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Electron optics deals with condensed matter platforms for manipulating and guiding electron beams with high
efficiency and robustness. Common devices rely on the spatial confinement of the electrons into one-dimensional
channels. Recently, there is growing interest in electron optics applications in two dimensions, which heretofore
are almost exclusively based on graphene devices. In this work, we study band-inverted systems resulting from
particle-hole hybridization and demonstrate their potential for electron optics applications. We develop the theory
of interface scattering in an inverted-band pn junction using a scattering matrix formalism and observe negative
refraction conditions as well as transmission filtering akin to graphene’s Klein tunneling but at finite angles.
Based on these findings, we provide a comprehensive protocol for constructing electron optic components, such
as focusing and bifurcating lenses, polarizers, and mirrors. We numerically test the robustness of our designs
to disorder and finite temperatures, and motivate the feasibility of experimental realization. Our work opens
avenues for electron optics in two dimensions beyond graphene-based devices, where a plethora of inverted-band
materials in contemporary experiments can be harnessed.

DOI: 10.1103/PhysRevB.108.195301

I. INTRODUCTION

Ballistic electrons in clean two-dimensional electron gas
(2DEG) share many similarities with light scattering in clas-
sical optics, namely, they demonstrate their wave nature by
propagating through the system in raylike paths and get re-
flected or transmitted when impinging on an interface. This
wavelike behavior of electrons in ultraclean materials inspires
studies of electron optics applications in condensed matter
systems, which aim to reproduce and enhance existing effects
observed with light, e.g., focusing of incident beams, as well
as introduce new effects that are not present in classical optical
systems, with negative refraction being one of them. How-
ever, unlike in optical systems where it is possible to produce
highly concentrated unidirectional beams of light, realization
of electron optics is suffering from lack of control over the
injected electrons’ direction, as well as the destruction of
their coherence by scattering with impurities that are naturally
present in every solid-state system. While both effects make
it challenging to form a well-defined trajectory for electron
beams, the latter further restricts the realization of electron op-
tics devices to the mesoscopic regime, where the trajectory of
electrons remains coherent. Regarding the control over the di-
rectionality, efforts have been made to build one-dimensional
(1D) waveguides for electrons in condensed matter systems,
e.g., by confining them into quantum wires [1–3] or at the
edges of quantum Hall devices [4–7].

*yzhao.phy@gmail.com
†astrkalj@phy.hr

Guiding electron beams in two-dimensional (2D) systems,
without using energy-costly external magnetic fields, remains
an unsolved challenge. Moreover, optical elements like lenses
and mirrors, with which beams can be controlled and manipu-
lated, have no generic counterparts in the context of various
electronic condensed matter systems. While in geometric
optics, the design of optical elements relies on the comprehen-
sive depiction of the scattering process at the interface using
Snell’s law and the Fresnel equation, a generic theory of the
electronic scattering process at the interface formed between
two materials, known as a junction, is missing.

The key constituent of electron-optics devices is a pn
junction created by external electrostatic gates. Such pn junc-
tions in certain materials can possess positive or negative
effective refractive index for electrons, which was recently
discussed as a potential platform for realizing electronic
Veselago lens [8,9], beam splitters [10], and collimators
[11,12]. Some experimental realizations have been achieved
in traditional 2DEG [13,14] and 2D materials based on
graphene [15–18]. Furthermore, recently, experiments on hy-
brid systems of polaritons in artificial honeycomb lattices and
hyperbolic materials [19,20] reported a direct observation of
negative refraction.

For a long time, electron optics in 2D was exclusively
reserved for graphenelike materials [9–12,15–18]. Due to
the inherent property of Dirac materials known as the
Klein-tunneling effect [15,21–23], only waves entering the
pn junction at a zero incident angle are perfectly transmitted.
Note, however, that the direct observation of electron optics
using Klein tunneling is possible only with pn interfaces that
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are extremely sharp. The effect of negative refraction, which
is crucial for realizing elements such as the Veselago lens, is
diminished as the pn interface becomes wider [24].

In a recent work [25], some of us discovered an alter-
native mechanism for realizing optical devices in electronic
systems. More precisely, a pnp junction-based Fabry-Pérot
interferometer was realized an inverted-band system. Mate-
rials containing a band inversion exist vastly in multiple 2D
materials such as InAs/GaSb [26–29], bilayer graphene [30],
and other topological materials [31]. The band structure,
shaped as a “sombrero hat,” provides a larger tunability in
steering the electron scattering at the interface. In particular,
since the corresponding quasiparticles in the system acquire
an additional degree of freedom, being particlelike and hole-
like owing to the two bands with opposite effective masses,
one can develop intriguing optical concepts such as bifurcat-
ing lenses to electronic systems by referring to being particle
or hole as the counterpart of polarization for electrons.

This paper demonstrates how to create electron-optics ap-
plication using inverted-band pn junctions. We provide a
comprehensive theoretical description of the scattering pro-
cesses at the pn interface, which can be readily created using
the appropriate gating potentials. Starting with a simple model
featuring a sombrero-hat dispersion discussed in Sec. II, we
develop an effective Snell’s law for scattering processes cat-
egorized into four regimes in Sec. III. The corresponding
scattering amplitudes are obtained using a scattering matrix
approach. We find that, unlike in graphene, the inverted-band
pn junction manifests a Klein-tunneling alike effect, that fil-
ters transmission at finite incident angles. Such scattering
facilitates strong negative refraction for both reflected and
transmitted waves. In Sec. IV, we discuss the possible appli-
cations of negative refraction and, in Sec. V, we provide a
protocol for constructing of some basic blocks of electron op-
tics: A mirror, a bifurcating lens, a polarizer, and Veselago and
focusing lenses. The robustness of these devices against the
influence of thermal fluctuations and disorder is probed and
confirmed using numerical simulations presented in Sec. VI.

II. MODEL

We consider a spinless 2D two-band model

HL/R =
(
M0 + M2k2 − μL/R Ac

Ac −M0 − M2k2 − μL/R

)
,

(1)

where k is a 2D wave vector. The parameter M0 controls
the energy overlap between the bands, and ±M2 quanti-
fies the effective positive (negative) mass for the particlelike
(holelike) band dispersions. The hybridization between the
two bands is determined by Ac. To model a pn junction
(see Fig. 1), we shift the chemical potentials in the left and
the right region by μL and μR, respectively. Thus, p- and
n-doped regions form, when the Fermi surface cuts through
the lower and upper band, respectively (see insets of Fig. 1).
Diagonalizing the Hamiltonian, we obtain the dispersion
E (k) = −μL/R ± √

(M0 + M2|k|2)2 + A2
c and the corre-

sponding eigenstates �� = (ψp, ψh)T . The two components
of the spinor represent the contributions of the particle-

FIG. 1. Illustration of a scattering event at an inverted-band
pn junction. Due to the inverted-band structure, holelike spinors (red)
injected from a point source (white arrow) in the p-doped region
scatter at the pn interface and focus as transmitted particlelike spinors
(green) in the n-doped region. We superimpose an exemplary local
density of states of a scattering trajectory of particle-hole spinors
[cf. Eq. (13) and Fig. 5 for the derivation and numerical imple-
mentation]. Insets: The sombrero-hat-shaped band structure of the
p- and n-doped regions. The red and green concentric circles mark
the holelike and particlelike branches at the respective Fermi sur-
faces, i.e., at chemical potentials μL,R [cf. Eq. (1)].

like and holelike bands. When M0 < 0, resulting dispersion
resembles two opposing “sombrero hats” (see insets of Fig. 1).
In other words, an inverted-band regime appears, ranging be-
tween energies −�μ � E � −Ac and Ac � E � �μ, where

�μ =
√
M2

0 + A2
c is the energy at which the inverted-band

regime ends.
In Fig. 1, we illustrate the pn junction and band structures

of each region. We set the potentials μL/R within the inverted-
band regime, thus creating a Fermi surface that consists of
two branches appearing as two concentric circles (see insets
of Fig. 1). In the p-doped region, the positive (negative) effec-
tive mass indicates that the states located at the inner (outer)
branch are particlelike (holelike). Due to the band inversion,
such correspondence is reversed in the n-doped part, i.e., the
states are particlelike (holelike) at the outer (inner) branch.

