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Understanding the physical properties of unconventional superconductors as well as of other correlated
materials presents a formidable challenge. Their unusual evolution with doping, frequency, and temperature
has frequently led to non-Fermi-liquid (non-FL) interpretations. Optical conductivity is a major challenge in
this context. Here, the optical spectra of two archetypal cuprates, underdoped HgBa2CuO4+δ and optimally
doped Bi2Sr2CaCu2O8+δ , are interpreted based on the standard Fermi-liquid (FL) paradigm. At both dopings,
perfect frequency-temperature FL scaling is found to be modified by the presence of a second, gapped electronic
subsystem. This non-FL component emerges as a well-defined mid-infrared spectral feature after the FL
contribution, determined independently by transport, is subtracted. Temperature, frequency, and doping evolution
of the MIR feature identify a gapped rather than dissipative response. In contrast, the dissipative response is
found to be relevant for pnictides and ruthenates. Such an unbiased FL/non-FL separation is extended across
the cuprate phase diagram, capturing all the key features of the normal state and providing a natural explanation
why the superfluid density is attenuated on the overdoped side. Thus, we obtain a unified interpretation of optical
responses and transport measurements in all analyzed physical regimes and all analyzed compounds.

DOI: 10.1103/PhysRevB.107.144515

I. INTRODUCTION

The discovery of high-temperature superconductivity in
cuprates, a phenomenon that no one except their discover-
ers expected in these compounds [1], is among the most
important breakthroughs in solid-state physics. This family
of materials has been a continuous source of surprises with
unconventional, sometimes compound-specific, behaviors in-
spiring numerous and exciting, often mutually exclusive, ideas
and theories [2]. At half-filling, the cuprates are charge-
transfer insulators [3], with one localized hole per CuO2 unit
(Fig. 1). At p ≈ 0.25 doping, corresponding to 0.25 added
holes per CuO2 unit, the so-called overdoped regime, they are
a conventional Fermi liquid (FL) with an effective carrier den-
sity neff = 1 + p. Superconductivity (SC) appears between
p ≈ 0.05 and ≈0.25 doping, with a maximum Tc at optimal
doping around p ≈ 0.16.

This general pattern is observed for many structurally dis-
tinct cuprates, which indicates a universal physical origin of
SC. In particular, it has been demonstrated that the normal-
state sheet resistance is essentially universal [4,5]. Optimal
doping is characterized by a linearlike temperature depen-
dence of the resistivity, which persists from very high to
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surprisingly low temperatures [6]. Along with the unusual
evolution of spectroscopic responses, it was generally inter-
preted as indicative of exotic, non-FL behavior [2,7]. In the
underdoped regime, this linearlike dependence is observed
only at high temperatures. The low-temperature deviation
from linearity appears below a temperature T ∗ that delimits
the pseudogap regime from above. It is precisely in the pseu-
dogap regime that the entirely unexpected FL nature of the
itinerant charge was clearly revealed by its unambiguous the-
oretical signatures. The resistivity is quadratic in temperature
(ρ = A2T 2) and inversely proportional to doping (A2 ∝ 1/p)
[4,8]; the Hall coefficient is temperature independent and
identifies the carrier density to be p (RH ∝ 1/p) [5,9]; the
inverse of the Hall mobility is consequently also quadratic in
temperature (1/μH = C2T 2); the magnetoresistivity scales as
a function of field and temperature according to Kohler’s rule,
which reveals that the scattering rate is of FL nature as well
[10]. Finally, the frequency and temperature dependence of
the optical scattering rate also scale in the manner expected
from a FL [11], with a small but significant modification in
the scaling variable, which is fully explained in this paper.
Because the pseudogap regime is central to the cuprate prob-
lem, the discovery that the itinerant charges in it are a true FL
provides a solid fulcrum around which the whole interpreta-
tion of cuprates can be understood. The lever of the fulcrum in
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FIG. 1. The temperature dependence of the resistivity of Hg1201 at p ≈ 0.1 is (a) linearlike above T ∗ ≈ 275 K (PG temperature) and
(b) purely quadratic below T ∗∗ ≈ 180 K, in agreement with previously published results [4]. (c) At optimal doping (p ≈ 0.16) resistivity in
Bi2212 [12] is essentially linear down to Tc. (d) Schematic phase diagram of cuprates based on the doping and temperature dependence of the
localized carrier density (nloc) as determined from resistivity [13–15]. Its variation from 1 in PG-FL regime to 0 in OD-FL is represented by
the color scale. The solid black and dashed gray isolines track its evolution. The superconducting (SC) and antiferromagnetic (AF) regions
are also shown. T ∗ corresponds to nloc ∼ 97%, whereas T ∗∗ corresponds to nloc ∼ 99%. The blue (red) chevrons indicate the doping of the
Hg1201 (Bi2212) samples discussed in the text. (e) Comparison of the zero-temperature effective carrier density neff for several cuprates
families extracted from the resistivity (nρ , full lines) and Hall effect (nH, filled circles) [13–16]. Considering the uncertainties in the absolute
values of ρ and RH, and the difficulties associated with ascertaining the exact doping level for each particular sample, the agreement between
nρ (extracted first by use of a simple model [13]) and nH (directly measured by use of high magnetic fields somewhat later [16]) across different
compounds is remarkable.

this analogy is the complete universality of the Hall mobility,
a key experimental fact overlooked until quite recently [5,17].
In contrast to resistivity, which changes from quadratic in tem-
perature to linearlike at optimal doping, and then back again
to quadratic in the overdoped regime, the Hall mobility re-
mains virtually unchanged throughout the temperature-doping
phase diagram. Furthermore, it is essentially compound in-
dependent, quadratic in temperature (1/μH = C2T 2) with the
same coefficient [C2 = 0.0175(20) T K−2] across all cuprates
[5,17]. The implication, in agreement with the observed evo-
lution of the arcs at the Fermi surface, is that the ungapped
(nodal) parts retain their FL character with an essentially
universal scattering rate and Fermi velocity (effective mass),
while the gapped (antinodal) states do not contribute to planar
conductivity [5,17]. Consequently, the deviations from the
FL quadratic temperature dependence in the resistivity can
be simply related to the change in the carrier density, ob-
tained from the resistivity directly by use of a standard Drude
[τ (T, ω = 0)] formula, and associated with the repopulation
of the gapped parts of the FS. In this way, one can count
the itinerant charges throughout the phase diagram [13]. We

denote the mobile charge concentration, extracted from the
measurements, with neff . Its evolution at T = 0 is shown in
Fig. 1(e).

Once neff is unambiguously identified from the resistivity
[13] or Hall coefficient [16], keeping in mind that the total
available charge is always 1 + p, one finds the evolution of
the localized charge concentration nloc across the whole phase
diagram from simple charge balance [13]:

1 + p = neff + nloc. (1)

Because nloc is fixed by the other two known quantities, it is
unambiguous as well. It is presented as a function of temper-
ature and doping in Fig. 1(d). Within the pseudogapped FL
(PG-FL) regime in particular, exactly one hole is localized per
unit cell (nloc = 1) below the temperature T ∗ and is associated
with the missing part of the Fermi surface (FS). The remaining
neff = p holes, determined precisely by transport measure-
ments [9,17,18], are therefore associated with well-formed
arcs.

In principle, optical conductivity measures both itinerant
and localized charges directly. Nevertheless, no consensus
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has been reached so far about the meaning of the optical
conductivity data. In particular, at optimal doping the
frequency dependence of the optical response is featureless
up to about 1 eV [19], which was therefore fitted and
interpreted in numerous ways, thus becoming one of the
cornerstones of ill-defined non-FL approaches [7,20–23].

