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Abstract 
 

Light can have a special property called orbital angular momentum (OAM), which gives beams a 

twisted shape of the wavefront. Twisted beams carry a specific amount of angular momentum in the 

direction of propagation. This property opens possibilities for increasing amount of information we can 

send in both optical and quantum communication. It could also help us improve and expand the 

capabilities of some types of quantum technology. By changing a regular beam of light in a particular 

way, we can create beams with some unique features. In this work, emphasis is given on Laguerre-

Gaussian (LG) modes, and their generation and detection. LG modes carry non-zero OAM and are 

characterized by two numbers: the radial mode index 𝑝 and the azimuthal mode index 𝑙, known as 

topological charge (TC). 

This thesis delves into exploring the use of spatial light modulators (SLM) for the modal detection of 

Laguerre-Gaussian (LG) beams. A critical challenge in utilizing LG beams is to accurately determine 

indices of the unknown LG beam, which constitutes the main topic of this thesis. 

As a major contribution, a new type of diffraction grating was designed, which offers effective modal 

detection of LG beams. Our approach showcases a robust method capable of simultaneously 

determining both mode indices of an LG mode. Theoretical and experimental results show a clear 

correlation of the radial and azimuthal mode indices with the intensity distribution in the far-field 

diffraction pattern. 
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Sažetak 
 

Svjetlost može biti nositelj i kutne količine gibanja (OAM), što se ispoljava u valnoj fronti uvrnutog 

oblika, odnosno svjetlosnom vrtlogu. Vrtložne zrake nose određenu kutnu količinu gibanja u smjeru 

širenja. Ovo svojstvo otvara mogućnosti za povećanje količine informacija koje možemo poslati u 

redovnoj i kvantnoj komunikaciji. Također bi nam moglo pomoći da poboljšamo i proširimo 

mogućnosti nekih vrsta kvantne tehnologije. Promjenom regularne zrake svjetlosti na određeni način, 

možemo stvoriti zrake s jedinstvenim značajkama. U ovoj studiji ćemo staviti naglasak na Laguerre-

Gaussovi (LG) modove, njihovo generiranje i detekciju. LG modovi nose OAM različit od nule i 

karakteriziraju ih dva broja: indeks radijalnog moda p i indeks azimutalnog moda l, poznat kao 

topološki naboj (TC). 

Ovaj se doktorski rad bavi istraživanjem upotrebe prostornih modulatora svjetla (SLM) za modalnu 

detekciju Laguerre-Gaussovih (LG) zraka. Kritični izazov u korištenju LG snopa je točno određivanje 

indeksa nepoznatog LG snopa, što je i glavna tema ove disertacije. 

Kao originalni doprinos, u doktoratu je dizajnirana nova vrsta difrakcijske rešetke kojom se postiže 

učinkova detekcija moda LG zrake. Naš pristup predstavlja robusnu metodu koja može istovremeno 

odrediti oba indeksa LG zrake. Teorijski i eksperimentalni rezultati pokazuju jasnu korelaciju između 

indeksa radijalnog i azimutalnog moda i distribucije intenziteta u difrakcijskom uzorku dalekog polja. 

 

Ključne Riječi 
Kutna količina gibanja svjetlosti, prostorni modulator svjetlosti, difrakcija 

 

 

 

 

 

 

 



 

Extended Abstract 
 

The intrinsic property of light known as orbital angular momentum (OAM) manifests in optical vortex 

(OV) beams. These beams exhibit a spiral-shaped wavefront, carrying discrete units of quantized orbital 

angular momentum (𝑙ℏ) per photon, where '𝑙' denotes an integer, referred to as topological charge (TC). 

This Hilbert space associated to OAM is theoretically infinite and holds promise for amplifying 

information capacities in both classical and quantum communication systems. Moreover, it offers 

potential for enhancing and broadening the capabilities of qubit and qudit-based quantum algorithms. 

Furthermore, leveraging OAM modes enables innovative imaging methodologies to directly observe 

and measure diverse topological attributes in objects spanning from semiconductors defects to the 

observation of astronomical objects. In optics, OAM of light already, utilized as optical tweezers to 

manipulate small objects. From the physical sciences point of view, our understanding of OAM in 

optical fields may provide insights into vortex behavior in other physical systems.  

Optical vortices are created by optical diffractive elements, which can be produced via techniques like 

photolithography. Dynamic phase variations essential for this purpose are facilitated by devices such as 

electro-optical and acousto-optical modulators, along with liquid crystal spatial light modulators (LC-

SLM). LC-SLM comprise, a microscopic array of individually controllable pixels, consisting of liquid 

crystal cells. Each pixel has the capability to introduce a specific phase shift to the incident light. LC-

SLM offer distinct advantages including high resolution, small pixel size, and a high fill factor. They 

play a significant role in quickly and dynamically implementing digital holographic techniques within 

experimental setups. 

This thesis covers two main topics: (1) generation of beam carrying an OAM and (2) detection of OAM 

state of light using diffractive method, with both parts relying significantly on the utilization of SLMs. 

The chapters in this thesis are organized as follows. In Chapter 1, a historical exploration traces the 

evolution of understanding angular momentum within the realm of light. This chapter not only delves 

into the history related to the angular momentum of light but also introduces the Laguerre-Gaussian 

(LG) mode, as solution to the paraxial wave equation. Furthermore, Chapter 1 extensively surveys the 

literature, elucidating the diverse and extensive applications harnessing the unique properties of OAM. 

It illuminates how these applications span various fields, including optical communications, tweezers, 

microscopy, and quantum information processing, showing the widespread relevance and potential 

impact of OAM in modern science and technology. 



 

Chapter 2 provides a survey of the literature focusing on two main aspects: the generation of optical 

vortex beams and the techniques used for their detection. Different methods utilized in creating and 

detecting optical vortex beams are described in the chapter. This thorough exploration covers a wide 

array of techniques, shedding light on the challenges, and potential applications associated with 

detecting OAM.  

Within Chapter 3, we investigate the experimental generation of optical vortices using, SLM. This 

investigation involves employing various phase modulation techniques enabled by SLMs to generate 

and control vortex beams. Furthermore, this chapter gives a short discussion about technical challenges 

inherently linked to the application and implementation of SLMs. The discussion involves an 

exploration of these potential challenges, seeking to provide insights and possible solutions for 

proficiently utilizing SLMs in the generation and manipulation of shaped light. 

In Chapter 4, the foundation is set by introducing the theory that focuses on detecting the LG mode 

based on its azimuthal index, keeping the radial index at zero. This theoretical framework paves the 

way for subsequent practical demonstrations and experimental pursuits aimed at detecting the OAM 

state of light. These experiments are specifically designed to employ our original sinusoidally-shaped 

phase gratings (SSPG) designed as a computer generated hologram (CGH) loaded on SLM for 

detection of TC. Furthermore, this chapter delves into an exploration of the adaptive nature intrinsic in 

SSPGs, shedding light on their dynamic capacity and their role in enhancing detection efficiency. 

Chapter 5 redirects its focus toward assessing the efficiency of detection within the framework of laser 

beam misalignment tolerances. This chapter is dedicated to understanding how the detection 

mechanisms perform when subjected to variations or misalignments in laser beam positioning. It aims 

to explore the impact of these misalignments on the accuracy and reliability of detection methods, 

providing crucial insights into the robustness and adaptability of detection systems in scenarios where 

misalignments are prevalent. 

Chapter 6 thoroughly examines the detection techniques used for measuring both LG radial and 

azimuthal modal indices. This exploration aims to generate and detect LG mode, for different radial 

and azimuthal mode indices. This analysis provides a clearer insight into the intricate properties and 

behaviors exhibited by LG beams across their diverse modal indices. 

Chapter 7 encapsulates the conclusions drawn from the conducted research and outlines potential 

pathways for furthering this study. It offers a summary of the research findings and paves the way for 

future directions and ongoing exploration in this field. 



 

Prošireni Sažetak 
 

Intrinzično svojstvo svjetlosti poznato kao kutna količina gibanja (OAM) očituje se u optičkim 

vrtložnim (OV) zrakama. Ove zrake pokazuju valnu frontu spiralnog oblika, noseći diskretne jedinice 

kvantizirane kutne količine gibanja (lℏ) po fotonu, gdje 'l' označava cijeli broj, koji se naziva topološki 

naboj (TC). Ovaj Hilbertov prostor povezan s OAM-om teoretski je beskonačan i veoma perspektivan 

za povećanje informacijskih kapaciteta u klasičnim i kvantnim komunikacijskim sustavima. Štoviše, 

nudi potencijal za poboljšanje i proširenje kvantnih algoritama temeljenih na qubitima ili quditima. 

Nadalje, korištenje OAM načina rada omogućuje inovativnim slikovnim metodologijama izravno 

promatranje i mjerenje različitih topoloških atributa u objektima, od defekata poluvodiča do 

promatranja astronomskih objekata. U optici, OAM svjetlosti već se koristi kao optička pinceta za 

manipuliranje malim objektima. Sa stajališta fizičkih znanosti, naše razumijevanje OAM-a u optičkim 

poljima može pružiti uvid u ponašanje vrtloga u drugim fizičkim sustavima. 

Optički vrtlozi nastaju upotrebom optičkih difrakcijskih elemenata, koji se mogu proizvesti tehnikama 

poput fotolitografije. Dinamičke varijacije faza bitne za ovu svrhu omogućavaju uređaji kao što su 

elektro-optički i akusto-optički modulatori, kao i prostorni svjetlosni modulatori s tekućim kristalima 

(LC-SLM). LC-SLM sastoje se od mikroskopskog niza piksela kojima se može pojedinačno upravljati, 

a koji se sastoje od ćelija tekućeg kristala. Svaki piksel ima sposobnost unijeti određeni fazni pomak 

upadnog svjetla. LC-SLM nude različite prednosti uključujući visoku rezoluciju, malu veličinu piksela 

i visok faktor popunjavanja. Oni igraju značajnu ulogu u brzoj i dinamičnoj implementaciji digitalnih 

holografskih tehnika unutar eksperimentalnih postava. 

Ovaj doktorski rad pokriva dvije glavne teme: (1) generiranje OAM-a koji nosi zraku i (2) Detekcija 

OAM stanja svjetlosti pomoću difrakcijske metode, pri čemu se oba dijela značajno oslanjaju na 

korištenje SLM-ova. 

Poglavlja u ovoj tezi organizirana su na sljedeći način. U 1. poglavlju, dan je povijesni pregled evoluciju 

razumijevanja svjetlosti koja posjeduje kutnu količinu gibanja. Ovo poglavlje također predstavlja 

Laguerre-Gaussovu (LG) funkciju, kao jedno od rješenja paraaksijalne valne jednadžbe. Nadalje, 

Poglavlje 1 opsežno daje pregled literature, i opis raznolike i opsežne primjene jedinstvenih svojstava 

OAM-a. Osvjetljavaju se i aplikacije vezane uz optičke komunikacije, optičku pincetu, mikroskopiju i 

kvantnu obradu informacija. Pokazuje se široka važnost i potencijalni utjecaj OAM-a u modernoj 

znanosti i tehnologiji. 



 

Poglavlje 2 daje pregled literature usredotočujući se na dva glavna aspekta: stvaranje optičkih vrtložnih 

zraka i tehnike korištene za njihovu detekciju. Pokazuju se različite metode korištene u stvaranju i 

detekciji optičkih vrtložnih zraka. Prikazane je široka lepeza tehnika, s osvrtom na izazove i potencijalne 

primjene povezane s otkrivanjem OAM-a. 

Unutar poglavlja 3 istražujemo eksperimentalno generiranje optičkih vrtloga pomoću SLM-a. Ovo 

istraživanje uključuje korištenje različitih tehnika fazne modulacije koje omogućuju SLM za 

generiranje i upravljanje vrtložnim zrakama. Nadalje, ovo poglavlje donosi kratku raspravu o tehničkim 

izazovima koji su inherentno povezani s primjenom i implementacijom SLM-a. Rasprava uključuje 

istraživanje potencijalnih izazova i rješenja za efikasnu upotrebu SLM-a u stvaranju i manipuliranju 

strukturiranog svjetla. 

U 4. poglavlju temelj je postavljen uvođenjem teorije koja se usredotočuje na otkrivanje LG moda na 

temelju njegovog azimutalnog indeksa, zadržavajući radijalni indeks na nuli. Ovaj teorijski okvir utire 

put kasnijim praktičnim demonstracijama i eksperimentalnim potragama s ciljem otkrivanja OAM 

stanja svjetlosti. Ovi eksperimenti se odvijaju pomoću originalno dizajnirane fazne rešetke sinusoidnog 

oblika (SSPG), realizirane kao računalno generirani hologram (CGH) učitan na SLM.. Nadalje, u 

ovome se poglavlju demonstrira adaptivna priroda SSPG-a, dinamički kapacitet i poboljšanje 

učinkovitosti detekcije. 

Poglavlje 5 prikazuje istraživanja učinkovitosti detekcije unutar okvira tolerancija neusklađenosti 

laserske zrake. Ovo je poglavlje posvećeno razumijevanju učinkovitosti detekcije kada i prisustvu 

varijacija ili neusklađenosti u pozicioniranju laserske zrake. Cilj je istražiti utjecaj tih neusklađenosti na 

točnost i pouzdanost metoda detekcije, pružajući ključne uvide u robusnost i prilagodljivost sustava 

detekcije. 

Poglavlje 6 temeljito ispituje tehnike detekcije LG zrake koja posjeduje i radijalni i azimutalni modalni 

indeks različit od nule. Ovo istraživanje ima za cilj generirati i detektirati LG mod za različite radijalne 

i azimutalne indekse. Ova analiza pruža jasniji uvid u svojstva i ponašanja LG p i l modova 

U 7. poglavlju sažimaju se zaključci izvedeni iz provedenog istraživanja i ocrtavaju potencijalni putovi 

za daljnji nastavak ove studije. Prikazan je sažetak istraživanja i putevi za buduće smjerove istraživanja 

i primjene u ovom području.  
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 The orbital angular momentum of light 
 

 

 The history of the momentum of light 
 

From the mid-19th century onward, it has been established that light beams possess both energy and 

momentum, a foundational characteristic elucidated by Maxwell's equations [1]. This momentum gives 

rise to radiation pressure, symbolized as 𝑃, which is equivalent to 𝐼/𝑐, where 𝐼 signifies the irradiance 

of the incoming laser light. 

Poynting, while examining Maxwell's equations, derived an expression for the angular momentum of 

light. His investigation centered on the rotation within the electromagnetic field present in circularly 

polarized light beams. Drawing an analogy between this rotation and the mechanical movement of a 

revolving shaft, he suggested that circularly polarized light also carries angular momentum. His findings 

indicated that the ratio of angular momentum to energy equates to 1/ω, where ω represents the light's 

angular frequency [2]. Recognizing the minute scale of this effect, Poynting himself considered it highly 

unlikely to observe it through a mechanical experiment. 

The experimental demonstration of this angular momentum occurred in the 1930s through a study 

conducted by Beth in a laboratory setting. [3]. In Beth's experiment, circularly polarized light passed 

through a half-wave plate, leading to the plate's rotation. The key aspect of the experiment was 

suspending the waveplate using a quartz fiber to minimize frictional effects. The rotation occurred 

because the waveplate reversed the handedness of the circularly polarized light, consequently reversing 

its angular momentum. This change in momentum caused a torque on the waveplate, resulting in its 

rotation. 