As the eigenstates’ spinor is represented by a complex-
valued two-vector �� = (ψp, ψh)T , we can interpret it as an
arrow rotating around the Bloch sphere, where the north
(south) pole represents the particlelike (holelike) contribution.
We thus denote the spinor as a band spinor since it rotates
between particlelike and holelike bands. In the following, we
refer to its pointing direction as the “polarization” of the
band spinor, by analogy with the polarization in traditional
optics. For a given band spinor, the polarization is defined
as �P = ��† �σ ��, where �σ = (σx, σy, σz )T is a vector of Pauli
matrices acting on the band degree of freedom. The state is
particlelike (holelike) when Pz > 0 (Pz < 0).

III. SCATTERING AT THE INTERFACE

When a beam of light impinges upon the interface be-
tween two optical media, it splits and propagates along two
trajectories: One reflects back to the medium from where
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FIG. 2. A sketch of the band structure and scattering processes
for a one-dimensional channel, i.e., for a specific ky. The dashed
horizontal line denotes the Fermi surface at E = 0. The ky mo-
mentum is chosen such that both regions are in the inverted-band
regime. (a) A holelike spinor ��L,+

h (large red arrow) incidents from
the p-doped region (gray). (b) A particlelike spinor ��L,+

p (large

green arrow) incidents from the p-doped region. The reflected ��L,−
a=p/h

and transmitted ��R,−
a=p/h states are denoted with their corresponding

scattering amplitudes.

it originated, while the other transmits through the interface
and enters the next medium. These two scattering processes,
i.e., reflection and transmission, are cooperatively determined
by properties such as the wavelength and the polarization of
the incident light beam, as well as the refractive indices of
optical media. In our studied electronic pn junction, a similar
scattering process manifests for ballistic electrons (the ones
with a mean-free path larger than all other scales in the system
[32]) due to their wavelike nature (see Figs. 1–3).

A. Scattering states

The scattering processes of electrons in our band-inverted
pn junction are more complex than light scattering, as the
electrons are redistributed between the band spinors intro-
duced in Sec. II. The band spinors have a nonlinear energy
dispersion, and therefore at constant energy, there can be ei-
ther one or two incident (as well as transmitted and reflected)
waves at the pn interface (see Fig. 2). Note that these details
lead to various scattering scenarios depending on the chemical
potentials of the junctions. On a technical level, this implies
that the incident and outgoing band spinors as well as the dom-
inant scattering processes change as a function of chemical
potentials.

All possible coherent scattering processes at the pn inter-
face can be described by the scattering-matrix formalism( ��L,−

��R,−

)
= S

( ��L,+

��R,+

)
, (2)

where ��l,d is the incoming and outgoing spinor state, incom-
ing and outgoing concerning the pn interface, with direction
d = +/− impinging onto the interface from the left and right
leads l = L/R. The state ��l,d denotes the available states for
the scattering when assuming energy and momentum conser-
vation. In the most general case, there can be incoming spinor

FIG. 3. A sketch of the scattering angles and scattering pro-
cesses. (a) The direction of the group velocities for the particlelike
and holelike states at their respective Fermi surfaces [cf. Eq. (7)].
With preserving ky momentum, the possible final states and their
scattering angles are determined by the intersection points between
the Fermi surfaces and the ky momentum of the incident state marked
by the dashed line ky = k [cf. Eq. (6)]. (b) The scattering angles
are defined with respect to the normal (dashed line) of the interface
(solid black line) [cf. Eq. (8)]. As a holelike state is injected from
the left side at the incident angle θL,+

h , the angle for the reflected
particlelike (holelike) state is denoted by θL,−

p (θL,−
h ), and the refrac-

tion angle for the transmitted particlelike (holelike) states are labeled
as θR,−

p (θR,−
h ). The particlelike and holelike states are represented

by the green and red arrows aligning in the direction of their group
velocities. (c) The four Fermi surfaces of the whole pn junction.
The dashed (solid) lines colored with green (red) represent the par-
ticlelike (holelike) branch of the Fermi surface in the p- (n-) doped
region. The scattering processes are categorized concerning the ky

momentum where the inner branch of a Fermi surface terminates.
The corresponding incident angles are denoted with θL

b and θR
b . We

set the chemical potentials to be finite, i.e., |μL| �= |μR| �= 0, and of
opposite signs in both regions.

states of both polarizations from the left p-doped region, as
well as from the right n-doped region. Similarly, we have both
types of spinors for outgoing states. For simplicity, we restrict
our analysis in the following to the case where the states are
incoming only from the left region (see processes in Fig. 2).

The scattering matrix is given by

S =
(

r t′

t r′

)
, (3)

with the scattering amplitudes r, r′, t, and t′ being 2 × 2
matrices. As commented above, since we are only interested
in the case where incident waves are impinging from the left,
the processes related to t′ and r′ will play no role in the fur-
ther analysis. To calculate the relevant scattering amplitudes,
we impose the spatial continuity of the states ��l,d and their
derivatives at the pn interface (see Appendix A). Furthermore,
we assume that the pn interface is perfectly sharp, implying
the conservation of the perpendicular component of the mo-
mentum k, e.g., the conservation of the k⊥ ≡ ky momenta
for the situation of a scattering in the x direction, depicted
in Fig. 1. Crucially, this allows us to treat the 2D scattering
problem as a collection of 1D scattering channels labeled by
different ky momenta.

Before solving Eq. (2) and obtaining the scattering am-
plitudes encoded in the matrices r and t, we first discuss
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TABLE I. Scattering regimes for different |ky| and |μ| in
the left and right regions. In the left, p-doped region (μL < 0),
particlelike and holelike spinors coexist when |ky| � �L

< and |μL| �
�μ (row II), and only holelike spinor exists when |ky| > �L

< or
|μL| > �μ (row I). Similarly, in the right, n-doped region (μR > 0),
both spinors exist when |ky| � �R

< and |μR| � �μ (column III),
otherwise for |ky| > �R

< or |μR| > �μ, only particlelike spinor exists
(column IV).

