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with Ansätze for quark propagators
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We study two quark-propagator meromorphic Ansätze that admit a clear connection between calculations
in Euclidean space and Minkowski spacetime. The connection is established through a modified Wick
rotation in momentum space, where the integration contour along the imaginary axis is adequately deformed.
The Ansätze were previously proposed in the literature and fitted to Euclidean lattice QCD data. The
generalized impulse approximation is used to calculate the pion transition form factor and electromagnetic
form factor, correcting an earlier result. The pion decay constant and distribution amplitude are also
calculated. The latter is used to deduce the asymptotic behavior of the form factors. Such an asymptotic
behavior is compared with those obtained directly from the generalized impulse approximation and the causes
of differences are pointed out.

DOI: 10.1103/PhysRevD.107.094025

I. INTRODUCTION

Obtaining the properties of hadrons as quark and gluon
bound states, from the underlying theory of strong inter-
actions, QCD, has proven to be extremely challenging.
Reproducing even relatively simple observables, such as
decay constants, is difficult whenever the nonperturbative
regime of QCD must be dealt with. However, powerful
tools for this task have been developed over the last
decades. These tools include lattice QCD [1,3] calculations
in Euclidean space and continuum functional methods.
The latter is exemplified by the functional renormalization
group (see, e.g., Refs. [4,5] and references therein) and
Schwinger-Dyson equations (SDEs); see, e.g., Refs. [6–9]
for reviews and Refs. [10–16] for examples of calculations
of some observables addressed also in the present paper.
A general discussion about meson physics in new exper-
imental programs is provided by Refs. [17,18].
Because of technical complications inherent to these two

continuum functional approaches, most corresponding
calculations are not done in physical Minkowski spacetime
but, again, in four-dimensional Euclidean space. Hereby
one exploits a technical trick, the so-called Wick rotation,
to map quantum field theory in Minkowski spacetime to
Euclidean space. The situation with the Wick rotation
relating Minkowski with Euclidean space must be under

control, but this is highly nontrivial in the nonperturbative
case. In particular, it should be clarified whether non-
perturbative QCD Green’s functions employed in a calcu-
lation permit Wick rotation. In this work, we do it for two
strongly dressed quark-propagator Ansätze [19,20] model-
ing nonperturbative QCD.
On the formal level, the Osterwalder-Schrader re-

construction theorem states that the Schwinger functions
of some Euclidean field theory can be analytically extended
to Wightman functions of the corresponding Minkowski
space quantum field theory, providing that these Schwinger
functions satisfy some set of constraints, the Osterwalder-
Schrader axioms [21].
The widely used rainbow-ladder truncation to the coupled

SDEs for the dressed quark propagator (“gap equation”) and
Bethe-Salpeter equation (BSE) for a quark-antiquark bound
state are usually formulated in the Euclidean space and
equations are solved for spacelike momenta [22]. Although
some physical quantities can be extracted from the results in
Euclidean space alone, many others, such as, e.g., decay
properties, cannot be calculated with just real Euclidean
four-momenta. In general, for solving the BSE and calcu-
lation of processes, knowledge is needed about the analytic
behavior in part of the complex momentum-squared plane
(see, e.g., Ref. [23]). In this respect, analytic continuation of
auxiliary quantities like Green’s functions of the theory,
notably the quark propagator, opens up the possibility to
provide an understanding of strong-interaction processes
from results of lattice QCD and functional methods.
The use of such analytically continued propagators

should be tried in calculations of hadron observables from
the QCD substructure. The pion decay constant is an
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example of a relatively simple such quantity, whereas the
pion form factors are already on a much higher level of
difficulty; namely, due to their momentum dependence, one
must take into consideration both the perturbative and
nonperturbative regime of QCD. The charged pion electro-
magnetic form factor (EMFF) is calculated to next-to-next-
to-leading order in chiral perturbation theory [24], using
the QCD sum rules [25], vector-meson dominance [26],
Sudakov suppression [27], light-cone sum rules [28–30],
AdS/QCD correspondence [31,32], lattice QCD in
quenched approximation [33,34], or with the dynamical
quarks [35–38], The transition form factor (TFF) is
calculated using the QCD sum rules [39,40], light-cone
sum rules [41–44], light-front constituent quark models
[45–49], vector-meson dominance [50], anomaly sum
rule [51,52], Sudakov suppression [53–55], lattice QCD
[56,57], and large-Nc chiral perturbation theory [58].
However, only a limited number of papers deal with

the quark-propagator modeling, or solving its SDE, in
Minkowski space. Šauli et al. [59] have explored the
fermion-propagator SDE in Minkowski space. The inter-
action used is a meromorphic function of momentum
transfer squared; it has two simple poles on the real axis,
in the timelike region. Various spectral representations of
the fermion propagator are employed. Ruiz Arriola and
Broniowski [60] have proposed a spectral quark model
based on a generalization of the Lehmann representation of
the quark propagator and applied it to calculate some low-
energy quantities. While their σV and σS functions [defined
by Eq. (1)] exhibit only cuts on the timelike part of the real
axis, the quark dressing function AðzÞ [see Eq. (1)] has
pairs of the complex-conjugate poles in the complex
momentum plane. Siringo [61,62] has studied the analytic
properties of gluon, ghost, and quark propagators in QCD,
using a one-loop massive expansion in the Landau gauge.
He studies spectral functions in Minkowski space, by
analytic continuation from deep infrared, and finds
complex-conjugated poles for the gluon propagator, but
no complex poles for the quark propagator. A group of
interconnected papers [63–69] typically start from a con-
sistently truncated system of SDEs and BSE, or some
algebraic Ansätze for the quark propagator and Bethe-
Salpeter (BS) amplitude inspired by such a consistent
system. They have calculated the EMFF, TFF, and pion
distribution amplitude (PDA), sometimes relying on
Nakanishi-like representation [70–72] to solve the practical
problem of continuing from Euclidean space to Minkowski
space [66]. The Nakanishi representation is also used in
Refs. [73,74]. The covariant spectator theory is related to
the SDE and BSE in Minkowski space [75–78]; one starts
with the usual BSE with one particle restricted to the mass
shell, resulting in a three-dimensional equation. In addition
to the one-gluon exchange, the interaction kernel may
include a covariant generalization of linear confining
potential. The pion EMFF is calculated in Refs. [79–81].

In this work, we study two quark-propagator Ansätze.
The first one is by Mello et al. (MMF) [19], and the second
one is by Alkofer et al. (ADFM) [20]. The propagators are
defined in momentum space; the pertinent dressing func-
tions are meromorphic functions of momentum squared,
exhibiting only simple poles on the timelike part of the real
axis. On the good side, such a simple analytic structure
makes the Wick rotation allowed and technically feasible,
at least for the processes and approximation schemes under
consideration. The Ansätze are fitted to the lattice data,
which are available for the spacelike momenta. On the bad
side, the meromorphic Ansätze are not able to reproduce
the perturbative QCD (PQCD) asymptotic behavior, and
we showed that this deficiency impairs calculation of
some processes, notably the high-Q2 behavior of the form
factors. In the present work, these Ansätze are used to
obtain the pion decay constant, neutral pion TFF, charged
pion EMFF, and PDA. In particular, we correct the result
for the pion EMFF given in Ref. [19].
The remainder of the paper is organized as follows.

