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1 Introduction

In over a hundred years, general relativity has yielded some remarkable predictions that have
all culminated in impressive experimental confirmation. Probably the most intriguing among
them were the predictions of black holes on the one side and gravitational radiation emitted
by the massive accelarated astrophysical objects on the other. Over the time, the fascination
with black holes and gravitational waves has been ever growing, as it was spurred by them
persistently evading direct observation. The fact that it took so much time and effort for
sufficiently improving the required experimental infrastructure has also added to their mystery.

Recently however, this situation has dramatically changed with two epochal discoveries,
the latest observations of shadows of M87* and Sgr A* [1, 2], the supermassive black holes
located respectively at the center of the Messier 87 galaxy and our own Milky Way galaxy,
made mainly by means of the Event Horizon Telescope (EHT), and the first ever direct
detection of gravitational waves made in 2015 by the LIGO collaboration [3]. Both discoveries
marked a kind of a turning point at which something that was previously supposed to be solely
a sheer mathematical fiction suddenly turned into a tangible physical reality. In particular is
fascinating that a bright asymmetric ring surrounding a dark central region, a key feature of
the supermassive black hole’s images of M87* and Sgr A*, obtained by the EHT collaboration,
are well in the range of expected theoretical predictions for a rapidly rotating Kerr black
hole made in the framework of the Einstein’s general relativity (GR). Likewise, an almost
perfect agreement between the observed and predicted waveforms as related to two merging
black holes from the LIGO experiment undoubtedly further confirmed the accuracy of the
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Einstein’s GR. It is noteworthy to mention that the latter achievement, related to the LIGO’s
detection of gravitational waves, also led to the Nobel prize for physics in 2017.

While EHT discoveries provided a novel powerful tool to test Einstein’s GR theory in
the extremely strong field regime, the discovery of gravitational waves from the binary black
hole merger GW150914 by LIGO [3] marked the beginning of a new era in gravitational wave
astronomy. In particular, the latter has allowed the astronomers to dive deeper into the
origins of the cosmos and reach the depths that lie well beyond the boundaries attainable by
the cosmic microwave background radiation (CMBR). As the ability of the CMBR to probe
the earlier stages of the universe closer to the Big Bang is limited by the transparency of
the early universe to the electromagnetic radiation, the reliance on only this type of cosmic
messenger will fail to provide any information about the universe before its temperature
dropped below ∼ 3000K and the plasma of protons and electrons combined to form atomic
hydrogen, which amounts to the period as early as few hundred thousand years after the Big
Bang. Unlike this, the gravitational waves have no such type of limitations and are therefore
able to probe the primordial universe at the Planck scale.

Discovery of gravitational waves has also opened up a whole set of new possibilities in
the area of black hole spectroscopy, a term first introduced by Dreyer et al. [4], but the idea
that lies behind this notion had been explored for decades before. Black hole spectroscopy
relies on the correspondence between black hole spectra and atomic spectra and it consists
of measuring of the complex gravitational-wave frequencies of black hole merger remnants
and of quantifying their concordance with the characteristic frequencies of black holes in a
ringdown phase computed at linear order in black hole perturbation theory.

A notion that is closely related to black hole spectroscopy is that of quasinormal modes
(QNMs), the theory for which has been developed during the 1970s, starting with the works
by Vishveshwara and Press [5, 6]. First Vishveshwara recognized that the response of the
black hole to an external perturbation may be represented by a black hole ringdown, which is
in turn characterized by a superposition of exponentially damped oscillations, called QNMs,
with generally an infinite set of discrete frequencies and damping times,

hℓm(t) =
∑

n

Aℓm
n e−i(ωℓmnt+ϕℓmn), (1.1)

where ωlmn are the quasinormal mode frequencies for the multipole (ℓ,m), and with the
overtone number n running unlimitedly from n = 0 for the fundamental mode to larger
integers labelling higher overtones. Next he realized that the black hole scattering problem is
not self-adjoint and that the black hole absorbs gravitational radiation at the horizon and
gives off the same at spatial infinity, which has resulted with an appropriate specification
of boundary conditions and complex valued spectrum [5]. Following that, Press has shown
that QNMs take a decisive part in mechanisms that give rise to gravitational radiation
and has demonstrated that the black hole gets rid of the perturbation and returns back to
equilibrium only gradually, yielding a long and nearly sinusoidal wave train of gravitational
radiation with multipole index ℓ [6].