L\R III IV

I h-ph h-p
II ph-ph ph-p

which band spinors contribute to the scattering states ��l,d .
If the chemical potential is |μl | > �μ, only a single hole-
like (particlelike) band spinor is present in the p- (n-) doped
region. In that case, a holelike band spinor that propagates to-
wards the pn junction can be transmitted only as a particlelike
spinor and reflected solely as a holelike spinor. The situation
is more involved when the chemical potential is tuned into
the inverted-band regime, i.e., when Ac < |μl | < �μ. Specif-
ically, as depicted in Fig. 2, we can have two possibilities
for incident band spinors that propagate towards the interface.
Depending on the scattering amplitudes, they redistribute into
two transmitted and two reflected spinors moving away from
the interface. In this case, the availability of transmission and
reflection channels further depends on the particle’s momen-
tum, as the Fermi surface cuts the dispersion and forms two
branches [see the insets of Fig. 1 as well as Fig. 3(a)]. The
radii of the inner and outer branches are given by

�l
≶ =

⎡
⎢⎣−M0

M2
∓

√
μ2

l − A2
c

M2

⎤
⎥⎦

1
2

. (4)

Hence, for |ky| < �l
<, we have both scattering processes

available. On the other hand, scattering states with |ky| >

�l
< will involve solely holelike (particlelike) spinors in the

p- (n-) doped region, respectively. Combining the energy and
ky cutoffs, i.e., �μ and �l

≶, respectively, we summarize the
four different regimes of the scattering processes in Table I,
according to the polarization of the propagating spinors. In
each regime, we use, for instance, ph-p to denote the case
where particlelike and holelike spinors exist in the p-doped
region and only particlelike spinors exist in the n-doped re-
gion.

Let us now turn to the analysis of the incoming and outgo-
ing states. Combining all cases described in Table I, we can
write the incoming states as

��L,+ =
( ��L

p �(�μ − |μL|)�(�L
< − |ky|)

��L
h

)
,

��R,+ =
( ��R

p

��R
h �(�μ − |μR|)�(�R

< − |ky|)

)
, (5)

where the subscript a = p/h in �� l
a denotes the contribution of

particlelike and holelike spinors in the scattering state. The

Heaviside functions �(�l
< − |ky|) and �(�μ − |μl |) take

care of the available band spinors.
For the outgoing states ��l,−, we omit the cutoffs in order

to incorporate the fact that the incoming states can also scatter
into bound states with imaginary momenta that are localized
at the pn interface. Therefore, the outgoing state is defined
as ��l,− = ( �� l

p, �� l
h)T . Unlike the incoming states, the avail-

able band spinors �� l
a are fixed by the incoming states since

the ky momentum is conserved during the scattering process.
The outgoing band spinors are hence obtained by searching
for the intersection points between ky = k and the Fermi sur-
faces, where k is the ky momentum of the incoming states [see
Fig. 3(a)]. More formally, we obtain the kx momentum of the
outgoing band spinors by solving

(kx )2 + k2 = (�l
≶)2, (6)

where �l
< (�l

>) is chosen such that the kx momentum of
spinors located at the inner (outer) branch is obtained. Note
that when the solution for kx in Eq. (6) is real, the corre-
sponding band spinor propagates inside the system. Obtaining
a finite imaginary part to kx indicates localization of the spinor
at the interface.

B. Scattering angles and Snell’s law

Let us now return to the optical-like aspects of our scatter-
ing junction and connect to standard optics. In this regard, we
need to rewrite the scattering problem in terms of a propaga-
tion direction and group velocities of the wavelike states that
participate in the scattering. Therefore, we make a one-to-one
mapping between propagating solutions of Eq. (6), given by
real kx, and their group velocity obtained as [see also Figs. 3(a)
and 3(b)]

v ≡ ∇kE (k) = ξa

2M2

√
μ2

l − A2
c√

(M0 + M2|k|2)2 + A2
c

k, (7)

where ξp = 1 and ξh = −1 indicate the sign of the effective
mass of the spinors. In Fig. 3(a), we show, as a function
of momentum, the group velocities of both particlelike and
holelike branches in p- and n-doped regions calculated using
Eq. (7). The band spinors with vx > 0 in the left region are
propagating towards the pn interface, while the ones with
vx > 0 in the right region propagate away from it. On the
other hand, the band spinors with vx < 0 propagate away from
the interface in the left region, and in the right region they
propagate toward the pn interface.

As the propagating direction of the spinor �� l
a is the direc-

tion of the group velocity defined in Eq. (7), for a spinor with
momentum k = (kx, ky), we define the scattering angle θ l,d

a as

θ l,d
a = ξasgn(ky) tan−1

( |ky|
|kx|

)
. (8)

As such, we can characterize the incident states by their
incident angles to directly compare to the geometric de-
scription of traditional optics in the following discussion. In
Fig. 3(b), we depict a scattering process where a hole-like
spinor enters from the left lead at an angle θL,+

h , the outgoing
scattering states are marked using arrows oriented at their
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corresponding scattering angles θ l,−
a . The scattering process

depicted in Fig. 3(b) directly follows from the equivalent
momentum-space description shown in Fig. 3(a), i.e., the
pointing directions of the velocity map in Fig. 3(a) directly
yield the scattering angles in Fig. 3(b).

Notice that for |ky| = �
L/R
< , we can define two angles

θ
L/R
b = sin−1(�L/R

< /|k+|), where k+ is the momentum of the
incident states. The polarization of the propagating band
spinors changes abruptly [see also Fig. 3(c)] at these an-
gles, and therefore, we identify θ l

b as an effective “Brewster’s
angle” of the scattering process.

Last, using the fact that the participating band spinors in
Eq. (2) are connected by the conserved ky momentum at the
pn junction, we can establish an effective Snell’s law for the
pn junction once their propagating directions are known. For
refractive scattering (see Appendix B for the reflective case),
the effective Snell’s law is given by

�l
≶ sin

(
θ l,+

a

) = −�l̄
≶ sin

(
θ l̄,−

ā

)
,

�l
≶ sin

(
θ l,+

a

) = �l̄
≷ sin

(
θ l̄,−

a

)
, (9)

where the radii of the Fermi surfaces �l
≶ serve as the re-

fractive indices. We remind the reader that the superscript
l = R/L, from which follows that l̄ = L/R. From Eq. (9), it
follows that the transmission from the outer (inner) branch
on the left to the outer (inner) branch on the right has a
positive refractive index, while, surprisingly, the transmission
processes that change the branch (outer-inner or inner-outer),
involves a negative refractive index [see also Fig. 3(b)]. In
other words, the scattering between band spinors simultane-
ously manifests both a normal and a negative refractive index
depending on their polarizations. Such polarization-dependent
refraction motivates us to propose an electronic bifurcating
lens using the pn junction in Sec. V A.

C. Scattering amplitudes

Until now, we discussed all scattering processes between
spinor states ��L,+ and ��l,− [see Eq. (2)] without taking coef-
ficients of the scattering matrix (3) into account. Yet, they are
crucial in determining the transport properties as they provide
us with the probability of each process to occur. Therefore,
in what follows, we study the reflection and transmission
coefficients contained in matrices r and t, respectively (see
also Appendix A). Without loss of generality, we focus on a
situation where a holelike spinor enters from the left, p-doped,
region, and solve Eq. (2) to obtain the scattering amplitudes
|rhp|, |rhh|, |thh|, and |thp|. The solutions of Eq. (2) are shown
in Fig. 4 as a function of chemical potentials in the p- and
n-doped regions, μL and μR, respectively, for an incident
angle of a holelike spinor of θL,+

h = π/6. Note that the case
where a particlelike spinor enters from the p-doped region is
analyzed in Appendix C.

