉. The two matrix elements, 〈η|k̂yv̂y|η〉 and 〈η|k̂y|η〉 are evaluated as follows.
The first one reads

〈η| k̂yv̂y |η〉=
Lx

2π

∫ Q

0
dkx

(
|C+|2k+y v+y
|v+y |

+
|C−|2k−y v−y
|v−y |

)
. (6.68)
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Since k−y =−k+y and |v+y |= |v−y |, it reduces to:

〈η| k̂yv̂y |η〉=
Lx

2π

∫ Q

0
dkxk+y

(
|C+|2 + |C−|2

)
=

Lx

2π

S(ε(Ky))

2
(
|C+(Ky)|2 + |C−(Ky)|2

)
. (6.69)

Similarly, the second term reads:

〈η| k̂y |η〉=
Lx

2π

∫ Q

0
dkx

(
|C+|2k+y
|v+y |

+
|C−|2k−y
|v−y |

)

=
Lx

2π

∫
dkx

k+y
v+y

(
|C+|2−|C−|2

)
. (6.70)

Using vy = ~ ∂ε

∂ky
=

v2
F
ε
~ky, and

k+y
v+y

= ε

~v2
F

, we obtain:

〈η| k̂y |η〉=
Lx

2π

∫ Q

0
dkx

ε

~v2
F

(
|C+|2−|C−|2

)
, (6.71)

where the negative sign in front of |C−|2 appears due to k−y =−k+y , finally leading to

〈η| k̂y |η〉=
LxQ
2π

εn

~v2
F

(
|C+(Ky)|2−|C−(Ky)|2

)
. (6.72)

Similarly to expression (6.37) for |C+|2 + |C−|2, using Eqs. (6.28) and (6.37) one can obtain an
expression for |C+|2−|C−|2, i.e.

|C+|2−|C−|2 =
2~ωc t
eBLx

t− cos(φ1 +φ2)

1− t cos(φ1 +φ2)
, (6.73)

where φ1 =
πε2

2v2
F b2

B
+θ and φ2 =

QKy~2

b2
B

+µ.
Now we can evaluate σyx. The first term corresponding to (6.69), using (6.58) and inserting

(6.54) as well as the T → 0 limit (6.55), evaluates to

σ
I
yx =

2eS0(εF)

B(2π)2 . (6.74)
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The second term corresponding to (6.72) contains

− ∂ε

∂Ky
〈η|ky |η〉=

εQ
~v2

F

∂D
∂Ky

(
|C+|2−|C−|2

)
δ(D), (6.75)

where D is defined in (6.21). The above expression is a fast oscillating function containing

f (φ1,φ2) =
t− cos(φ1 +φ2)

1− t cos(φ1 +φ2)
sinφ2, (6.76)

which is periodic with 2π in φ1 and φ2. We expand (6.76) in a Fourier expansion and keep just
the constant term, as the function is fast oscillating, i.e.

f̄ =
1

(2π)2

∫
π

−π

dφ1

∫
π

−π

dφ2
t− cosφ1 cosφ2 + sinφ1 sinφ2

1− t(cosφ1 cosφ2− sinφ1 sinφ2)

sinφ2√
1− t2 cosφ2

2
δ(cosφ1− t cosφ2) .

(6.77)

The δ-function inside the integral in (6.77) is evaluated as a sum of δ-functions over all zeroes
in the domain of integration. After summing the results for both of the zeroes, f̄ turns out to be

f̄ = 0. (6.78)

Therefore, the second contribution in the Hall conductivity evaluates to

σ
II
yx = 0, (6.79)

with the fast oscillating part neglected. Summing up the above contributions I and II we finally
obtain the Hall magnetoconductivity

σxy =−σyx =−
en0

B
(6.80)

written in terms of the total 2D electron concentration n0 = 2S0(εF)/(2π)2. This result corre-
sponds to the classical one. In this result, we neglected the fast oscillating correction.
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6.4.4 Overview

In this chapter, the magnetoconductivity tensor was computed starting from the quantum density
matrix, within the semiclassical approximation, using the magnetic breakdown technique. The
diagonal magnetoconductivity component along the CDW apex is σxx ∼ B−2, in accordance to
the classical result.

The diagonal component σyy, perpendicular to the CDW apex is constant in the case of
negligible magnetic breakdown. In the case of extremely strong magnetic breakdown σyy is
proportional to ∼ B−2 in the same way as σxx. Both regimes correspond to the classical results.
In the regime of intermediate magnetic breakdown σyy develops strong quantum oscillations
periodic in inverse magnetic field. Those oscillations are not just a mere correction to the
constant classical term, they are an inherent part of it, showing the strong quantum mechanical
interference effect of large semiclassical phases.

The Hall conductivity σxy ∼ B−1 corresponds to the standard classical result neglecting
eventual quantum oscillating corrections.
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Thesis summary

Charge density waves are self-consistent modulations of electronic density commonly occur-
ring in tandem with periodic distortion of the crystal lattice of materials. We provided a histor-
ical overview from the early mentions of charge density waves in the 1950s, their description
through the Peierls instability, to initial experimental discoveries. This gives an insight into how
explaining the phenomenon of charge density waves is tightly linked to the concept of Fermi
surface nesting to the extent that such an explanation has practically become a paradigm, a suc-
cessful theory that worked for decades in a significant number of real materials within the class
of quasi-one-dimensional systems with a highly anisotropic open Fermi surface.