The initial investigations were grounded in a classical interpretation of light, not requiring the quantized 

electromagnetic field. However, in modern physics, the interaction between light and matter is often 

explained in photon terms rather than in the context of electromagnetic waves. The quantification of 

momentum within a light beam involves evaluating the momentum per photon, expressed as ℏ𝑘 for 

linear momentum and ℏ for angular momentum. These quantized expressions align with the classical 

interpretations known to Maxwell and Poynting when considering the earlier mentioned ratios of 

momentum and energy. In the context of a quantum interpretation of light beams, circular polarization 
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is understood as the result of individual photons spinning either in a left-handed or right-handed 

direction. This spinning motion is termed spin angular momentum., of value 𝜎ℏ, where 𝜎 = ±1 

depending on sense of circular polarization.  

Yet, as early as the 1930s, there were hints suggesting that light could carry more intricate momentum 

states. When discussing photons, they are generated during atomic transitions, and in the case of dipole 

transitions, the alteration in angular momentum amounts to ℏ. Consequently, emitted circularly 

polarized light aligns with the principle of momentum conservation. In 1932, Darwin explored higher-

order transitions, revealing momentum transfers surpassing the value of ℏ [4].  

He proposed that light emitted in proximity to an atom's center of mass would impart not only linear 

momentum to the emitted photon but also an extra torque on the center of mass. This supplementary 

angular momentum, now identified as orbital angular momentum, originated from these higher-order 

transitions. 

 

 Laguerre-Gaussian Modes: Characteristics and Applications 
 

Fast forward to 1992 when Allen and his team, while conducting research in Leiden, explored the realm 

of orbital angular momentum present in Laguerre-Gaussian (LG) laser beams [5]. LG beams are 

distinguished by their helical phase fronts, which inherently encompass a phase singularity at their core. 

The term optical vortex (OV) refers to a zero-point within an optical field, signifying a location of zero 

intensity, where phase is undefined. Since the 1970s, there has been ongoing examination and scrutiny 

of these phase singularities with extensive research in the optical fields [6, 7] .  

 

 

Figure 1-1: Numerically simulated the spiral phasefronts of vortex beam for different azimuthal value.  Light can 
carry OAM if its phasefronts are twisted around the direction that the light is moving. The linear momentum of 
the light (perpendicular to the phasefronts; depicted by a pink-colored spiral line) has a small component around 
the propagation direction, resulting in the generation of orbital angular momentum aligned with the direction of 
the beam's propagation. 
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Yet, none of these preceding studies had pinpointed the angular momentum linked to helically phased 

beams. LG modes are solutions of the paraxial wave equation. These modes exhibit circular symmetry 

and can be expressed using Laguerre polynomials 𝐿𝑝
𝑙 , with '𝑝' denoting the radial index and '𝑙' 

representing the azimuthal index. Expressed in cylindrical coordinates, the complex amplitude of an 

LG beam is formulated as: 

 

 
2 22

, 2 2
0 0 0

2 2( , ) exp expp p p
r r ru r C L i

w w w
 

     
       

    

 (1-1) 

 

where 𝑤0 is the beam waist size, 𝐿𝑝
|𝑙| representing the Laguerre polynomial of the variables 𝑙 and 𝑝, 

and 𝐶𝑙𝑝 is the term for amplitude normalization [8]. The variables possess broad ranges: '𝑙' extends 

across unbounded values, and '𝑝' can either be zero or assume any positive integer. The crucial term in 

this complex amplitude is exp (𝑖𝑙𝜑), which governs the azimuthal phase profile of these beams. Figure 

1-2 showcases the numerically simulated transverse intensity profiles of various LG beam. 

 

 

Figure 1-2: intensity profiles of numerically simulated LG beams with different combinations of radial and 
azimuthal mode indices. The rows and columns in the figure correspond to the azimuthal and radial mode indices, 
respectively. 
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Utilizing Equation (1-1), It is possible to derive expressions that describe the energy and momentum 

contained within such a beam. They are characterized by the spatially dependent form of the Poynting 

vector, as illustrated in Figure 1-1. Within a ray optics framework, the Poynting vector dictates the 

direction of a local ray originating from a particular position on the wavefront [9]. Helically phased 

beams cause a deviation in these local rays, and each ray carries a linear momentum. When averaged 

across the entire beam, this linear momentum generates an azimuthal component contributing to the 

beam's momentum, ultimately resulting in angular momentum aligned with the direction of 

propagation. 

Looking at the helical phase front at a fixed distance from the beam's center, it resembles a slope with 

a constant incline in azimuthal coordinates. At a specific distance from the center, this slope covers a 

length of 2πr with the height of 𝑙𝜆 where λ is the wavelength of the light, therefore, the angle of 

skewness for the local rays is: 

 

2 r kr





   (1-2) 

 

Given the wavenumber 𝑘 related to the beam, upon analyzing the linear momentum '𝑃' carried by a 

singular skewed local ray interacting with a surface at an angle 𝛾, we can determine the resulting orbital 

angular momentum carried by the beam: 

 |𝐿| = |𝑟 × 𝑃| = |𝑟 × ℏ𝑘 𝑠𝑖𝑛𝛾| = 𝑙ℏ (1-3) 
 

Allen and colleagues hypothesized that these beams possess a ratio of OAM to energy expressed as 

𝑙/𝑤, resulting an OAM of 𝑙ℏ per photon. 

In contrast to the spin angular momentum (SAM) with solely two orthogonal states (binary state) with 

values 𝜎 = ±1, The states associated with the OAM are boundless described by 𝑙. Every integer value 

of 𝑙 stands as orthogonal to all others. Nevertheless, this advantage introduces a formidable challenge 

in the measurement techniques. Embracing N modes means delving into an N-dimensional state space. 

To overcome the complex task of detecting OAM, we must achieve flawless detection of all of N 

potential OAM states. This achievement is the key to unlocking the solution to the challenge of OAM 

detection. 

Allen et al. suggested an experiment similar to Beth's approach for measuring spin angular momentum 

(SAM). They used two cylindrical lenses to flip the phase profile's direction, changing the beam's orbital 
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angular momentum. This shift in momentum was expected to cause a rotational motion in the lenses, 

as shown in Figure 1-3. 

 

 

Figure 1-3: (a) Demonstrates the rotational torque exerted on a π/2 waveplate as circularly polarized light passes 
through, altering the polarization state from left-handed to right-handed. (b) Illustrates suspended cylindrical 
lenses undergoing rotation when a helical beam traverses the lenses, converting the OAM value from 𝑙ℏ to −𝑙ℏ. 
(Schematic reproduced from Reference [5]). 

 

Showing this effect in larger objects has been tricky. The torque from orbital angular momentum isn't 

strong enough to rotate big things, but in the tiny world, it's a different story. After Allen et al.'s initial 

work, He looked into passing orbital angular momentum to tiny absorbing particles held in optical 

tweezers. (Figure 1-4) [10].  

 

Figure 1-4: A micro-particle is trapped by a helically-phased beam. The partially absorbing nature of this 
microparticle leads to the absorption of OAM, consequently generating torque. 

 

Optical tweezers capture particles by harnessing the intensity gradient within focused light beams. This 

force attracts dielectric particles toward the center of the high field strength area, enabling the 
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manipulation and confinement of micro-scale particles. When employing a helically phased beam to 

trap particles, aligning the beam's waist size with that of the particle positions the center of attraction at 

the phase singularity within the beam's center. Initial investigations exploring torque exerted by OAM-

carrying beams utilized black micron-sized CuO particles. These particles demonstrated rotation when 

trapped using a plane-polarized LG beam. Subsequent studies combined the torque generated by OAM 

with that arising from the spin angular momentum of circularly polarized light. By altering the relative 

orientation of these two components, the particle's rotation could be accelerated, decelerated, or even 

halted [11, 12]. Besides the evident mechanical applications of OAM-carrying beams, a pivotal study 

focused on the conservation of OAM during second harmonic generation (SHG). In SHG, a nonlinear 

crystal effectively merges photons of a specific energy to generate a new photon with twice that energy. 

Observations revealed that OAM remains preserved, with the second harmonic output possessing 

double the OAM of the input light [13]. Second-order processes like SHG are reversible. In the reverse 

process, known as parametric down-conversion, the energy of a single pump photon splits into two new 

photons. In 2001, Mair et al. investigated the conservation of OAM during down-conversion, 

commonly utilized for entangled photon preparation [14]. Their work demonstrated that a down-

converted photon could possess various 𝑙 values. When the OAM of this photon combined with its 

entangled partner, it highlighted OAM conservation (Figure 1-5). These findings hinted at quantum 

entanglement, enabling exploration of this entanglement within higher-dimensional Hilbert spaces. 

 

 

Figure 1-5: When a photon with a certain OAM passes through a nonlinear crystal, it splits into two photons, each 
having half the energy of the original. Their combined OAM equals the OAM of the input photon, and they can 
take various values. Here, we show the case of 𝑙 = 6 and 𝑙 = -3. 
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Any fully polarized state can be expressed as a combination of two perpendicular circular polarization 

states. Visualizing these combinations is often achieved through a Poincaré sphere, where the poles 

signify left and right circularly polarized light. Linear polarization, an equal amalgamation of left and 

right states, occupies the equatorial region of the Poincaré sphere. The orientation of linear polarization 

depends on the relative phase between these superimposed components. Similarly, an analogous sphere 

can be devised for LG modes, representing a subset of the unbounded LG state-space with two states. 

In this representation, the north and south poles correspond to different '𝑙' values, delineating the two-

state subset [15]. An equal superposition of '𝑙' values creates petal-shaped laser modes. Changing the 

relative phase of these modes causes the mode to rotate. This comparison between spin angular 

momentum and OAM extends various quantum mechanics tests, originally focused on polarization, to 

subsets of the OAM state-spaces.  

The discrete and limitless potential of OAM, where '𝑙' can theoretically assume any integer value, has 

sparked significant interest among researchers. This optical property has become a focal point for those 

striving to enhance data transmission across optical communications networks [16]. The current focus 

in OAM applications revolves around free-space links, where several developed schemes are attracting 

considerable interest [16-18], Wang et al. recently introduced a scheme that incorporates OAM 

multiplexing alongside other conventional multiplexing methods, resulting in data rates reaching 2.56 

Tbit/s for their link [19]. Researchers are exploring OAM not solely as a means to augment 

communication link bandwidth but also as a pathway to bolster their security. The expanded alphabet 

offered by OAM holds promise in enhancing the security of cryptographic keys transmitted through a 

quantum key distribution (QKD) system [20]. In the realm of quantum information processing [21], 

OAM holds substantial promise for pioneering advancements in both quantum computing and 

communication. OAM-based communication systems, with their potential to revolutionize secure data 

transmission, hold the key to enhancing data capacity and network efficiency significantly [22]. 

Furthermore, OAM contributes to the advancement of cutting-edge imaging techniques, ultimately 

leading to higher resolution and superior imaging performance [23]. Beyond this, the applications of 

OAM extend their influence to a myriad of fields, including trapping particles [24], astrophysical studies 

[25]. In particular, OAM is instrumental in the creation of chiral structures with exceptional and unique 

properties [26]. Additionally, OAM plays a vital role in fundamental research [27], offering invaluable 

insights into the core principles of physics and expanding our comprehension of the intricate world of 

twisted light.  
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A critical challenge in utilizing LG beams across diverse applications is achieving precise determination 

of the indices for an unknown LG beam.  

In this thesis, I uncover my substantial contributions to the realm of optics, where my primary focus 

revolves around the intriguing domain of light beams carrying OAM.  Across my research journey, I 

have consistently exhibited a dedication to comprehending the complexities inherent in dealing with 

OAM state. I have been devoted to devising innovative solutions aimed at overcoming challenges in 

detection of LG beams.
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 Generation and detection of orbital angular momentum of 
light 

 

In this chapter, we'll explore methods for generating and detecting OAM of light. While various 

techniques exist for creating vortex beams, our focus lies on intriguing methods such as the spiral-phase-

plate (SPP), q-plate and computer-generated holograms (CGH), and spatial light modulators (SLM). 

Given the thesis's core focus on SLM, we'll delve deeper into its ability to shape light. Additionally, 

we'll discuss diverse OAM detection techniques, such as torque measurement on microscopic particles, 

counting spiral interference fringes, and studying propagations through specific apertures, among 

others. 

 

 Spiral phase plate (SPP) 
 

A spiral phase plate (SPP) serves as a transparent optical diffractive element, depicted in Figure 2-1, Its 

structure resembles that of a spiral steps [28]. As light passes through the SPP, changes in its thickness 

induce distinct alterations in the optical path of the outgoing beam. This variation introduces a spiral 

phase factor exp(𝑖𝑙𝜃), where l is the topological charge of the SPP and θ is the rotation azimuth. This 

leads to the formation of an optical vortex in the light field, causing a phase singularity to emerge at the 

center of the outgoing beam, featuring a spiral wavefront structure. 

 

 

Figure 2-1: Ideal spiral phase plate. 

 

The thickness 'ℎ' correlates directly with the azimuth angle '𝜃' and can be represented as follows: 

 
0 2SPP sh h h 


   (2-1) 
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where ℎ0 represents the thickness of the phase-plate and  ℎ𝑠 denotes the thickness of the step. Assuming 

minimal variation in the step height ℎ of the SPP the light intensity of the outgoing beam becomes 

negligible. After the laser beam goes through the SPP, it mainly adjusts the phase of the outgoing beam. 

The resulting phase-delay expression after the beam passes through the SPP is: 

 
0

0
( )2

2
sn n h nh


 

 
  

 
 (2-2) 

 

where 𝜆 is the wavelength of the incoming laser beam, and 𝑛 and 𝑛0 are the refractive index of material 

and refractive index of surrounding medium , respectively. The topological charge of SPP is expressed 

as 𝑙 = ℎ𝑠(𝑛 − 𝑛0)/𝜆  

The phase alteration, 𝛥𝜙, is contingent upon the rotation azimuth, 𝜃. As 𝜃 increases from zero to 2π, 

the value of phase increments from 0 to 2𝜋𝑙. In an ideal model, the SPP's thickness increases uniformly 

with the rotation azimuth, but practical manufacturing involves employing a multilevel-step spiral 

phase plate (ML-SPP). In contrast to the ideal SPP, the ML-SPP's thickness no longer ascends 

uniformly but rather in discrete phase increments. If the ML-SPP comprises N phase steps, then the 

phase disparity between two successive orders is 2𝜋𝑙/𝑁. 

The spiral-phase-plate technique is widely employed for producing vortex, offering high efficiency and 

the ability to process high-power laser beams. However, it is limited by generating solely one-order 

vortex beams in theory. Additionally, it lacks flexibility in controlling the parameters and varieties of 

OAM beams. Furthermore, the manufacturing and processing methods for SPP demand rigorous 

standards and entail higher costs. 

 

 

 Q-plate method  
 

The q-plate, detailed in [29, 30], It comprises a liquid crystal panel with consistent birefringence phase 

retardation 𝛿, along with a transverse optical axis configuration distinguished by a non-zero topological 

charge. The angle 𝛼(𝑟, 𝜙), which represents the orientation of the optical axis concerning the x-axis in 

the 𝑥 − 𝑦 plane, can be expressed as 𝛼(𝑟, 𝜙)  =  𝑞𝜙 +  𝛼0. Here, 𝛼0 denotes the initial optical axis 

orientation. Figure 2-2, displays various q-plate patterns with different q and 𝛼0values.  