Starting with the scattering processes containing states
from both outer and inner branches, which give solutions for
|rhp| and |thh|, we notice the appearance of distinct termination
lines (see the two top panels in Fig. 4). A hint is provided in
Table I: The scattering regime changes between cases I (IV)
and II (III) when the incident angle and chemical potential

FIG. 4. Scattering amplitudes for a holelike state incident from
the left side at the angle θ+,L

h = π

6 as a function of the chemical
potentials |μL| and |μR|, obtained using a scattering matrix approach.
The black dashed lines mark the distinct boundary of the scattering
amplitudes between different scattering regimes. In the lower right
panel, the horizontal and vertical white dashed lines indicate the
energy cutoff �μ discussed in Sec. II. The diagonal marked with
a white dashed line denotes the vanishing hole-to-electron transmis-
sion thp in the ph-ph scattering regime. The encircled (A), (B), (C),
and (D) mark four pairs of chemical potentials supporting scatter-
ing regime h-p, h-ph, ph-ph, and ph-p, respectively. The encircled
(E) marks a pair of unequal chemical potentials where both the L
and R sides are in the inverted-band region. In all plots, we used
the following parameters: M0 = −30 meV, M2 = 700 meV, and
Ac = 16 meV.

vary in the p- (n-)doped region. This change eventually ap-
pears as the termination line in rhp (thh). Here, as the incident
angle is fixed, it occurs once the above-defined Brewster’s
angle becomes smaller than the incident angle. On a more
technical level, for the hole-to-particle reflection rhp, the ter-
mination line μL = μ′ is obtained using

sin
(
θL,+

h

) = �L
<

�L
>

∣∣∣∣
μL=μ′

, (10)

i.e., the chemical potential beyond which the corresponding
ky momentum for the incident angle θL,+

h has no intersec-
tion point with the inner branch of the Fermi surface in the
p-doped region. For the incident angle θL,+

h = π/6, the ter-
mination line is μ′ = (9M2

0/25 + A2
c )

1
2 . In other words, the

conservation condition of the ky momentum guarantees that
for |μL| > μ′ there are no propagating particlelike states in
the p-doped region to which the incident holelike state can
reflect. Similarly, the termination line for thh is given by μ′′ =
[(4

√
μ2

R − A2
c + 3M0)2 + A2

c]
1
2 for μR <

√
9M2

0/16 + A2
c ,

as the holelike states become bounded for |μL| > μ′′.
In contrast to the branch-changing processes described

above, the scattering processes restricted to the outer
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branches, which yield rhh and thp, have support within the
whole chosen range of the chemical potential, as shown in the
lower panels of Fig. 4. Such processes are more complex and
have a nonmonotonous behavior as a function of the chemical
potentials. In the lower-left panel of Fig. 4, we use the black
dashed lines to separate four different regimes according to
the polarizations of participating scattering states, namely,
ph-ph, h-ph, ph-h, and h-p. The lines of separation coincide
with the μ′ and μ′′. Note that this separation holds only for
the chosen incident angle θL,+

h = π/6. If one takes all possi-
ble incident angles into account, the separation between the
different regimes is given by the white horizontal and vertical
dashed lines (see the lower-right panel of Fig. 4) which mark
the energy cutoff �μ. In this case, the regimes h-p, h-ph,
ph-ph, and ph-p are marked with encircled (A), (B), (E), and
(D), respectively, while (C) is lying in the (E) region and
marks the line where |μL| = |μR|.

Let us return to the case of a single incident hole with
θL,+

h = π/6. Generally, for the potentials close to the main
gap, the scattering is dominated by reflections, mostly by
rhp. For simultaneously high chemical potentials, i.e., when
|μL| and |μR| are in the h-p regime, the scattering processes
are entirely determined by the amplitudes |rhh| and |thp|. The
branch-changing transmission amplitude |thp| shows an inter-
esting structure in μL − μR parameter space, namely, while
being maximized in the h-p region, it is heavily suppressed in
the ph-ph regime while it completely vanishes when |μL| =
|μR| [see (C) in Fig. 4].

To explain such behavior of |thp|, we first concentrate
on a symmetric pn junction with μL = −μR (for the asym-
metric case, see Appendix D), which hosts only ph-ph and
h-p regimes. For the former regime, all kx momenta involved
in scattering are real, and the scattering states propagate
through the system. In this situation, we can analytically ob-
tain the scattering amplitudes:

rhh = k>
x − k<

x

k>
x + k<

x

, thp = 0,

rhp = −2
√

k>
x k<

x

k>
x + k<

x

Ac

μ
, thh = 2

√
k>

x k<
x

k>
x + k<

x

√
1 − A2

c

μ2
, (11)

where k≶x = [(�l
≶)2 − k2

y ]
1
2 and |μL| = |μR| = μ. We notice

no polarization-flipping transmission in the ph-ph regime, i.e.,
thp = 0, which explains the effect marked with (C) in Fig. 4.

On the other hand, in the h-p regime of the symmetrically
doped pn junction, the inner branch is missing on both sides
of the pn interface, leading to bound states with imaginary
kx momenta. The presence of such bound states modifies
the scattering processes between the propagating states by
introducing a correction term to the scattering amplitudes,
as shown in Appendix E. For example, the hole-to-particle
transmission tBS

hp due to the bound states reads as

tBS
hp = 4k>

x k<
x

(k>
x )2 − (k<

x )2

√
1 − A2

c

μ2

Ac

μ
, (12)

where k<
x = [−(�l

≶)2 + k2
y ]

1
2 is the imaginary part of the kx

momentum of the bound states. Similar corrections coming

FIG. 5. (a) Scattering amplitudes as a function of the inci-
dent angle θL,+

h for the chemical potentials marked in Fig. 4.
The scattering amplitudes show discontinuity at the Brewster an-
gles denoted by θL

b and θR
b . (b) Local densities of the polarization

(LDOP) from Eq. (13), i.e., the local density of band spinors,
for holelike modes injected from a lead attached in the middle
of the left side of the sample, obtained numerically by solving
Eq. (2) in real space using KWANT [33]. The interface is tilted
so that the incident angle θL,+

h = π/6. The parameters are chosen
the same as in Fig. 4 and the corresponding chemical potentials
for plots marked with (A), (B), (C), (D), and (E) are (μL, μR ) ∈
{(−38, 38), (−38, 18), (−18, 18), (−18, 38), (−18, 30)} in meV,
respectively. In the inset of (D), we used (μL, μR ) = (−18, 0). In
all numerical calculations, we used large systems with Lx = Ly sites
with a narrow lead (marked with a gray rectangle) of width Ly/15
sites attached to the left side of the system.

from bound states alter all scattering amplitudes in the h-p,
h-ph, and ph-p regimes, as we show in Appendix E.

Let us now expand the analysis to arbitrary incident an-
gles. We show in Fig. 5(a) the scattering amplitudes as
a function of the incident angle for selected combinations
of the chemical potentials marked in Fig. 4. When the
Fermi surface in both regions lies outside the inverted-band
regime, e.g., as in case (A), no Brewster’s angle exists and
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all the scattering amplitudes are smooth functions of the
incident angle. Reducing the |μL| below �μ, Brewster’s an-
gles appear and introduce the discontinuity in the scattering
amplitudes, as is seen at (C) and (D) in Fig. 5(a), both of
which show a single discontinuity point. In the symmetric
case marked by (C), the two Brewster’s angles are equal
θL

b = θR
b and, therefore, the discontinuity in the scattering

amplitudes occurs only once. Similarly, a single discontinuity
appears in (D), but this time due to the presence of only
one Brewster’s angle, a consequence of the Fermi surface
in the n-doped region containing only one branch. The most
complex behavior can be seen in (E), where |μL| �= |μR| and
|μL|, |μR| < �μ (see also Fig. 4), where both Brewster’s
angles θL

b and θR
b exist and are nondegenerate. In that case,

for the incident angle θL,+
h < θR

b , the scattering process is in
the ph-ph regime. When θL,+

h increases above θR
b , thh vanishes

since the holelike branch in the n-doped region does not
intersect with the corresponding incident momentum ky, and
the scattering type is now ph-p. Increasing the incident angle
beyond θL

b leads to a vanishing particle branch in the p-doped
region and, therefore, |rhp| drops to zero.

