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Aim To precisely identify and analyze alpha-satellite high-
er-order repeats (HORs) in T2T-CHM13 assembly of human 
chromosome 3.

Methods From the recently sequenced complete T2T-
CHM13 assembly of human chromosome 3, the precise 
alpha satellite HOR structure was computed by using the 
novel high-precision GRM2023 algorithm with global re-
peat map (GRM) and monomer distance (MD) diagrams.

Results The major alpha satellite HOR array in chromo-
some 3 revealed a novel cascading HOR, housing 17mer 
HOR copies with subfragments of periods 15 and 2. Within 
each row in the cascading HOR, the monomers were of 
different types, but different rows within the same cascad-
ing 17mer HOR contained more than one monomer of the 
same type. Each canonical 17mer HOR copy comprised 17 
monomers belonging to 16 different monomer types. An-
other pronounced 10mer HOR array was of the regular Wil-
lard’s type.

Conclusion Our findings emphasize the complexity with-
in the chromosome 3 centromere as well as deviations 
from expected highly regular patterns.
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Recent dramatic advances in long-read sequencing, cou-
pled with innovations in reading length and accuracy, 
have facilitated the generation of complete human chro-
mosome assemblies such as T2T-CHM13 and have cov-
ered previously elusive complex structural variants (1-7). 
Until recently, the centromeric region of the human ge-
nome remained largely uncharted, resembling a ge-
nomic “black hole,” which restricted our ability to study 
the organization, variation, and function of centromeres. 
However, recent technological advancements have made 
it feasible to comprehensively investigate the structure 
and function of the complete human genome. The rich 
genetic variation concealed within these formerly inac-
cessible regions may have implications for both health 
and disease. In particular, these advances have spurred 
studies focusing on higher-order repeats (HORs). The un-
explored variation underscores the necessity for more 
comprehensive T2T human genome assemblies derived 
from genetically diverse individuals. Altemose et al (4) ini-
tially identified certain HORs within complete genomic 
sequences characterizing the human centromeric region 
by employing a computational method previously intro-
duced by Paar et al (8).

By studying the very limited sequencing data available in 
the past, it was discovered over a century ago that human 
centromeres contain approximately 171-bp alpha satellite 
repeat monomers, organized into sequences of n mono-
mers, referred to as nmer HORs (9-22). Any two monomers 
within each HOR copy diverge from ~ 20% to 40%. Howev-
er, HOR copies appear in tandem, with the divergence be-
tween HOR copies usually being less than 5%. Monomers 
exhibiting less than 5% of mutual divergence belong to the 
same monomer type. Willard et al found that, within each 
HOR copy, all constituent monomers belong to different 
monomer types. This pattern, known as Willard’s type HORs, 
has been extensively studied using the limited sequencing 
data previously available, despite large gaps in the centro-
meric region (23-35).

In Willard’s type nmer HOR arrays, the most common HOR 
copy with n constituting monomers is referred to as canoni-
cal. Copies in the same HOR array that contain inserts or de-
letions with respect to the canonical HOR copy are known 
as variants. The identification of HORs within a given ge-
nomic sequence presents a highly intricate computation-
al challenge, requiring sensitive approximations. Until re-
cently, this task was hampered by significant limitations in 

sequencing technology. The global repeat map (GRM) 
algorithm is a unique algorithm for precise identifica-

tion of detailed HOR copies, both canonical and all its vari-
ants for the Willard’s type of HORs (8,18,28,36-49).

There are various algorithms available for identifying high-
er-order periodicities within a given genomic sequence 
(50-58), owing to the computational complexity of the 
problem. The GRM algorithm offers a distinct advantage 
in enabling precise determination of HORs, facilitating the 
complete identification of both the length and structure of 
all HOR copies. This was recognized by Altemose (4), who 
used the algorithm NTRprism, which is similar to the GRM 
method from the study by Paar et al (8). However, one limi-
tation of this approach is its design specificity for Willard’s 
type HORs, characterized by only one monomer of each 
type in canonical HOR copies.