When precisely adjusted (𝛿 =  𝜋), the q-plate can alter an incoming light beam, causing a topological 
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charge shift ∆=  ±2𝑞. For instance, when a circularly polarized beam undergoes a tuned q-plate with 

𝑞 =  1, it produces a helical phase front displaying topological charges = ±2, contingent upon the input 

polarized light, as illustrated in the Figure 2-2 (e).  

Q-plates are recognized for their capacity to generate OAM by converting optical spin into orbital 

angular momentum, in accordance with the conservation law of angular momentum. When 𝑞 = 1, the 

highest attainable topological charge remains limited to 2. Essentially, the q-plate operates as a Berry 

phase optical component [31], controlling the wavefront shape by manipulating the polarization state. 

it's important to note that the q-plate, made of liquid crystal, has an energy threshold and may not be 

suitable for use with high-power laser beams. Besides its high price the q-plate, serving as a device for 

converting SAM into OAM, is not recommended for OAM communications application due to its 

limitations in achieving higher maximum topological charges. Instead, it finds more suitable 

applications in tasks related to particle manipulation. 

 

Figure 2-2: Four examples of q-plate patterns with: (a) (q, α0) = (1/2, 0), (b) (q, α0) = (1, 0), (c) (q, α0) = (1, π/2) 
and (d) (q, α0) = (2, 0). The segments indicate the optical axis orientation in the transverse plane. (e) Pictorial 
illustration of the optical action of a tuned q-plate with q = 1 on an input circularly polarized plane beam. A left-
circular (or right circular) polarized Gaussian beam passing through a tuned q-plate with q = 1 turns into a helically 
phased beam with l = +2 (or l = −2) and right-circular (or left-circular) polarization (Figure adapted from [30]). 
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 Computer generated holography (CGH) 
 

A hologram essentially serves as a synthetic representation of an object, captured using specific plates 

that store the optical field information for reproducing desired objects. These plates record the 

interference pattern resulting from the superimposition of the object's optical field and a coherent 

reference beam. Consequently, when illuminated by a beam mirroring the reference beam's 

characteristics, an image of the object emerges. Holographic plates find applications in both 

transmission and reflection, although I'll focus solely on the former here. holography was invented in 

1948 by Gabor [32]. Back then, the production of holographic plates faced limitations due to the lack 

of coherent sources necessary for stable interferograms. Substantial progress in holographic techniques 

occurred following the emergence of laser sources in the Sixties. Presently, two distinct types of 

transmission holographic plates have been developed, including the on-axis Gabor holograms. [33] and 

the off-axis Leith-Upatnieks holograms [34]. A Gabor hologram generates both virtual and real images 

of an object along a single axis, resulting in an observer perceiving a combined view of the two images. 

In contrast, Leith-Upatnieks holograms enable the separation of these images by introducing an offset 

angle between the reference wave and the light scattered by the object within the holographic plate. 

In the mid-Sixties, the synthesis of holographic plates experienced significant advancements, thanks to 

the integration of computer technology [35]. Computers played a crucial role in simplifying the 

calculation of the complex amplitude of the optical field propagated from the object to the hologram 

plane. This calculated complex amplitude is then encoded as a real non-negative function, represented 

as a matrix of points with real values.  

The utilization of computer technology in holographic plate synthesis comes with several advantages. 

Notably, it circumvents issues related to the coherence of the source of the reference beam and 

environmental conditions such as vibrations and turbulence. This increased robustness enhances the 

reliability and applicability of holographic patterns.  

One important feature of computer-generated holograms is their capability to reproduce optical fields 

of diverse nature, including intricate light beams. This characteristic has positioned computer-generated 

holograms as invaluable tools for producing and studying light beams carrying orbital angular 

momentum [36-39]. This versatility not only expands the possibilities in holography but also opens up 

avenues for exploring and understanding the complex nature of light interactions in various 

applications. 
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Figure 2-3: Examples of computer-generated hologram (numerically simulated) designed to produce optical 
vortex with ℓ = 1. (a) a fork hologram, (b) Spiral hologram. 

 

The holographic pattern obtained by computing the interference of the reference wave with a vortex 

beam is different if the former is a plane wave or a spherical wave. In the first case, the pattern of the 

interferogram is similar to that of a grating with a central fork-shaped dislocation [40]. This is the reason 

why they are usually called fork holograms. Figure 2-3 (a) shows an example of a fork hologram with 

just one central dislocation. When a plane wave with a wavelength 𝜆 intersects perpendicularly a fork 

hologram, the grating structure ideally produces an infinite number of diffraction orders, the share of 

optical power between different diffraction order depends on amplitude and phase modulation. The 

angle 𝜃𝑚 subtended by the direction mth diffraction order with respect the propagation axis of the input 

beam is given by the usual grating equation [41] 

 sin m m    (2-3) 

 

where Λ is the pitch of the grating far away from the center. Instead, if the reference beam is a spherical 

wave, then the interferogram pattern will assume a spiral-like shape similar to that of a Fresnel zone 

plate [42] (see Figure 2-3 (b)). Such a spiral hologram diffracts an incident beam too, but the diffraction 

orders are found at different positions along the propagation axis. For the purposes of the experiments 

that will be discussed later, fork hologram is more useful than spiral holograms because it is always 

possible to simultaneously inspect different diffraction orders without changing the position of the 

observation plane. Therefore, in the following I will present only the properties of fork grating. 
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The object that we desire to reproduce is a 𝑙-charged vortex beam having an optical field: 

 exp( )O OU u i   (2-4) 

 

where 𝑢𝑂 is a real amplitude factor and  =  𝑎𝑟𝑐𝑡𝑎𝑛( 𝑦/𝑥) is the azimuthal angle in the (x, y) plane 

perpendicular to the z axis. The reference beam is represented by a plane wave with a constant 

amplitude 𝑢0 and a wave vector 𝑘 lying in the (x, z) plane that subtends an angle 𝜓 with the z axis. The 

corresponding field distribution is 

 2exp( sin ) exp( )R R R
xU u ikx u i 

   


 (2-5) 

 

where 𝛬 =  𝜆/ 𝑠𝑖𝑛𝜓. Assuming for simplicity 𝑢𝑂= 𝑢𝑅= u, the interferogram produced by the two 

fields is: 

 2 2 2( , ) 2 1 cosO R
xI x U U u 

 
  

        
 (2-6) 

 

This represents the interference pattern that has to be imprinted in the holographic plate to obtain a fork 

hologram. Equation (2-6) may be used also to describe the transmission function of a Hologram. In this 

case, Λ has to be identified with the pitch of the grating away from the center. Another computationally 

convenient expression can be derived by employing Fourier transform techniques [43]: 

 
 

2, exp cosn
n

T r T in r
  





  
      
  (2-7) 

 

Where 𝑟𝑐𝑜𝑠𝜑 = 𝑥. When such hologram is illuminated with a plane wave, the beam containing the 

optical vortex having the desired topological charge 𝑙 is generated at the first diffraction order (𝑚 =

 +1). More generally, a beam formed at the 𝑚𝑡ℎ diffraction order possess a vortex beam with 

topological charge equal to 𝑚𝑙. 

The holographic plate in which a fork hologram is recorded can modify either the amplitude and the 

phase of an incident light beam. The latter are preferable for experimental reasons because they have a 

lower energy absorption and a higher diffraction efficiency. To obtain a phase hologram, the 

transmission function has to be translated into a variation of the thickness of the hologram material. 

Furthermore, the spatial resolution must be sufficiently high to resolve the interference fringes.  

 



15 

To fabricate CGHs, an enlarged sample of the computed hologram is plotted. Then a photographic 

reduction forms the hologram with the desired final size. In recent years, CGHs have been fabricated 

by direct writing with a laser beam system or electron beam lithography system to benefit of a resolution 

impossible to reach with photographic techniques. The most important factor that affects the efficiency 

of printed CGHs are line numbers which are related to the resolution. The challenge with printing CGHs 

lies in their time-consuming nature, static characteristics, and occasional limitations in resolution. 

However, in recent years, advancement in electro-optical modulator technology, such as spatial light 

modulators (SLM), has provided a solution for rapid, dynamic, high resolution and digital manipulation 

of the amplitude or the phase of light beam. SLM, a computer-controlled device with small pixel size, 

serves to modulate or manipulate various properties of light, including amplitude, polarization, and 

phase. The typical dimension of individual pixels on the SLM can range between 3.5 μm to 35 μm. 

Each pixel's optical phase retardation covers a range from [0, 2π) with 256 steps, correlating to a Gray 

Level color scale. This scale is attained through voltage modulation from a computer graphics card. 

Upon displaying a hologram with precise dimension and phase depth modulation on the PC screen, a 

corresponding voltage, in line with the pixel's color in the gray scale level, is applied to the relevant 

pixel on the SLM. This action modifies the liquid crystal alignment within the cell, thereby altering its 

optical retardation. The displayed hologram pattern can be altered by changing the pattern on the screen. 

Nonetheless, the speed of the SLM is limited by both the graphic card and the response time of the 

liquid crystal molecules. Additionally, its effectiveness is notably contingent upon the polarization state 

of the beam. The SLM finds widespread use across various applications, particularly in scenarios that 

demand dynamic control over beam shapes, as in the realm of optical tweezers [44] and optical trapping 

[45].  

An electrically addressed nematic SLM comprises a layer of birefringent liquid crystals. On one side, 

there is a transparent electrode, while on the other side, there are silicon-pixilated electrodes. The 

magnitude of the applied voltage to the nearest pixelated electrode can influence the orientation of the 

LCs at a specific location. Consequently, in the absence of an electric field, the LCs align in a preferred 

orientation. 

As the applied electric field increases, the orientation of the LCs begins to align with the considered 

electric field. This alignment is crucial, as it allows the refractive index of each pixelated electrode to 

be controlled by modulating the voltage applied to the individual silicon pixelated electrodes in the LC 

displays. This dynamic control over the refractive index enables precise manipulation of the optical 

properties, providing a versatile platform for various applications in display technology (Figure 2-4). 
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Figure 2-4: Left: photo of the device: Holoeye, PLUTO - phase only SLM. Right: Sketch of SLM display 
assembly. Both images are taken from the Holoeye web page. (www.holoeye.com). 

 

 

 Detection of orbital angular momentum of light 
 

The content in this section is sourced from Chapter 13 of the book [46] on the measuring OAM of light. 

In this section, I'll review few established methods employed to detect the OAM state. For additional 

methods of detecting OAM, reader can refer to the mentioned book.    

In the preceding chapter, I introduced the concept of light's orbital angular momentum and delved into 

numerous applications. The OAM inherent in light stands as a highly valuable optical trait with 

widespread applications across various optical domains. However, this advantage poses a significant 

challenge in devising adequate detection methods, given the utilization of N modes, leading to an N-

dimensional state space. Achieving comprehensive detection of all potential N states (see Figure 2-5) 

becomes essential to effectively resolve the issue with OAM. In this regard, a method's efficacy is 

gauged by its capability to successfully identify as many OAM modes as possible.  

 

http://www.holoeye.com/
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Figure 2-5: An optical vortex beam carries an OAM with a value of ℓℏ per photon. ℓ, theoretically, can span any 
integer, providing a broad spectrum of potential outcomes. 

 

This unresolved issue necessitates the creation of a direct and highly effective method for measuring 

OAM. These experimental techniques encompass measurements involving torque on micro particles 

[47], spiral interference fringe counting [48] and diffraction through apertures [49], among many others. 

The existing methods exhibit diverse strengths and limitations, considering factors like complexity, 

resilience to misalignment, and their ability to detect higher-order OAM. Nonetheless, finding a 

straightforward and efficient solution akin to the effectiveness of the polarizing beam splitter in 

measuring spin angular momentum remains a challenge. 

 

As previously emphasized, spin angular momentum is fundamentally binary, directly linked to the 

polarization state of light. In the case of left and right circularly polarized beams, the spin angular 

momentum per photon is represented as 𝜎ℏ = ±1, respectively. The detection of SAM can be 

achieved using a polarizing beam splitter, where circularly polarized light undergoes transformation by 

a λ/4 wave-plate into either a p- or s-polarized state. 

This modified state is then either transmitted or reflected, resulting in one of two distinct outputs, as 

illustrated in Figure 2-6. This process provides a practical means for discerning and manipulating spin 

angular momentum in optical systems, with applications ranging from communication to quantum 

information processing.  
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Figure 2-6: transformation of a circularly polarized light using a quarter-waveplate into linear states. 
Subsequently, a polarizing beam splitter transmits p-polarized light and reflects s-polarized light, yielding two 
outputs for determining the polarization state. 

 

 

2.4.1 Spinning trapped particles 
 

As previously mentioned, He et al. investigated the transfer of OAM to trapped microscopic absorbing 

particles within optical tweezers. Optical tweezers operate by utilizing a force linked to the intensity 

gradient in the waist of focused light beam: dielectric particles are drawn towards regions of heightened 

strength, enabling the trapping and manipulation of microparticles [10, 47]. When employing helically-

phased beams for trapping, particularly with a beam waist comparable to the particle size, the focal 

point of attraction aligns with the vortex position within the beam. Initial investigations on torque 

exerted by OAM-carrying beams involved employing black micron-sized CuO particles, observed to 

rotate upon trapping using a plane-polarized LG beam. Subsequent studies combined the torque 

attributed to OAM with that resulting from the spin angular momentum of circularly polarized light 

[10]. A dielectric particle absorbs incoming light, acquiring angular momentum in the forms of SAM 

or OAM, consequently exerting torque on the particle. Helically structured beams add to the torque 

induced by circular polarization. In the paraxial limit, the particle's interaction is influenced by both the 

beam's polarization and helicity, leading to torque. 

  
( )abs

z
P




    (2-8) 
 

 

𝑃𝑎𝑏𝑠   is the absorbed power by the dielectric bead, λ represents the light's wavelength and 𝜎𝑧 is the is 

the light's handedness for polarization. Torque applies to a particle even with individual photons; each 
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photon in the beam carries an OAM of ℓℏ. In simpler terms, the total torque on a particle can be 

calculated by multiplying the photon flux by the helical beam's angular momentum. or LG beams, the 

total angular momentum per photon is (𝑙 +  𝜎𝑧 )ℏ. Simpson et al. discovered that the torque from 𝑙 =

1 OAM and that of polarization 𝜎 = −1 can cancel each other [12].  

 

 
Figure 2-7: Focused helically-phased beam trapping a dielectric bead. A partially absorbing bead absorbs the 

OAM resulting in torque (Figure adapted from [46]). 

 

Particles trapped in optical tweezers are usually in a viscous material, normally water, which will cause 

a rotational drag resulting in slower spinning. In the simplest case, this drag is proportional to the angular 

velocity of the particle. A measurement of the optical torque can be made when an equilibrium of the 

rational drag and applied torque is reached. This measurement can be captured using a high speed digital 

camera or a photo diode at the edge of the trapped particle measuring a flashing as the particle spins. 