Notably, the analogy between the black hole spectra and the atomic spectra is not just
a matter of a heuristic guesswork, but has a deeper root in an analogy between black hole
perturbation theory and quantum mechanics or, more precisely, an analogy between the theory
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of scattering of gravitational waves off a black hole and scattering theory in quantum mechanics.
This analogy comes from noticing that the separation of the angular variables in the wave
equation, using tensor spherical harmonics with angular indices (ℓ,m), turns the problem of
scattering of gravitational waves off a Schwarzschild black hole into a problem that is formally
equivalent to a Schrödinger-like equation with a potential barrier [7]. This has shown to
be the case for the axial perturbations of the Schwarzschild black hole, as demonstrated
in a classic paper by Regge and Wheeler [8], and also for the polar perturbations of the
same spacetime geometry [9, 10].

Chandrasekhar and Detweiler calculated, numerically and after using several approx-
imations, the QNM spectra for both, axial and polar perturbations of the Schwarzschild
black hole and showed their isospectrality [11]. For given angular momentum indices (ℓ,m),
they also computed higher overtones.1 Afterwards, many more semi-classical methods have
been developed, which at even deeper level utilized correlations between scattering problems
in quantum mechanical and gravitational contexts [12–14], including those of high level
of accuracy [15, 16].

Considering that realistic astrophysical objects are non-static and have some angular
momentum, a successful separation of the angular part in the perturbation equations for
the Kerr black hole, as demonstrated by Teukolsky [17–20], represented a monumental
step forward in a direction of further development of black hole spectroscopy, as well as
gravitational wave astronomy. In particular, as pointed out in [21, 22], the fundamental QNM
frequency of a Kerr black hole depends on nothing else but its mass and angular momentum,
which has a remarkable consequence that, at least in principle, this relationship may be
inverted for a purpose of pin pointing the Kerr black hole parameters from the measured
values of the frequency and lifetime (which is inversely proportional to the damping width)
of the observed quasinormal mode.

Quasinormal modes completely dominate the intermediate phase of the black hole
ringdown, which begins immediately after the rapid initial outburst of radiation and lasts all
until QNMs become dominated by a power-law behaviour of the perturbation at late times.
As shown by Leaver [23] within linear perturbation theory of black holes, each multipole
component of the gravitational wave waveform may in this long intermediate interregnum be
represented by the expansion (1.1), i.e. as a superposition of QNMs. In linearized Einstein’s
theory of gravity the QNM frequencies ωℓmn for a Kerr black hole [24, 25] are known to a
very high accuracy, they are generally complex and depend only on the mass and the angular
momentum of the remnant black hole left after the merger. They do not depend neither on
the details of the initial perturbation, nor the way it is triggered. As opposed to that, the
amplitudes and phases in the expansion (1.1) depend on the details of the perturbation.

The astrophysical processes like binary black hole merger may generally excite multiple
quasinormal modes, including different multipoles (ℓ,m), as well as different overtones. It
is therefore of interest in black hole spectroscopy/gravitational wave astronomy to single
out which combination of modes will have a prevailing influence in the signal. Recent

1For each pair (ℓ, m), one finds an infinite series of QNM frequencies ωℓmn labeled by the additional integer
number n, which goes from n = 0 for the fundamental mode to infinity. Generally, increasing values of n

amount to greater imaginary parts and shorter lifetimes for the corresponding overtones.
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understandings acquired on the basis of numerical relativity (NR) simulations [26–30] suggest
that the ℓ = |m| = 2 multipole dominates the gravitational wave signal from a binary
black hole merger and that the higher multipoles play the subdominant role. However,
although knowing a precise QNM frequency for the mode (ℓ = |m| = 2, n = 0), which is
the dominant mode in a black hole binary merger, might help us fix both the mass and
the angular momentum of the remnant, in practice a single mode is often insufficient to get
accurate values for these quantities. Some proposals have thus appeared in the literature
suggesting that some improvements need to be made in estimating the mass and the spin
of the remnant. They included a mixing/coupling of different multipole components [31]
and an incorporation of higher overtones [32].