Here, we resolve this decades-long conundrum. Under-
standing that the transport measurements necessarily account
for the low-frequency part of the optical conductivity, we have
essentially no freedom in fitting the optical conductivity, in
contrast to previous two-component analyses [18,20,24,25].
Conversely, optics provides independent information on that
part of the response which is not directly involved in transport.
We implement this idea by noting that the FL part of the opti-
cal response can always be unambiguously reconstructed from
FL transport data because a FL has theoretically well-defined
responses for all observables. Consequently, the FL optical re-
sponse is entirely determined by the effective mass m∗, carrier
density neff , and relaxation time τ as measured by transport at
ω = 0. We then compare the calculated FL optical response
with the actual optical measurements. Observing that the
low-energy part of the optical conductivity is reconstructed
correctly, we demonstrate that the optical responses of
cuprates are fully consistent with FL transport. The remainder
identifies the experimental spectral responses related to the
localized charge essentially without any fitting or ambiguity.

We perform this analysis in the PG-FL regime first, where
the localized-itinerant duality of the cuprates reveals itself
most clearly, as implied by pure ρ ∝ T 2, e.g., in Fig. 1(b).
For this purpose, we choose the single-layer compound
HgBa2CuO4+δ (Hg1201), where the FL properties were
clearly established by previous work [4,5,10,11]. Second,
by analyzing the corresponding data for the structurally
more complex double-layer Bi2Sr2CaCu2O8+δ (Bi2212),
we demonstrate that this approach naturally carries over
to optimal doping, where ρ ∝ T [see Fig. 1(c)]. Third, all
the insights gained in the PG part of the phase diagram
apply to the overdoped part as well (in agreement with the
universality of μH), based on direct observation of evolution
in the transport neff , from neff = p to neff = 1 + p. Fourth,
we note that the loss of the FL spectral weight associated
with superconductivity in the underdoped regime tracks neff

[13,26,27], while in the overdoped regime it tracks the loss of
the localized charge nloc [13,15,28]. Finally, we show that the
same method of separating the optical response into FL and
non-FL contributions may also be applied to superconducting
pnictides and to Sr2RuO4, although the physical origin of
the non-FL part is different than in the cuprates: it is caused
by dissipative electronic pockets with a low-energy scale
δ. For Sr2RuO4, δ ≈ 5 meV, whereas for the pnictides we
conclude that it is even smaller. Our work thus demystifies
the seemingly complicated optical response in cuprates, as
well as in a wide class of related correlated systems.

II. RESULTS

A. Reconstruction of a Fermi-liquid optical response

A characteristic signature of the Fermi liquid (FL) is the
scaling of the frequency- and temperature-dependent optical

scattering rate τ (ω, T ). In the limit of well-defined quasipar-
ticles, the response is a function of the single scaling variable
[29]

ξ 2 = (h̄ω)2 + (pπkBT )2, (2)

where the scaling parameter p = 2 exactly for the FL case. In
practice, it is well documented that the scaling parameter p =
2 is not observed experimentally even in elemental metals.
In several correlated metals, when p is treated as an effective
parameter, its best-fit values range from 1 to 2.4 [11,30–38].
The observed scaling collapse is usually quite good and the
departure from the FL value is typically attributed to unusual
scattering mechanisms and non-FL behaviors. To compare
with experiments, and assess the importance of non-FL cor-
rections to the optical response of cuprates, we first determine
the effective p by applying an extended [τ (T, ω � 0)] Drude
analysis, as if the optical response were all due to some itiner-
ant charges.

Next, we introduce an alternative to the approaches based
on the effective parameter p. For cuprates, we consider a
straightforward interpretation of the experimental data under
the assumption that itinerant and localized charges give two
different contributions. Regarding the former, we use previ-
ously derived theoretical expressions for the optical response
of the FL [29]. In particular, we calculate the expected optical
response using neff and τ obtained from transport measure-
ments as input (see Appendix A 1), with no fitting parameter
(p = 2). In that case, there appears, in addition to this FL
contribution, an additional MIR feature associated with the
localized charge. In this way, the departure of p from its FL
value is fully explained without ascribing non-FL behavior to
the itinerant charges: of course, the localized charges are not
a FL, so they cause deviations from p = 2 when subsumed
in the extended Drude analysis for τ (T, ω). As argued below,
an extension of this idea is also applicable to pnictides and
strontium ruthenate, and probably to other functional ionic
materials as well.

B. Optical response in the underdoped regime

The PG regime is a good starting point for the analysis
of conductivity, as argued in the Introduction. Hg1201 is a
model system for experimental studies because of its simple
tetragonal crystal structure, minimal point disorder effects,
and record optimal Tc among single-layer cuprates [10,39,40].
As shown in Fig. 1, the resistivity of the measured sample
in the PG regime is purely quadratic, as established long
ago [4,40]. Figures 2(a)–2(e) show the frequency-temperature
dependence of σ1 (see Appendix B). We emphasize that the
dc and optical conductivity data were obtained on the same
sample to minimize systematic errors in the data analysis.

The theoretical FL frequency-temperature dependence of
σ1 is calculated from transport (blue dashed line in Fig. 2,
see also Appendix B), while the remainder of the spectrum
is fitted to a temperature-independent Lorentzian after sub-
tracting the calculated FL part. Even at the highest-measured
temperature, there is no need for any corrections because the
increase in carrier density neff [Fig. 1(d)] is only of the order
of a percent. Nevertheless, one can observe an indication
of the delocalization process as a small overestimation of
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FIG. 2. (a)–(e) FL contribution to optical conductivity of underdoped Hg1201 (p ≈ 0.1) calculated from transport using Eq. (A2) (red
dashed curve) and a temperature-independent Lorentzian peak centered at 125 meV (green dashed curve) captures the measured optical
conductivity (circles) well for all temperatures (the blue curve). (f) Good scaling of the overall optical scattering rate 1/τ (ω) [Eq. (A12)],
determined from the experimental data presented in (a)–(e), is obtained for p = 1. Deviation from p = 2, expected for a FL, is simply due
to the presence of two contributions (FL with p = 2 and MIR Lorentzian) that are mixed by the extended Drude analysis. The scaling works
down to lowest energies, as expected when the ground state is interpreted correctly. Here m∗ = 3.5 me, C2 = 0.016 T K−2 [5].

the overall fit with respect to the data collected at 300 K
[Fig. 2(e)]. This small correction is hardly captured by optics,
but it can be detected clearly by resistivity, as a change from
quadratic to linearlike temperature dependence [Figs. 1(a) and
1(b)]. By applying the extended Drude analysis, the “overall
optical scattering rate” (i.e., a mixture of the contributions
from both subsystems) is calculated for each temperature from
the measured σ1 and by using a plasma frequency, ωp, that
corresponds to neff at 200 K. It is shown to scale with p = 1, as
in Fig. 2(f) and Appendix B. Of course, the p for the FL part is
exactly 2 (see Appendix B). Clearly, unlike the FL scattering
rate, the overall scattering rate is an effective quantity without
a clear physical meaning, as it incorporates both the FL and
localized (“non-FL”) contributions.