From this rotation and knowledge of the viscous medium, the torque is calculated and can then be used 

in Equation (2-8) to calculate a measurement of the number 𝑙. After the initial experiment by He et al., 

beams carrying OAM have become useful as optical spanners and many other tasks. This method can 

be used to determine the OAM of an unknown input beam through the measurement of the rotation 

speed, when the viscous drag of the liquid and polarization state of the light are known [12]. However, 

this method is not optically efficient for determining OAM. It necessitates a high-power laser source to 

induce measurable rotation in the absorbing material, alongside a high-speed camera to capture the 

particle movement. 
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2.4.2 Counting spiral fringes using interferometry 
 

As previously noted, beams with OAM exhibit a helical phase structure, which can be unveiled through 

interference, manifesting as spiral fringes [48]. This technique extracts phase information from an 

incoming beam and holds relevance in numerous experimental setups, including those dealing with 

speckle fields [50] and beams featuring displaced vortex positions [51]. The fundamental principle 

underlying this technique is simple: within a Mach-Zehnder or a comparable interferometer (shown in 

Figure 2-8), a plane-wave as a reference beam intersects with a helically phased source beam. 

 

 

Figure 2-8. A Mach-Zehnder interferometer where a beam containing OAM is generated in one arm of the 
interferometer through the use of a hologram. The fringe pattern is changed from a petal pattern to a spiral fringe 
pattern by changing the distance between lens L1 and L2, as this alteration changes the curvature of the phase 
front in the reference arm (Figure adapted from [46]). 

 

This configuration ensures that the observed fringes solely originate from the relative phase structure 

of the source beam. When using a vortex beam, with a phase structure of 𝑒𝑥𝑝(𝑖𝑙𝜑), each fringe denotes 

a progression of 2 enabling the determination of the value 𝑙, as seen in Figure 2-9. The observed pattern 

relies on the phase front's curvature: matched curvatures exhibit petal patterns at the beam waist, while 

differing curvatures yield spiral fringes. For Laguerre-Gaussian laser modes, encompassing both helical 

phase term 𝑙 and radial term 𝑝, the radial components manifest as radial nodes in the interferogram. 
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The count of these nodes equals 𝑝 +  1, depicted in column three of Figure 2-9. Superpositions of LG 

laser modes result in interleaved spiral fringes, seen in column four of Figure 2-9. 

 

 

Figure 2-9: Interference occurs between an LG beam (representing OAM with ℓ as azimuthal and p as radial 
components) and a uniform plane-wave at the beam waist and Rayleigh range. The shown interferograms display 
different input modes: rows one and two feature helically phased modes without a radial component p, row three 
showcases a mode with radial lobes, and column four exhibits a combination of two distinct helically phased 
beams (Figure adapted from [46]). 

 

Interference techniques applied to intricate structures involve creating a detailed phase map of the 

source. Dark regions in the interference pattern might pose uncertainty about the phase value, as they 

could stem from reduced intensity or destructive interference. Adjusting the phase of the plane-wave 

reference provides additional insights into these areas. Each pixel serves as an independent intensity 

measurement, measured across multiple phase steps, typically 16 or 32. Over a 2π range, these steps 

induce sinusoidal intensity changes; the starting point of this sinusoid indicates the phase of that specific 

pixel. From a computational perspective, this method allows fast execution, enabling tasks like tracking 
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vortex positions within speckle fields. This capability further facilitates studies exploring the topology 

of vortex lines within such fields. 

Interferometric methods allow the OAM content of unknown LG mode to be easily determined. These 

are very useful techniques and have many applications, However, this method involves complex setups 

and it is highly sensitive to issues such as dust or scratches on optical elements. Additionally, it has 

limited tolerance for beam misalignment. The necessity for an appropriate reference beam imposes 

stringent constraints on the applicability of two-beam interference techniques. In numerous scenarios 

where OAM measurements are desired, this becomes challenging and, in certain instances, unfeasible. 

For instance, this limitation poses challenges in detecting sources from astronomical objects. 

 

 

2.4.3 Diffraction effects from apertures 
 

A method not requiring a reference beam involves diffracting light through apertures. Hickmann et al. 

(see Figure 2-10) [49] showed that when a helically phased beam hits a triangular aperture, it forms a 

triangular pattern of constructive interference spots. The number and arrangement of these spots relate 

to the input's 𝑙 value. 

This approach can be understood by modeling the diffraction pattern generated from the aperture. The 

resulting interference effects emerge from the light diffracted at each side of the aperture. Specifically, 

in the context of helically-phased beams, phase shifts that occur along the edges of the triangle are 

directly correlated with the input beam's 𝑙 value. The intricate phase structure at the edge creates an 

interference pattern based on 𝑙, wherein an increase in the mode index adds an extra layer of spots to 

the interference pattern, as illustrated in Figure 2-10.  

The triangular pattern undergoes rotation concerning the aperture due to the helical characteristics of 

the input mode. When the sign of 𝑙 is altered, this rotation direction reverses. Utilizing a singular 

aperture offers a sophisticated means of measuring the OAM value associated with an input mode. This 

technique expands its scope beyond triangular apertures and has recently been applied using a 

hexagonal aperture. In this setup, lines are created that maintain a consistent intensity, and the quantity 

of these lines corresponds to the 𝑙 mode index of the input mode [52]. Berkhout et al. independently 

devised an alternative method utilizing a circular arrangement of pinholes to generate diffraction 

patterns. The pattern structure of these diffractions depends on the mode structure of the input beam. 

[53] (see Figure 2-11). The arrangement of these pinholes drew inspiration from the configuration of 
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telescope arrays, aiming to facilitate the assessment of the OAM characteristics within light emitted 

from celestial sources. These assemblies of pinholes are referred to as a multipoint interferometer 

(MPI). 

 

 

 

Figure 2-10: (a) An equilateral Triangular aperture. (b) The diffraction pattern at far-field resulting from the LG 
beams passing through the aperture for different 𝑙 values. Simulated images shows the initial outcomes 

presented by Hickmann et al. 
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Figure 2-11: Diffraction patterns emerge when a helically phased beam carrying a topological charge traverses 
N-pinhole multipoint interferometer (MPI). These images are attributed to G.C.G Berkhout. 

 

Experimental demonstrations confirmed the ability to measure the OAM state of partially coherent 

light. By using a set of pinholes illuminated with a central vortex beam, sampling of the phase value at 

fixed locations around the beam axis is achieved. Each pinhole acts as a point light source, and this 

setup's analysis generates the resulting far-field diffraction intensity pattern, 
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where 𝐼ℓ
𝑁 is the far-field intensity of the MPI, N is the number of pinholes, k is the wave number, a is 

the radius of the circle of pinholes and 𝛼𝑛 = 2𝜋n/N  is the azimuthal co-ordinate of the nth point. 

The effectiveness of this technique in measuring OAM strongly correlates with the quantity of pinholes 

employed, as illustrated in Figure 2-11. The reliance on the number of pinholes can be comprehended 

concerning the phase sampling undertaken at each pinhole. In cases involving two or three pinholes, 

any phase difference among the pinhole positions in a helically phased beam might similarly arise from 

a suitably inclined plane wave.  

Thus, this method is truly effective with four or more pinholes positioned along the input mode's central 

axis. Specifically, using four pinholes allows the multipoint interferometer (MPI) to distinguish odd and 

even OAM states. Changing the mode index results in an alteration of the diffraction pattern's 

orientation. Hickmann et al. and Berkhout et al.'s aperture-based methods present attractive options for 

measuring the OAM content of a specific source when simplicity is key. However, these techniques are 

sensitive to input beam misalignment, posing practical challenges in scenarios which demand high 

optical tolerance. Furthermore, these methods require a substantial number of photons in a similar state 

to achieve precise OAM measurements, inherently leading to inefficiencies in the measurement 

process. 

 

2.4.4 Diffractive holographic filters 
 

Optical systems inherently operate in a reversible manner, enabling the utilization of an OAM 

generation method as a means to measure OAM. The initial successful generation of OAM-carrying 

beams occurred in 1992 by Allen et al, employing a pair of cylindrical lenses [5]. Subsequently, 

Beijersbergen et al. [28] devised helical phase plates to accomplish a similar objective. Before Allen’s 

identification of OAM in twisted beam, Heckenberg et al. demonstrated the use of computer-generated 

holograms for producing beams incorporating phase singularities [54]. 

Holograms have evolved into a customary tool for generating OAM-carrying beams. In 1990, 

Bazhenov et al. pursued a methodology based on a diffraction grating to generate multiple orders 

carrying the desired phase pattern [55]. These holograms can be perceived as the product of the vortex 



26 

term 𝑒𝑥𝑝(𝑖𝑙𝜑) and a phase-ramp term 𝑒𝑥𝑝(𝑖𝑘 𝑠𝑖𝑛(𝜓)𝑥), with filtering based on phase values. The 

formation of the 𝑙-forked pattern was inspired by the interference pattern between a beam having a 

phase singularity and a tilted plane wave, giving rise to distinct pattern. 

In 1992, Heckenberg et al. centered their exploration on the spiral zone plate as the fundamental 

principle underlying the holograms they studied. These spiral zone plates comprised binary concentric 

circles featuring a singularity at the center, functioning similar to a Fresnel zone plate but with a 

dislocation at the central region [54]. The number of intertwined circles establishes the strength of 

singularity's charge. These zone plates can be understood as the phase emerging from the multiplication 

of the vortex term 𝑒𝑥𝑝(𝑖𝑙𝜙) and a lens term exp(ikr2/(2f)). These gratings have demonstrated efficacy 

in producing singularities, yet they encounter an issue with insufficient separation among the distinct 

diffraction orders 

Mair et al. demonstrated the reversible nature of this generation technique (see Figure 2-12), by 

directing a specific diffraction order into a single-mode fiber [14]. In this approach, the hologram, 

together with the fiber's entrance aperture, acts as an OAM filter. Mair et al. employed this method to 

exhibit the entanglement of OAM in pairs of photons derived from a non-linear crystal. Presently, this 

strategy is widely employed for detecting OAM in quantum optics experiments at the single-photon 

levels.  

 

Figure 2-12: A schematic depiction of the arrangement utilized to couple entangled photons from a BBO down-
conversion crystal, carrying a particular OAM content. A photon exhibiting the precise ℓ value transforms into a 
Gaussian mode within the primary order, subsequently registering at the fiber detector (Figure adapted from [46]). 
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2.4.5 More complex holograms 
 

OAM's potential for high-bandwidth free-space communication has drawn considerable interest. 

Researchers are exploring its stability in turbulent atmospheres and its applicability for communication 

with space-based receivers. Gibson et al. introduced a communication system using two interleaved 𝑙-

forked holograms, generating a 3 × 3 grid of diffraction orders to assess different l values within 

incoming beams [16]. The system effectively quantified the OAM content across eight 𝑙 modes within 

a fifteen-meter range. Khonina et al. used this technique in 2000, involving the combination of two 

diffractive elements, each representing a different 𝑙 value [56]. Gibson's research mirrors that of Mair 

et al. [14], wherein an 𝑙-forked hologram transforms an 𝑒𝑥𝑝(𝑖𝑙𝜙) beam into a planar phase-front beam.  

By optimizing a hologram, specific diffraction orders can be generated. Gibson et al. harnessed this 

capability by optimizing the hologram to generate the -1, 0, and +1 orders, see Figure 2-13. 

 

Figure 2-13: (a) The hologram's phase can be refined to equally weigh the power of the first and negative first 
orders. (b) A π/2 radians rotation corresponds to a similar shift in the diffraction orders' positions, as displayed 
above. This adjustment enables an increase in the charge to higher 𝑙 values. (d) Combining the patterns showcased 
in (a) and (b) through addition yields the intended nine-order pattern, creating a spectrum of 𝑙-valued beams. 
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When an OAM-carrying beam hits hologram, the 𝑙 mode will be detected. A similar modulation can 

be vertically done by rotating the linear phase by 90 degrees. Combining these two patterns creates 

multiple vertical diffraction orders for each horizontal order, each with an added 𝑙 value. For instance, 

if the initial positive order in each hologram is 𝑙 =  1, the first vertical order associated with that 

horizontal order becomes 𝑙 =  2, while the negative first vertical order corresponds to 𝑙 =  0. 

Combining horizontal and vertical patterns forms a grid for potential 𝑙 readings. When an helical beam 

interacts with this pattern, a spot appears at the center where the beam's 𝑙 value and the diffraction order 

add up to zero (Figure 2-14). The method evenly spreads the input power across all nine diffracted 

orders. Its efficiency is linked to the number of modes being detected—more modes decrease the 

method's effectiveness. When combining multiple 𝑙 modes, this results in two or more bright central 

spots. The brightness of each spot tells us how much each mode contributes to the combination. 

 

 

Figure 2-14: The far field observed when OAM modes with an ℓ = -16;-8; +8; +16 are passed through a 
hologram similar to that shown in figure 2.10 (d). Images courtesy of G Gibson [16]. 
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Gibson et al. detected eight modes over fifteen meters. Their method, though simpler for measuring 

OAM, loses much input light to other beams, making it inefficient for single-photon measurements and 

radial modes associated to LG beam. 

Although the challenges in OAM detection persist, the methods discussed here have been shown to be 

practical. This chapter doesn't comprehensively cover all techniques for OAM measurement. Methods 

like q-plates, Principal Component Analysis, and the use of Bessel beams as basis sets have had diverse 

success in addressing OAM detection issues [57, 58]. The quest for an OAM detection method that 

guarantees a 100% efficiency across all OAM modes is complex. Among the extensively researched 

techniques, spiral fringe interference patterns and hologram selectors stand out as notable approaches 

within the realm of optical detection for OAM. These methods have gained widespread adoption, but 

it's crucial to acknowledge their limitations. Interferometry, while being a commonly employed method 

with the potential to detect the two indices of LG beams simultaneously, poses challenges. It has a 

complex setup and low tolerance to beam misalignment, along with susceptibility to interference from 

dust or scratches of optical elements which can impede successful OAM detection. These 

vulnerabilities underscore the need for more versatile and robust detection methodologies in OAM 

detection, leaving room for innovative techniques to overcome these challenges.
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 Experimental generation of optical vortex beam 
 

In this thesis, we utilize two types of Holoeye reflective spatial light modulators (SLMs): the HoloEye 

LETO and the HoloEye Pluto. The LETO version is a more recent version, while the Pluto version has 

been in use for over a decade. In a typical operation, computer sends computed phase information - 

created and encoded in Matlab—via a DVI or HDMI output. The SLM then displays this phase 

information as part of the operational process. We employed the Pluto SLM to generate optical vortex 

beams, while the LETO SLM was utilized for detecting OAM modes using a specially designed 

diffraction grating.  

It's noteworthy to highlight that, as per the manufacturer's specifications, the Pluto SLM is a specialized 

color field sequential phase board kit utilizing the commercial Pluto 1 board. Despite the similarity in 

name, its liquid crystal on silicon is primarily tailored for color holographic reconstruction in the visible 

spectrum. Our investigation aimed to ascertain the Pluto SLM's response to diverse encoded hologram 

modulations and evaluate its diffraction efficiencies. 

 

 Holoeye LETO 
 

The LETO SLM used in this study has full HD resolution (1920 x 1080 pixels) and uses liquid crystal 

on silicon microdisplay technology, with full HD resolution at 1920 x 1080 pixels. It features a 6.4 µm 

pixel pitch and a minimal interpixel gap of 0.2 µm, enabling a high fill factor of 93% and ensuring 

relatively efficient light transmission. Optimized for the visible spectrum, this SLM offers reflectivity 

ranging from 62% to 75% (dependent on wavelength) and operates effectively between 420nm and 

700nm. With an AR coating limiting front reflection to less than 0.5% within this range, the SLM 

interfaces seamlessly as an external monitor using the standard HDMI interface of a graphics card. 