To address this limitation, we implemented a novel algo-
rithm termed GRM2023, which represents an enhanced 
iteration of our prior GRM algorithm (8,18,28). GRM2023 
extends its characterization beyond Willard’s type HORs, 
further focusing on HORs with repeated monomer types 
within the canonical HOR copy. We termed these extend-
ed HORs as cascading higher-order repeats.

Providing a rigorous description of the structural organi-
zation of alpha satellite HORs poses a complex challenge, 
and discrepancies may arise between the results obtained 
with different methodologies. One notable advantage of 
the GRM and GRM2023 tools over alternative algorithms 
lies in their ability to achieve high precision in identifying 
HOR copies and elucidating their structure. GRM2023 de-
tects peaks corresponding to alpha satellite HORs, as well 
as additional peaks that represent repeats (subfragments) 
not arranged in a tandem fashion. By using the GRM2023 
algorithm, we were able to verify whether these additional 
peaks indeed corresponded to tandem repeats, thus en-
hancing the accuracy of our analyses.

Recent searches for the list of alpha satellite HORs with-
in the complete T2T-CHM13 genome assembly of hu-
man chromosome 3 have yielded varying results, without 
precise identification of HOR copies. Previous findings (4) 
identified 17mer, 10mer, 5mer, and 4mer HORs, but also 
17mer, 15mer, and 2mer HORs (4). In contrast, an earlier 
Southern blot analysis of human chromosome 3 (4) iden-
tified two primary Hind III fragments measuring 2.75 kb 
and 2.4 kb, which co-segregated in different human-ham-
ster cell hybrids. These fragments corresponded approxi-
mately to ~ 16mer and ~ 14mer HORs, respectively. Addi-
tionally, a 650 bp fragment ( ~ 4mer HOR) was cloned and 



211Glunčić et al: Precise identification of cascading alpha satellite HOR in T2T-CHM13 assembly of human chromosome 3

www.cmj.hr

found to exhibit high specificity for the chromosome 3 
centromere.

In this study, we precisely identified and analyzed alpha-
satellite HORs using our high-precision GRM2023 algo-
rithm applied to the complete T2T-CHM13 assembly of hu-
man chromosome 3.

Methods

GRM 2023 algorithm

The alpha satellite HORs were identified in the human 
chromosome 3 T2T-CHM13 genomic assembly by using 
the GRM2023 algorithm (18,41,42). The GRM2023 algo-
rithm is specifically designed to detect and analyze very 
large repeat units, such as HORs, within genomic sequenc-
es. It generates a global repeat map in a GRM diagram, de-
termining all prominent repeats in a particular sequence 
without any prior knowledge of the repeats. Once the con-
sensus repeat unit is determined, it can be further com-
bined with a search for dispersed HOR copies or individual 
constituting monomers.

For this study, we used two primary tools from the GRM2023 
algorithm: MonFinder and GRMhor (both freely available at 
https://github.com/gluncic/GRM2023). In the first step, us-
ing the MonFinder application, we identified all alpha sat-
ellites in the human chromosome 3 T2T-CHM13 genomic 
assembly. The MonFinder tool takes genomic sequences 
(subject) and a consensus sequence (query) as input and 
delivers a list of detected monomers. This algorithm uti-
lizes the Edlib open-source library for precise pairwise se-
quence alignment (59). Within the MonFinder algorithm, 
the subject sequence is searched in both the direct and re-
verse complement directions to identify all monomers. In 
this study, a unique consensus sequence of 171 base pairs 
(bp) in length, derived from over 1 000 000 different alpha 
satellites across all higher primates, including humans, was 
used as a query for detecting all alpha satellites in the T2T-
CHM13 genomic sequence of human chromosome 3.