The doping dependence of the optical response in under-
doped La2−xSrxCuO4 (LSCO) and YBa2Cu3O6+x (YBCO)
was successfully fitted at a single temperature by a sum of
standard Drude and higher-frequency Lorentz contributions
already some time ago [18]. That analysis also showed that
m∗ was compound and doping independent, and that neff = p.
However, such a two-component fitting at a single tempera-
ture could not be extended beyond the PG regime because
neff and nloc start to overlap strongly with increasing doping
and, finally, in the overdoped regime, the optical response is
dominated by neff . The analysis conducted here is qualitatively
and quantitatively fully constrained and can be applied at all
dopings because the FL component is fixed by an independent
dc transport measurement, which reveals the MIR feature un-
ambiguously, even at overdoping where it is small and appears
at low frequency. Because the FL turns out to account for the
low-frequency part of the optical response at all temperatures,
it is clearly universal.

C. Optical response at optimal doping

Optimal doping is a delicate crossover regime. The reason
is clear: according to the analysis of transport properties [13],
at this doping neff and thus nloc change most rapidly with tem-
perature and doping [Fig. 1(d)]. This crossover accounts for

the linearlike temperature dependence [13]. In this regime, we
choose to analyze Bi2212. This well-studied cuprate features
considerably lower structural symmetry than Hg1201, and two
rather than one CuO2 planes per formula unit. Its resistivity
is linear essentially down to Tc, as shown in Fig. 1(c). We
analyze only previously published data [12,41], testifying to
the directness and consistency of our approach.

The analysis is shown in Fig. 3. Just like for underdoped
Hg1201, the expected FL contribution is calculated from the
dc transport data in Fig. 1(c). The low-frequency part of the
spectrum is perfectly matched at all temperatures [Figs. 3(a)–
3(c)]. The extracted MIR weight decreases with increasing
temperature, consistently with a transfer of charge from the
localized to the itinerant subsystem, corresponding now to a
∼10%–20% increase of neff above p, in contrast to ∼1%–2%
in Hg1201 [Fig. 1(d)]. As in the case of underdoped Hg1201,
approximate scaling can be obtained for the overall optical
scattering rate. For Bi2212, the effective value that yields the
best scaling is p ≈ 1.25 [Fig. 3(e) and Appendix B]. The FL
part alone scales with p = 2 as always.

D. Optical response in the overdoped regime

In the overdoped regime, the FL contribution is much
larger than that of the localized charge, simply because the
delocalization is almost complete [13], and thus the MIR
spectral weight is small. This makes the direct observation
of the localized response difficult. However, much can be
concluded just by following the doping evolution of the MIR
feature. As repeatedly pointed out earlier [13,15], it is obvious
just by looking at the data (Ref. [42] and Appendix B) that
the spectral weight of exactly one charge per CuO2 unit is
transferred to the FL response from the higher energies. The
MIR peak first increases the more it approaches the FL peak,
to be absorbed by it in a unitary FL response of weight 1 + p
only at extreme overdoping.

In contrast to optics, transport is a delicate probe, with
kBT resolution at zero frequency, so that it reveals precisely
where (de)localization begins, along with its full evolution
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FIG. 3. (a)–(c) Experimental optical conductivity (open circles) [41] and calculated FL contribution (red line) of optimally doped Bi2212
(p ≈ 0.16) at selected temperatures (T > Tc). The calculated FL contribution clearly captures well the low-frequency part of the conductivity
spectra for all temperatures. (d) The MIR non-FL contribution to the optical conductivity is obtained by subtracting the FL contribution from
the total optical conductivity. Its temperature evolution clearly reveals the spectral weight transfer from MIR to FL with increasing temperature.
This transfer is consistent with thermal excitation of localized carriers (nloc) and inconsistent with dissipation scenarios. (e) Because of the
MIR contribution, the overall scattering rate scales with p ≈ 1.25. Here m∗ = 3 me, C2 = 0.021 T K−2 [5].

with doping. Both the resistivity and Hall coefficient identify
the same doping dependence of neff and thus nloc [Figs. 1(d)
and 1(e)]. Another important observation is that the superfluid
density ρS, which corresponds to the missing spectral weight
in the FL contribution below Tc (see Appendix B), becomes
limited by nloc [13]. This behavior implies that nloc is associ-
ated with an excitoniclike (short-range, short-time) glue [15].
Consequently,

ρS = (OS nloc)neff , (3)

a relation which notably holds across the superconducting
dome [13], with a material-dependent constant OS discussed
elsewhere [15]. It should be noted that ρS is proportional to
the mobile concentration neff ∝ ω2

p here, with the constant
of proportionality containing nloc as the probability to en-
counter the localized hole, which provides the glue. Therefore,
some normalizing denominator is expected in OS , such as
OS ∝ 1/(neff + nloc), or simply a constant (per unit cell). All
the above experimental facts and reasoning are schematically
summarized in Fig. 4.

III. DISCUSSION

The experimental results described in this work are the
keystone of a simple scenario for both the normal and
superconducting states in the cuprates, which rests on an
unambiguous experimental determination of the actual con-
centration of mobile (FL) charges neff present in a sample. The
implication of a second, localized charge subsystem which
balances Eq. (1) for the total number of charges 1 + p begs
the following question: Which spectroscopic signatures char-
acterize the localized subsystem? The most prominent of these
is the mid-infrared (MIR) peak, studied in this work at optimal
doping and in the PG regime.

The MIR peak is most pronounced in the PG regime be-
cause the two electronic subsystems neff and nloc are still
reasonably well separated in frequency there. In Fig. 2, the
presence of the MIR peak explains why the Fermi-liquid

scaling parameter p for the total (measured) value of the
optical response is not equal to its textbook value p = 2. Quite
simply, it is because the localized charges do not conduct, so it
is not physical to treat the total response as a FL response [43],

FIG. 4. A schematic representation of the temperature and dop-
ing evolution of the optical spectral weight in cuprates. (a) In the
normal state, for T > Tc, the spectrum consists of three contribu-
tions: FL part (indicated with a red line) that corresponds to neff ,
MIR feature (orange) which is associated with a part of nloc, and
spectral weight located at high energies (above charge transfer gap),
associated with the remaining part of nloc. Upon doping, the MIR
feature shifts to lower frequencies, growing in weight at first, to be
absorbed by the FL peak in the highly overdoped regime. It brings in
a spectral weight of exactly one charge per CuO2 unit. The dominant
effect of increasing the temperature is the spectral weight transfer
from the MIR to the FL. Upon decreasing the temperature below Tc,
the spectral weight, corresponding to the green area, is shifted from
the FL part of the spectrum to the SC delta-function peak at ω = 0,
yielding the Homes law [26,27]. (b) In the overdoped regime, the
FL part of the spectrum is only partially SC condensed (green area),
while the noncondensed spectral weight corresponds to insufficient
“glue” nloc [13].
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which is exactly what the extended Drude analysis presumes.
Taking into account the FL contribution alone, one recovers
p = 2. Because the FL peak is independently obtained from
transport, essentially without any fitting parameters, its sub-
traction from the optical response defines the MIR response
experimentally, which can then be fitted with a Lorentzian (or
any similar functional shape). In this way, the MIR feature
is fully characterized, and tied to the localized sector of the
charge-balance equation (1).

Increasing the temperature (or doping) across the T ∗ line
leads to a gradual delocalization of the hole. The T ∗ (PG)
line in Fig. 1(d) corresponds to the line of constant nloc ≈
0.97 [13]. For Hg1201, this beginning of delocalization at
the percent level falls below the experimental resolution of
the optical conductivity, and thus can not be easily resolved
in the evolution of both FL and MIR contributions (Fig. 2).
This observation solves yet another long-standing mystery
in cuprates, namely, why the T ∗ line is not observed in the
in-plane measurements of optical conductivity. The domi-
nant effect is the simple temperature broadening of the FL
peak.