Notably, its small pixel size and high fill factor allow for the modulation of intricate phase patterns onto 

beams, crucial for the detection of LG modes. Our LETO SLM is shown in Fig. 3-1 
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                                          Figure 3-1: Holoeye LETO SLM and its specifications 

 

 Holoeye Pluto 
 

The Pluto SLM utilizes reflective micro displays, offering a resolution of 1920 x 1080 pixels with an 8 

µm pixel pitch. Its active area spans 0.7” diagonally, featuring an aspect ratio of 16:9. The Pluto driver 

includes a DVI interface for CGH addressing and a trigger sync output to synchronize with external 

devices, like color-switchable lasers. 

 

 

Figure 3-2:  Holoeye Pluto SLM and its specifications 
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To facilitate the generation of complex structured light, we have developed a MATLAB code that 

serves as a versatile tool. This code facilitates the manipulation of crucial parameters for creating CGH, 

including the diffraction grating type, amplitude modulation and phase modulation, phase variation, 

amplitude visibility, grating period, and orientation (vertical or horizontal and diagonal or anti-

diagonal).  

As an example, the performance of the SLM Pluto is illustrated in Figure 3.8, depicting an optical 

holographic reconstruction of a complex amplitude hologram. 

 

 

Figure 3-3: (a) Employing SLM for the optical holographic reconstruction of (b) PMF's logo and (c) a 
photograph featuring the renowned scientist, Nikola Tesla. (The original images are shown on top) 

 

 

 Beam profilers  
 

For precise observation of intensity at the image plane, we used beam profilers, the Thorlabs BC106-

VIS - for observing diffracted beams at this location, 

The image captured in Figure 3-4 shows the Thorlabs BC106-VIS, which comprises essential 

components: an optical sensor covering a range of 360-1000nm; a Mini B USB connector and a TTL 

Trigger input, four absorptive neutral density (ND) filters (10dB, 20dB, 30dB, and 40dB). The 

accompanying software offers comprehensive laser beam analysis features (see Figure 3-5). It enables 

the simultaneous display of 2D and 3D beam profiles with a good resolution. Crucial beam profile 

parameters like intensity profile, beam diameter, and peak density can be precisely tracked. The detector 

area spans 8.8mm×6.6mm, with pixels spaced at 6.45μm×6.45μm. 
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Figure 3-4: captured image of a Thorlabs BC106-VIS beam profiler used in this thesis. 

 

 

Figure 3-5: The Thorlabs BC106-VIS user interface. 
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 4f system for beam shaping  
 

To create customized beams, it's crucial to mitigate diffraction effects, maintaining sharp edges and 

preserving intricate details in the beam's phase, amplitude, and polarization. In our experimental setup, 

the 4f system is used to relay the optical fields between the object and image planes, thus minimizing 

diffraction effect and eliminating the quadratic wavefronts. The four focal lengths long setup is made 

by two lenses and a transparency plate. A conventional coherent 4-f imaging system is shown in Figure 

3-6. 

Assuming lens L1 and lens L2 have the same focal length 𝑓, we have an input of the form of a 

transparency 𝑈𝑖(𝑥′,𝑦′) located in the object plane which is illuminated by a plane wave. Employing the 

Fresnel diffraction formula to calculate the field immediately in front of the lens L1 we have: 

 

 

Figure 3-6: Schematic diagram of 4f imaging system. 
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Where, 
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ℎ(𝑥, 𝑦; 𝑧) is called the point spread function (PSF) in Fourier optics. The field distribution U2 

immediately after Lens1 can be calculated by multiplying the phase function as follows: 
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where 𝑒𝑥𝑝 (−𝑖𝑘
𝜉2+𝜂2

2𝑓
) is the phase function of an ideal thin lens, which means the lens will only affect 

the phase of the incident fields. The field distribution 𝑈3 in the back focal plane of the lens L1 (the 

Fourier plane) can be found as: 
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And F is Fourier transform. Where, 
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If we let those spatial frequencies 𝑘𝑥 ́ and 𝑘𝜉  , 𝑘𝑦́ and 𝑘𝜂 equal, 𝑈3(𝑥, 𝑦) can be simplified as: 
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We can see the lens phase function cancels out the quadratic phase term introduced by the Fresnel 

diffraction and proportional to the Fourier transform of the incident transparency 𝑈𝑖(𝑥′,𝑦′) . According 
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to the Equation (3-6) the field in the image plane will be the Fourier transform of 𝑈3(𝑥, 𝑦). Thus 𝑈𝑜𝑢𝑡 at 

Image plane can be written as:  
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So far, we derived a plane wave from a laser to illuminate 𝑈𝑖(𝑥′, 𝑦′) in the 4-f optical processing system. 

This demonstrates the direct re-imaging of the initial input from the object plane onto the image plane 

without introducing any quadratic phase alterations through Fresnel diffraction. Essentially, the object 

can be perfectly represented at the image plane in terms of both amplitude and phase. 

 

 

3.4.1 Experimental implementation for OAM beam generation 
 

The experimental setup to demonstrate the vortex beam generation is shown in Figure 3-7. A frequency 

stabilized He-Ne laser at =632.8 nm (≈15mW) is used as our light source to provide the fundamental 

Gaussian beam. The laser beam is passed through a neutral density filter (NDF) to decrease the intensity 

of the beam so that it does not saturate the CCD camera. The spatial filter system (SF) before the SLM 

cleans the beam transverse intensity and creates a uniform Gaussian beam. By loading the respective 

CGH on SLM the corresponding beams were generated in the first diffraction order. A half-waveplate 

(HWP) was used before SLM in order to rotate the polarization of the incident light beam to the 

optimum angle for the SLM so as to maximize the power diffracted into the first-order. 

Subsequently, a simple 4-f system is used to rescale the beam size and select the desired diffraction 

order, a pinhole in the Fourier plane of the SLM was used to select the first diffraction order and block 

all other remaining parts. Finally, the generated vortex beam was captured using a CCD camera and a 

beam profiler. 
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Figure 3-7: (Left)Schematic of experimental setup.  NDF: neutral density filter, MO: Microscope objective, P: 
Pinhole, CL: Collimated lens, A: Aperture, L: Lens, SLM: Spatial light modulator, HWP: half wave plate. 
(Right) The experimental setup and the beam profile of the resulting LG beam with l = 2. 

 

Understanding the response of the SLM to varied phase modulations precedes its utilization. Our study 

gives considerable focus to assessing diffraction efficiency when employing different CGHs. We 

specifically investigate three distinct CGH types: pure amplitude binary fork grating, pure phase 

sinusoidal fork-shaped structure, and pure phase blazed fork grating. 

Assessing the efficiency of these CGHs after being loaded onto the SLM is pivotal. Diffraction 

efficiency serves as a critical metric, quantifying the proportion of incident light diffracted into specific 

orders or modes. A hologram's efficiency is often quantified by its absolute diffraction efficiency, which 

represents the ratio of the power within a specific order, denoted as Pi, to the incident light power, P0, 

expressed as 𝐸𝑓 =  𝑃𝑖/𝑃0. This investigation into the characteristics and performance of each 

modulation method is essential for our research. It allows for optimal detection of light's OAM with 

high efficiency, an imperative aspect for optimizing the performance of optical systems. 

 

3.4.2 Binary amplitude fork diffraction grating 
 

The Transmission function of a pure amplitude binary fork-shaped grating in polar coordinate can be 

expressed as follows: 
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   
 (3-8) 

   

The parameters of the binary fork-shaped grating are defined by the spatial period, denoted as 'Λ,' which 

characterizes the grating period in horizontal direction, and the topological charge, '𝑙,' an integer value 

representing the grating's singularity strength. “𝑠𝑔𝑛” indicates sign function which returns 1 if the 

number is positive, zero (0) if the number is 0, and -1 if the number is negative. As depicted in Figure 

3-8, CGHs were created, in Matlab with a fixed spatial period, Λ = 0.22 mm, while varying the values 

of 'l.'  

The experimental results indicate that when a Gaussian beam with beam radius of 𝑤0 = 3𝑚𝑚 is 

incident on SLM loaded with a pure amplitude binary fork-shaped grating, three distinct diffraction 

orders, namely (−1, 0, and +1), are generated. These diffraction orders correspond to the far-field 

diffraction pattern produced by the grating. In our experimental setup, we employed a laser power meter 

(COHERENT LaserMate/Q), to precisely measure the power density. This measurement was a crucial 

component of our investigation into the generated diffracted orders. The laser power meter allowed us 

to quantify and analyze the distribution of optical power, particularly within the context of the various 

diffracted orders produced by the binary fork-shaped grating. Prior to reaching the SLM, the incident 

laser power was 40 mW/cm². Upon interacting with the SLM, the power measurements for the 

diffracted orders exhibited reduced power. For the +1 diffraction order, the power density was 8 

mW/cm², while the -1 diffraction order displayed a slightly higher power density of 9 mW/cm². The 

ratio between the intensities of the desired diffraction order and the incident illuminating beam has been 

approximately 22.5% for this particular type of grating.  

 

3.4.3 Sinusoidal fork diffraction grating 
 

Transmission function of a pure amplitude sinusoidal fork-shaped grating in polar coordinate can be 

expressed as follows: 

 1 2( , ) 1 cos cos
2

T r r
  

  
      

 (3-9) 

 

Where Λ is grating period in horizontal direction and l is an integer. As depicted in Figure 3-9, fork 

holograms were generated, using simulation with a fixed spatial period, Λ = 0.22 mm, while varying 

the values of 'l.' 
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The results show that when a Gaussian beam (𝑤0 = 3𝑚𝑚) is incident upon SLM loaded with a pure 

amplitude sinusoidal fork-shaped grating, compared to binary modulation there are also higher 

diffraction orders, namely (-2,−1, 0, and +1,+2), which are produced. These diffraction orders 

correspond to the far-field diffraction pattern produced by the grating. For the +1 diffraction order, the 

power density was recorded at 5 mW/cm² and for -1 diffraction order it was measured around 6 

mW/cm². The efficiency dropped by about 8%, reaching 14.5%, because of this specific phase 

modulation. 

 

3.4.4 Blazed fork diffraction grating 
 

Transmission function of a pure phase blazed fork grating can be expressed in polar coordinate as 

follows:  

 
 

2, exp mod( cos ,2 )
2

T r i r 
   



 
   

 (3-10) 

 

Where 𝛿 is the amplitude of the phase depth modulation and Λ is the period of grating and l is an integer. 

And  𝑚𝑜𝑑(𝑎, 𝑏), is the reminder of 𝑎/𝑏. As depicted in Figure 3-10, holograms were produced, using 

simulation with a fixed spatial period, Λ = 0.22 mm, while varying the values of 𝑙. The experimental 

results, as indicated by measurements using a beam profiler, reveal a notable predominance of diffracted 

light towards the +1 diffraction order. Conversely, a significantly smaller portion of the incident beam 

is directed toward the -1 diffraction order. The power density for the +1 diffraction order was measured 

to be 25 mW/cm², indicating a significant intensity associated with this particular order. In contrast, the 

-1 diffraction order displayed a relatively lower power density, measuring approximately 2 mW/cm². 

The calculated efficiency for this specific grating type was approximately 62.5% for the first diffraction 

order. 

Our research, conducted with various hologram loaded on SLM, reveals that using a pure phase blazed 

grating is the most advantageous option for the energy efficient shaping of light beams. In contrast, 

alternative choices, such as pure amplitude binary fork-shaped grating and sinusoidal gratings, are 

discerned as suboptimal selections. The increase in diffraction efficiency isn't just a technical 

improvement, it promises to significantly elevate the overall efficiency of optical system. This, in turn, 

holds the potential to transform our ability to detect the OAM of vortex beams for higher topological 

charge. 
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Figure 3-8:  Transmitted phase profile of pure amplitude binary fork grating(a). Binary fork gratings and their 
corresponding far-field diffraction patterns when Gaussian beams are incident on (b) with l = 1; (c) with l = 2; 

and (c) with l = 5; and (e) 3D Beam profile for l=5 
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Figure 3-9: Transmitted phase profile of sinusoidal phase fork grating(a). sinusoidal fork gratings and their 
corresponding far-field diffraction patterns when Gaussian beams are incident on (b) with l = 1; (c) with l = 2; 
and (c) with l = 5; and (e) 3D Beam profile for l=5 
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Figure 3-10: Transmitted phase profile of blazed phase fork grating(a). blazed fork gratings and their 
corresponding far-field diffraction patterns when Gaussian beams are incident on (b) with l = 1; (c) with l = 2; 
and (c) with l = 5; and (e) 3D Beam profile for l=5 
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  Addressing technical issues in SLM implementation 
 

In the practical implementation of SLMs, we encountered several technical challenges that show 

deviation from the ideal conditions necessary for a perfect modulation of the light field. It is imperative 

to briefly address these issues to provide an understanding of the limitations and considerations 

encountered in our experimental setup. The primary concerns were diffraction efficiency, beam 

misalignment, and the degradation of shaped light due to the absence of proper spatial filtering of the 

laser beam. Understanding these technical challenges is important for proper light shaping and 

maximizing its effectiveness in various applications. 

 

3.5.1 Low diffraction efficiency 
 

SLMs are used in reconstructing the complex amplitude of a wavefield optically. However, the far-field 

reconstructed wavefield is affected by non-ideal modulation properties and the discrete nature inherent 

in SLMs which results in decreased diffraction efficiency. These effects are drawbacks as they interfere 

with the visual quality and diminish the light efficiency within the region of interest. Further, minor 

deviations in the manufacturing process of LC-SLMs microdisplays could potentially lead to 

unexpected issues. For instance, even a subtle curvature in the microdisplay might induce aberrations 

in the shaping of light. These issues can be explored optically and programmatically.  

Optically, low diffraction efficiency poses two significant problems. Firstly, it leads to a reduction in 

light intensity. Secondly, and even more problematic, it can cause interference, as the non-diffracted 

residual light may overlap with the modulated part of the light. We explored the application of a 4f 

system to address this issue. 

 

 

Figure 3-11: A fork hologram profile, with low phase depth modulation 𝛿 =  0.6  is shown on the left, with 
showcases the profile of the grating along a horizontal red line. 
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In programming terms, the amplitude of modulation depth 𝛿 of encoded phase can significantly impact 

diffraction efficiency. The optimal value finds to be between 0.1 <  𝛿 <  0.4 for our application. 

Specifically, the desired phase distribution may be influenced by the intended intensity distribution, 

presenting challenges in precisely achieving the preferred phase information.  

Therefore, the modulation depth must be meticulously chosen for optimal performance through 

simulation. Figure 3-12 demonstrates the impact of a 𝛿 =  0.6 phase modulation depth. The results 

indicate a reduced efficiency in profile depth when compared to the optimal outcomes. (see Figure 3-10 

(e)). This highlights the critical role of parameter selection in simulations, emphasizing the importance 

of optimal values to minimize undesired diffraction effects and enhance overall efficiency in light 

shaping in the first diffraction order. 