One more remarkable feature observed in Fig. 5(a) is the
evidence of a Klein-tunneling alike effect: Close to perfect
transmission occurs while all reflection coefficients become
almost zero. Unlike graphene, where the Klein tunneling oc-
curs only for the zero-incident angle, in the inverted-band
pn junctions the transmissions acquiring a negative refractive
index, e.g., thp, maximize at a finite angle [see (D) and (E)
cases of Fig. 5], where |thp| is maximized at the incident angle
θL

b < θL,+
h < π/2. In the next section of this paper, we dis-

cuss in detail how this feature facilitates interesting potential
experimental applications.

IV. NUMERICAL ANALYSIS

In order to verify our analytical predictions above, we
develop and harness a numerical toolbox based on the KWANT

software [33]. We use a two-dimensional square lattice con-
taining Lx = Ly sites in both x and y directions. The unit-cell
size is chosen sufficiently small such that the low-energy
physics is effectively described as in the continuum system.
By adding positive (negative) onsite potentials onto specific
regions in the numerical “sample,” we can emulate the effect
of gating to obtain the pn junction discussed in the previ-
ous sections. In other words, we can study the transport for
different choices of the chemical potentials μl . In order to
study the transport, we attach a narrow semi-infinite source
lead in the x direction to the middle of the left side of the
system. The lead has a finite width of Ly/15 sites in the y
direction, which serves as an electron source [see Fig. 5(b)].
As drain, we attach semi-infinite leads around the whole sys-
tem such that all spinors leave the system without additional
reflections at the boundaries. Finally, all leads are described
by the same Hamiltonian as their adherent regions.

Trajectories of injected states, as well as the ones after the
scattering, are captured by the local density of the polarization
(LDOP), which is defined as

LDOP(x) =
N∑

n=1

��†
n (x)σz ��n(x), (13)

where ��n(x) is the wave function of the nth channel injected
from the attached lead, and the sum runs over all discrete
channels in the lead that form in the y direction. Note that the
effect of those discrete channels is the same as having discrete
ky momenta in discussion regarding previous sections. The nu-
merically calculated LDOP is shown in Fig. 5(b) for the case
where holelike states are injected from the left lead. We chose
several different combinations of the chemical potentials from
the regions marked in Fig. 4.

Negative refraction

As discussed in Eq. (9), negative diffraction can occur
in branch-changing scattering processes. Therefore, there are
two types of negative diffraction in our system: One in the
transmission process and the other in the reflection process.
For the case of an incident holelike state, they manifest in
thp and rhp, respectively. We observe both types of negative
refraction in the numerical simulation [see two left panels
of Fig. 5(b) marked with (A) and (C)]. The former is in the
h-p regime, where we observe negative refraction in trans-
mission. The latter is in the ph-ph regime, and we observe
almost perfect reflection of the holelike states to particlelike
ones with negative refraction in reflected scattering (see also
Appendix B).

V. ELECTRON-OPTICS DEVICES

Using the scattering theory developed in the previous
section and the knowledge that comes from it, we can now
numerically study possible applications of the rich scattering
processes in the inverted-band pn junctions. In a recent work
[25], some of us showed that the inverted-band pn junctions
provide a unique mechanism for realizing electron optics. The
electron-hole interference pattern is observed in a Fabry-Pérot
interferometer based on an inverted-band pnp junction. Here,
we expand on the variety of potential applications in terms of
geometrical optics, where our understanding of the angular
dependence of the scattering process paves the way to de-
sign fundamental optical components for electronic systems,
such as mirrors and focusing lens. Moreover, since the band
spinor in the inverted-band systems plays the same role as
the polarization of photons in traditional optical systems, by
analogy to the optical components, we can construct bifurcat-
ing lens and polarizers for the band spinors using different
pn junctions.

A. Bifurcating lens

We start by discussing the effects that occur in nonsym-
metric pn junctions, i.e., when |μL| �= |μR|. The first effect
is bifurcation. In optical birefringent materials, the refraction
index differs for photons with different polarizations and it
is possible to spatially separate photons with different po-
larizations. Equivalently, in our electronic system where the
alignment of the band spinors plays the role of polarization,
we can obtain different refraction indices for particlelike and
holelike spinors, realizing with that an electronic bifurcat-
ing lens for the band polarization. One such realization is
shown in the upper right panel of Fig. 5(b) marked with
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(B): A horizontal propagating holelike state hits a right-tilted
interface in the h-ph regime. The refracted particlelike states
(colored green) propagate to the lower-right direction, while
the holelike states (colored red) head to the upper-right corner.
Therefore, the inverted-band pn junction automatically real-
izes a bifurcating lens for the band spinors, due to the fact that
the polarization-preserving transmission acquires a positive
refraction index while the polarization-flipping transmission
acquires a negative refraction index.

B. Polarizer

By tuning the chemical potential in the right region be-
yond the inverted-band regime, i.e., |μR| > �μ, only the
outer branch of the Fermi surface is accessible during the
scattering process, meaning that only particlelike states can
scatter through the n-doped region. In the lower right panel of
Fig. 5(b), marked with (D), we observe a particlelike polarizer
based on such a setting. On the other hand, a holelike polarizer
can be built by setting μR < −�μ so that only holelike states
are transmitted to the right through the interface despite the
polarization of the incident states from the left side.

C. Mirror

The most fundamental component in optics, i.e., the mirror,
is also realizable in our setup. By tuning the chemical potential
μR to reside inside the gap, the states entering from the left,
p-doped region cannot scatter into the right region due to the
absence of propagating states. Therefore, all incident states
are reflected. We demonstrate this in the inset of case (D) in
Fig. 5(b). The incident holelike states from the left region are
reflected into the particlelike states with a negative reflection
angle, due to the negative refraction. Furthermore, we find by
solving the scattering amplitudes that as long as the incident
angle is smaller than Brewster’s angle, i.e., when both the
particlelike and holelike states are propagating in the p-doped
region, the polarization-flipping reflection rhp dominates [see
also Fig. 8(c)]. Thus, by manipulating the incident angle, we
can control the polarization of the reflected states as well
as their reflection angle using the inverted-band pn junction
mirror.

D. Veselago and focusing lens

We turn now to discuss two additional electron-optics de-
vices that can be constructed based on the negative refraction
discussed in the previous sections. For simplicity, we re-
strict our discussion to a symmetric junction tuned to the h-p
regime. In this case, only polarization-flipping transmission
thp is allowed, and the incident angle equals the refraction
angle. We use the same numerical methodology but with
geometries adapted to observe the lensing effects.