In the next step, the GRMhor application was executed 
with a file containing all alpha satellites from the previous 
step. The GRMhor application compares all the alpha satel-
lites with each other and creates a divergence matrix. From 
the divergence matrix, monomer families were identified, 
encompassing all monomers that differ from each other 
by less than 5%. For each monomer family, a consensus 
sequence was generated. The consensus sequences for all 

alpha satellite monomer families are provided in Supple-
mental Table 1 and Supplemental Table 2. Furthermore, 
the GRMhor application generates a GRM diagram (Figure 
1A), an MD diagram (Figure 1B), and an aligned schematic 
representation of the monomer organization in the array 
of monomers (Supplemental Figure 1 and Supplemental 
Figure 2).

The GRM diagram displays the repetition period of alpha 
satellite monomers on the horizontal axis and the frequen-
cy of alpha satellite repeats period on the vertical axis. 
When generating the divergence matrix, the GRM algo-
rithm assigns each alpha satellite its closest pair differing 
by less than 5%. The distance between two similar alpha 
satellites in the number of alpha satellites represents the 
repetition period. In this way, HORs and other alpha satel-

Figure 1. Global repeat map (GRM) diagram and monomer 
distance (MD) diagram for tandemly arranged alpha satel-
lite monomers in complete T2T-CHM13 assembly of human 
chromosome 3. (A) GRM diagram. Horizontal axis: GRM peri-
ods. Vertical axis: the frequency of monomer repeats period. 
Identified major GRM peaks have periods 17, 15, 2, and 10, and 
minor peaks 15, 2, 13, 19, 5, 6. The significance of these GRM 
peaks (HORs or subfragment repeats) can be inferred from the 
MD diagram. (B) MD diagram. Horizontal axis: enumeration of 
tandemly organized alpha satellite monomers in order of ap-
pearance in GRM analysis of T2T assembly. Vertical axis: period 
(distance between the start of a monomer and of the next 
monomer of the same type). Two pronounced distinct regions 
with MD-line segments correspond to 17mer HOR (referred to 
as hor1) and 10mer (referred to as hor2). The additional MD-
line segments at periods 15 and 2 correspond to subsegments 
of 17mer HOR. There also some additional weak repeats and 
sporadic MD points.

https://github.com/gluncic/GRM2023
http://neuron.mefst.hr/docs/CMJ/issues/2024/65/3/gluncic_Supp_table_1.pdf
http://neuron.mefst.hr/docs/CMJ/issues/2024/65/3/gluncic_Supp_table_1.pdf
http://neuron.mefst.hr/docs/CMJ/issues/2024/65/3/gluncic_Supp_table_2.pdf
http://neuron.mefst.hr/docs/CMJ/issues/2024/65/3/gluncic_SuppFig1.pdf
http://neuron.mefst.hr/docs/CMJ/issues/2024/65/3/gluncic_SuppFig2.pdf
http://neuron.mefst.hr/docs/CMJ/issues/2024/65/3/gluncic_SuppFig2.pdf
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lite repetitions are discerned as peaks in the GRM diagram. 
A distinct peak of period n (in units of 171 bp) represents 
an nmer HOR. Moreover, the GRM2023 algorithm facilitates 
the identification of various other types of monomer re-
peats, including intra- and inter-HOR-copy monomer re-
peats or tertiary HOR repeats, referred to as subfragments.

The monomer distance (MD) diagram displays the relation-
ship between period and monomer enumeration (Figure 
1B). Each point on the diagram represents a monomer enu-
meration on the horizontal axis and its corresponding dis-
tance to the next monomer of the same type in a sequen-
tially organized monomer sequence, determining both 
horizontal and vertical coordinates. These points, termed 
MD points, form densely distributed horizontal MD-line 
segments corresponding to a HOR, with the vertical coor-
dinate reflecting the period of the HOR. For a HOR, these 
MD-points are densely distributed on the line segment, 
and with the naked eye, they resemble a continuous line 
in the interval corresponding to constituting monomers. 
The top MD-line segment within an interval of monomer 
enumeration corresponds to the nmer HOR array, where n 
represents the period.

The NTRprism code (4) corresponds to the early version of 
the GRM code, and the NTRprism spectrum corresponds 
to the GRM diagram (18,41,42)). In the updated version of 
GRM used here, the GRM2023 code is extended to also 
identify the cascading HORs and interspersed HORs.