 

 

Figure 3-12: SLM's performance with a fork grating with 𝑙 = 5 with phase depth modulation of (𝛿 = 0.6) (a) 
2D view depicts the consequences when phase modulation is not chosen reasonably. This deficiency results in 

diminished energy efficiency in the first diffracted orders and a subsequent reduction in the 3D profile depth (b). 
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3.5.2 Exploring the influence of beam misalignment on shaping 
light  

 

Here, our aim is to investigate the interplay between the combined impact of misaligned input beam on 

the effectiveness and precision of light shaping. Gaining insights into how these factors interact is 

crucial for optimizing optical systems and applications reliant on the precise manipulation of light 

patterns. Figure 3-13 illustrates the far-field diffraction pattern depicting the effects of off-axis 

illumination. 

 

 

Figure 3-13:  Examining the Impact of incident beam which is misaligned on a fork hologram with 𝑙 = 5  (a) the 
illumination beam is shifted 3mm from the center, (b) shifted by 2mm, and (c) central illumination produces 
shaped light with perfect doughnut shape. 
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3.5.3 Effect of spatial filtering on shaping light 

Another factor that can affect and distort shaped light, is the impact of input beam quality, which can 

define the quality of the shaped light. Understanding the dependencies of the diffracted beam shaped 

structure on incident beam quality is crucial for establishing accuracy in different optical application. 

Using beam profiler we grabbed photos of generated vortex beam with 𝑙 = 5 from a the He-Ne laser 

source which is not spatially filterd (Figure 3-14(a)). Employing a spatial filtering system, we used a 

10x microscope objective with a 25μm pinhole. The resulting beam is shown in Figure 3-14 (b). 

 

 

Figure 3-14: effect of spatial filtering on shaping light. (a) without filtering (b) using spatial filtering. 
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Finally, we would like to provide a set of recommendations for effectively utilizing SLMs and 

troubleshooting potential issues to ensure optimal performance. 

Diagnostic Imaging of Fourier Plane: Verify the system's proper functionality by imaging the Fourier 

plane of the SLM. This diagnostic approach provides valuable insights into the system's performance. 

Functional Check with diffraction Grating: Confirm the operational status of the SLM by applying a 

linear grating, inducing a deliberate shift in the spot along both the x and y axes. This procedure serves 

as a practical check for the dynamic responsiveness of the SLM. 

Flatness Implementation Check: Evaluate the implementation of panel flatness. When imaging the 

focal intensity distribution, the presence of a well-defined Airy disc is indicative of proper flatness. 

Distorted focal intensity suggests potential issues with flatness compensation on the SLM, and 

addressing this may involve additional phase modulation for distortion compensation. 

Polarization Assessment: Verify incident polarization on the SLM by introducing a half-waveplate 

before it. Direct light into the first diffraction order using a phase grating using SLM and monitor the 

intensity in the diffracted order while varying the waveplate rotation angle.  

Phase Pattern Inspection: To inspect the presentation and behavior of phase patterns in the optical 

system, substitute the SLM with a secondary monitor. This direct observation allows for a 

comprehensive assessment of how phase patterns are being displayed. 

Implementing these recommendations ensures a thorough and systematic check of key aspects of SLM 

performance, facilitating optimal usage in various optical application.
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 Detection of OAM of light using sinusoidally-shaped phase 
gratings(SSPG) 

 

 

In chapter 2, we explored the limitations of different existing methods characterized by their complexity 

and intricate experimental setups. Further detecting higher-order OAM or radial mode index remained 

an enduringly open challenge. Our research centers around simplification, robustness and adaptability. 

The method discussed in this chapter is based on diffraction of LG beam (with zero radial mode index) 

from an originally designed sinusoidally shaped phase grating (SSPG). We demonstrate that the 

resultant far-field diffraction pattern depends on both the magnitude and sign of the azimuthal index, 𝑙. 

Notably, we show that this behavior is specifically linked to the azimuthal index, 𝑙. We explore three 

scenarios for LG mode detection: first, when the azimuthal mode index, 𝑙, assumes integer values; 

second, when it takes fractional (non-integer) values; and third, employing multiplexing for 

simultaneous detection of multiple vortex beams with different 𝑙 value. The results underscore the 

expanded versatility of SSPG in detecting the OAM of optical vortices. The part of these results is 

published in [59]. 

 

  Theory and basic equations 
 

This section provides the theoretical framework essential for interpreting subsequent experimental 

findings. The model explores the diffraction patterns produced by an incident optical vortex with a 

specific wavelength λ and an azimuthal index 𝑙. This OV is positioned on a sinusoidally-shaped phase 

grating located at z = 0, where "z" represents the propagation axis. In this study, we use Fresnel 

diffraction integral to calculate the optical field at each plane of propagation. The optical field was 

initially propagated to the grating plane, where the incident field distribution was multiplied by the 

relevant transmission function. This resulting field distribution was then propagated. To describe the 

transverse coordinates on the aperture plane, we used Cartesian coordinate denoted as (x, y).  

In Cartesian coordinates, the complex amplitude of an LG beam with the radial index 𝑝=0 over the 

𝑥0−𝑦0 plane can be written as[60]: 
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where A measures the field strength, and we hereafter set A = 1. w0 is the beam radius at z=0, and 𝑙 

indicate the topological charge. 

 The transmission function of a sinusoidally-shaped phase grating (SSPG) can be expressed as follows: 
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 (4-2) 

 

Where x, y are the pitch of the grating in x and y direction respectively, Arg returns the argument of 

the exponential between - and , and a is the amplitude of sinusoidal modulation and parameter for 

fine tuning. The designed SSPG is shown in Figure 4-1. 

The vortex beam pass through the SSPG with a transmission function τ(𝑥0, 𝑦0). The light beam 

complex amplitude field immediately after passing through the SSPG is: 

 
0 0 0 0 0 0( , ) ( , ) ( , )tU x y U x y x y  (4-3) 

 

Accounting for the complex phase modulation introduced by SSPG, the field distribution at the 

observation plane of x1-y1 at each plane of propagation, can be calculated using the Fresnel diffraction 

integral: 

 
  2 2

1 1 0 0 0 0 0 1 0 1 0 0( , ; ) ( , )exp 2tU x y z h U x y i x y x x y y dx dy
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Where ℎ =
1

𝑖𝜆𝑧
𝑒𝑥𝑝[𝑖𝑘𝑧 + 𝑖𝛼(𝑥1

2 + 𝑦1
2)] and 𝛼 =

𝜋

𝑧𝜆
. 
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Figure 4-1: From the left to the right: the simulated results for intensity; and phase profiles of a vortex beam (𝑙 =

1, and beam waist of 0.5mm); and the transmission profile for blazed SSPG with 𝑥= 0.16mm, 𝑦= 12mm. 

 

Figure 4-2 shows the geometry of simulated far-field intensity distributions after the beam's passing 

through the SSPG center. The vortex beams with topological charges 𝑙 = −10  and 𝑙 = +10 with 

beam waist of 0.5mm and 𝜆 = 632𝑛𝑚, passing through SSPG. 

 

Figure 4-2: Simulation results for the far-field intensity distribution after vortex with the beam waist 0.5 𝑚𝑚,    
passing through SSPG for (a) l= -10 and (b) l=10. The other parameters were set as 𝑥= 0.16mm,  𝑦= 12mm, 
and a = 12, z = 2m which provide us with the most discernible fringes. 
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  Far-field intensity profile  
 

4.2.1 Far-field diffraction intensity distribution for integer 
azimuthal indices  

 

In Figure 4-3, the numerically calculated results of the far-field diffraction intensity profiles are 

presented for integer azimuthal mode indices, l = -6,-12,-15 in the upper row, and l = +20, +30, +50 in 

the lower row.  

 

 

Figure 4-3: Numerical simulations depict the far-field diffraction intensity profiles showcasing various integer 
azimuthal mode indices: -6, -12, -15 in the upper row, and +20, +30, +50 in the lower row (from left to right). 
These patterns illustrate the behavior of far-field diffraction intensity under different azimuthal mode indices, 
indicating a rotational change when the sign of the azimuthal index, l, is reversed. 

 

From the results of numerical simulations one can verify that the diffraction for the far-field intensity 

pattern is equal to the modulus of the azimuthal mode index. As can be seen from Figure 4-3, after 

diffraction from SSPG, a vortex beam with topological charge ±l breaks into |l|+1 bright fringes (or |l| 

dark spots). Additionally, the fringe orientation gives the information about the sign of the incident 

vortex beam. Therefore, according to the theoretical calculation, detecting both positive and negative 

signs using SSPG appears feasible. The effect of changing the sign of the azimuthal index, 𝑙 → −𝑙  is 

illustrated in Figure 4-3, it becomes apparent that for negative topological charges, the intensity 

distribution exhibits an anti-diagonal orientation, whereas for positive topological charges, the intensity 

distribution takes on a diagonal configuration. Thus, the number of fringes in the far-field diffraction 

pattern from SSPG and its orientation can be used as a detector of the azimuthal mode index, l, of an 

incident OV. As it can be seen from Figure 4-2, the intensity profile of a vortex beam with l azimuthal 
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index is identical to the – 𝑙 case (a ring shape), this makes it impossible to deduce the azimuthal mode 

index directly from the intensity profile of the vortex beam. The SSPG plays a crucial role in disrupting 

this symmetry, thereby enabling the differentiation between the two distinct signs of the OAM value. 

The ability to discern between positive and negative l values carries profound significance, particularly 

within the domain of communication. Furthermore, it plays a important role in the exploration and 

analysis of vortex beam interaction with chiral structures, opening promising avenues for advancements 

and insights in these fields.  

 

4.2.2 Far-field diffraction pattern of fractional azimuthal indices 
 

We have also investigated the fractional charges in response to the considerable interest surrounding 

the presence of fractional azimuthal indices within optical beams. This fascination primarily centers on 

probing entanglement and furthering research in quantum information [61]. For non-integer azimuthal 

indices (fractional 𝑙 values), a phase singularity appears, creating a line of low intensity. Researchers 

have employed both SPP and CGH to produce optical beams with half-integer fractional azimuthal 

indices. Basistiy et al. [62] utilized a CGH employing a half-integer screw dislocation for generating a 

fractional LG beam. In 2004, Berry mathematically explored the development of waves carrying phase 

singularities of 2𝜋𝑙, where 𝑙 could be either an integer or a fractional value [63]. When the fractional 

phase step (2𝜋𝑙) deviates from an integer value, Berry's theoretical prediction outlines creation of new 

vortex, particularly as this step approaches and surpasses a half-integer value. His insights into the 

transformative nature of the fractional phase step greatly enhance our comprehension of singular optics 

phenomena.  

The far-field diffraction intensity patterns resulting from a vortex beam with a fractional azimuthal 

mode index diffracting from SSPG are shown in Figure 4-4. These patterns illustrate the transition from 

𝑙 = 2 to 3, incrementing in fractional steps of 0.1. Notably, for azimuthal indices between 2 and 2.2, the 

far-field pattern closely resembles that of 𝑙 = 2, exhibiting |𝑙| = 2 dark fringes. However, for values of 

𝑙 ≥ 2.4, a distortion in the far-field diffraction intensity pattern becomes evident, particularly highlighted 

in the red-circled region for 𝑙 = 2.3 in Figure 4-4 below. 
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Figure 4-4: Numerical simulations depict the far-field diffraction intensity pattern for fractional azimuthal mode 
indices. The sequence shows the far-field diffraction intensity patterns ranging from l = 2 to 3, incrementing in 
fractional steps of 0.1. Notably, these patterns reveal the emergence of a new fringe as the azimuthal mode index 
reaches and surpasses a half-integer value. 

 

The distortion observed for 𝑙 ≥  2.4 marks the emergence of a new fringe. As 𝑙 reaches 3, this new 

fringe fully forms, evident by the presence of |𝑙| = 3 dark fringes in the far-field diffraction intensity 

pattern. These intensity profiles depict the evolution from two to three fringes as the azimuthal mode 

index progresses from 𝑙 =  2 𝑡𝑜 3. Specifically, the pattern maintains its 𝑙 = 2 form with two fringes 

between 2 <  𝑙 <  2.3, while for 𝑙 =  3, the presence of three dark fringes becomes prominent 

for 𝑙 ≥  2.5 until reaching completion at 𝑙 =  3. This sequence aligns precisely with Berry's 

prediction [63] that the creation of new vortex occurs at the point where the fractional azimuthal mode 

index passes a half-integer value. The simulation results demonstrate that SSPG possesses the capability 

to detect fractional topological charges, rendering it more applicable for specific applications where the 

detection of fractional charges is a requisite.  
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4.2.3 Simultaneous detection of multiple vortex beams 
 

Here, our objective is to explore the possibility of detecting multiple vortex beams with distinct 

topological charges employing SSPG. We briefly discuss the method for generating multiple OAM 

beams employing two perpendicular fork gratings. The process involves creating a phase mask for 

multiple vortex beams, illustrated in Figure 4-5 (b). By utilizing fork gratings, each with a central 𝑙-fold 

fork, positioned in the horizontal and vertical direction, we combine these two gratings to produce their 

combination, a two-dimensional (2D) fork diffraction grating. In our example, 2D grating resulted from 

a horizontal fork with strength 1-fold fork dislocation and a vertical fork hologram with 3-fold fork 

dislocation. This method facilitates the transformation of a Gaussian light beam into nine distinct 

diffraction orders. Each of these diffraction orders constitutes a vortex beam carrying a unique 

topological charge. Figure 4-5 displays the array of diffraction orders generated by the designed 2D 

grating. Notably, Figure 4-5 (c) shows the variation in topological charge and the mode indices 

(𝑛𝑥, 𝑛𝑦) for each diffraction order. The resulting combination creates (𝑛𝑥 = −1, 𝑛𝑦 = +1) 

diffraction order which is a superposition of diffracted orders (𝑛𝑥 = −1, 𝑛𝑦 = 0) and (𝑛𝑥 = 0, 𝑛𝑦 =

+1) and carries topological charge of 𝑙 = (+3) + (−1) = +2, as shown in Figure 4-5 (c). The 

topological charge for additional diffraction orders can be computed in a similar manner. For this 

specific example (Figure 4-5 (c)), the topological charge corresponding to each diffraction order in the 

can be determined using the expression  𝑙(𝑛𝑥 , 𝑛𝑦) = 𝑛𝑥 + 3𝑛𝑦. 

 

 

Figure 4-5: The simulation results demonstrate the underlying principle of generating multiple vortex beams. (a) 
Input Gaussian beam. (b) computer generated hologram of 2D fork grating (c) far-field intensity pattern. 
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The zeroth order (𝑛𝑥 = 0, 𝑛𝑦 = 0) beam is charged with 𝑙 = 0 and used as a reference beam for 

alignment aid.  We used the central spot in zero-order as a point of reference to which the optical system 

is aligned and to which all other parameters of the designed grating are referenced. 

Since we are limited by the small size of the SLM with our SSPG, we opted for only detection of only 

four vortex beams with distinct topological charges, including the zero order. The conceptual 

representation of detection of the four topological charges is shown in Figure 4-6. These distinctive 

points are placed along two black dashed line (1st and 2nd lines) on the SSPG in Figure 4-6. 

 

Figure 4-6: The conceptual representation of the numerical simulation for detection of multiple vortex beams 
using unique SSPG. The calculation parameters for the designed SSPG, Λx = 0.12mm, Λy = 8 mm, a=12. Other 
parameters are w0=0.5mm, λ=632 nm, z=2m. 

 

In particular, the detection method involves the selective use of spatially chosen diffraction orders: 

(0,0), (−1,0), (−1, +1), and (0, +1). These specific diffraction orders correspond to the 

identification of distinct topological charges: 0, -1, +2, and +3, respectively. This approach is 

specifically designed to detect multiple topological charges in their corresponding diffraction orders. 