The optical response of Bi2212 at optimal doping, Fig. 3,
considered by many as the most mysterious regime, repeats
the same pattern. In contrast to Hg1201, which is paradigmatic
among cuprates for its simplicity, Bi2212 is among those ex-
hibiting more complex behavior. Thus, their parallel behavior
is significant experimental support of the presumed universal-
ity. Because the localized hole delocalizes more quickly with
the temperature here [Fig. 1(d)], one can observe the concomi-
tant spectral-weight transfer with the naked eye [Fig. 3(d)].
Notably, the FL spectral weight as deduced from resistivity,
the area under the coherent peak, increases while the MIR
weight decreases with increasing the temperature, as clearly
observed in Fig. 3(d). Such a spectral-weight transfer is ex-
pected in the case of temperature excitations across a gap
(e.g., in a semiconductor), in contrast to what is expected
if part of the itinerant neff should become incoherent with
temperature. Namely, if the MIR peak reflected an incoherent
(dissipative) structure, it would be expected to increase with
the temperature, not decrease as observed. Here again, the
overall (effective) Fermi-liquid scaling parameter p ≈ 1.25 is
a simple consequence of the MIR contribution in the extended
Drude analysis.

A gapped spectral feature cannot give rise to dissipation
at temperatures below the gap (see Appendix B). In this way,
our measurements clearly eliminate a dissipative mechanism
for the disappearance of a part of the Fermi surface in the PG
regime. There is similarly no indication of a quantum critical
regime anywhere in the phase diagram: m∗ (or vF ) [18,44]
and τ [5,17] remain unchanged, while the evolution of neff

is smooth throughout the overdoped region [5,13]. Notably,
the universality of the absolute values of the overall τ , dis-
played in Figs. 2(f) and 3(e), obtained directly from σ (ω)
by using neff , confirms those experimental observations inde-
pendently. The smooth evolution of neff with doping implies
that the complementary density nloc behaves like the aggre-
gate variable of a first-order or percolative (power-law) phase
transition, with no indication of the nonvanishing long-range
correlations which accompany second-order (quantum) phase
transitions [15].

In our view, the non-Fermi- or marginal Fermi-liquid con-
cepts simply reflect confusion about the number of itinerant
charges neff present at various doping levels. Notably, one can
account for the Fermi arcs even within a strictly one-body
DFT + U model [45]. Once the 3D background of dopant
Coulomb fields is properly included, they produce a FL with
nodal arcs growing with p, as observed, while the antinodal
parts of the FS remain in the original (gapped) charge-transfer
parent state. Hence, the mere observation of the arcs and PG
does not in any way require going beyond the ordinary FL
picture for the itinerant charges. Conversely, including static
charges in the transport accounting would make any metal
look like a “bad metal.”

As shown in detail in Appendix B, these considerations can
be brought to bear fully and fruitfully to the other two notable
“bad metal” groups, pnictides and ruthenates, and are also rel-
evant for other families of materials [30–34]. The salient point
is that the parameter p in the FL scaling variable in Eq. (2)
is effective, meaning simply that using it as a free parameter
gives very good scaling fits from zero to the MIR range.
In general, many-body theory, the initial approach (lowest
diagram) gives the structure of a formula, while higher-order
corrections give formulas for the parameters in the initial ex-
pression. Hence, the effectiveness of p in the above-mentioned
examples of “bad metals” proves that the FL is the correct
starting point for them too: they are not really bad. The reason
for the departure of the effective p from p = 2 varies from case
to case, and this can be used to reveal the physical mechanism
behind the corrections by modeling.

In the cuprates, as already noted, the correction comes from
the MIR feature, which reflects the non-conducting localized
hole. In the pnictides (see Appendix B), aside from the FL
contribution, there is a constant contribution down to lowest
frequencies [46], as if from a subsystem of fixed scatterers.
It does not necessarily follow that they contain impurities.
The constant contribution is more probably due to a flat band
with a maximum (X-point van Hove singularity) pinned at the
Fermi level [47], which is incoherent because it is smeared
out even by a small temperature. Similarly, in ruthenates, a
low-energy electronic pocket in the spectrum, with a scale
δ ≈ 5 meV, was clearly observed by photoemission (see Ap-
pendix B). It is to be expected that, as soon as kBT > δ,
the pocket becomes an extraneous source of dissipation to
the remaining FL. And indeed the resistivity up to ≈40 K
(≈5 meV) is quadratic in temperature, while the scattering
rate scales with p = 2. Crossing this temperature, resistivity
becomes subquadratic (non-FL, ρ = AT n, where n < 2), to
become linearlike at high temperatures. Concomitantly, p be-
gins to decrease towards 1. In our interpretation, dissipation
clearly behaves as expected, vanishing at low temperatures.
To make the same point conversely, if the PG part of the FS in
cuprates were due to a dissipative mechanism, the Fermi arcs
would grow and touch the edge of the zone as T → 0.

The only remaining issue is that the normalized integral
under the MIR feature is not unity. For example, at 140 K
in Hg1201 with p ≈ 0.1 it corresponds to ≈0.12 holes per
CuO2 unit. Thus, part of the spectral weight related to nloc

remains at higher frequencies, probably where it was in the
parent compound. There are two complementary ways to
understand that, based on describing the localized hole as a
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locally ionic polaronlike structure, named the d complex and
extensively discussed in Ref. [15]. It consists of a planar CuO4

“molecule” and its apical oxygens where applicable, along the
lines originally suggested by Müller [48], who emphasized
that the symmetry of this local deformation could correspond
to any of the known macroscopic phases (HTT/LTT/LTO)
associated with oxygen octahedra. Such structural disorder
is documented extensively in cuprates. It is therefore natu-
ral to assume that the observed MIR peak corresponds to
only one of these deformations, while the others could eas-
ily hide underneath the large rise in optical conductivity as
one approaches the higher-energy infrared (IR) region, the
beginning of which is clearly visible in Fig. 3 (see also Ap-
pendix B). Second, a spectroscopic probe in principle excites
the whole spectrum of a structure, so if the MIR peak is the
first excited state of the d complex, the higher excited states
should similarly be draining spectral weight, hidden under
the high-energy IR plateau. To clarify this important issue, a
similar analysis of optical conductivity should be conducted
at various dopings in different compounds. In direct support
of these scenarios, the weight of the MIR feature grows as
it approaches zero energy at overdoping, clearly dominating
excitations at all higher energies (Fig. 11 in Appendix B).

The structure of Eq. (3) encapsulates the whole SC dome
[13] because neff rises with p at (nearly) constant nloc until
optimal doping. At overdoping neff rises quite rapidly from p
to 1 + p, but nloc drops to zero in compensation, according to
Eq. (1). Because neff is the density of mobile charges, OSnloc

plays the role of coupling strength or glue. The disappearance
of SC on the overdoped side is then simply interpreted as
loss of the glue provided by localized holes [13,15]. Thus, the
latter explains why the fraction of the spectral weight of the
FL condensed in ρS decreases even as the density of mobile
charges neff increases: ρS is proportional to the vanishing glue
nloc.

It should be emphasized that our work not only demys-
tifies all the well-known aspects of cuprate physics, debated
for decades, as discussed above, but also provides rather
straightforward explanations for several most recent experi-
mental observations, some of which appeared after the initial
submission of this paper. We note with pleasure that more
and more groups across the globe are beginning to realize
that the responses they are measuring imply the presence of
a Fermi-liquid electronic (sub)system. For example, it was
deduced from studies of the high-field in-plane magnetore-
sistance [49,50] that one component is “Planckian” while the
other is classical, or it was argued that all the salient cuprate’s
features can be discussed as a system with localized “strange
scatterers” embedded into a Fermi liquid with a conventional
quasiparticle description [51]. Nevertheless, confusion in the
field remains [52], caused by conflating the effects of the
scattering rate with changes in the carrier density, as well as
by a lack of distinction between coherency, incoherency, and
localization, all of which is completely clarified by our work
here.