In Fig. 6(a), we show a Veselago lens [8,34] realized using
the inverted-band pn junction. We numerically calculate the
LDOP (13) for the case where the holelike states are injected
from a narrow source lead attached at the lower side of a flat
interface. Since the pn junction is symmetric, we observe a
strong focusing effect of particlelike states on the other side
of the interface. The focal point is located symmetrically with
respect to the interface.

FIG. 6. (a) LDOP [cf. Eq. (13)] in a Veselago lens setup based
on a symmetric pn junction. The holelike states (red) are injected
from the lead attached to the lower side of the sample. After the
h-p scattering at the interface (dashed line), the states transmit as
particlelike (green) and focus on a point at the upper side. For the
numeric calculation, we use the same parameters as in Fig. 4, with
which the system length Lx is 2000 nm. (b) LDOP in a focusing lens
based on a symmetric pn junction. The curved interface (dashed line)
transfers states injected from a point source on the left to parallel
propagating beams on the right. The focusing length f indicates the
distance between the source and the interface. In (c) and (d), the
conductance σ through the Veselago lens is shown as a function of
the position x and for different strengths of disorder and at different
temperatures, respectively.

We proceed now with a curved interface, with which we
can realize a focusing lens [see Fig. 6(b)]. Injecting the hole-
like states from a pointlike source located in the focal point
on the left side of the curved interface, parallel beams of
particlelike states are obtained on the right side, without any
additional spatial confinement. Equivalently, one can inject
particlelike states that propagate in parallel from the right and
focus them as holelike states on the left side of the interface.
To obtain the above effect, for the symmetric pn junction
discussed in Fig. 6(b), the interface needs to have a parabolic
shape defined by x = ±y2/(4 f ) [12], where f is the focus-
ing length indicating the distance between the lead and the
interface.

VI. EFFECTS OF DISORDER AND FINITE TEMPERATURE

So far, our analysis was conducted in a clean system at
zero temperature. In reality, however, random impurities in
the junction and thermal fluctuations can be detrimental to the
optical properties of the devices. In the following, we take the
Veselago lens shown in Fig. 6(a) as an example and verify its
robustness against disorder and thermal fluctuations using our
numerical simulations.

A. Robustness against disorder

First, we consider random impurities in both p- and
n-doped regions and study the performance of the Veselago
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lens as a function of their strengths. We model realistic im-
purities by introducing a randomly distributed onsite potential
μdis, which obeys a normal distribution with a zero mean and
the standard deviation Udis. The strength of the disorder is then
controlled by Udis. Next, we fix the lower lead with a length
of Lb ≈ Lx/18 to the middle of the p-doped region. This lead
acts as a source for the holelike states. Furthermore, we attach
a series of smaller leads each with length Lt ≈ Lx/161 on
the top of the n-doped region, which serves as a drain for
particlelike states.

In such a setup, we calculate the nonlocal conductance
as the function of the position of the upper lead, which is
defined as

σ = e2

h

N∑
n=1

M∑
m=1

Tr[t†
nmtnm], (14)

where t ′
nm is the modified transmission matrix defined in

Eq. (3) that connects the channel n of the lower lead to
the channel m of the upper lead. We remind the reader that
the discretization of n and m arises from the finite size of the
leads. Therefore, to calculate the total transmission of injected
states on the bottom to the ones that enter the top leads, one
needs to sum over the contributions of all the states injected
from source S and those arriving in drain D. In Fig. 6(c), we
show the conductance as a function of the horizontal position
of the upper lead and for different disorder amplitudes. When
the system is disorder free, the conductance is maximal when
the two leads are symmetrically positioned with respect to the
pn interface and vanishes when the upper lead is positioned
far away from the middle. Increased disorder strength reduces
σ , but the maxima in the middle remain visible even at strong
disorder Udis/|M0| = 2

3 .

B. Robustness against finite temperature

Next, we calculate the conductance σ at finite temperatures
for the same setup using

〈σ 〉T = 1

2kBT

∫ ∞

−∞
dε

σ (ε)

cosh(ε/kBT ) + 1
, (15)

where kB is the Boltzmann constant and σ (ε) is the nonlocal
conductance obtained using Eq. (14) with a Fermi surface at
ε. We approximate the integral using a Riemann sum, using
a summation over σ (ε) with ε sampled 50 times obeying the
probability distribution P(ε) = {2kBT [cosh(ε/kBT ) + 1]}−1.
The results are shown in Fig. 6(d), where we observe that
although the maximal value of the conductance drops rapidly
as the temperature increases, the uneven spatial distribution
of σ , i.e., the presence of the peak, is not destroyed even
at high temperatures of 500 K. Unlike the disordered case,
the thermal fluctuations “blur out” the focusing point while
simultaneously increasing the conductance at the surrounding
top leads.

VII. CONCLUSION AND OUTLOOK

In this work, we developed a scattering theory for band-
inverted pn junctions, in which the band hybridization and
inversion yield a sombrero-hat dispersion for the band spinors
(see Fig. 1). The sombrero-hat dispersion entails the presence

of particlelike and holelike states in the system, which then
correspond to the polarization of light in the language of stan-
dard optics, with an additional difference being a nonlinear
dispersion of electronic states (see Fig. 2). In Sec. III B, we
show how the scattering problem given by Eq. (2) can be
mapped to an effective Snell’s law for band spinors [see also
Eq. (9)]. This allowed us to introduce the concept of elec-
tronic Brewster’s angles considering the alignment of the band
spinors as the polarization of the quasiparticles [see Fig. 3(b)].

Moreover, by studying Eq. (9), we postulated and later
observed negative refraction for branch-changing scattering
processes, both in the case of transmitted and the reflected
states [see Figs. 5(b) and 6(a)]. By further exploring the pa-
rameter space, i.e., by tuning the chemical potentials in the
p-doped and n-doped regions, we find combinations based
on which the fundamental optical components are realizable,
such as mirrors, bifurcating lens, polarizers, and focusing
lens. We verify the feasibility of realizing these devices us-
ing numerical simulations [see Fig. 5(b)]. Using such optical
components, we show in Figs. 6(a) and 6(b) realizations of
Veselago and focusing lenses. Additionally, for the former,
we discuss the influence of disorder and thermal fluctu-
ations (the two main sources of decoherence in realistic
systems) on the performance of the devices [see Figs. 6(c)
and 6(d)]. The robustness shown in those results supports
experimental feasibility and confirms that the inverted-band
pn junction is a promising platform for realizing electron-
optics phenomena.

We emphasize that the direct observation of one of the
effects we discuss in this paper, the negative refraction, in
mesoscopic 2D systems was accomplished recently using
specially engineered polaritonic platforms [19,20]. The only
known solid-state platform, where some aspects of 2D elec-
tron optics have been proposed [9] and realized [10,18], are
mostly the graphene-based devices. However, to observe more
complicated optical effects like Veselago lensing in graphene-
based pn junctions [9], the interface between p- and n-doped
regions has to be perfectly smooth in the y direction and
extremely narrow. Otherwise, for the graded pn interface, the
transmission at finite angles is exponentially suppressed and
only electrons impinging the interface at zero angle transmit
thanks to the Klein-tunneling effect [24]. As a result, the
graphene-based pn junction acts as a bad collimator with a
drastically reduced beam intensity. This makes direct obser-
vation of novel electron-optics properties, such as negative
refraction, with standard graphene devices experimentally un-
achievable. In such a case, the focusing effects can only be
indirectly observed in experiments using a magnetic field to
bend the trajectory of the electrons [18].