Results and discussion

GRM diagram

In the first step, we identified tandemly organized alpha 
satellite monomers in T2T-CHM13 assembly of human 
chromosome 3, enumerated in order of appearance in ge-
nomic assembly. Using the high-precision GRM2023 algo-
rithm, we calculated the corresponding GRM diagram for 
this array of tandemly organized monomers. In this process, 
HORs were recognized as prominent peaks in the GRM dia-
gram (Figure 1A). A peak of period n corresponds to n × 171 
bp, representing the nmer HOR. The most prominent GRM 
peaks for T2T-CHM13 assembly of human chromosome 3 
corresponded to 17mer and 10mer HORs, with approxi-
mate frequencies of GRM peaks at ~ 7000 and ~ 4000, re-
spectively.

The GRM2023 algorithm represents a novel iteration of the 
GRM algorithm, previously utilized for the identification of Table 1. The frequency of monomer distance (MD) points 

for different periods. The number of MD points for two most 
frequent periods, 17 and 10, corresponds to the MD-line seg-
ments of two major HOR arrays: cascading 17mer and Willard-
type 10mer HOR arrays, respectively. The periods 15 and 2 
correspond to subfragments of 17mer HOR
No. of  
MD points Period Repeat pattern
6817 17 Cascading 17mer HOR
3679 10 Willard’s type 10mer HOR
731 15 subfragment of cascading 17mer HOR
430 2 subfragment of cascading 17mer HOR
188 13 subfragment*
74 19 subfragment*
54 5 subfragment*
52 12
43 6
43 11
36 9
34 30
33 23 subfragment*
19 27
15 16
14 36 subfragment*
*subfragment denotes relation to a complex repeat in interval of 
monomer enumeration ~ 6500-6800 as mentioned in the text. The 
remaining less frequent periods correspond to other less pronounced 
repeats.

Figure 2. The ideogram of major alpha satellite higher-order 
repeats (HOR) arrays in the centromeric region of T2T-CHM13 
assembly of human chromosome 3. hor1 – cascading 17mer 
HOR array; hor2 – Willard’s type 10mer HOR array.
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Willard’s type HORs, characterized by the absence of repeat 
monomer types within a single HOR copy (12,18,20,37,48). 
In contrast, the GRM2023 algorithm is adept at discern-
ing not only Willard’s type HORs but also extends its capa-
bility to identify HORs exhibiting multiple occurrences of 
the same monomer type within a single HOR copy. These 
particular HOR instances are referred to as cascading HOR 
copies. Furthermore, the GRM2023 algorithm facilitates 
the identification of various other types of monomer re-
peats, such as intra- and inter-HOR-copy monomer repeats 
or tertiary HOR repeats, which are referred to as subfrag-
ments. In the case of T2T-CHM13 assembly of human chro-
mosome 3, notable repeats of subfragment types were ob-
served at periods 15, 2, 13, and 19, albeit with frequencies 
an order of magnitude lower than the two predominant 
peaks at 17 and 10.

MD diagram

As seen from MD diagram (Figure 1B and Table 1), the most 
prominent MD-line segment corresponded to 17mer HOR. 
In the case of cascading HORs, additional parallel MD-line 
segments within the same interval of monomer enumer-
ation may appear, exhibiting periods smaller than that of 
the 17mer HOR (subfragments). As seen from the MD dia-
gram (Figure 1B and Table 1), in the case of 17mer HOR, 
the GRM peaks of periods 15 and 2 corresponded to sub-
fragments. The sizable MD-line segments of different peri-
ods corresponded to the identified GRM peaks (Figure 1A): 
major peaks 17 and 10, and less pronounced weak peaks 
15, 2 13, 19, 5, etc. The location of the 17mer and 10mer 
major HORs on chromosome 3 is shown in an ideogram 
(Figure 2).