Because of this confusion, even when clear and unambigu-
ous signatures of standard Fermi-liquid behavior are observed,
the itinerancy is still discussed in the context of non-Fermi-
liquid physics. An excellent example (out of many) is the
recent finding that electrons at optimal doping obey standard

(FL) orbital motion in a magnetic field [53]. Nevertheless, this
was attributed to Planckian physics, though an entirely natural
explanation is to associate them with the FL subsystem, as
revealed by optics and transport in this work.

The same confusion persists in the analysis of optical con-
ductivity data. A good example is the very recent analysis
of optical conductivity in BSCO (Bi2−xPbxSr2−yLayCuO6+δ),
where the coherent contribution is simply fitted by a Drude
[τ (T, ω = 0)] term, overlooking the observed transport uni-
versalities [54]. Even within such a crude approach, it was
reported that the Drude weight is quite weakly temperature
dependent and changes by at most 5% up to room temperature
for overdoped samples, while with decreasing doping the tem-
perature dependence increases somewhat, but never exceeds
15%, which agrees well (despite claims to the contrary) with
what was deduced based on transport (Fig. 1) and what is
documented in Fig. 3. At optimal doping the increase of the
Fermi-liquid spectral weight, from Tc to room temperature,
corresponds to a ∼10%–20% increase of neff . As argued here,
this increase of spectral weight with temperature is a certain
signature of the (second) gapped electronic subsystem (MIR).
However, the Drude weight in BSCO evolves monotonically
throughout the entire doping range studied, and the universal p
to 1 + p crossover in carrier density seems to be absent in this
compound. In the present context, such an observation is not
very surprising because it is well known that in BSCO, as well
as in LSCO [55], a flat band or extended van Hove singularity
is pinned to the Fermi level in the crossover doping range
between neff = p and 1 + p [56,57]. Saddle points very close
to the Fermi level will result in an incoherent response, as dis-
cussed here in the case of iron-pnictides, and thus will not be
captured by a coherent Drude term. Nevertheless, the scatter-
ing rate extracted by Drude fittings to the residual term shows
a roughly doping independent increase with temperature. This
result is in agreement with the universality of transport and
the determined optical scattering rate. It should be also noted
that the observation of Mathiessen’s rule is an unambiguous
signature of quasiparticles, and there is no reason for it to
mean anything else in cuprates. The probability of quasipar-
ticle scattering adds in the resistive (serial) channel, while
contributions from both incoherent and (pseudo)gapped parts
of the Fermi surface add in the conductive (parallel) channel,
hence, the FL easily overwhelms the non-FL contribution in
transport.

Notably, if one is not interested to understand the scaling
parameter p, even a conventional Drude term [with τ (T, ω =
0) and m∗ = const] is sufficient to capture the temperature
and frequency dependence of the optical conductivity. The
difference between Drude, extended-Drude [τ (T, ω) with ef-
fective p], and Fermi-liquid (with p = 2) terms is important
only for the discussion of the frequency dependence of the
optical scattering rate. Thus, in order not to lose an important
part of the cuprate physics, the Fermi-liquid term was used
here.

The phase diagram is essentially universal for all cuprates.
Relying on similarly universal electronic properties, we have
clarified it broadly in full. However, each cuprate compound
also exhibits different (maximal) superconducting transition
temperatures, roughly categorizing them into high- and low-Tc

compounds. This difference must stem from a nonuniversal
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component of the cuprate problem. It was demonstrated that
the oxygen degrees of freedom, tuned by the nonuniversal
local-tilt symmetry of the lattice (HTT/LTT/LTO), affect the
superconducting properties directly [15,58–60] and thus can-
not be neglected [61] when discussing the physics of the d
complex [15].

IV. CONCLUSIONS

Because our analysis extends over a very broad energy
window of 2 eV, across the whole phase diagram of cuprates in
all doping regimes (insulator, pseudogap, strange metal, Fermi
liquid), and in both the normal and superconducting states, we
are able to characterize the electronic responses of cuprates in
full. We have demonstrated that the optical conductivity re-
sponse is fully consistent with transport measurements, where
the low-frequency part corresponds to a FL. By clarifying
the important deviation of the scaling parameter from p = 2,
we demonstrated perfect Fermi-liquid scaling (p = 2) for the
itinerant subsystem in cuprates and other compounds with
similar behavior of p. The experimental demonstration that the
optical scattering rate is compound and doping independent
[even the total one, Figs. 2(f) and 3(e)] is direct proof that
cuprate physics is not controlled by a QCP: there is no critical
behavior in the itinerant subsystem anywhere in the phase
diagram, only the gradual crossover of the carrier density from
p to 1 + p as the localized subsystem delocalizes. Essentially,
this observation alone lucidly demonstrates that all the ap-
proaches based on analyses of scattering rates that neglect the
change in carrier density associated with pseudogap evolution
(non-Fermi-liquid, Ioffe-Regel limited, bad metal, quantum
critical, strange metal, marginal Fermi liquid, Planckian, etc.)
are inappropriate for cuprates.

Our analysis does not require any fitting because it is
fully constrained by the experimental facts determined by
independent measurements, namely, dc transport. Thus, the
decomposition obtained is unambiguous and naturally reveals
physical signatures of secondary, localized, electronic sub-
systems. The high-energy (MIR and higher) part provides
valuable insights into the physics of the localized charge,
which is responsible for the two principal sources of the
cuprates’ strangeness, the pseudogap, and the superconduct-
ing mechanism itself. These are unequivocally revealed by the
spectral weight shifts with temperature and doping, from the
high-energy sector to MIR and FL, and finally from FL to SC.
These shifts provide important insights into the delocalization
process as well.

Finally, we have extended our analysis to other com-
pounds, making our conclusions relevant to the wide field
of conducting ionic compounds. A clear operative distinction
between coherency, incoherency, and (pseudo)gapping is es-
sential for understanding all these materials.
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APPENDIX A: MATERIALS AND METHODS

1. Optical conductivity measurements

The temperature-dependent optical conductivity R(ω, T )
of Hg1201 (in the ab plane) was measured over a wide fre-
quency range from 60 to 22 000 cm−1 (7.4 meV to 2.72 eV)
on an infrared Fourier transform spectrometer (Bruker Vertex
80v). The reflectance of the sample (Rs) is compared to the
reflectance of an aluminum reference mirror (Rm). To correct
for the sample size and any irregularities in the surface, and to
eliminate the effects of the reference mirror, the sample was
coated with gold in situ and the measurements were repeated
on the gold-coated sample (Rgs). The effects of the reference
mirror can be removed by dividing the two ratios,

(
Rs

Rm

)(
Rgs

Rm

)−1

= Rs

Rgs
, (A1)

which yields the reflectance of the sample with respect to gold.
The reflectance can be subsequently corrected by multiply-
ing the ratio by the reflectance of gold to yield the absolute
reflectance of the sample; silver is typically used in the vis-
ible region. The low-frequency reflectance was extrapolated
toward zero frequency through the use of the Hagen-Rubens
approximation R(ω) ∝ 1 − √

ω, fitted to the lowest-frequency
measured reflectance data. The high-frequency reflectance
was extrapolated by using x-ray scattering functions as de-
scribed in Ref. [62]. The complex optical conductivity σ (ω) is
extracted from R(ω) by Kramers-Kronig transformation [63].