In inverted-band pn junctions studied in this work, cru-
cially, the transmission amplitude that generates the negative
refractive index maximizes at a finite angle and, therefore,
the effects and devices discussed in our paper could survive
even in the presence of a graded interface. In other words,
the Klein-tunneling alike effect that we report in Fig. 5(a)
enables direct experimental observation of the negative re-
fractive index and, consequently, the realization of the devices
discussed in Secs. IV and V. Thus, we expect our proposal to
be directly measured in real materials such as InAs/GaSb (see
Ref. [25] where an electronic Fabry-Pérot interferometer has
been theoretically proposed and experimentally investigated)
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as well as in bilayer graphene and other topological materials
exhibiting band inversion.

We note that our analysis is quite general and did not aim
to include all microscopic details of the dispersion of specific
materials. Based on our description, it is straightforward to
generalize our multiband scattering theory to other systems
featuring more complicated inverted-band structures, e.g., to
systems with different effective masses for particlelike and
holelike states, where different group velocities of particlelike
and holelike states can result in rich interference patterns.
In addition, our work can be applied to topologically non-
trivial systems, where the topological phase transition can
thoroughly change the angular dependence of the scattering
amplitudes. Since the negative refraction in our model relies
on the sombrero-shaped band structure of the pn junctions, it
can also manifest in a spinful system, where the Hamiltonian
is modified by spin-orbit coupling: As long as the required
band structure is preserved for at least one spin direction,
our predictions will hold. Lastly, our result facilitates the de-
sign of, other, more complicated electron-optics devices, such
as interferometers or electron spectrometers, which can be
constructed using inverted-band pn junctions using the basic
components we propose.
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APPENDIX A: DETAILS ON THE SCATTERING
MATRIX APPROACH

To obtain the corresponding amplitudes for transmissions
and reflections at the interface, we employ a scattering matrix
approach in Sec. III C. As defined in Eq. (2), the scattering
matrix in our system consists of four scattering amplitudes
being 2 × 2 matrices

r =
(

rpp rph

rhp rhh

)
, t =

(
tpp tph

thp thh

)
,

r′ =
(

r′
pp r′

ph

r′
hp r′

hh

)
, t′ =

(
t ′
pp t ′

ph

t ′
hp t ′

hh

)
, (A1)

where each entry in the matrices indicates the probability
amplitude for the corresponding scattering process to occur.
For given parameters, their values are determined using the
continuity condition of the wave functions at the interface,
i.e., the wave functions for p- and n-doped regions and their
first derivative must be the same value at the interface. For
instance, to obtain tha and rha, where a = h, p, we assume a
holelike spinor with ky = k impinging the interface aligned in
the y direction from the left. The wave functions in the p and
n regions are thus given by

��L(x, k) = ��L
h e−ikL,+

h x + r̃hp ��L
p e−ikL,−

p x + r̃hh ��L
h e−ikL,−

h x,

��R(x, k) = t̃hp ��R
p e−ikR,−

p x + t̃hh ��R
h e−ikR,−

h x, (A2)

where kl,d
a = (kl,d

a , k)T is the momentum of spinors with ky =
k and kx = kl,d

a obtained by solving Eq. (6). Next, as the spinor
�� l,d

a is a two-component vector, we have four equations by
implementing the continuity condition at the pn interface, i.e.,
at x = 0:

��L(x, k)|x=0 = ��R(x, k)|x=0,

∂x ��L(x, k)|x=0 = ∂x ��R(x, k)|x=0, (A3)

with which the amplitudes of t̃ha and r̃ha can be determined.
Yet, they are not the scattering amplitudes in Eq. (A1) as
the conservation of the spinor current in the direction of the
interface normal is not guaranteed by the continuity condi-
tions. Therefore, we further modify the amplitudes t̃ha and r̃ha
with the ratio of group velocities of the initial and final states
in the direction of the interface normal, i.e., x direction. As an
example, thp is defined as

thp =
√

vR
p

vL
h

t̃hp, (A4)

where vl
a is the x component of the group velocity defined

in Eq. (7) for the corresponding spinor �� l
a. Moreover, when

bound states are involved, [vl
a]x = 0 as they are localized at

the interface. Other components in Eq. (A1) are obtained by
repeating this procedure for the incident particlelike spinor, as
well as using the reciprocal relation between different scatter-
ing processes.

APPENDIX B: EFFECTIVE SNELL’S LAW
FOR THE REFLECTIVE SCATTERING

As the ky momentum is preserved during the scatter-
ing process, we obtain an effective Snell’s law for reflected
states as

�l
≶ sin

(
θ l,+

a

) = �l
≶ sin

(
θ l,−

a

)
, (B1)

�l
≶ sin

(
θ l,+

a

) = −�l
≷ sin

(
θ l,−

ā

)
, (B2)

where the minus sign for polarization-flipping reflection rhp

and rph indicates that the reflected states that acquire opposite
polarization propagate in the same sector, if one imagines
the x and y axes to divide the space into four sectors, as the
incident states. Moreover, for the symmetric pn junction, we
obtain θ l,+

a = −θ l,−
ā , which suggests that the reflected states

propagate backwards along the trajectory of the incident states
[see also in Fig. 1 and case (C) in Fig. 5].

APPENDIX C: INCIDENT PARTICLELIKE SPINOR

In an experimental realization, electrons entering from the
metallic leads are carried by the particlelike and holelike
spinors in the system. The incident state ��l,+ is thus always
a superposition of spinors with both types of polarization,
where the superposition depends on the details of the coupling
between the inverted-band system with the leads. While in
the main text, we restrict our discussion to only incident
holelike spinors, here we show the numerical results for the
incident particlelike spinors. From such initial conditions, one
can obtain the other four scattering amplitudes, namely, |rpp|,
|rph|, |tph|, and |tpp| (see also Appendix A). In Fig. 7(a),
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FIG. 7. (a) Scattering amplitudes for a particlelike state incident
from the left side at the angle θ+,L

h = π

6 as a function of the chemical
potentials |μL| and |μR|, obtained using a scattering matrix approach.
The solid white line in the upper right panel indicates the boundary
between the scattering regime ph-ph (to the left) and ph-p (to the
right). The diagonal marked with a dashed white line denotes the
vanishing particle-to-hole transmission tph in the ph-ph scattering
regime. The vertical white line in the lower right panel indicates the
energy cutoff �μ = 34 meV in our simulation. The encircled (C) and
(E) mark two pairs of chemical potentials supporting ph-ph and ph-p
scattering regimes, respectively. (b) Scattering amplitudes as a func-
tion of the incident angle θL,+

h for chemical potentials marked in (a).
The scattering amplitudes show discontinuity at the Brewster angles
denoted by θR

b . (c) Local densities of the polarization (LDOP), de-
fined in Eq. (13), for electrons injected from a metallic lead attached
in the middle of the left side of the sample, obtained numerically
by solving Eq. (2). The interface is tilted so that the incident angle
θL,+

h = π/6. The parameters and the combination of the chemical
potentials are the same as in Fig. 5. Moreover, the metallic lead,
marked by the gray rectangle on the left, has a parabolic dispersion
with the positive effective mass M2 and a constant energy offset
−|M0| being the same as the respective parameters in the p- and
n-doped regions in the rest of the system.

the analytical results for all four amplitudes are shown as
a function of the chemical potentials in the left and right
parts and for the incident angle θ+,L

h = π/6. We find that the
particle-to-hole transmission amplitude |tph| is a magnitude
smaller than the other scattering amplitudes |tpp|, |rph|, and
|rpp|, which suggests a negligibly small contribution to the
negative refraction from the incident particlelike spinors in the
whole parameter space. The corresponding termination line
of the ph-ph region μ′

p (solid white line) is given by μ′
p =

[(4
√

μ2
R − A2

c + 3M0)2 + A2
c]

1
2 for μR >

√
9M2

0/16 + A2
c .