Figure 3. An aligned scheme of cascading 17mer canonical higher-order repeats (HOR) copies and some variants. (A) 17mer canoni-
cal HOR copy constituted of 17 monomers (denoted m1,… m17) of 16 different types (t1,… t16) presented in the linear monomeric 
scheme. The number of different types of monomers in the canonical HOR copy is denoted by τ. Each monomer is presented by a 
colored box. (B) A cascading aligned scheme of the canonical 17mer HOR (n = 17, τ = 16) corresponding to the linearized scheme in 
Figure 3A. Two monomers of the same type are aligned in the first column: monomer m1 of the type t1 in the first row and monomer 
m16 of the same type t1 in the second row. (C) Several examples of variant cascading HOR copies from Supplemental Figure 1: 
13mer, 30mer, and 7mer with respect to 17mer HOR array.
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Aligned scheme for cascading 17mer HOR array with 
15mer and 2mer subfragments

As inferred from the GRM and MD diagrams (Figure 1 A,B), 
the largest array of HORs within human chromosome 3 
is identified as the cascading 17mer HOR, spanning the 
genomic interval from 91 779 888 bp to 96 415 046 bp in 
the T2T-CHM13 assembly. The comprehensive alignment 
pattern of the cascading 17mer HOR array, computed us-
ing the GRM2023 algorithm, is depicted in Supplemen-
tal Figure 1. Additionally, the predominant constituent of 
this array, namely the canonical 17mer HOR, is depicted 
through a linear arrangement of its constituent 17 mono-
mers (Figure 3A).

Monomers within the 17mer HOR copy, labeled m1 
through m17 in order of appearance within the canoni-
cal HOR copy, are arranged sequentially in a linear fashion, 
each represented by a distinct colored box. Above each 

box stands its corresponding type, labeled as t1, t2, and so 
forth. Different monomer types are distinguished by vary-
ing box colors, while monomers of the same type share 
identical coloring.

The two 17mer cascading HOR monomers, m1 and m16, are 
classified under the same type, denoted as t1. In the instanc-
es where the canonical copy exhibits a repetition of mono-
mer types, the linear presentation of the HOR copy is trans-
formed into a cascading format, resulting in a multi-row 
arrangement. Each row consists of monomers of distinct 
types, aligned vertically according to their respective types.

Consequently, the linear single-row depiction of the 17mer 
canonical HOR copy (Figure 3A) is transformed into a two-
row representation as depicted in Figure 3B. The first row 
comprises a linear sequence of monomers, m1 through 
m15, corresponding to types t1 through t15, respectively. 
The second row features only two monomers: m16, type 

Figure 4. An aligned scheme of some segments from cascading 17mer higher-order repeat (HOR) array. (A) A segment of the 
first ten cascading 17mer HOR copies from position 91 779 888 to 91 811 017. Each HOR copy corresponds to cascading rows of 
monomers. The No.1 HOR copy is canonical, consisting of two cascading rows: the first row with 15 monomers of types t1-t15 and 
the second row with two monomers of types t1 and t16. The next five HOR copies, No. 2-6, are of the same canonical structure. The 
cascading HOR copy No. 7, starting at position 91 797 236, is a variant HOR consisting of 15 + 15 + 2 = 32 monomers (three cascading 
rows of 15, 15, and 2 monomers, respectively). This variant HOR copy arises from the canonical HOR copy by duplicating its first row. 
The next HOR copy, No.8, starting at position 91 802 681 is the same as HOR copy No. 7. The next two HOR copies, No.9 and 10, are 
canonical (15 + 2). (B) A segment of cascading 17mer HOR copies from position 91 813 909 to 91 854 237. This segment starts with ca-
nonical 17mer HOR copy (15 + 2 monomers). The following copy is an extended HOR copy of 2 × 15 + 2 = 32 monomers, which arises 
from the canonical 17mer HOR copy by multiplication of the first row in the canonical HOR copy. The next copy is an extended HOR 
copy of 6 × 15 + 2 = 92 monomers, which arises from the canonical 17mer HOR copy by multiple multiplication of the first row in the 
canonical HOR copy. The next copy is a variant HOR copy of 4 × 15 + 2 = 62 monomers, which arises from the canonical 17mer HOR 
copy by multiplication of the first row in the canonical HOR copy. After that follows a sequence of canonical 17mer HOR copies. (C) A 
segment of cascading 17mer HOR copies from position 92 087 584 to 92 110 030, giving rise to a tertiary period-2 subfragment. This 
graphical presentation is also presented in Table 3. The sub-tandem of (t1, t16) doublets within HOR copies gives rise to subrepeats 
… t2 t15 t2 t15 …, which due to distances t2-t2 and t15-t15 of 2 × 171 bp generates intra-HOR tertiary periodicity 2.