2. Optical response of Fermi liquids

It is shown in Ref. [29] that the FL contribution to the dy-
namical conductivity, associated with itinerant charges, may
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FIG. 5. (a) Measured optical reflectivity of underdoped Hg1201
at few selected temperatures. (b) The real part of the optical conduc-
tivity obtained from the measured optical reflectivity. (c) Imaginary
and (d) real parts of the memory function as a function of h̄ω.

be expressed in terms of two dimensionless variables,

σ (ω, T ) = σdc F

(
ω̃

T̃
,

ω̃

T̃ 2

)
(A2)

with ω̃ = h̄ω/pπkBT0 and T̃ = T/T0. Here, T0 is character-
ized solely by the quasiparticle lifetime τqp at zero frequency,
as discussed below in relation to Eq. (A4). For the FL contri-
bution to optical conductivity, discussed in the main text, p is
fixed, p = 2.

To obtain Eq. (A2), it is assumed that the single-particle
self-energy of itinerant charges is momentum independent,
i.e., local, 	(k, ω, T ) = 	(ω, T ). As a consequence of this
locality, a significant simplification occurs when σ (ω, T )
is calculated. For low frequencies and temperatures that
characterize the FL contribution to σ (ω, T ), the leading con-
tributions in ω and T to the real and imaginary parts of the
momentum-independent self-energy are given by

	(ω, T ) = (
1 − Z−1

)
ω − 2i

ZpπkBT0
[ω2 + (pπkBT/2)2],

(A3)

where p ≡ 2 for a FL, and Z is the quasiparticle spectral
weight, which becomes suppressed by the interaction Z � 1.
Furthermore, when the self-energy 	(ω) is local, Z defines
the renormalization of the Fermi velocity as well, Z = v∗

F /vF .
The quasiparticle lifetime τqp is defined by the imaginary part

FIG. 6. (a) Measured optical reflectivity of optimally doped
Bi2212 at few selected temperatures. (b) The real part of the op-
tical conductivity obtained from the measured optical reflectivity.
(c) Imaginary and (d) real parts of the memory function as a function
of h̄ω.

of 	(ω, T ) at zero frequency, being given by

h̄/τqp = −2Z Im[	(0, T )] = pπkBT0

(
T

T0

)2

. (A4)

From Eq. (A3), one may obtain the function F in Eq. (A2) in
a closed form

F (x, y) = 6i

π2

1

xr(x, y)

{
ψ

(
1

2
[1 + r(x, y) − ix]

)

− ψ

(
1

2
[1 + r(x, y) + ix]

)}
(A5)

with r(x, y) =
√

1 + x2 − iy, and ψ being the digamma func-
tion, defined by

ψ (z) = lim
M→∞

[
ln M −

M∑
n=0

1

n + z

]
. (A6)

Notably, the latter two expressions simplify any procedure to
fit experimental data. To compare with the experiment, one
just needs to evaluate Eq. (A5) along with Eq. (A6), and
take the real part of σ (ω, T ) in Eq. (A2). At all times, the
parameters σdc and τqp necessary to evaluate Eq. (A2) are
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FIG. 7. (a) Calculation of itinerant charge (FL) contributions to
the optical conductivity for selected temperatures. (b) FL contribu-
tion from (a) at a given temperature (180 K) is shown in log-log
scale. (c), (d) Scaling behavior of the FL optical scattering rate for the
parameter p = 2 and 1.5 demonstrating that the scaling is adequately
sensitive to the value of p.

obtained directly from the transport coefficients in this work,
with no adjustable parameters whatsoever.

It is important to emphasize that in our modeling σdc and
τqp is used to characterize the optical response of itinerant
charges only. The cleanest limit, regarding itinerant charges,
is the overdoped regime, where the Fermi surface is circular
exhibiting Fermi-liquid behavior, with neff = 1 + p. There,
the use of the isotropic scattering rate is appropriate and
thus the reason to use the local self-energy. As explained
in the main text, the density of these charges neff decreases
with doping, resulting in the nodal arcs that correspond to
neff = p in the underdoped regime. The main message of the
universality of the Hall mobility, confirmed now by optical
conductivity, is that the Fermi velocity and effective mass
and τqp remain essentially unchanged on the ungapped parts
of the FS. Surely, σdc involves the (ungapped) parts of the
FS with significant electron spectral weight only, for which
(consistently with experiment) we keep the same form of the
self-energy in Eq. (A2) as in the overdoped regime. That is,
because the optical conductivity is proportional to the average
squared group velocity (the transport function in Ref. [29]),
involving integration only along the ungapped parts of the FS,
the knowledge of the self-energy for these parts is sufficient
to derive the behavior of σ (ω, T ). The remaining parts of the

FIG. 8. (a) Calculation of total σ1(ω, T ) due to itinerant charges
(FL) (as shown in Fig. 7) plus a small constant background (150
�−1 cm−1) contribution to the optical conductivity at selected tem-
peratures. The constant background used mimics contributions from
incoherent scattering effects. (b) Simulated total optical conductivity
at a representative temperature (180 K) shown in log-log scale along
with FL and Lorentzian components. (c), (d) Scaling behavior of
the optical scattering rate for the parameter p = 2 and 1.5. A small
contribution associated with the incoherency effects shifts the scaling
collapse to smaller p values (p = 1.5 in this case).

FS are gapped and thus give no contribution from transport to
the optical conductivity.

3. Memory-function formalism

The optical response of metals is commonly given by the
Drude formula [64]

σ (ω) = σdc

1 − iωτD
, (A7)

where σ (ω) ≡ σ1(ω) + iσ2(ω) is the complex optical con-
ductivity, σdc = σ (ω → 0) = ne2τD/m∗ is dc conductivity,
and τD = 1/�D is the frequency-independent scattering time,
governing the relaxation of the current. Interaction-related
relaxation processes induce a frequency dependence in the
scattering time. This leads to a more general expression for the
conductivity, given in terms of the complex memory function
M(ω) = M1(ω) + iM2(ω) [65]:

σ (ω) = iε0ω
2
p

ω + M(ω)
, (A8)
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FIG. 9. (a)–(d) The optical conductivity response measured for several 122-pnictide superconductors (reproduced from [46]). A two-
component model was used to fit the optical data in the energy range where only intraband transitions are expected. The green hashed
region corresponds to an itinerant charge contribution, fitted with a Drude term and the broad orange hashed area was used to express
the temperature-independent contribution attributed to incoherency [46,66]. (e) Temperature dependence of FL part of resistivity plotted
as a function of T 2 (reproduced from [46]). For a variety of iron-pnictides Ba(Fe0.95Ni0.05)2As2 (red squares), Ba(Fe0.92Co0.08)2As2 (black
triangles), Ba(Fe0.86Co0.14)2As2 (blue circles), and Ba(Fe0.816Co0.184)2As2 (blue pluses) it exhibits a quadratic, FL, temperature dependence
all the way up to room temperature. (f) Temperature dependence of the optical scatting rate 1/τ of Ba(Fe1−xMx )2As2 obtained from the
temperature dependence of the FL contribution (green hashed area) also exhibits T 2 behavior (reproduced from [46]). (g) Band structure of
(Ba0.6K0.4)Fe2As2 calculated on the basis of LDA and (h) on the basis of LDA + DMFT [reproduced from [47]]. The latter fits the ARPES
data well and reveals a flat band pinned to the EF at X point.