Sections II and III introduce the quark-propagator models
of Refs. [19,20], respectively. In Sec. IV, the pion decay
constant is calculated; approximation and numerical meth-
ods, which will be used throughout the paper, are pre-
sented. In Sec. V, the pion EMFF is calculated, while
Sec. VI deals with the TFF. The calculation of the PDA is
addressed in Sec. VII and the obtained distribution is
used to calculate the asymptotic form of the TFF. Various
approximations are investigated and compared with those
of Secs. V and VI. Section VIII provides a summary and
conclusions.

II. MMF QUARK PROPAGATOR

The dressed quark propagator in a general covariant
gauge can be written as

SðqÞ ¼ Zð−q2Þ½=q −Mð−q2Þ�−1
¼ ½Að−q2Þ=q − Bð−q2Þ�−1
¼ −σVð−q2Þ=q − σSð−q2Þ; ð1Þ

where M ¼ B=A is the renormalization-point independent
quark mass function and Z ¼ 1=A is the wave function
renormalization (see, e.g., Ref. [22]). The Minkowski metric
is used, with the signature ðþ − −− Þ. The MMF quark
propagator [19] is fixed by the following quark mass
function and wave function renormalization parametrization:

MðxÞ ¼ ðm0 − iεÞ þm3½xþ λ2 − iε�−1; ð2aÞ

ZðxÞ ¼ 1; ð2bÞ

wherem0¼0.014GeV, m¼0.574GeV, and λ¼0.846GeV.
The infinitesimally small parameter ε prescribes how to treat
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contour integration around poles. The function M is shown
as the blue solid line in Fig. 1. (This Ansatz form has
been already used to fit lattice QCD data [82]. There, the
parameter values m0, m, and λ are rather close to those used
in Ref. [19] and in the present paper; nevertheless, the
propagator of Ref. [82] exhibits one real and a pair of
complex-conjugated poles.) Asymptotic expansions of M
about ∞ and 0 are

MðxÞ ¼ m0 þ
m3

x
−
λ2m3

x2
þO

��
1

x

�
3
�
; ð3Þ

MðxÞ ¼
�
m0 þ

m3

λ2

�
−
m3x
λ4

þm3x2

λ6
þOðx3Þ; ð4Þ

respectively. The functions A, B, σV , and σS depend
algebraically on Z and M and are defined for convenience.
The quark dressing functions σV and σS, introduced by
Eq. (1), can be decomposed as

σVðxÞ ¼
X3
j¼1

bVj
xþ pj

; ð5aÞ

σSðxÞ ¼
X3
j¼1

bSj
xþ pj

; ð5bÞ

where the coefficients pj, bVj, and bSj (j ¼ 1, 2, 3) are
certain complicated algebraic functions of the parameters
m0, m, and λ. Obviously, σV;SðxÞ → 0 for all x → ∞.

III. ADFM QUARK PROPAGATOR

The dressing functions σ of the ADFM meromorphic
Ansatz [20] that have three real poles (by choosing their
bj ¼ 0, see Ref. [20]) are

σVðxÞ ¼
1

Z2

X3
j¼1

2rj
xþ a2j

; ð6aÞ

σSðxÞ ¼
1

Z2

X3
j¼1

2rjaj
xþ a2j

; ð6bÞ

where a1¼0.341GeV, a2¼−1.31GeV, and a3¼
−1.35919GeV; r1 ¼ 0.365, r2¼1.2, r3¼−1.065, and
Z2¼0.982731 [20]. The coefficients rj and aj satisfy

X3
j¼1

rj ¼
1

2
;

X3
j¼1

ajrj ¼ 0: ð7Þ

The first of the above constraints follows from the con-
sideration of the large-momentum limit of σVðxÞ; the
second one arises from the requirement that MðxÞ must
vanish for large spacelike real momenta.1 The Ansatz (6)
guarantees that the quark dressing functions σS;VðzÞ → 0

for all jzj → ∞ in the complex z plane [84]. For the
given set of parameters, the functions x ↦ Að−xÞ and
x ↦ Bð−xÞ have two real poles for x < 0 [see b1;2 below
Eq. (8)]. The corresponding quark mass function M is
shown as the red dashed line in Fig. 1.
Euclidean formalism adopted in Ref. [20] avoids pro-

bation of the quark dressing functions (6) near their poles,
x ¼ −a2j , j ¼ 1, 2, 3. As we want to analytically continue
σ’s to the complex plane and use these functions for the
calculation in Minkowski space, a prescription for the
pole treatment ought to be defined. An obvious choice is
Feynman’s iε prescription, already used in the MMF-
Ansatz case (2a); we push the poles infinitesimally from
the real axis: x ¼ −a2j þ iε, j ¼ 1, 2, 3. We use this
prescription throughout this paper.
Functions AðxÞ and BðxÞ that follow from Eqs. (6) are

also rational functions, exhibiting real poles for x < 0. For
example, Eqs. (1) imply that function B, which will be used
in further calculation, is

BðxÞ ¼ σSðxÞ
σ2SðxÞ þ xσ2VðxÞ

¼ −
c

b1 − b2

�ðb1 − aÞ
ðxþ b1Þ

þ ða − b2Þ
ðxþ b2Þ

�
; ð8Þ

where the coefficients a, b1, b2, and c are some complicated
algebraic functions of the original parameters Z2, aj, and
rj, appearing in Eqs. (6). Their calculated values are a ¼
38.1104 GeV2, b1¼0.488784GeV2, b2¼2.65383GeV2,
and c ¼ −0.0178316 GeV3. A small iε shift of σV and σS
poles, x ¼ −a2j þ iε, j ¼ 1, 2, 3, causes a similar shift of

FIG. 1. Blue solid line and red dashed line correspond to the
MMF and ADFM quark-propagator Ansätze, respectively. Lattice
data [83] are represented by the open triangles.