http://neuron.mefst.hr/docs/CMJ/issues/2024/65/3/gluncic_SuppFig1.pdf
http://neuron.mefst.hr/docs/CMJ/issues/2024/65/3/gluncic_SuppFig1.pdf
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t1, aligned with m1 of the same type from the first row, 
and m17, designated as type t16, positioned to the right 
of m15 in the first row. This presentation, characterized by 
aligned monomers based on their types, is termed cascad-
ing 17mer HOR (Figure 3B).

Variants involving adjacent rows, such as (t1, t16) and (t1, 
t16), exemplified by the 30mer variant in Figure 3C, also 
contribute to the subfragments of period 2 as a conse-
quence of tertiary HOR. Select segments of the array of 
cascading 17mer HOR copies from Supplemental Figure 1 
are depicted in Figure 4.

It is possible to inspect the accompanying subfragments 
considering the types of monomers in the canonical 17mer 
HOR copy. The 17 monomers, m1 m2 m3 m4 m5 m6 m7 
m8 m9 m10 m11 m12 m13, m14 m15 m16 m17, in the ca-
nonical 17mer HOR copy have the corresponding monomer 
types, t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 15 t1 t16, 
which for simplicity we write 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
15 1 16. Analogously, the monomer types in the correspond-
ing neighboring canonical 17mer HOR copy are denoted 1’ 
2’ 3’ 4’ 5’ 6’ 7’ 8’ 9’ 10’ 11’ 12’ 13’ 14’ 15’ 1’ 16’. Let us consider the 
two neighboring canonical 17mer HOR copies:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 16 1’ 2’ 3’ 4’ 5’ 6’ 7’ 8’ 9’ 
10’ 11’ 12’ 13’ 14’ 15’ 1’ 16’.

Within the first HOR copy, the distance d between the 
start of two monomers of identical type t1 between the 
monomer denoted m1 and the monomer denoted m16 
in the initial m-sequence is equal to 15 units of monomer 
lengths, ie, equal to the sum of lengths of monomers m1, 
m2, … m15, d = 15. This is the characteristic intra-HOR-
copy distance within each 17mer canonical HOR copy and 
it gives rise to the MD-line segment of period 15 in the MD 
diagram. It is referred to as a period-15 subfragment. For 
tandems of canonical 17mer HORs, this pattern is equidis-
tant.

Furthermore, the inter-HOR-copy-distance between the 
second monomer of type 1 in the first HOR copy and the 
first monomer of type 1 (denoted 1’) in the second HOR 
copy:

… 15 1 16 1’ 2’ …

is equal to the sum of lengths of monomers of type 1 
and of type 16, d = 2. Based on this principle, we obtained 
two MD-line segments at periods 15 and 2, referred to as 

subsegments. They are positioned in the same interval of 
monomer enumeration as the line segment correspond-
ing to the 17mer HOR (Figure 1B). The onset of period 2 
arises also due to contributions from variants of 17mer 
HOR copy, involving tandem repeats of t1 t16 doublets 
within HOR copies (Figure 4C). A segment of the cascading 
17mer HOR contributing to period 2 repeats is provided in 
Supplemental Table 2 (Table 2).

Furthermore, within the specific range of monomer enu-
meration spanning from ~ 6500 to ~ 6800, a highly intricate 
repeating pattern emerged, comprised of subfragments 
with periods of 23, 19, 17, 13, 6, and occasionally a less pro-
nounced 36.