The idea that the gravitational wave signal contains contributions from overtones had
thus been proven correct, at least in the context of inferring the remnant black hole parameters
from the observed gravitational wave spectrum. It has also shown to be advantageous in the
efforts to lower a mismatch between the waveforms obtained within the framework of linearized
black hole perturbation theory in Einstein’s GR and those obtained within numerical relativity
(NR) framework [26–30] by using numerical simulations. Specifically, it has been shown that
adding higher overtones to the ℓ = m = 2 multipole of the radiation lowers the mismatch
with NR simulations at least for the times after the peak of the radiation [33]. However, some
researchers have raised the doubts [29, 34] about the physical meaning of extending these fits
between the waveforms obtained in linearized GR and NR to the peak of the radiation and
beyond toward the earlier times. Indeed, as the linear perturbation theory in GR predicts
that the frequencies depend only on the mass and spin of the final Kerr black hole, it is
expected to be a good approximation only at late times, where the intermediate phase of
the black hole ringdown roughly falls and when the remnant of the binary merger is close
enough to a stationary Kerr black hole. This would imply that at times before the peak of
the radiation, the spacetime is not well described as a linearly perturbed Kerr black hole, and
thus the linearized black hole perturbation theory would not at all be a valid approximation.
In this context, the inclusion of higher overtones in order to fit the waveforms obtained by
NR simulations for the times before the peak of the radiation would be a rather futile task.

On the other side, it is known that strong gravity and high energy of the fields in vicinity
of the horizon create environment in which effects of quantum gravity could emerge. At
these scales the usual point-like structure of spacetime is expected to be replaced with some
noncommutative spacetime [35, 36]. This should also have the consequences on the relaxation
dynamics of the black hole during the ringdown phase and should leave its trace in the
gravitational QNM spectrum.

In this work we present a systematic way to calculate noncommutative corrections to
the equation of motion for metric perturbations. We generalize the calculations of Regge
and Wheeler [8] to noncommutative spacetime and find noncommutative version of the
Regge-Wheeler equation and corrections to the Regge-Wheeler potential, governing the axial
perturbations of the Schwarzschild black hole. There are several ways to construct a theory
of noncommutative differential geometry. Our approach is based on the Hopf algebra of
deformed diffeomorphisms that encode the symmetries of a noncommutative space. By means
of Hopf algebra twist we quantize the radial coordinate which effectively smears the horizon
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at the level of equations of motion. Waves of different frequencies and multipoles experience
different potentials, especially in the near-horizon region.

Before explaining the details that lead to modified perturbation equations and culminate
in a successful rephrasing of the problem in terms of the quantum-mechanical scattering
described by the Schrödinger-type equation, we shall first outline a construction of the
noncommutative (NC) gravity in the bottom-up approach, by closely following the guidelines
presented in [37–39, 44]. The NC gravity build-up in a bottom-up approach lies in the core of
our analysis, and in particular we implement it to a NC deformation of linearized gravitation
perturbation theory, as applied to a nonperturbed background of the Schwarzshild black hole.
Unlike our construction of NC gravity, some other developments in the field use a top-down
approach which starts with an appropriately introduced action principle [40–43]. There is
also a formulation of NC gravity where the corrections are obtained using the NC tetrad
formalism [48–50] and coupling the Einstein equation with a NC energy-momentum tensor [51].
References [48–51] consider NC corrections to the stationary (non-perturbed) black hole.
Perturbations of the charged scalar field on the NC Reissner-Nordström background have
been studied in [46, 47]. In contrast, our approach to NC perturbation theory is purely
geometric, i.e. there are no additional dynamical bosonic or fermionic fields in the spacetime.

The paper is structured as follows. In section 2 we introduce the Hopf-algebraic formalism
and define the relevant ⋆-differential-geometric structures. This section is minimalistic and it
briefly summarizes already known facts in the area of Hopf algebras and noncommutative
differential geometry. Section 3 presents novelties regarding the applications of the formalism
of NC differential geometry to gravitational perturbation theory. As an example, in section 4
we calculate the NC corrections to the metric perturbations around the Schwarzschild blak
hole, generalizing the procedure of Regge and Wheeler. We found the NC analog of Regge-
Wheeler equation and corrections to the Regge-Wheeler potential. In section 5 we give our
concluding remarks and in the appendices we present some technical details.

2 Hopf algebra and NC differential geometry

The symmetries of a manifold are governed by infinitesimal diffeomorphisms, i.e. the Lie
algebra of vector fields. Vector fields can act on any product of tensor fields via Leibniz
rule. This fact together with the fact that for every vector v there is an inverse vinv = −v
gives rise to an algebraic structure called Hopf algebra. The Hopf algebra framework is also
well suited for studying the deformed symmetries of NC spaces. The main idea behind this
approach is to use the concept of a Drinfeld twist in order to deform the usual mappings
in differential geometry like the algebra of functions, Lie derivative, connection, covariant
derivative, curvature and torsion tensors.