1Away from the chiral limit, the second sum would be equal to
the renormalized quark mass.
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the B poles, x ¼ −bk þ iε0, k ¼ 1, 2, in agreement with the
Feynman prescription.
For z ∈ C and large jzj we find thatMðzÞ ∝ 1=z, but this

asymptotic behavior is reached only at very high momenta
squared, jzj ≃ 1000 GeV2. The MMF quark-propagator
Ansatz shows the same asymptotics for m0 ¼ 0, while
MðzÞ ∼m0 for m0 ≠ 0; see Eq. (3). A well-known QCD
result [85,86] for the asymptotics of the quark mass
function is

MðzÞ ∝
( ½logðz=Λ2

QCDÞ�d−1=z in the chiral limit

½logðz=Λ2
QCDÞ�−d otherwise

; ð9Þ

where d¼12=ð11Nc−2NfÞ is the anomalous mass dimen-
sion, Nc and Nf are the number of colors and flavors,
respectively, and ΛQCD ∼ 0.5 GeV is the QCD scale. The
simple meromorphic Ansätze, Eqs. (6) and (2), emulate
the chiral-limit and away-from-the-chiral-limit behavior,
respectively, of the quark mass function (9), up to the
logarithmic corrections present in Eq. (9). The Ansätze are
fitted to the respective lattice data: MMF quark propagator
to lattice data of Ref. [83] and ADFM quark propagator
to lattice data in the overlap [87–89] and asqtad (tadpole
improved staggered) [90] formulations.

IV. PION DECAY CONSTANT

The pion decay constant fπ is defined by the matrix
element

h0jd̄ðxÞγμγ5uðxÞjπþðPÞi ¼ i
ffiffiffi
2

p
fπPμe−iP·x; ð10Þ

where uðxÞ and dðxÞ are the quark fields (see, e.g., Ref. [2],
Sec. 71.1). This matrix element is the hadronic part of the
amplitude for πþ → lþνl decay, pictorially represented in
Fig. 2. More explicitly, fπ can be expressed in terms of the
BS vertex function Γπðq; PÞ,

fπ ¼ i
Nc

2M2
π

Z
d4q
ð2πÞ4 tr

�
Pγ5S

�
qþP

2

�
Γπðq;PÞS

�
q−

P
2

��
;

ð11Þ

where Nc ¼ 3 is the number of colors, and Mπ is the pion
mass. Dictated by dynamical chiral symmetry breaking the
axial-vector Ward-Takahashi identity, taken in the chiral
limit, gives us the quark-level Goldberger-Treiman relation
for the BS vertex,

Γπðq; PÞ ≃ −
2Bð−q2Þc:l:

fπ
γ5; ð12Þ

which expresses Γπ in terms of the chiral-limit (c.l.)
value of the quark dressing function B; see, e.g., Ref. [22].
This approximation will be used throughout this paper.
[Note that it is the same approximation as in Ref. [19],
as can be seen easily in spite of different notations and
conventions, by comparing their Eqs. (18), (19), and (21)
with our Eqs. (12) and (20). See also our Appendix.]
The pion decay constant fπ corresponding to the

MMF quark-propagator model (2) has been calculated in
three different ways: (a) analytically using Mathematica
packages FeynCalc 9.0 [91,92] and Package-X 2.0 [93,94],
(b) numerical integration in the Euclidean space, and
(c) Minkowski space integration utilizing light-cone
momenta and analytic residua calculation. Let us explain
them in more detail.
(a) Using FeynCalc it is possible to express fπ as a sum of

terms containing Passarino-Veltman functions B0 [95]
of various arguments. Package-X is subsequently used
for the final numerical evaluation, giving fπ ¼
87.5599 MeV. The same result is obtained using
LoopTools 2.0 [96] for the final numerical evaluation.

(b) The naive prescription for Wick rotation (q0 → −iq4,R
dq0 → i

R
dq4) is justified here, for this specific

propagator and for the pion decay constant calculation.
Numerical integration in Euclidean space gives
again the same fπ , to at least six significant digits.
The four-dimensional integration is effectively two-
dimensional, two integrations are trivial due to sym-
metry. The pion mass is taken to be Mπ ¼ 135 MeV.

(c) Alternatively, following the procedure used in
Ref. [19], integral (11) is calculated introducing light-
cone variables q� ¼ q0 � q3. The integrand is a
rational function in q− variable, with seven simple
poles on the real q− axis. Cauchy’s residue theorem is
used to calculate the integral over q−, paying attention
to the iε rule for the displacement of poles, prescribed
by Eq. (2a). The remaining two-dimensional integra-
tion over qþ ∈ ½−Mπ=2;Mπ=2� and ðq1Þ2 þ ðq2Þ2 is
performed numerically. Eventually, the resulting fπ ¼
87.5599 MeV is in agreement with our previous
calculations. The result of Ref. [19] is fπ ¼90MeV,
a little above our calculated value.

Regarding the ADFM Ansatz, fπ is calculated using
methods (a) and (b), mentioned above, and (d). Method (d)
is the Minkowski space integration where the first inte-
gration, over q0, boils down to residua calculation, as theFIG. 2. Diagram for πþ → lþνl decay.
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principal value vanishes. All three methods give the same result, fπ ¼ 71.5611 MeV. Regarding method (a), the trace
appearing in Eq. (11) is evaluated using FeynCalc and LoopToolsMathematica packages, formally treating BðxÞ as a sum of two
propagators [see Eq. (8)].

V. ELECTROMAGNETIC FORM FACTOR

The charged pion EMFF FπðQ2Þ is given by

hπþðP0ÞjJμð0ÞjπþðPÞi ¼QπþðPμþP0μÞFπðQ2Þ

¼ iðQu−QdÞ
Nc

2

Z
d4q
ð2πÞ4 tr

�
Γ̄π

�
q−

P
2
;P0

�
S
�
qþ 1

2
ðP0 −PÞ

�
Γμ

�
qþ 1

2
ðP0 −PÞ;q− 1

2
ðP0 −PÞ

�

×S

�
q−

1

2
ðP0−PÞ

�
Γπ

�
q−

1

2
P0;P

�
S

�
q−

1

2
ðPþP0Þ

��
; ð13Þ

in the generalized impulse approximation (GIA) [97–99], for spacelikeQ2, and the momentum routing as depicted in Fig. 3.
The electromagnetic current is JμðxÞ; the quark charge Qu ¼ 2=3 and Qd ¼ −1=3. We use the following kinematics:
k ¼ ð0; 0; 0;

ffiffiffiffiffiffi
Q2

p
Þ, P ¼ ðEπ; 0; 0;−

ffiffiffiffiffiffi
Q2

p
=2Þ, and P0 ¼ ðEπ; 0; 0;

ffiffiffiffiffiffi
Q2

p
=2Þ, where Eπ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

π þQ2=4
p

and Q2 ≥ 0. The
Ball-Chiu vertex [100,101] is used for the quark-quark-photon coupling throughout this paper,

Γμðp0; pÞ ¼ 1

2
½Að−p02Þ þ Að−p2Þ�γμ þ ðp0 þ pÞμ

ðp02 − p2Þ
�
½Að−p02Þ − Að−p2Þ� ð=p

0 þ =pÞ
2

− ½Bð−p02Þ − Bð−p2Þ�
�
: ð14Þ

This vertex can be expressed completely in terms of the
quark-propagator dressing functions and it becomes par-
ticularly simple in the case of the MMF Ansatz,

Γμðp0; pÞ ¼ γμ −
m3ðp0μ þ pμÞ

ðp02 − λ2 þ iεÞðp2 − λ2 þ iεÞ : ð15Þ

Similar to the case of fπ calculation, three methods are
used to calculate FπðQ2Þ using the MMF Ansatz: (a) FeynCalc
and Package-X Mathematica packages, (b) numerical integra-
tion in Euclidean space using adaptive quadrature, and
(c) Minkowski space integration utilizing light-cone
momenta momenta and analytic residua calculation. Let
us discuss these methods in more detail.