Figure 5 illustrates all HORs in this region, with box colors 
and monomer type labels consistent with those of the 

Table 2. A segment from Supplemental Table 2 of cascading 
17mer higher-order repeats (HOR) contributing to period 2 
repeats

Monomer type Repeat pattern

t1-t15 Variant15 + 2 + 2
t1, t16
t1, t16
t1-t 5, t12-t15 Variant (6 + 4)+2
t1, t16
t1-t15 Variant15 + 2 + 2
t1, t6
t1, t6
t1-t15 Variant15 + 2 + 2
t1, t6
t1, t6
t1-t15 Variant15 + 2 + 2
t1, t6
t1, t6
t1-t6, t12-t15 Variant (6 + 4)+2
t1, t16
t1-t15 Canonical 15 + 2
t1, t16
t1-t5, t12-t15 Variant (6 + 4)+2 + 2
t1, t16
t1, t16
t1-t5, t12-t15 Variant (6 + 4)+2 + 2
t1, t16
t1, t16
t1-t5, t12-t15 Variant (6 + 4)+2 + 2
t1, t16
t1, t16
t1-t15 Canonical 15 + 2
t1, t16

http://neuron.mefst.hr/docs/CMJ/issues/2024/65/3/gluncic_SuppFig1.pdf
http://neuron.mefst.hr/docs/CMJ/issues/2024/65/3/gluncic_Supp_table_2.pdf
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17mer HOR shown in Figures 3 and 4. There exist five ca-
nonical copies of the cascade 36mer HOR, predominantly 
composed of the same monomers as the 17mer HOR (Fig-
ure 5). Each canonical 36mer HOR includes 16 distinct types 
of monomers present in the 17mer HOR (t1 to t16) along 
with two additional monomer types, t17 and t18. These 
monomers are largely arranged in the canonical 36mer 
HOR in the same sequence as in the canonical 17mer HOR, 
except for the insertion of monomers t16 and t17 between 

t1 and t2. Furthermore, the canonical 36mer HOR is charac-
terized by a significant number of monomer duplications, 
with each individual HOR unit containing three copies of 
t1, t2, t3, t4, t16, and t17, as well as two copies of t5, t11, 
t12, t13, t14, and t15. Thus, from only 18 distinct monomer 
types, a 36mer HOR is formed, resulting in a large number 
of subfragments in Figure 1B. Following the final variant 
copy of this HOR, commencing at position 91 778 533, the 
17mer HOR continues.

Aligned scheme for Willard’s type alpha satellite 10mer 
HOR array

As observed in the MD diagram (Figure 1B), the 10mer HOR 
array, designated as hor2, is situated within the monomer 
enumeration interval between ~ 2500 and ~ 6400 deter-
mined from T2T-CHM13 assembly. The aligned 10mer HOR 
scheme for this 10mer HOR array is presented in Supple-
mental Figure 2, and the consensus HOR is displayed in 
Supplemental Table 2. Specific segments from the aligned 
10mer HOR scheme are shown in Figure 6. The composi-
tion of HOR copies in 10mer HOR array from Supplemental 
Figure 2 is analyzed in Supplemental Table 3.

The high percentage of copies (94%) were canonical HOR 
copies. Variant HOR copies showed a strong tendency of 
clustering in large groups of 76%, 55%, 50%, 50%, and 47%, 
scattered between large groups of canonical HOR copies, 
but the composition of monomer types in variants was 
far from random. Among the monomer types, the most 
frequent in variants were t-t5, t-t6, and t5-t10. Half of the 
variants were located near the end of 10mer HOR array, as 
transitional region in dissolving the HOR regularity.

In conclusion, by using the recently sequenced complete 
T2T-CHM13 assembly of human chromosome 3, we delin-
eated the precise alpha satellite cascading HOR structure 
by employing our innovative high-precision GRM2023 al-
gorithm with GRM and MD diagrams. This study rigorous-
ly identified and structurally analyzed alpha satellite HORs 
within the centromere. Notably, the major alpha satellite 
HOR array in chromosome 3 revealed the novel cascading 
17mer HOR.
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