The two diffraction orders (0,0) and ( -1, 0) with topological charges of 𝑙 = 0 and 𝑙 = −1, intersect 

the 1st black dashed line (shown on the SSPG hologram). The other two diffraction orders, 

(−1, +1) and (0, +1), intersect the 2nd black dashed line. 

 



56 

  Experimental setup and detected results  
 

The preceding numerical simulations have effectively showed how the far-field diffraction patterns 

resulting from an OV diffraction by unique SSPG can offer valuable insights into the OAM, particularly 

as the azimuthal mode index, denoted as l undergoes variations. This section will now transition from 

simulation to experimental implementation, putting these findings into practice. 

The experimental setup to demonstrate the detection of OAM is shown in Figure 4-7. A frequency 

stabilized He-Ne laser at =632 nm(≈15mW) is used as the light source to provide the fundamental 

Gaussian beam. The laser beam is passed through a neutral density filter (NDF) to decrease the intensity 

of the beam so that it does not saturate the CCD camera. The spatial filter system (SF) before the SLM 

cleans the beam transverse intensity and creates a uniform Gaussian beam. The vortex beam was 

created in the far-field of the SLM. As previously presented, the holograms were of the form of forked 

diffraction gratings in order to impose a 2𝜋𝑙 phase shift on the incident Gaussian beam, where l is the 

azimuthal mode index of the vortex beam. Subsequently, a 4f system is used to rescale the beam size, 

and an aperture in the Fourier plane of the SLM1 was used to select the first diffraction order and 

blocking all other remaining parts.  A half-waveplate (HWP) was used in order to rotate the polarization 

of the incident light beam to the optimum angle for the SLM1 so as to maximize the power diffracted 

into the first-order. 

The plane of SLM1 was relay imaged through a beam splitter (BS) to a near-field CCD camera directly 

recording the beam intensity (CCD1), and a second SLM (SLM2) was used to perform detection of 

OAM state of light using SSPG. The diffracted field was detected by CCD2 (The camera served to 

record and save the images onto the hard drive of a computer). The parameters for SSPG were set as 

x= 0.2 mm, y = 5 mm, and a = 12, which provide us with the most discernible fringes.  
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Figure 4-7: Schematic of experimental set-up (gray-levels correspond to phase values).  NDF: neutral density 
filter, HWP: half-wave plate, MO: Microscope objective, P: Pinhole, CL: Collimated lens, Sf: Spatial filtering, 
A: Aperture, L: Lens, NPBS:non-polarizing Beam splitter, SLM: Spatial light modulator, CCD: Charged coupled 
device. (a) generation part, (b) detection part 

 

 

Figure 4-8:  The experimental arrangement for generation and detection of optical vortex beam. L = lens, SLM = 
spatial light modulator, M = mirror, CCD = charge couple device camera, filter = ND filter, HWP: half wave 
plate, BS 
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 Experimental results  
 

4.4.1 Measured far-field intensity distribution for diffraction of 
vortex from SSPG  

 

The experimental results obtained for the far-field diffraction intensity patterns are seen in Figure 4-10 

for positive TC and Figure 4-11 for negative TC. The experimental results presented for positive values 

of 𝑙 = +8, +10, +20, +25, +30, +40, +60, +80, +100 and +150 and subsequently for the same negative 

values. As can be seen the measured results show very good agreement with previous simulated results. 

Note that even 𝑙 = 150 pattern renders detectable fringes (see Figure 4-9). Explicitly, one can count the 

dark stripes (|l|) or bright fringes (|l|+1) up to 150 from the diffraction pattern, and the pattern orientation 

is flipped when the sign of the azimuthal mode index is changed. 

 

 

Figure 4-9: A close examination of the intensity profile for the experimental results corresponding to the highest 
detected OAM,  𝑙 =  150, along with the line profile taken along a diagonal line.
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Figure 4-10: Experimental results for diffraction of optical vortex from designed SSPG for different positive  
OAM values. 
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Figure 4-11: Experimental results for diffraction of optical vortex from designed SSPG for different negative 
OAM values. 

 

 

 



61 

4.4.2 Detection of multiple vortex beams using SSPG 
 

The far-field intensity distribution for multiple vortex beams after passing SSPG is shown in Figure 

4-12. Multiple vortex beams were detected for diffraction orders of (𝑛𝑥 = 0, 𝑛𝑦 = +1),

(𝑛𝑥 = +1, 𝑛𝑦 = 0), (𝑛𝑥 = −1, 𝑛𝑦 = +1), (𝑛𝑥 = +1, 𝑛𝑦 = +1), for various topological 

chrages.   

 

 

Figure 4-12: Experimental and simulation results for the detection of the multiple topological charges. The 
desired selected diffraction orders, represented by a dashed blue square, are shown in (a)-(d). 
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  Adaptive nature of SSPG: fine-tuning for efficient TC 
detection 

 

Before we end this chapter, we would like to talk about adaptive nature of SSPG using parameter 𝑎. 

We aim to investigate the influence of SSPG parameters on TC detection. We demonstrated the robust 

nature of the designed grating, specifically assessing its adaptability for effective TC detection. The 

designed diffraction grating is uniquely defined by three parameters: Λx, Λy, and 𝑎. These parameters 

play a crucial role in determining the characteristics and behavior of the grating. Altering Λx modify the 

spatial frequency of the linear phase in the x-direction. Consequently, this adjustment allows for control 

over the angle of the first diffraction order. The parameter Λy controls the period of the sinusoidal 

function in the y-direction. We performed the simulation using SSPG with fixed value of Λx and  Λy 

while changing the 𝑎 parameter. The corresponding results are listed in Figure 4-13. When the 

paremeter 𝑎 is set within the range of 10 to 12, a relatively good conversion for detection results is 

obtained. This shows the importance of the 𝑎 parameter of the proposed SSPG to the measurement 

effect and the adaptability of the SSPG. For different conditions, the necessary fine-tuning of SSPG can 

be made within this range to obtain clear and accurate transformation results. Therefore, the SSPG 

shows good adaptability to achieve the expected measurement results. 

 

Figure 4-13: Outline of the SSPG with Λx = 0.16mm, Λy = 12mm and different ′𝑎′ parameters and their 
corresponding theoretical and experimental results in for 𝑙 =  −10. Other parameters are w0=0.5mm, λ=632 nm, 
z=1.5m. 
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 Investigating detection efficiency in the presence of laser beam 
misalignment tolerance 

 

The robustness of a detection method to misalignment plays a crucial role in performance and precision 

of various applications. This consideration underscores the importance of designing detection methods 

that exhibit resilience to misalignment, ensuring reliable and robust detection of vortex beam. This 

chapter focuses on the tolerance of grating and examines the effects of beam misalignment on TC 

detection.  

Nevertheless, the prerequisite for aligning the transmitting and receiving elements presents a significant 

challenge to the practical implementation of vortex beams. In an effort to comprehend the detection 

performance resulting from input beam misalignment, we begin by examining uniform beam steering 

to address two distinct misalignment scenarios: Off-axis horizontal displacement and off-axis vertical 

displacement within the SSPG plane. Subsequently, we proceed by studying the response of the 

detection system upon change of oblique angles and axis deviations. Both the theory and experiments 

demonstrate the impressive ability of SSPG to detect TC even when there's beam misalignment. This 

highlights SSPG's remarkable capability to accurately identify TC values despite potential alignment 

challenges. 

 

  SLM-Based Laser Beam Steering 
 

To induce a transverse displacement in the laser beam incident on the plane of SSPG, we employed 

beam steering using a SLM. Laser beam steering techniques have witnessed remarkable advancements. 

Both mechanical [64] and non-mechanical [65] approaches have been developed for diverse 

requirements.  

Mechanical methods typically utilize mirrors or prisms, whereas non-mechanical approaches involve 

technologies such as acousto-optic modulators and spatial light modulators. These techniques provide 

precise control and swift beam positioning, aligning with the requisites of contemporary applications. 

The methodology used in this study centers on the utilization of an SLM, and its underlying principle 

will be briefly explained. 
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SLMs present a compelling alternative to, and in some applications, a viable replacement for 

conventional mechanical beam steerers. SLMs offer several advantages, including the absence of 

moving components, reduced weight, compactness, and low power consumption. The theoretical 

capabilities of SLMs could be exceptionally high if it were feasible to generate flawless diffraction 

gratings. However, in practice, the phase distributions produced by today's available SLMs exhibit 

imperfections. This limitation is primarily attributed to factors such as pixelization and phase 

quantization inherent to SLMs. The small-scale pixel structures in relation to the thickness of the LC 

layer result in unwanted interference among neighboring pixels. 

The technique of beam steering can be effectively implemented using CGH loaded on a SLM. By 

employing these holograms, characterized by linear phase profiles, it becomes possible to induce a one-

dimensional transverse displacement of the beam spot at the focal plane of a lens. This approach offers 

precise control over the direction in which the optical beam is directed, thereby enabling targeted and 

dynamic steering. By applying a linearly varying phase delay the light will be deflected (Figure 5-1). 

The inherent periodic aspect of the phase finds frequent application, often employing phase gratings 

shaped with an amplitude of 2π. 

 

Figure 5-1  Illustrations displaying the deflection of a beam due to linear phase shifts. The phase distribution can 
be cyclically adjusted in increments of 2π to represent a blazed grating. 

 

The spatial frequency of the blazed grating dictates the angle of deflection, while the linear phase shift 

creates an asymmetrical diffraction pattern in the far-field. The grating equation expresses the 

connection between the diffraction angle (βm) for the qth diffraction order and the grating period (Λ) 

measured in pixel units. 
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sin q

q






 (5-1) 

 

Where λ is the wavelength and 𝛿 is the pixel pitch. The first diffraction order is commonly utilized for 

beam steering and the maximum deflection angle is then 

 1
1,max sin

2





   (5-2) 

 

Commercial SLMs typically feature pixel pitches from 6 to 30 μm, enabling maximum deflection 

angles spanning from 0.1° to 12.3° for wavelengths between 450nm to 1500nm. Employing small 

phase shifts across a broad beam area allows for precise and accurate beam steering. 

 

 Results and discussion 
 

We theoretically and experimentally investigated the effect of the lateral shift of the incident vortex 

beam on the plane of SSPG in steps of 0.25 mm. The incident vortex with l =10 and the beam waist of 

0.5 mm is displaced in two directions. The respective diffraction patterns are presented in Figure 5-2. 

The first 8 pictures (Figure 5-2 (a1) – (a8)) show theoretical results of vortex diffraction from SSPG, 

when the vortex center is displaced in vertical direction at 0, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50 and 1.75 

mm from the center, and next eight pictures (Figure 5-2 (b1) – (b8)) show the corresponding 

experimental results. It can be inferred that for vertical displacement the intensity pattern will be 

degraded when the incident vortex is approximately at inflection points of the sinusoidal function 

(Figure 5-2, (a4) and (a5)). As long as the center of the beam is close to either maximum or minimum 

(Figure 5-2, (a2), (a3), (a6) and (a7)) the TC of the vortex beam is still recognizable. From the results, 

it becomes evident that the far-field intensity exhibits ideal fringe visibility when positioned at the 

maximum, minimum, or in close proximity to these points. As anticipated, the theoretical and 

experimental results reveal that horizontal displacements do not induce any changes in the intensity 

pattern of diffracted field. This consistency underscores the robustness of the detection system in 

response to horizontal beam displacement, Figure 5-2 (c1) to (c4), and Figure 5-2 (d1) – (d4) shows the 

theoretical and experimental results, respectively.   
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Figure 5-2: Simulation and the corresponding experimental for vortex beam with l = 10  results for lateral shift of 
the beam in vertical direction, (a1) – (a8):  at 0, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50 and 1.75 mm from the center, 
and (b1) – (b8) the corresponding experimental results and (c1) – (c4): in horizontal 0, 0.25, 0.50, 0.75 mm and 
(d1) – (d4) the corresponding experimental results.   
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Both theoretical and experimental findings indicate that fringe resolution is not strictly dependent on 

the position of the incident vortex beam. To be more specific, in Cartesian coordinates, certain points 

along the y-axis of SSPG (vertical direction), particularly those corresponding to local maxima or 

minima, yielded excellent fringe resolution. However, it is worth noting that there was a degradation in 

resolution at inflection points of the SSPG, yet the TC remained recognizable. Along the x-axis 

(horizontal direction), the diffraction pattern remained consistent. We successfully investigated the 

influence of vortex beam displacement on the TC detection, highlighting the versatility and reliability 

of the method. The lateral (horizontal) shift invariance of detection demonstrated here is highly 

advantageous, as it reduces the need for precise adjustments to the incident beam's position on the plane 

of SSPG. This intrinsic stability in the presence of lateral shifts significantly enhances the practicality 

and efficiency of optical systems, imparting valuable benefits for applications where misalignment can 

be a common challenge.  

 

 Effect of oblique illumination 
 

For the investigation of the influence of the input angle, we varied the angles of SLM2 across the SSPG 

plane. The experimental results (see Figure 5-3) demonstrate robust consistency even with varying 

rotations of SLM2 at angles of 0°, 10°, and 15°. This stability highlights the method's ability to sustain 

performance reliability across diverse incident angles. 

 

 

Figure 5-3 Experimental results for rotation of the second SLM by angles for (a) 0, (b) 10 and (c) 15 degrees for 
the l = -10 beam 
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 Towards complete modal detection of LG beams 
 

Harnessing the full advantage of the LG modes in different application requires detection over both the 

azimuthal and radial components. Studies indicate that precise manipulation of both radial and 

azimuthal aspects of LG mode has significantly contributed to the enhancement of classical 

communication protocols reliant on mode-division multiplexing schemes. [66]. It has also been 

instrumental in manipulating light propagation through complex media, finding applications in diverse 

fields such as imaging through multi-mode fibers [67] and the development of programmable optical 

circuits [68]. Furthermore, the ability to detect both mode indices of LG mode is essential for harnessing 

the benefits of high-dimensional encoding, which enhances communications by increasing their 

capacity. This access also facilitates noise-resistant entanglement distribution [69].  

Chapter 2 laid the groundwork for exploring the capability of detecting both mode indices in any 

measurement technique. Furthermore, the optimal method and scheme to determine both the azimuthal 

and radial mode indices (l and p) remain unclear. While interferometric techniques have demonstrated 

multi-outcome detection for both the azimuthal and radial aspects of LG modes [70-72], their scalability 

is inherently complex. 

In chapter 4, our examination focused on the detection of LG mode with a radial mode index set to zero 

𝑝 = 0, But 𝐿𝐺𝑝
𝑙  modes are comprised of both an azimuthal mode index 𝑙 and radial mode index 

denoted as 𝑝. The focus of this chapter revolves around detecting 𝐿𝐺𝑝
𝑙 , where 𝑝 ≠ 0. Here, we extend 

our investigation to demonstrate the generation and detection of LG modes for the case when 𝑝 ≠ 0.  

This chapter investigate the theoretical and experimental exploration of far-field diffraction intensity 

patterns for LG beams of different mode indices, 𝑙 and 𝑝. As will be demonstrated, the incorporation 

of the radial index "p" significantly influences the characteristics of the far-field diffraction pattern. 