(a) FπðQ2Þ, given by Eq. (13), is calculated using FeynCalc

and Package-X Mathematica packages analogously to the
fπ calculation. The results are represented in Fig. 4.

(b) Numerical integration is performed using adaptive
quadrature: expressing the space part of the four-
vector q in spherical coordinates, q¼ðq0;ξsinϑcosφ;
ξsinϑsinφ;ξcosϑÞ, the poles of the integrand in
variable q0 are

ðq0Þ1;2¼∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

qþξ2−ξ
ffiffiffiffiffiffi
Q2

p
cosϑþQ2=4

q
; ð16aÞ

ðq0Þ3;4¼∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

qþξ2þξ
ffiffiffiffiffiffi
Q2

p
cosϑþQ2=4

q
; ð16bÞ

ðq0Þ5;6 ¼
1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2

π þQ2

q
∓ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

q þ ξ2
q �

; ð16cÞ

ðq0Þ7;8 ¼
1

4

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2

π þQ2

q

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16M2

q þ 16ξ2 þ 8ξ
ffiffiffiffiffiffi
Q2

p
cos ϑþQ2

q �
;

ð16dÞ

ðq0Þ9;10 ¼
1

4

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2

π þQ2

q

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16M2

q þ 16ξ2 − 8ξ
ffiffiffiffiffiffi
Q2

p
cosϑþQ2

q �
;

ð16eÞFIG. 3. Impulse approximation to the charged pion electro-
magnetic form factor FπðQ2Þ.
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where M2
q ∈ fp1; p2; p3; λ2g. The numbers ð−M2

qÞ are
poles of the propagator functions (5) and (2a). Chang-
ing M2

q → M2
q − iε pushes odd-indexed poles to the

complex upper half plane and even-indexed poles to
the lower half plane. We define two sets,

A ¼ fðq0Þjjj ¼ 1; 3; 5; 7; 9 ∧ M2
q ¼ p1; p2; p3; λ2g;

ð17aÞ

B ¼ fðq0Þjjj ¼ 2; 4; 6; 8; 10 ∧ M2
q ¼ p1; p2; p3; λ2g;

ð17bÞ

where A and B contain poles that must be bypassed
from below and from above, respectively. Note that not
all four values of M2

q produce poles of the integrand.
For example, ðq0Þ7;8 are poles of the integrand only
for M2

q ¼ λ2; these two poles correspond to singular
behavior of Γπðq − P=2; P0Þ and are defined by equa-
tion ðq − P=2Þ2 ¼ λ2. For simplicity of definition, sets
A and B are allowed to contain superfluous points, but
this does not obstruct the analysis hereafter. Numerical
examination shows that maxfAg < minfBg for the
chosen model parameters, so we define

ðq0Þc ¼
1

2
ðmaxfAg þminfBgÞ; ð18Þ

which is a function of ϑ and ξ, but does not depend
on φ thanks to the symmetry. Figure 5 illustrates the ξ

dependence of ðq0Þj ’s and ðq0Þc for a fixed value of ϑ.
Unlike the case of the fπ calculation (11), where the first
and third quadrants of the q0 complex plane is free of
poles and the naiveWick rotation q0¼−iq4 (q4 ∈ R) is
allowed, in the present case of the FπðQ2Þ calculation,
the pathof integrationought to be shifted topassbetween
poles contained in sets A and B,

q0 ¼ ðq0Þc − iq4; ð19Þ

where q4 ∈ h−∞;∞i. Eventually, the numerical inte-
gration over q4, ξ, and ϑ is performed using the adaptive
quadrature; see Fig. 4 for the final result.

(c) Minkowski space integration utilizing light-cone
momenta is again performed analogously to the fπ
calculation. Now, there are 11 poles, in variable q−, of
the integrand of Eq. (13). The residua are calculated
analytically and adaptive quadrature is used for the
final three-dimensional integration.

To conclude about the EMFF obtained with the MMF
Ansatz, there are only insignificant differences, of order
≲0.1%, between results for FπðQ2Þ calculated using
methods (a)–(c). The differences are compatible with the
precision of numerical integration that we prescribed in
methods (b) and (c). However, there is a significant
discrepancy between our results (blue dots) and those of
Ref. [19] (black dashed line in our Fig. 4). The MMF
Ansatz [19] is also used in Ref. [111], with the same model
parameter values. While Q2FπðQ2Þ is practically constant
for Q2 ≳ 3 GeV2 in the former paper, it falls with Q2 very

FIG. 4. Charged pion electromagnetic form factor. Experimen-
tal points are shown by dark yellow triangles [102], green
diamonds [103], pink circles [104–106], and magenta squares
[107–110]. Red solid circles and blue diamonds are calculated
using the ADFM quark-propagator Ansatz and the MMF quark-
propagator Ansatz, respectively. In the case of the MMF quark
propagator, three different methods of calculation (detailed in the
text) yielded the same results. The black dashed line represents
the result of Mello et al. [19]. The black solid line corresponds to
the perturbative QCD result (27) with asymptotic PDA.

FIG. 5. ðq0Þj’s and ðq0Þc vs ξ for ϑ ¼ π=3 and Q2 ¼ 7 GeV2.
All in units of GeV. Dot-dashed green line represents ðq0Þc, blue
dotted lines represent odd-indexed poles (set A), and red dashed
lines represent even-indexed poles (set B).
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noticeably in the latter one. Hence, Ref. [111] agrees better
with our EMFF, although it still falls more slowly than ours.
For the ADFM quark propagator, we have calculated

FπðQ2Þ using only one method out of three adopted for
the MMF Ansatz; namely, method (b), the modified
Wick rotation, defined by Eq. (19), and subsequent
three-dimensional adaptive Monte Carlo integration. The
results are depicted as red solid circles in Fig. 4.
Concerning the low-Q2 behavior, the pion charge

radius rπ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−6F0

πð0Þ
p

is calculated to be rπ ¼ 0.632
and 0.699 fm for MMF and ADFM Ansätze, respectively.
Both values are reasonably near the experimental value
of rπ ¼ ð0.659� 0.004Þ fm [2]. The simple constituent
quark model formula rπ ¼

ffiffiffi
3

p
=ð2πfπÞ [112,113] gives

rπ ¼ 0.621 and 0.760 fm for MMF and ADFM Ansätze,
respectively. The approximate BS vertex (12) does not
guarantee that the normalization condition Fπð0Þ ¼ 1
will be fulfilled. The general form of the pseudoscalar
BS vertex is