We presented the basic characteristics of the material this thesis is about, and elaborated
how the motivation for this work presented itself. Charge density waves are experimentally
observed in materials with Fermi surfaces that have no nesting properties, a class of layered
quasi-two-dimensional systems with a rather isotropic closed Fermi surface requiring a new
theoretical mechanism.

The aim of this work is to develop a minimal model which explains the phenomenon of
charge density wave formation in the intercalated graphite CaC6. We initially describe the prob-
lem of a system of coupled electrons and phonons using a two-dimensional Fröhlich Hamilto-
nian. We treat it within the mean-field approximation introducing an order parameter propor-
tional to the mean value of the phonon displacement operator describing the lattice deforma-
tion. To obtain the shape of topologically reconstructed electronic bands, we employ a specially
developed method for expanding subintegral functions to derive an analytical result for the con-
densation energy of the system, obtaining it self-consistently by optimisation with respect to
the wave vector of the CDW ordering and its order parameter. Furthermore, we single out the
in-plane TA phonon mode of the of the calcium superlattice as the "softest" one and the most
strongly coupled to the carbon electrons, therefore, being responsible for the CDW instability.
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This theoretical work is inspired by experimental observations which we compared with
our results. The theoretical explanations presented show an exceptionally good agreement with
key experimentally observed facts: (1) the occurrence, period, and orientation of the charge
density wave with respect to the graphene lattice; (2) the appearance of a pseudo-gap in the
electronic spectrum; (3) the static deformation of the calcium superlattice corresponding to the
theoretically predicted phonon TA mode. The onset of the CDW in the intercalated graphite
CaC6 appears as a quantum phase transition due to the topological reconstruction of the Fermi
surface of electrons coupled to aforementioned phonon modes if the coupling is stronger than
critical.

Furthermore, we calculated the tensor of magnetoconductivity for the intercalated graphite
CaC6 in the CDW ground state, under conditions of magnetic breakdown within the semiclassi-
cal approximation which provided the electronic spectrum and wave functions. We provided a
description of the phenomenon of coherent magnetic breakdown appearing in a strong external
magnetic field B in the regime in which the characteristic Larmor radius is much smaller than
the mean free path due to impunity scattering. The consideration is developed for low enough
temperatures so that other relaxation channels can be neglected. The tensor of magnetoconduc-
tivity for a two-dimensional system is calculated within the formalism of the quantum density
matrix. Due to the uniaxial CDW, this tensor is anisotropic and contains a component along
the CDW crests, which is perpendicular to the open electronic trajectories in reciprocal space, a
component along the direction of the periodicity of the CDW, which is along the open electronic
trajectories in reciprocal space, and the Hall components of magnetoconductivity. The diago-
nal magnetoconductivity component along the CDW apex is σxx ∼ B−2, in accordance to the
classical result. The diagonal component σyy, perpendicular to the CDW apex is constant in the
case of negligible magnetic breakdown. In the case of extremely strong magnetic breakdown
σyy is proportional to ∼ B−2 in the same way as σxx. Both regimes correspond to the classical
results. In the regime of intermediate magnetic breakdown σyy develops strong quantum oscil-
lations periodic in inverse magnetic field. Those oscillations are not just a mere correction to the
constant classical term, they are an inherent part of it, showing the strong quantum mechanical
interference effect of large semiclassical phases. The Hall conductivity σxy ∼ B−1 corresponds
to the standard classical result neglecting eventual quantum oscillating corrections.

The significance of the research presented in this dissertation, within the field of charge or-
derings in materials, is multiple. Real materials, whose charge orderings were explained by the
nesting mechanism, are mainly chain-like organic conductors (Bechgaard salts, Fabre salts, blue
bronzes, etc.), which, besides their great importance for fundamental physics, generally had no
technological significance due to small available quantities, difficult synthesis, poor mechanical
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properties, and low critical temperatures (of the order of 1 - 10 K) of charge and superconduct-
ing phases due to very weak interactions responsible for them. Later, a new class of materials
was discovered in which charge arrangements occur, so-called quasi two-dimensional systems
with rather isotropic properties in the crystal planes and low dispersion perpendicular to them.
Examples of such materials include high-temperature superconducting cuprates, intercalated
graphite compounds, transition metal dichalcogenides, and so on. Besides being important for
fundamental physics, they are also characterized by important technological properties. Charge
orderings coexist in phase diagrams with high-temperature superconductivity for which we still
lack a theoretical explanation, and understanding them might crucially depend on understanding
the mechanisms of charge orderings which appear to be incompatible with the nesting paradigm.
Recently, within our research group, a mechanism based on a quantum phase transition to a
more stable state of charge ordering has been proposed, which occurs through topological re-
construction of the Fermi surface of the electronic condensate if the coupling to the phonon
subsystem of the crystal lattice exceeds a critical value (A. M. Kadigrobov, A. Bjeliš and D.
Radić, Phys. Rev. B 97, 235439 (2018)). In that publication, the mechanism was presented
very generally, as a fundamental mechanism without any specificities related to a particular ma-
terial. The research presented in this work and published in the paper P. Grozić, B. Keran, A. M.
Kadigrobov and D. Radić, "Charge stripes in the graphene-based materials," Scientific Reports
13, 18931 (2023), for the first time implemented the proposed mechanism, taking into account
all the specificities of the system, calcium-intercalated graphite CaC6. As mentioned, charge
orderings share the phase diagram with the superconducting (and high-temperature supercon-
ducting) phase, the pseudo-gap phase, and in some cases, the antiferromagnetic phase, so their
understanding, to which the results presented in this dissertation significantly contribute, can
notably improve the understanding of the phase diagram of these materials, many of which also
having important technological applications.
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