However, clear guidelines will be established to directly deduce both mode indices from the intricate 

far-field diffraction patterns. This systematic approach ensures a comprehensive understanding of the 

complex interplay between these indices, allowing for precise complete modal (including azimuthal 

and radial) detection of LG beams. 
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 Generation of LG mode: theoretical framework and 
experimental results 

 

LG modes arise from phase-modulating of an incoming Gaussian beam using an SLM loaded with a 

fork shaped hologram, where in polar coordinate the phase grating takes the form of 

 2 cosrm 
   


 (6-1) 

 

where 𝑚 = 0, ±1, ±2, …. and 𝛬 𝑖𝑠 the pitch of the fork grating. The fork grating's diffraction angle 

can be altered by fine-tuning parameter Λ, optimizing the phase hologram within the transmission 

function formula represented as [73]: 

 ( , )( , ) i H rT r e     (6-2) 

 

where 𝛿 represent the amplitude of the phase modulation. The formula for the CGH can be written [73]: 

 
 

1 2, mod( cos ,2 )
2

H r r
   


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
 (6-3) 

 

Where 𝑚𝑜𝑑(𝑎, 𝑏) = 𝑎 − 𝑏𝑖𝑛𝑡(𝑎/𝑏) is the reminder of 𝑎/𝑏. As shown before, when 𝑝 = 0, the 

generated hologram lacks radial nodes, and the bifurcation number is dependent upon the specific value 

of the 𝑙 in Equation (6-3). However, when 𝑝 > 0, its phase hologram is similar to that of 𝑝 = 0; but 

one or more periodic radial nodes appear radially (see Figure 6-4). 

LG modes with radial index 𝑝 ≠ 0 can be generated by the phase modulation of Gaussian beam with 

the following phase function: 

   2 2
0( , ) 2phase pr l L r w        (6-4) 

 

Where 𝐿𝑝
|𝑙| represents the Laguerre polynomial with parameters 𝑙 and 𝑝. Figure 6-1, shows the 

simulation results of high-order LG beam generation. Figure 6-1(a) shows the fork grating required to 

generate the 𝐿𝐺3
3 beam and Figure 6-1(b) shows the fork grating required to generate 𝐿𝐺2

5.  
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The phase modulation function used in Figure 6-1(a) and (b), 𝑖𝑠 𝜑𝑝ℎ𝑎𝑠𝑒(𝑟, 𝜑) = −𝑙𝜑 +

𝜋𝜑 (−𝐿𝑝
𝑙 (2𝑟2 𝑤0

2⁄ )) in which the beam-waist radius is 𝑤0 =2.5 mm. As it can be seen, when 𝑝 >

0, one or more circular dislocations appear in the fork grating of the LG beam.  

 

 

Figure 6-1:  Numerically simulated with added closer view (a) Fork grating of 𝐿𝐺3
3 𝑏𝑒𝑎𝑚, (b) Fork grating of 

beam 𝐿𝐺2
5 

 

Examining the impact of the waist radius fork grating structure, we simulated the fork gratings of the 

𝐿𝐺1
1 beam for different waist values. Figure 6-2(a) and (b) show fork hologram corresponding to 𝐿𝐺1

1 

beams having a waist of 𝑤0 =1.0 mm and 2.5 mm, respectively. 
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Figure 6-2: numerically simulated fork-shaped grating of 𝐿𝐺1
1 beam with (a) 𝑤0 =1.0 mm and (b) 2.5 mm 

 

The profiles of the fork grating in cases where 𝑝 ≠ 0 show interplay of the total phase governed by 

exp(i𝑙φ) and Laguerre polynomial  𝐿𝑝
|ℓ|

(2𝑟2 𝑤0
2⁄ ) through the magnitude of w0. As shown in Figure 

6-2, the fork-grating profile of the 𝐿𝐺1
1 beam displays a circular dislocation. With a larger beam-waist 

radius, the size of this circular dislocation expands. 

Figure 6-3, are the simulated and measured experimental results for intensity distribution of the 𝐿𝐺1
3, 

𝐿𝐺2
3, 𝐿𝐺3

3 . The simulation parameters are set as follows: 𝜆 = 632 𝑛𝑚, 𝑤0 = 1.0 𝑚𝑚.  

Theoretical and experimental findings, depicted in Figure 6-3, illustrate that for 𝑝 > 0, the light-

intensity distribution of the LG beam displays a multi-ring intensity profile, where the count of bright 

rings corresponds to 𝑝 + 1. The experimental outcomes align consistently with the theoretical 

simulation results. 
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Figure 6-3 Numerical simulation and experimental results for LG beam (a) 𝐿𝐺1
3, (b) 𝐿𝐺2

3,(c) 𝐿𝐺3
3. 

 

 

  Basic equations for diffraction of LG mode from SSPG 
 

In this section, we provide the governing equation for theoretical calculations of diffraction of an 

incident LG mode (𝑝 ≠ 0, 𝑙 ≠ 0) with a wavelength of λ and an azimuthal index 𝑙 and radial index 𝑝. 

The LG mode is centered on a sinusoidally-shaped phase grating located at z = 0, where "z" represents 

the propagation axis. As before, we employ the Fresnel integral for theoretical calculation of optical 

field at each plane of propagation. The optical field was initially propagated to the SSPG plane, where 

the incident field distribution was multiplied by the relevant transmission function of SSPG. This 

resulting field distribution was then propagated to the far-field (𝑧 = 2𝑚). To describe the transverse 

coordinates on the aperture plane, we used Cartesian coordinates denoted as (x, y).  

Expressed in Cartesian coordinates, the complex amplitude of an LG mode with a radial index 𝑝 ≠ 0 

across the x0-y0 plane can be represented as [60]: 

 

   
 2 22 2

0 00 0
0 0 0 0 2 2

0 0

2
, ( .sgn ) exp p

x yx yU x y x i y L
w w

  
    
    

 (6-5) 
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where 𝑤0 is the beam radius at z=0, 𝑙 and 𝑝 indicate the azimuthal mode index and radial mode index 

respectively. 

 The transmission function of the SSPG can be expressed as follows: 

 
0 0

0 0
2 21( , ) exp sin( )

2 x y

x yx y Arg i ia 
 



  
         

 (6-6) 

 

Where x, y are the pitch of the grating in x and y direction respectively, Arg returns the argument of 

the exponential between - and , and a is the amplitude of sinusoidal modulation and parameter for 

fine tuning.  

The vortex beam pass through the SSPG with a transmission function τ(𝑥0, 𝑦0). The light beam 

complex amplitude field immediately after passing through the SSPG is: 

 
0 0 0 0 0 0( , ) ( , ) ( , )tU x y U x y x y  (6-7) 

 

Accounting for the phase function introduced by SSPG, the field distribution at the observation plane 

of 𝑥1-𝑦1 at each plane of propagation, can be calculated using the Fresnel diffraction integral, 

 
  2 2

1 1 0 0 0 0 0 1 0 1 0 0( , ; ) ( , )exp 2tU x y z h U x y i x y x x y y dx dy
 

 
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    (6-8) 

 

Where ℎ =
1

𝑖𝜆𝑧
𝑒𝑥𝑝[𝑖𝑘𝑧 + 𝑖𝛼(𝑥1

2 + 𝑦1
2)] and 𝛼 =

𝜋

𝑧𝜆
. 

 

As depicted in Figure 6-4, and from the theoretical results it can be seen that diffraction of 𝐿𝐺𝑝≠0
𝑙  from 

SSPG comprised of multi-row or multi-columns intensity distribution. This phenomenon can be 

directly understood as each ring of the LG mode is diffracted into a new row or column. 
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Figure 6-4 Simulation results for the far-field intensity distribution after passing through SSPG for (a) 𝑙 = −2, 𝑝 =

2  and (b) 𝑙 = +2, 𝑝 = 2. The parameters for SSPG were set as 𝑥= 0.16mm,  𝑦= 12mm, and a = 12, z = 2m 
which provide us with the most discernible fringes. 

 

 

6.2.1  Complete modal detection of LG mode: simulation results 
 

Within this section, we aim to analyze the utilization of SSPG for the detection of multi-ring vortex LG 

beams. The theoretical results calculated from Fresnel integral (Figure 6-4) show that the far-field 

diffraction pattern has sub bright spots of the diffraction field in arrays of 𝑛 ×  𝑚, as illustrated in 

Figure 6-5.  



75 

By analysis of intensity profile it can be deduced that for multi-ring vortex beams, the radial index 𝑝 

can be determined using the following relation:  

 ( , ) 1p Min m n   (6-9) 

 

where 𝑀𝑖𝑛(𝑚, 𝑛) denotes taking smaller value. The values for 𝑚 and 𝑛 represent the count of bright 

spots within an array, indicated respectively by the red and blue arrows. 

The subtraction of number of sub bright spots in the diffracted field is associated with |l|: 

 m n   (6-10) 

 

The determination of the sign of the topological charge 𝑙 involves observing the arrangement direction 

of diffracted spots corresponding to the 𝑀𝑎𝑥(𝑚, 𝑛) value. A diagonal arrangement indicates a positive 

𝑙, while an anti-diagonal arrangement signifies a negative 𝑙. This process is visually represented in 

Figure 6-5. 

 

Figure 6-5 The procedure for detecting the 𝐿𝐺𝑝=1,2,3,4
1   mode from the far-field diffraction pattern from SSPG 

(Green arrows indicate the resultant pattern after diffraction from the SSPG). 
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Figure 6-6:  The procedure for detecting the 𝐿𝐺𝑝=1,2,3,4
−2   mode from the far-field diffraction pattern from SSPG 

(Green arrows indicate the resultant pattern after diffraction from the SSPG). 

 

 

6.2.2  Experimental detection of higher order LG mode using 
SSPG 

 

The experimental configuration remains consistent with the previous setup, albeit with a modification: 

the first SLM is now loaded with fork-shaped holograms using different azimuthal and radial mode 

indices. The Figure 6-7, presents the theoretical and detected results for different LG modes. It is evident 

that there is a good agreement between both theoretical and measured results. 
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Figure 6-7: Theoretical and experimental results of far-field diffractions when multi-ring LG beams are 
diffracted by SSPG. (a) 𝐿𝐺2

2, (b) 𝐿𝐺3
4, (c) 𝐿𝐺3

−4and (d) 𝐿𝐺4
−5 

 

In summary, a systematic approach for the comprehensive modal detection of LG modes from the far-

field diffracted light field of SSPG can be outlined. Firstly, enumerate the count of bright spots within 

the 𝑚 and 𝑛 arrays. Then, calculate the radial index (p) using Equation (6.9). Subsequently, compute 

the absolute value of the topological charge |𝑙| by subtracting 𝑚 from 𝑛. Lastly, based on the maximum 

value derived from 𝑚 and 𝑛, observe the orientation of the spots; a diagonal orientation signifies a 

positive 𝑙, while an anti-diagonal orientation indicates a negative 𝑙. 
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 Conclusion and future work 
 

The primary objective of this research was to efficiently and robustly detect the OAM carrying in optical 

vortex beams. The thesis proposes a new grating  for this purpose that we named sinusoidally shaped 

phase grating (SSPG). The SSPG can be fine-tuned only using three parameters. Our methodology's 

effectiveness was examined through Fresnel diffraction integrals and later confirmed through 

experimental results. This research was accompanied by the development of a Matlab code for the rapid 

implementation of various designed phase modulations for both generation and detection parts. Both 

theoretical calculation and experimental validations lead to the conclusion that this method stands out 

for its robustness and efficiency in detecting higher-order LG modes where the mode index for 𝑙, 𝑝 ≠

0. The behavior of the far-field diffraction intensity pattern was shown to be dependent upon the mode 

index of LG mode.  

Chapter two, comprised a literature review of various techniques employed in detecting OAM.  

However, we wanted to highlight the advantage of our method in contrast to other techniques in terms 

of robustness and ability to detect higher order LG modes. In contrast to interferometric methods, our 

approach simplifies the process by eliminating the need for a second beam. Furthermore, our method 

shows exceptional robustness and impressive tolerance to beam misalignment, a critical advantage. 

This capability holds particular value in applications where small deviation of the beam within an 

optical system can affect OAM detection. Both theoretical and experimental findings indicate that the 

OAM detection efficiency, is notably high when the vortex resides at the center of the maximum or 

minimum of SSPG, whereas degradation of fringes occurs at inflection points of the grating, but still 

OAM state of light is recognizable. The change of orientation of far-field diffraction pattern associated 

to 𝑙 value showed to be useful for detecting negative and positive topological charges. We show the 

robustness of our method by showing the detection results for high order topological charge up to 𝑙 =

±150. Actually, we are confident that with our method the values of the azimuthal mode indices, 𝑙, 

can go up to even higher values by using SLMs with higher resolution and higher fill factor. This proves 

that our design, although simple and modest, is robust and could achieve the main goals for this work. 

The grating's adaptability in fine-tuning parameters finds crucial application in scenarios where optical 

systems have aberrations. 

Furthermore, our research demonstrates the ability of the proposed grating to detect fractional charges. 

The simulation results demonstrate that SSPG possesses the capability to detect fractional topological 
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charges, rendering it more applicable for specific applications where the detection of fractional charges 

is a requisite. Our grating's ability to detect fractional topological charges and multiple OAM modes 

underscores its immense value across various applications in optical and quantum communication.  

 

Another intriguing aspect of the SSPG was its unique design enabling the simultaneous detection of 

multiple TC. We successfully detected four distinct TCs simultaneously. This unique capability 

showcases the versatility and efficiency of the SSPG in handling complex optical scenarios, offering a 

valuable tool for applications that involve the manipulation and analysis of multiple TC. 

In the final chapter, we underscored the importance of LG modes, highlighting their distinctive features 

when both radial and azimuthal modes are present. Our proposed grating demonstrates remarkable 

efficacy in detecting LG modes, particularly when 𝑝 ≠ 0. The results indicate the exceptional 

performance of the grating in detecting such modes, emphasizing its versatility and potential impact on 

applications demanding precise control over spatial modes. 

Our research lays the groundwork for exciting possibilities in future investigations and innovations. 

One avenue for exploration involves integrating our proposed grating with cutting-edge technologies. 

By incorporating machine learning algorithms or adaptive optics, we envision enhancing the grating's 

capabilities and expanding its applications. Furthermore, our research suggests potential applications in 

the realm of quantum optics and information processing. Investigating how our proposed grating could 

contribute to secure communication and advancements in quantum computing opens new frontiers in 

these fields.  

In this research, we explored the response of our SLM under various phase modulations, employing 

pure-phase modulation for both generation and detection. To gain deeper insights into the implications 

of our findings and chart a course for future investigations, it would be worthy to consider a shift 

towards exploring the generation and detection of OAM using complex amplitude modulation. 

Future studies could enrich this exploration by incorporating advanced optical modulation techniques, 

and in particular, by leveraging the capabilities of a digital micro-mirror device (DMD). The integration 

of complex amplitude modulation techniques, coupled with innovative device technologies, may offer 

enhanced control and manipulation of OAM, opening up new possibilities for applications in fields 

such as quantum communication, optical communication. 
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There are many more interesting questions that could be researched in future research. Here, I give my 

personal list of possible future topics in OAM detection system. 

1- Detection of collinear superposition of OAM beams 

2- Detection of higher order non-collinear superposition of OAM beams using diffraction 

3- Detection of OAM of light at the single photon level  

4- Evaluation of the influence of digital micro-mirror device on OAM detection efficiency 

5- Development of an algorithm for automated OAM detection 
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