Γπðq; PÞ ¼ γ5ðH1ðq; PÞ þ PH2ðq; PÞ þ =qH3ðq; PÞ
þ ½P; =q�H4ðq; PÞÞ; ð20Þ

where H1, H2, H3, and H4 are Lorentz-scalar functions
[114]. Solely keeping the H1 component and neglecting
others, just as we do in Eq. (12), leads to deviation from
the Fπð0Þ ¼ 1 normalization condition [115]. We obtain
Fπð0Þ ¼ 0.950 and 1.32 for MMF and ADFM Ansätze,
respectively [which is interesting to compare, but of course
we could also follow Ref. [19], which forces Fπð0Þ ¼ 1 by
adjusting the normalization of BS vertex (20); for more
details see our Appendix.]
The high-Q2 asymptotics of the charged pion EMFF is

discussed in Sec. VII along with the asymptotics of the
neutral pion TFF, which is introduced in the next section.

VI. TRANSITION FORM FACTOR

The two-photon amplitude Tðk2; k02Þ that describes
π0 → γγð⋆Þ processes, depicted in Fig. 6, is given by

Tμνðk; k0Þ
¼ εμνλσkλk0σTðk2; k02Þ

¼ −Nc
Q2

u −Q2
d

2

Z
d4q
ð2πÞ4 tr

�
Γμ

�
q −

P
2
; kþ q −

P
2

�

× S

�
kþ q −

P
2

�
Γν

�
kþ q −

P
2
; qþ P

2

�
S

�
qþ P

2

�

× Γπðq; PÞS
�
q −

P
2

��
þ ðk ↔ k0; μ ↔ νÞ; ð21Þ

in the GIA [13,63,64], where k and k0 are the external
photon momenta, P ¼ kþ k0 is the neutral pion momen-
tum, and P2 ¼ M2

π . The TFF is defined as

FπγðQ2Þ ¼ jTð−Q2; 0Þj; ð22Þ

such that the π0 → γγ decay width can be written as

Γðπ0 → γγÞ ¼ πα2M3
π

4
Fπγð0Þ2: ð23Þ

In respect of the MMF Ansatz, the FeynCalc package is
used to express the loop integral in Eq. (21) as a sum of
the Passarino-Veltman functions, while Package-X is used for
the final numerical evaluation, in a close analogy to the
FπðQ2Þ calculation [Sec. V, method (a)]. The results of our
calculation are pictorially represented by the blue dots in
Fig. 7. The experimental results are shown as solid circles
and diamonds (with error bars) in the same figure.

FIG. 6. The quark triangle diagram for the transition form factor
calculation.

FIG. 7. Blue dots represent π0 transition form factor calculated
using the MMF quark-propagator Ansatz, Eqs. (1) and (2). The
red pluses are calculated using the ADFM quark propagator,
Eqs. (6). The blue solid line and red dashed line represent the
Brodsky-Lepage interpolation formula (29) for the MMF quark-
propagator and ADFM quark-propagator models, respectively.
Solid circles and diamonds (with error bars) represent the
measurements of BABAR [116] and Belle [117] Collaborations,
respectively.
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On the other hand, the case of the ADFM Ansatz is
treated solely using method (b) described in Sec. V. The
integrand appearing in Eq. (21), as a function of q0, exhibits
the same structure of the pole trajectories in the q0ξ plane,
as those illustrated in Fig. 5 in the case of EMFF
calculation. The results are represented by the red pluses
in Fig. 7.
It has been shown in Refs. [63,118] that the GIA

amplitude (21) gives Fπγð0Þ ¼ 1=ð4π2fπÞ in the chiral
limit, regardless of the specific choice of the quark dressing
functions σV and σS, and in agreement with the Adler-Bell-
Jackiw (ABJ) anomaly result [119,120]. Our numerical
results for Fπγð0Þ complies fairly to this limit; the devia-
tions are about 4.3% and 0.7% for MMF and ADFM
Ansätze, respectively.
The function FπγðQ2Þ is expected to be a smooth

function near Q2 ¼ 0, down to Q2 ¼ −M2
V where the

vector-meson resonance peaks appear; V ¼ ρ;ω;ϕ;….
The slope parameter a is defined through the expansion
of the (normalized) TFF,

FπγðQ2Þ
Fπγð0Þ

¼ 1 − a
Q2

M2
π
þOððQ2Þ2Þ: ð24Þ

The recent experimental result of the NA62 Collaboration
is a ¼ 0.0368� 0.0057 [121]; the A2 Collaboration at
MAMI gives a ¼ 0.030� 0.010 [122]. In both experi-
ments, the Dalitz decay π0 → eþe−γ is measured for low
timelike momentum transfer: −M2

π ≤Q2¼ðpe− þpeþÞ2≤
−4m2

e. Our calculation gives a ¼ −M2
πF0

πγð0Þ=Fπγð0Þ ¼
0.027 for the MMF Ansatz and a ¼ 0.025 for the ADFM
Ansatz, in reasonable agreement with the experimental
values. The following method was used to determine a.
We calculated several ðQ2; FπγðQ2ÞÞ points in the interval
−0.3 ≤ Q2 ≤ 0.3 and −0.2 ≤ Q2 ≤ 0.2 GeV2 for MMF
and ADFM Ansätze, respectively. These points were fitted
to the FπγðQ2Þ ¼ A=ð1þQ2=B2Þ curve; the derivative
F0
πγð0Þ was computed from this fit. A simple quark triangle

model [123] gives a ¼ M2
π=ð12M2

cÞ, where Mc is the
constituent quark mass. UsingMπ ¼135 andMc¼Mð0Þ¼
280MeV (estimated from Fig. 1) gives a ¼ 0.02, some-
what below the experimental values and our model results.
The high-Q2 asymptotics of Fπγ is addressed in the next
section and is compared with those calculated from
the PDA.