where ε0 is the permittivity of free space, and the plasma
frequency is defined from the f -sum rule over the whole
frequency range,

ε0ω
2
p = 2

π

∫ ∞

0
σ1(ω)dω. (A9)

Thus, the imaginary part of the memory function may be
determined from the optical conductivity σ (ω) data,

M2(ω) = Re

[
ε0ω

2
p

σ (ω)

]
. (A10)

FIG. 10. (a) Temperature dependence of resistivity in Sr2RuO4 (blue line) [67]. Low temperature fit to ρ(T ) = aT 2 + ρ0 (dashed line).
(b) FL scaling of the optical relaxation rate below T � 40 K (reproduced from [67]). (c) Dispersion map of Sr2RuO4 revealing a 4–5 meV
shallow Fermi pocket (reproduced from [68]). (d) Deviation of p from 2 for the collapse of scattering rate is observed at T > 40 K and reaches
as low as 1.35 around 100 K (data from [35]). The horizontal bar corresponds to p = 2, as obtained from the scaling shown in (b).
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FIG. 11. (a) Simulation of total contribution due to itinerant
charges (FL) (as shown in Fig. 7) plus a small Lorentzian-type
contribution (centered at h̄ω = 125 meV) to the optical conductivity
at selected temperatures. The Lorentzian mimics the contribution
from a gapped system (in cuprates, it can be associated with localized
charges). (b) Total optical conductivity at a representative tempera-
ture (180 K) shown in log-log scale along with FL and Lorentzian
components. (c), (d) Scaling behavior of the optical scattering rate
for choices of the parameters p = 2 and 1.2. A small additional
contribution (due to a gap) shifts p to considerably smaller values
(p = 1.2 in the case here).

FIG. 12. The scattering rate of underdoped (p ≈ 0.1) Hg1201
for scaling parameters (a) p = 1, (b) p = 1.5, and (c) p = 2. The
overall scattering rates are calculated from the experimental optical
conductivity data presented in Fig. 5.

FIG. 13. The scattering rate of optimally doped (p ≈ 0.16)
Bi2212 for scaling parameters (a) p = 1, (b) p = 1.25, and (c) p = 2.
The overall scattering rates are calculated from the experimental
optical conductivity data presented in Fig. 6.

Equation (A7) can be written in a form analogous to the Drude
expression

σ (ω) = ε0ω
2
p

g(ω)

−iω + 1/τ (ω)
(A11)

with

g(ω) =
[

1 + M1(ω)

ω

]−1

,
1

τ (ω)
= g(ω)M2(ω). (A12)

When g(ω) is nearly constant at low frequencies, the scaling
properties of the optical scattering rate 1/τ (ω) are given by
M2(ω) only. In particular, for p = 2 the characteristic of the
FL is the scaling collapse of M2(ω) as a function of ξ 2 defined
by Eq. (2). The steps leading from the experimental reflectiv-
ity to the memory function are illustrated in Figs. 5 and 6 for
Hg1201 and Bi2212, respectively.

APPENDIX B: OPTICAL RESPONSE IN THREE
EXEMPLARY SYSTEMS

1. Systems with a FL contribution only

For the calculation of pure FL-like optical conductivity
shown in Fig. 7, we used resistivity and cot �H data of
Hg1201 at 180 K and generated the corresponding data for
other temperatures by using the universal relations that govern
transport properties of FL compounds,

ρ(T ) = AT 2 ⇒ σdc(T ) = 1/AT 2,

�D(T ) = A′T 2,
(B1)

where �D(T ) = 1/τD is calculated from cot �H using the
relation

cot �H = m∗

eHτD
. (B2)

By introducing the simulated dc transport parameters from
Eqs. (B1) and (B2) into Eq. (A2), we calculated FL optical
conductivity at several temperatures presented in Figs. 7(a)
and 7(b). The scaling behavior of M2 was calculated using
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FIG. 14. (a)–(c) As in Fig. 3 we show the experimental optical
conductivity (open circles) [41] and calculated FL contribution (red
line) of optimally doped Bi2212 (p ≈ 0.16) at selected temperatures
(T > Tc), with m∗ = 3 me, C2 = 0.021 TK−2. The light-blue band
corresponds to the FL contribution calculated with m∗ = 3 ± 0.5me

(i.e., ≈15%), which also captures well (essentially within the error
bar of the measurement) the low-frequency part of the conductivity
spectra for all temperatures (either laying slightly above or slightly
below of the experimental points) consistently.

Eq. (A10) from the aforementioned simulated optical con-
ductivity data, and tested for several p values. As expected
for a FL, the scaling collapse occurs for p = 2, as shown in
Fig. 7(c).

2. System with contributions from a FL and additional
incoherent scattering effects

An interesting possibility is that in addition to a FL con-
tribution, part of the response of a system is incoherent. Such
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FIG. 15. (a)–(c) As in Figs. 3 and 14 we show the experi-
mental optical conductivity (open circles) [41] and calculated FL
contribution (red line) of optimally doped Bi2212 (p ≈ 0.16) at
selected temperatures (T > Tc), with m∗ = 3me, C2 = 0.021 T K−2.
The green band corresponds to the FL contribution calculated with
C2 = 0.021 ± 25% T K−2 [5], which also well (essentially within the
error-bar of the measurement) captures the low-frequency part of the
conductivity spectra for all temperatures (either laying slightly above
or slightly below the experimental points) consistently.

behavior should be expected in systems with a Fermi surface
that contains a shallow pocket or a flat band. Once kBT is of
the order of EF or of the bandwidth, respectively, the corre-
sponding part of the Fermi surface should be smeared out by
temperature and consequently become incoherent. Thus, the
overall response should correspond to a sum of the FL and an
incoherent part, which we mimic in optical conductivity by a
small constant background [green dashed line in Figs. 8(a) and
8(b)]. The overall optical scattering rate does not scale with
p = 2 any more [Fig. 8(c)], though the FL part does; however,
it scales nicely with p = 1.5 (for the chosen incoherent back-
ground).

It is known that the low-energy spectrum of 122-pnictides
cannot be modeled with DFT +U alone [Fig. 9(g)], but needs
a DMFT correction [Fig. 9(h)] [47], in sharp contrast with the
cuprates. Irrespective of the reasons for this difference [69],
the bare fact that DMFT is required to fit ARPES at the Fermi
level indicates that part of the low-energy contribution could
be due to non-FL corrections to FL behavior in the conducting
subsystem itself. Again, the keyword is “correction.” And
indeed, two electronic subsystems were identified from op-
tical conductivity in 122-pnictides [Figs. 9(a)–9(d)] [46,66].
One, σincoh (brown hatched area), corresponds to an incoherent
contribution (temperature independent), while the other, σFL

(green hatched area), was identified as a FL. Figures 9(a)–9(d)
are a nice example of how this incoherency manifests itself in
the overall resistivity. The measured overall resistivity (ρTot)
exhibits a typical “non-Fermi”-liquid response ρ ∝ AT n, with
n < 2. However, an appropriate subtraction of the incoherent
response at ω = 0 [one just reads it from Figs. 9(a)–9(d)] from
the (measured) ρTot (1/ρTot = σTot = σincoh + σFL) reveals that
the resistivity associated with the FL (ρFL = 1/σFL) exhibits
a quadratic temperature dependence from Tc to at least room
temperature [Fig. 9(e)] [46,66]. The same temperature depen-
dence is revealed for the optical scattering rate of the FL part
from σFL by following the temperature dependence of the
half-width at half-maximum [Fig. 9(f)] [46,66]. In contrast,
in cuprates, the PG regime is marked by pure ρ = A2T 2

while across the phase diagram 1/μH = C2T 2. Both eliminate
any possibility of an incoherent contribution with a nonzero
response at ω = 0 because the MIR feature has a gap in
the spectrum as a consequence of the PG, with necessar-
ily zero response at ω = 0, as discussed in the main text
and below.