Moreover, we show in Fig. 7(b) that the transmission am-
plitude |tph| remains small for all the incident angles, and only
one Brewster’s angle θR

b appears due to the termination of
the inner branch in the n-doped region. Hence, we find that
the incident particlelike spinors merely serve as a homoge-
neous background to the refocusing electron beams in the
n-doped region, which is attributed to the incident holelike
spinors.

In Fig. 7(c), a realistic experimental situation is shown with
a lead made of a normal metal, i.e., with a parabolic dispersion
containing only particlelike states. The LDOP is calculated
numerically [33], and shown for two pairs of chemical poten-
tials μL and μR lying in ph-ph and ph-p scattering regimes
marked with (C) and (E), respectively. The negative refraction
governed by the thp scattering can be seen in both (C) and (E)
regimes, with a difference that in (C), the effect occurs only
at very large angles, i.e., θL,+

h > θL
b , as follows from Fig. 5(a).

All other transmitted waves, namely, the ones that come from
tph, thh, and tpp, only give rise to the homogeneous background
in the LDOP.

APPENDIX D: SCATTERING AMPLITUDES
IN THE ASYMMETRIC JUNCTION

For the asymmetrical junction, we find that the scattering
processes can be characterized by two factors: (i) the momen-
tum transfer between the scattering waves, and (ii) the cross
product between corresponding band spinors. We further find
that the spinor-dependent factor remains constant along mo-
menta lying on the same branch of the Fermi surface [see in
Fig. 8(a)] so that, for fixed chemical potentials, the scattering
amplitudes are determined solely by a momentum-dependent
factor.

Let us now calculate the scattering amplitudes for asym-
metric junctions. We consider a holelike state impinging
on the interface from the left side, and study the region
of chemical potentials that give rise to a ph-ph scattering
regime. Without loss of generality, we assume 0 < |μR| <

|μL| < �μ, such that the kx momenta are confined to 0 <

|kL,−
p | < |kR,−

h | < |kR,−
p | < |kL,+

h |. For simplicity, we denote

their absolute values using k1 = |kL,−
p |, k2 = |kR,−

h |, k3 =
|kR,−

p |, and k4 = |kL,+
h |, and rewrite the scattering equations in

Eq. (A3) as

��L,+
h + r̃hh ��L,−

h + r̃hp ��L,−
p = t̃hp ��R,−

p + t̃hh ��R,−
h

k4
(− ��L,+

h + r̃hh ��L,−
h

) − k1r̃hp ��L,−
p = k3t̃hp ��R,−

p −k2t̃hh ��R,−
h .

(D1)
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FIG. 8. (a) Band spinors located at the Fermi surface in the
p-doped region. Arrows aligning downwards at the outer branch rep-
resent the holelike spinors (red), while the upwards-aligning arrows
located at the inner branch represent the particlelike spinors (green).
(b) Sketch of the scattering processes with bound states in the
h-p regime. (c) Scattering amplitudes as a function of the incident
angle θL,+

h for chemical potentials μL = 18 meV and μR = 0 meV.

By solving the above equations, we obtain the scattering am-
plitudes in the following form:

t̃hp = k4 − k1

k3 + k1

��L,+
h × ��L,−

h

��L,−
h × ��R,−

p

− k2 − k1

k3 + k1

��R,−
h × ��L,−

h

��L,−
h × ��R,−

p

t̃hh,

t̃hh = 2k4

k4 + k2

��L,+
h × ��L,−

p

��R,−
h × ��L,−

p

− k4 − k3

k4 + k2

��R,−
p × ��L,−

p

��R,−
h × ��L,−

p

t̃hp,

r̃hp = k3 + k4

k3 + k1

��L,+
h × ��R,−

h

��R,−
h × ��L,−

p

− k4 − k3

k3 + k1

��L,−
h × ��R,−

h

��R,−
h × ��L,−

p

r̃hh,

r̃hh = k4 − k2

k4 + k2

��L,+
h × ��R,−

p

��L,−
h × ��R,−

p

− k2 − k1

k4 + k2

��L,−
p × ��R,−

p

��L,−
h × ��R,−

p

r̃hp.

(D2)

The scattering amplitudes written above can be solved iter-
atively. Note that in the symmetric case, where k1 = k2 and
k3 = k4, the expressions in Eq. (11) are recovered.

APPENDIX E: BOUND STATES AT THE INTERFACE

In Sec. III C, the presence of the bound states in the
h-p scattering regime alters the scattering amplitudes, which
then reads as

t̃ BS
hh = 2ki

k−

��L,+
h × ��L,−

p

��R,−
h × ��L,−

p

,

r̃BS
hp = 2ki

k+

��L,+
h × ��R,−

h

��R,−
h × ��L,−

p

,

t̃ BS
hp = k−

k+

��L,+
h × ��L,−

h

��L,−
h × ��R,−

p

− 2kBS

k+
t̃ BS
hh

��R,−
h × ��L,−

h

��R,−
p × ��L,−

h

,

r̃BS
hh = k−

k+

��L,+
h × ��R,−

p

��L,−
h × ��R,−

p

− 2kBS

k+
t̃ BS
hh

��R,−
h × ��R,−

p

��R,−
p × ��L,−

h

, (E1)

where k± = |kL,+
h | ± kBS and kBS = i|Im(kL,−

p )|.
The selection of the incoming states stems from the fact

that Eq. (6) yields two solutions of kx for each branch in
all scattering regimes. In the ph-ph regime, all solutions are
real and each one of them represents a propagating state.
On the other hand, in the h-p, ph-p, and h-ph regimes, the
inner branch of the Fermi surface vanishes for given chemical
potentials and incident ky and, therefore, the corresponding kx

solutions are imaginary and represent exponentially decaying
solutions located at the interface between p and n regions,
i.e., bound states [see Fig. 8(b)]. Their localization length
ξ is given by the reciprocal of the imaginary part of kx,
i.e., ξ = 2π/Im(kx ). Equations (E1) show that although the
bound states carry no propagating charges, they are a crucial
correction term for the scattering amplitudes and are thus
needed to be included in the outgoing states. Furthermore, we
find that the aforementioned expressions of the scattering am-
plitudes in Eq. (D2) are valid even in the h-p, ph-p, and h-ph
regimes once the imaginary part of kx is included, namely, by
defining k2 = −i|Im(kR,−

h )| and k1 = i|Im(kL,−
p )|. Note that

these definitions further allow us to calculate the scattering
amplitudes when one of the regions is fully gapped, i.e., when
only bound states exist in one of the two regions. For instance,
in the case where the Fermi surface of the n-doped region
lies in the main gap. We show in Fig. 8(c) the scattering
amplitudes rhp and rhh for a holelike spinor impinging from
the p-doped region. The dominant reflection changes from
rhp to rhh as the incident angle increases, which inspired
us to build the polarization-controllable mirror presented in
Sec. V C.
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