VII. PION DISTRIBUTION AMPLITUDE AND
ASYMPTOTICS OF FORM FACTORS

The factorization property of the QCD hard scattering
amplitudes enables us to express these amplitudes in terms
of the pertinent distribution amplitudes. The PDA, relevant
for the TFF and EMFF calculation at large Q2, can be
expressed as the light-cone projection,

ϕπðuÞ ¼ i
Nc

8πfπ
tr

�
γþγ5

Z
dq−
2π

Z
d2q⊥
ð2πÞ2 χπðq; PÞ

�
; ð25Þ

of the BS amplitude

χπðq; PÞ ¼ S

�
qþ P

2

�
Γπðq; PÞS

�
q −

P
2

�
ð26Þ

[124–128]. The variable qþ, which is implicit in the
integrand of Eq. (25), is defined by u ¼ 1=2þ qþ=Pþ.
The integral resembles those of the fπ calculation (11) and
could be treated in the same way. For both propagator
Ansätze we use the Euclidean space integration, referred
to as method (b) in Secs. IV and V. The resulting PDAs are
displayed in Fig. 8.
The leading twist PQCD results for the asymptotics of

the pion form factor is [129–132]

FπðQ2Þ ∼ 16παsðQ2Þf2π
Q2

				 13
Z

1

0

du
ϕπðuÞ
u

				2 ð27Þ

for Q2 → ∞, where αs is the QCD running coupling
constant: αsðQ2Þ¼dπ= lnðQ2=Λ2

QCDÞ at the one-loop
order of perturbation theory, while d is the same as in
Eq. (9). The renormalization scale (μ) dependence of PDA
is implicit here. The asymptotic form of PDA, ϕas

π ðuÞ¼
limμ→∞ϕπðuÞ¼6uð1−uÞ, gives 1

3

R
duϕas

π ðuÞ=u ¼ 1, lead-
ing to FπðQ2Þ ∼ 16παsðQ2Þf2π=Q2 asymptotic behavior.
The PDAs ϕπðuÞ, related to the models under consider-
ation, do not deviate too much from the asymptotic ϕas

π ðuÞ
function; see Fig. 8. The actual values of integrals are
1
3

R
duϕπðuÞ=u ¼ 1.15 and 1.02 for the MMF and ADFM

models, respectively. This results in respective 32% and 4%
enhancement of FπðQ2Þ relative to value obtained with ϕas

π .

FIG. 8. Pion distribution amplitudes ϕπðuÞ. Blue solid line and
red dashed line correspond to the MMF and ADFM Ansätze,
respectively. Black dotted line represents the asymptotic form,
ϕas
π ðuÞ ¼ 6uð1 − uÞ. Dash-dotted green line (very close to the

solid blue one and hardly discernible from it) is the PDA from the
state-of-the-art SDE pion bound state, Eq. (22) in Ref. [9].
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The asymptotic form of EMFF (27), being dependent on
αsðQ2Þ, critically reflects the perturbative nature of high-
energy QCD. Our simple meromorphic Ansätze (2) and (6),
which do not comply with the exact QCD asymptotics (9) is
not expected to reproduce the UV logarithmic behavior of
Eq. (27). We computed FπðQ2Þ up to Q2 ¼ 40 GeV2 and
indeed found no evidence that the asymptotic behavior
FπðQ2Þ ∝ 1=ðQ2 lnðQ2ÞÞ was reached, for either of our
models. The presently available experimental data on
FπðQ2Þ are anyway well above the PQCD predictions (27),
as discussed in Ref. [133] in more detail.
The same PDA (25) also determines the leading term of

the light-cone expansion of form factor FπγðQ2Þ [126,134],

FπγðQ2Þ ∼ 2fπ
3Q2

Z
1

0

duϕπðuÞ
ð1 − uÞ : ð28Þ

The asymptotic form of the PDA leads to FπγðQ2Þ∼2fπ=Q2

for Q2 → ∞ asymptotic behavior [126,135]. The Brodsky-
Lepage (BL) dipole formula [135],

FπγðQ2Þ ¼ 1

4π2fπ

�
1þ Q2

8π2f2π

�−1
; ð29Þ

interpolates between Fπγð0Þ¼1=ð4π2fπÞ, the ABJ anomaly
result [119,120], and limQ2→∞Q

2FπγðQ2Þ¼2fπ , the PQCD
limit. The current experimental data [116,117], reaching up
toQ2 ∼ 35 GeV2, do not show agreement with this limit yet.
On the theoretical side, recent SDE studies in Euclidean
space are not unanimous: Raya et al. [68] are consistent with
the hard scattering limit, but Eichmann et al. [136] claim that
the BL limit is modified whenever the other external photon
is near on shell, i.e, k02 ≃ 0. That is, some nonperturbative
effects would always persist in this case. The modified BL
limit is also claimed independently from the SDE approach,
by some quite different theoretical studies [137–139].
As we can see from Fig. 7 and Table I, the high-Q2

behavior of FπγðQ2Þ calculated in the GIA (21) deviates
appreciably from the BL limit of 2fπ=Q2 for both model
Ansätze. The GIA limit of FπγðQ2Þ overshoots the BL
limit by 58% and 15% for ADFM and MMF models,
respectively.
The row denoted by “bare” in Table I is calculated from

Eq. (21) by replacing the dressed electromagnetic vertices
Γμðq; q0Þ with the bare ones γμ and the quark propagators
SðlÞ that propagate hard momenta l ¼ q� ðk − k0Þ=2 with
the bare (and massless) ones =l=l2. This leads to a much
simpler expression for Tμν,2

Tμνðk; k0Þ ¼ −2iNc
Q2

u −Q2
d

2
εμνλσ

×
Z

d4q
ð2πÞ4

½1
2
ðk0 − kÞ − q�λ

½1
2
ðk0 − kÞ − q�2 trfγσγ5χπðq; PÞg:

ð30Þ

The pertaining limQ2→∞Q
2FπγðQ2Þ deviates negligibly

from the corresponding GIA value in the case of the
MMF Ansatz, but the deviation is significant in the case
of the ADFM Ansatz.
It is apparent that not all quark legs attached to electro-

magnetic vertices carry the large momentum scale Q23; see
Fig. 6. It is enough to improve the previous bare approxi-
mation (30) such that we partially restore these soft con-
tributions originally present in the Ball-Chiu vertex (14),

γμðνÞ →
1

2

�
1þ A

�
−
�
q − ðþÞP

2

�
2
��

γμðνÞ; ð31Þ

and the GIA limit is recovered [13,140],

lim
Q2→∞

Q2Fð1þAsoftÞ=2
πγ ðQ2Þ ¼ 0.225 GeV; ð32Þ

where the superscript “ð1þ AsoftÞ=2” indicates that Fπγ is
calculated using vertex (31) instead of the Ball-Chiu one.

TABLE I. limQ2→∞Q
2FπγðQ2Þ, in units of GeV, calculated

using various approximation schemes. The first two rows
(denoted by GIA and bare), when related to the ADFM Ansatz,
are computed by fitting the function Q2 ↦ κ0 þ κ1=Q2 to a set
of discrete values of Q2FπγðQ2Þ calculated in the interval 10 ≤
Q2 ≤ 50 GeV2. The symbols κn (n ¼ 0, 1, 2, 3) denote the fitting
constants. In the MMF case, the corresponding limits are
computed by fitting the function Q2↦ κ0þκ1=Q2þκ2=ðQ2Þ2þ
κ3=ðQ2Þ3 to values of Q2FπγðQ2Þ calculated in the interval
20 ≤ Q2 ≤ 100 GeV2. Thus, limQ2→∞Q

2FπγðQ2Þ ¼ κ0 for both
GIA and bare rows, for both Ansätze. In the brackets are the
results of the same GIA and bare calculations obtained at Q2 ¼
40 GeV2, to illustrate the differences between Q2FπγðQ2Þ at a
large but finiteQ2 and in theQ2 → ∞ limit. The last two rows are
calculated from Eq. (28), using the appropriate PDAs. Thus, the
fourth row is simply 2fπ due to ϕπðuÞ ¼ ϕas

π ðuÞ. However, the
third row differs from 2fπ , since PDAs used in Eq. (28) are not
asymptotic, but calculated in the MMF and ADFM models
through Eq. (25).