It is very well established that the dc resistivity of
the 4d compound Sr2RuO4 (SRO) exhibits T 2 temperature
dependence below 25 K. Upon further increase of the temper-
ature, the resistivity gradually becomes linearlike [Fig. 10(a)]
[67,70]. Recently, it was demonstrated that the optical scat-
tering rate at low temperatures also exhibits pure FL scaling,
with p = 2 [35]. At 40 K, p starts to deviate from 2 and
reaches values as low as 1.35 at ∼100 K [Figs. 10(b) and
10(d)] [35]. Notably, the ARPES measurements show a Fermi
pocket of the order 4–5 meV [68]. In our view, it is to be
expected that once kBT ≈ EF of the pocket (energy that cor-
responds well to 40 K) this part of the Fermi surface becomes
gradually incoherent. As in the 122-pnictides, this decoher-
ence should manifest itself in the resistivity as a deviation
from T 2. In optical conductivity, it appears as a constant
background which increases with temperature. The incoherent
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FIG. 16. Delocalization of exactly one hole per CuO2 unit can
be easily followed from one of the earliest optical spectroscopy
measurements performed in LSCO (reproduced from [42]). The par-
ent compound (at x = 0) is a charge-transfer insulator and a clean
charge-transfer gap is observed in optical conductivity. Immediately
upon doping, a mid-infrared feature appears. Its maxima for various
dopings are indicated by yellow arrows. The most important obser-
vation, in the context of this paper, is that the mid-infrared feature
transfers the spectral weight of the one localized hole with increasing
doping from high energies (above the charge-transfer gap) to the
coherent (FL) peak in the strongly overdoped regime.

component leads in turn to a deviation of p from 2, in agree-
ment with the analysis shown in Fig. 8.

3. System with contributions from both a FL subsystem and a
gapped subsystem

We mimic the gaplike contributions to optical conductivity
by using a Lorentzian, for simplicity [Figs. 11(a) and 11(b)]
in addition to the pure FL contributions [shown in Fig. 7(a)].
With this additional contribution we can see, again, that the
overall optical scattering rate does not scale with p = 2 any-
more [Fig. 11(c)]. Now the scaling is obtained for p = 1.2
[Fig. 11(d)]. The simulations shown in Fig. 11 are relevant
for cuprates, as elaborated in detail in the main text. The com-
pounds of interest were Hg1201 in the underdoped regime and
Bi2212 at optimal doping. In both cases, the overall optical
scattering rate can be scaled in the FL fashion, but with a p

considerably smaller than 2. In the case of Hg1201, the best fit
is obtained by choosing p = 1 (Fig. 12), while a good scaling
value for Bi2212 is p ≈ 1.4 (Fig. 13).

4. Optical response and experimental uncertainties of the
parameters C2 and m∗

Every physical quantity is measured to a certain preci-
sion. It is thus expected that the values C2 and m∗ vary

FIG. 17. Optical conductivity above and below Tc in (a) under-
doped (schematic [27]) and (b) very overdoped (as measured [28])
regime. In the underdoped regime it is the itinerant (Fermi-liquid
[4,10,11]) charges (neff ) of the normal state that collapse into the
superconducting condensate [26] (note that nloc= 1, thus ρS ∝ neff ).
The missing spectral weight which is contained in the SC delta peak
at ω = 0 is schematically indicated with a hashed area. A rough
estimate of the superfluid density, corresponding to the green area,
is ρS ∝ 2� σdc, yielding the Homes law (which is usually presented
on the log-log graph and thus not sensitive to details) [26]. The
Homes law holds well in the underdoped cuprates and simply states
that ρS ∝ Tcσdc because, according to BCS, � ∝ Tc [27]. On the
overdoped side, as obvious from (b) it is again the itinerant charges
(neff ) which become superconducting, but the measured superfluid
density [28,71] (corresponding to the green area between the red and
blue curves) is proportional to the number of localized holes (nloc),
which is, according to Eq. (3), ρS ∝ neff nloc [13]. Notably, both nloc

and neff are obtained directly from the normal state. The reduction
of the coherent spectral weight on the overdoped side is only partial
simply because there are more itinerant particles than glue (localized
holes).

moderately across different compounds because they depend
on the details of the Fermi surface. The principal aim of our
work is to capture the main features of cuprates in zeroth
order, providing a solid foundation for addressing all other,
often compound-related, issues as well. Nevertheless, it is also
important to demonstrate that the proposed approach is not
unduly sensitive to the choice of input parameters. This ro-
bustness is shown on the example of BSCO, where varying the
effective mass by ≈15% (Fig. 14) as well as the coefficient C2

by 25% (Fig. 15) does not result in any quantitative (not even
qualitative) changes and does not affect our understanding of
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the optical conductivity or the physics of cuprates. Thus, any
combination of C2 and m∗ that captures the data reasonably
well within experimentally established limits [5] can be used
to calculate the FL response.

5. Inspection of spectral weight transfers by eye

Just by looking at Fig. 16, it becomes obvious, without any
calculation, what the main effect of doping on the spectral
weight distribution is. Namely, a spectral weight of exactly
one hole per CuO2 must be transferred from high energy
(above the charge-transfer gap) to the FL peak. This simple
conclusion follows from the fact that the spectral weight in
the FL peak in the underdoped regime is equal to p [18] (so
exactly 1 hole per CuO2 is still localized [5,13,17]), while in
the overdoped regime it essentially corresponds to 1 + p (see

Fig. 1 and related discussion). Thus, it is straightforward to
conclude that it is the MIR feature which is responsible for
this spectral weight transfer, as pointed out earlier [13,15].

Finally, a rough examination of the doping evolution of the
“missing” spectral weight associated with the superconductiv-
ity is also quite instructive (Fig. 17). In the underdoped regime
it is quite clear that the spectral weight of the FL peak is trans-
ferred to the superconducting condensate and thus ρS in this
regime corresponds to neff . This observation partially explains
the Homes law [26,27]. On the overdoped side, the situation
is somewhat different. The spectral weight is similarly trans-
ferred from the FL component, but now in proportion to nloc

[13,15]. These two observations are captured by Eq. (3) for ρS

which is valid across the superconducting dome (with a small
correction at the very edges due to the percolative nature of
the superconductivity [72–74]).
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[14] W. Tabiś, P. Popčević, B. Klebel-Knobloch, I. Biało,
C. M. N. Kumar, B. Vignolle, M. Greven, and N. Barišić,
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[46] N. Barišić, D. Wu, M. Dressel, L. J. Li, G. H. Cao, and Z. A.

Xu, Phys. Rev. B 82, 054518 (2010).
[47] G. Derondeau, F. Bisti, M. Kobayashi, J. Braun, H. Ebert, V. A.

Rogalev, M. Shi, T. Schmitt, J. Ma, H. Ding, V. N. Strocov, and
J. Minár, Sci. Rep. 7, 8787 (2017).

[48] K. A. Müller, in Superconductivity in Complex Systems, edited
by K. A. Müller and A. Bussmann-Holder (Springer, Berlin,
2005), pp. 1–11.
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[71] I. Božović, X. He, J. Wu, and A. T. Bollinger, Nature (London)

536, 309 (2016).
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