Approximation ADFM MMF

GIA 0.226 (0.226) 0.202 (0.200)
Bare 0.145 (0.141) 0.200 (0.187)
BL nonasymptotic 0.146 0.202
BL 0.143 0.175

2Compare this to our previous and a little bit cruder approxi-
mation [13,140]. See also related Refs. [141,142]. That approxi-
mation gave a universal Tð−Q2;−Q02Þ ∼ ð4=3Þðfπ=ðQ2 þQ02ÞÞ
behavior for large Q2 þQ02, which was criticized in Ref. [143]. 3Compare to Ref. [65], Sec. III.B.1, last paragraph.
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Hence, the nontrivial infrared behavior of the wave function
renormalization ZðxÞ ¼ 1=AðxÞ ≠ 1 is responsible for the
two calculations, the first one based on GIA Eq. (21) and
the second one based on bare Eq. (30), producing unequal
asymptotics of FπγðQ2Þ. Of course, for the MMF Ansatz,
where ZðxÞ≡ 1, both calculations give the same asymp-
totic limit.
The respective integral 1

3

R
duϕπðuÞ=u values of 1.02

and 1.15 for the MMF and ADFM Ansätze, which
influence the EMFF asymptotics (27), are reflected also
in the asymptotic behavior of the TFF calculated from
Eq. (28) and shown in Table I, in the row denoted by BL
nonasymptotic [for it is not calculated using the asymptotic
form of ϕðuÞ, but the model calculated one].
To the end of this section, we explain the similarity

between the bare and BL-nonasymptotic approximation.
Light-cone expansion of the time-ordered product of two
electromagnetic currents TfJμðxÞ; JνðyÞg leads to the
following approximate expression:

Tμνðk; k0Þ

≃ 2
Q2

u −Q2
dffiffiffi

2
p 1

2π2
εμνλσ

× i
Z

d4z eik
0·z zλ
z4
hvacj∶d̄ð0Þγσγ5uðzÞ∶jπþðPÞiz2¼0:

ð33Þ

(See, e.g., Refs. [144,145].)4 The path-ordered “string
operator,”

P exp

�
ig
Z

0

x
AαðyÞdyα

�
; ð34Þ

must be included between the quark fields. This operator
equals unity in the light-cone gauge; see, e.g., Ref. [125].
On the one hand, expressing the above πþ-to-vacuum

matrix element through the BS amplitude,

hvacj∶ūð0Þγμγ5uðzÞ − d̄ð0Þγμγ5dðzÞ∶jπ0ðPÞi

¼ −Nce−iP·z=2
Z

d4q
ð2πÞ4 e

−iq·ztrðγμγ5χπðq; PÞÞ; ð35Þ

we reproduce bare Eq. (30). On the other hand, the
definition of the PDA,

1

2
hvacj∶ūð0Þγμγ5uðzÞ − d̄ð0Þγμγ5dðzÞ∶jπ0ðPÞizþ¼z⊥¼0

¼ iδabfπPμ

Z
1

0

du e−iuP·zϕπðuÞ; ð36Þ

leads eventually to the BL-nonasymptotic approximation
(28). To conclude, both Eqs. (28) and (30) follow from
Eq. (33), except Eq. (28) is derived without the z2 ¼ 0
constraint, i.e., without light-cone projection of the nonlocal
operator ∶ψ̄ð0Þ λa

2
γμγ5ψðzÞ∶. It turns out that such a differ-

ence is of little influence, at least for the models under
consideration.

VIII. SUMMARY AND CONCLUSIONS

In this paper, we have studied two meromorphic
Ansätze for the dressed quark propagator (suggested in
Refs. [19,20]), which represent strongly nonperturbative
dressing, but still permit formulating clear connections
between Euclidean and Minkowski spacetime calculations.
Thanks to the quark-level Goldberger-Treiman relation
(12), the pseudoscalar BS vertex can be related to the
dynamically dressed momentum-dependent quark mass
function [22]. Additionally, by exploiting the Ball-Chiu
vertex [100,101] as an approximation for the fully dressed
quark-quark-photon vertex, we are provided with all the
necessary elements to calculate the pion decay constant,
EMFF, TFF, and PDA. The related amplitudes were
calculated using several methods in order to check the
robustness of the results.
The used quark Ansätze as well as the pertaining vertices

exhibit masslike singularities on the real timelike momen-
tum axis and do not obey the PQCD asymptotic behavior;
hence, we can hardly expect that the correct perturbative
asymptotic behavior of the electromagnetic form factor
FπðQ2Þ ∝ 1=ðQ2 lnðQ2ÞÞ will be attained. Indeed, our
numerical evaluation of FπðQ2Þ up to Q2¼40GeV2 did
not show evidence that either the FπðQ2Þ ∼ 1=ðQ2 lnðQ2ÞÞ
limit or the simpler power-law FπðQ2Þ ∼ 1=Q2 limit is
reached. However, it should be acknowledged that the exact
asymptotic behavior is of purely academic interest here
because (a) it is generally expected that the asymptotic
regime probably starts at Q2 ≳ 20 GeV2, well above the
Jefferson Lab capability after proposed upgrade [146], (b)
and even existing Cornell experimental data at Q2 ¼ 6.30
and 9.77 GeV2 have large error bars [106]. For high Q2,
our results for Q2FπðQ2Þ obviously deviate from those
of Ref. [19]. The low-Q2 behavior of FπðQ2Þ, encoded in
the pion charge radius rπ, was found to be in a reasonable
agreement with experiment, given the simplicity of
the model.
The leading-order PQCD expression for the high-Q2

behavior of the transition form factor FπγðQ2Þ ∼ 2fπ=Q2

depends only on fπ , the low-energy pion observable, which
is pretty insensitive to the details of the high-energy
dynamics. Hence, we could naively expect that our
Ansätze, despite not incorporating the exact perturbative
regime behavior, should produce the correct perturbative
limit of the pion transition form factor. However, in the
generalized impulse approximation, the electromagnetic

4In the isospin limit
ffiffiffi
2

p hvacj∶d̄ð0Þγσγ5uðzÞ∶jπþðPÞi ¼
hvacj∶ūð0Þγσγ5uðzÞ − d̄ð0Þγσγ5dðzÞ∶jπ0ðPÞi.
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vertices keep one quark leg soft, even for the high-Q2 external
photon. As a result, this approximation gave Q2FπγðQ2Þ
finite forQ2 → ∞, but, similar to Refs. [136–139], generally
unequal to the PQCD limit of 2fπ; see also Refs. [13,140]. In
relation to low-Q2 behavior, our results for the TFF slope
parameter are 10%–15% below the experimental value.
The pion distribution amplitudes that were calculated

using our Ansätze did not deviate appreciably from the
asymptotic one. If we input these amplitudes (instead of
the asymptotic one) to the PQCD form factor formulas, the
result is enhanced up to 30%, depending on the form factor
and Ansätze. When one compares the results given above,
the MMF Ansatz is considerably more successful than the
ADFM one. In part, this can be explained by noticing that
the PDA that we obtained from the MMF Ansatz (the solid
curve in Fig. 8) is very close to the PDA calculated from the
pion bound-state amplitude obtained using the most sophis-
ticated SDE kernel [9]. This PDA is given by Eq. (22) in
Ref. [9] and is hardly discernible from our solid curve in
Fig. 8. This indicates that the MMF Ansatz at least partially
captures the results obtained by some of the presently most
advanced SDE calculations [9]. The MMF Ansatz (2) is
more realistic also in that it incorporates the explicit chiral
symmetry breaking, whereas the ADFM one (6) corresponds
to the chiral limit, for which the ADFM paper [20] concludes
that their parametrizations should yield values of the pion
decay constant fπ 10%–20% below the empirical value.
Their value is thus just fπ ¼ ð71� 3Þ MeV [20], obtained
for the presently adopted ADFM Ansatz and its parameters
in Eq. (6). Hence, the large difference between MMF
and ADFM results for fπ is inherited from the respective
Refs. [19,20], since we adopted their respective Ansätze and
parameters without change.
In the present paper, however, more important than

the phenomenological considerations is the following:
the simple analytic structure of quark-propagator Ansätze
employed, together with suitable approximations for the
required vertices, enabled us to keep control of the Wick
rotation when calculating some processes; the pertinent
amplitudes can be calculated equally in Minkowski
and Euclidean space. Kindred studies are mostly restricted
to the Euclidean space; their propagators and vertices
are sensibly defined for spacelike external momenta,
q2 ¼ ðq0Þ2 − jqj2 < 0, but their analytic properties (singu-
larities in the first and third quadrants of the complex q0

plane) preclude Wick rotation back to the Minkowski
space. In principle, it is not difficult to impose the correct
perturbative asymptotic behavior on gluon and quark
propagators in such models. In the context of the coupled
Schwinger-Dyson and Bethe-Salpeter equations, such an
example is provided in Refs. [147–149]; a similar and
widely used model is introduced in Refs. [150,151] and its
application reviewed in Ref. [152]. Among the variety of
quark-propagator Ansätze explored in Ref. [20] that exhibit
correct PQCD behavior, none is suitable for the calculation

methods presented in this work: the branch cut in propa-
gator functions do not allow the use of perturbative
techniques, while the complicated singularity structure
prevents the Wick rotation.
Future work may include calculation of some other

processes involving quark loops, e.g., γ⋆→3π, γγ → ππ,
and π0 → e−eþ. The most appealing improvement would
be a quark-propagator Ansatz that has the correct UV
behavior and, at the same time, enough simple analytic
structure that allows Wick rotation (in the sense used in this
paper), but it is not evident to us whether such a task could
be achieved.
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APPENDIX: NORMALIZATION OF THE
BS AMPLITUDE

The matrix element of the electromagnetic current is
generally

hπþðP0ÞjJμðxÞjπþðPÞi
¼ e−iðP0−PÞ·xððPμ þ P0μÞFπðQ2Þ þ ðPμ − P0μÞGπðQ2ÞÞ:

ðA1Þ

The electromagnetic current conservation ∂μJμðxÞ ¼ 0

implies GπðQ2Þ ¼ 0. Our pion states normalization,

hπþðP0ÞjπþðPÞi ¼ ð2πÞ32EðPÞδð3ÞðP − P0Þ; ðA2Þ

where EðPÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

π þ jPj2
p

, together with

Q̂jπþðPÞi ¼
Z

d3xJ0ðxÞjπþðPÞi ¼ jπþðPÞi; ðA3Þ

automatically ensures that

Fπð0Þ ¼ 1: ðA4Þ

In the chiral limit, the axial-vector Ward-Takahashi identity
reads

ðp0 − pÞλΓaλ
5 ðp0; pÞ ¼ ðS−1ðp0Þγ5 þ γ5S−1ðpÞÞ

λa

2
: ðA5Þ

The pion pole contribution to the axial-vector vertex is

Γaλ
5 ðp0; pÞ ≃ λa

2
fπPλ Γπðq;PÞ

P2
; ðA6Þ
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where p ¼ q − P
2
and p0 ¼ qþ P

2
. This leads eventually to

our Eq. (12),

Γπðq; PÞ ≃ Γπðq; 0Þ ¼ −
2ðBð−q2ÞÞc:l:

fπ
γ5: ðA7Þ

Equations (A5) and (A6) fix normalization of Γπ as it is
given by Eq. (A7). If we plug the approximate Γπ ,
Eq. (A7), into Eq. (13), we can expect that the resulting
Fπð0Þ ≠ 1. Indeed, for MMF and ADFM Ansätze we get
Fπð0Þ¼0.950 and Fπð0Þ ¼ 1.32, respectively. Deviation
from Fπð0Þ ¼ 1 measures quality of the approximation
(A7). Alternatively, following Ref. [19], we could modify
Eq. (A7) by introducing an additional normalization
factor N,

Γπðq; PÞ ≃ −N
2ðBð−q2ÞÞc:l:

fπ
γ5: ðA8Þ

If we denote by f0π, F0
π , r0π , and F0

πγ the quantities
calculated using Eq. (A7) and by fπ, Fπ , rπ , and Fπγ

those calculated using Eq. (A8), the relation between
these two sets will be

fπ ¼
ffiffiffiffi
N

p
f0π; ðA9aÞ

FπðQ2Þ ¼ N2F0
πðQ2Þ; ðA9bÞ

rπ ¼ Nr0π; ðA9cÞ

FπγðQ2Þ ¼
ffiffiffiffi
N

p
F0
πγðQ2Þ: ðA9dÞ

Then we could impose the constraint Fπð0Þ ¼ 1, calculate
N from Eq. (A9b) and relate fπ, FπðQ2Þ and FπγðQ2Þ to
f0π , F0

πðQ2Þ, and F0
πγðQ2Þ.

See Refs. [115,150] about the relationship, in the chiral
limit, between the normalization of the pion BS vertex
and fπ .
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