Let us first state some general facts about Drinfeld twists and Hopf algebras. This is
a minimal and nontechnical intro, for details refer to [37–39, 44]. Consider a Lie algebra g

and its universal enveloping algebra U(g), an associative unital algebra. It is also a Hopf
algebra with the built-in structural maps: coproduct ∆ : U(g) −→ U(g) ⊗ U(g), counit
ϵ : U(g) −→ C and antipode S : U(g) −→ U(g).

U(g) has a canonical Hopf algebra structure. Namely for the generators g of the Lie
algebra g we have ∆(g) = g ⊗ 1 + 1 ⊗ g, ϵ(g) = 0 and S(g) = −g. For the unit element
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1 ∈ U(g) we have ∆(1) = 1 ⊗ 1, ϵ(1) = 1 and S(1) = 1. Then using the homomorphism of
the coproduct and antihomomorphism property of the antipode, one extends the co-structures
to any arbitrary element of U(g). In the bialgebra the coproduct ∆ also has to satisfy
the following axiom

(ϵ⊗ id) ◦∆ = (id⊗ ϵ) ◦∆ = id. (2.1)

The coproduct satisfies the coassociativity condition,

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆. (2.2)

Antipode S satisfies the axiom

µ ◦ (S ⊗ id) ◦∆ = µ ◦ (id⊗ S) ◦∆ = η ◦ ϵ, (2.3)

where η is a unital map which assigns the unit element 1 in the U(g) to real number 1.
As a next step, we take an invertible element F in U(g)⊗U(g) and generate a deformation

by means of a series of similarity transformations implemented on the structural maps of
the Hopf algebra U(g) thereby turning it into UF (g). For any h ∈ U(g), we carry out the
transformation on the coproduct, antipode and counit of the original Hopf algebra:

∆F (h) = F∆(h)F−1,

SF (h) = χS(h)χ−1, (2.4)
ϵF (h) = ϵ(h),

where χ = µ ◦
[
(S ⊗ id)F−1]. The above set of transformations is usually referred to as

a deformation by a twist operator or simply twisting. Upon twisting by F , we induce a
new algebraic structure which we denote by UF (g). As vector spaces, U(g) and UF (g) are
isomorphic. At this point we recall the central result of the deformation theory for Hopf
algebras which states that the new structure UF (g) obtained by the series of deformations (2.4)
will again constitute a Hopf algebra, but only if the twist element F satisfies the following
two conditions

(F ⊗ 1)(△⊗ id)F = (1 ⊗F)(id⊗△)F ,
µ ◦ (ϵ⊗ id)F = 1 = µ ◦ (id⊗ ϵ)F , (2.5)

which are known as the 2-cocycle and counital condition, respectively. The twist operator
F with the properties (2.5) is called a Drinfeld twist. This is an essential result and along
with the concept of universal R-matrix and related quasitriangularity properties desribed
below, it has a pivotal role in the construction of NC gravity that we implement in our
analysis. Though, before introducing the latter concept, we finish with introducing the
elementary Hopf algebra setup.

Undeformed Hopf algebra has an algebra A of smooth functions on a manifold M,
A = (C∞(M), ·), with pointwise multiplication as its module algebra. The primitivity of its
coproduct is reflected as a standard, undeformed Leibniz rule in C∞(M), since elements of
U(g) act as usual derivations. Twisting of the Hopf algebra U(g) induces the change in its
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module algebra to accompany for the twisted Leibniz rule. As a vector space, the module
algebra of UF (g) is again C∞(M), but the product changes to the ⋆-product given by:

f ⋆ g = µ ◦ F−1(f ⊗ g) = f̄α(f)f̄α(g), (2.6)

for any two functions f and g in the algebra C∞(M). Here we introduced a convenient
notation for the twist F = fα ⊗ fα and its inverse F−1 = f̄α ⊗ f̄α, where the sum over α
is understood. From now on, UF (g)-module algebra will be denoted by A⋆.

As already indicated, another related and important concept involves a notion of the
quasitriangular Hopf algebra. In our context, the quasitriangular Hopf algebra of interest
is the pair (UF (g),R), consisting of the Hopf algebra UF (g) and an invertible element
R = Rα ⊗ Rα ∈ UF (g) ⊗ UF (g), satisfying the following three conditions:

∆op
F (h) = R∆F (h)R−1,

(∆F ⊗ id)R = R13R23, (2.7)
(id⊗∆F )R = R13R12,

for any h ∈ UF (g). Here ∆op
F = σ ◦∆F , Fop = σ ◦ F and σ is the flip operator defined as

σ(a ⊗ b) = b ⊗ a. In addition, R13 = Rα ⊗ 1 ⊗ Rα and similarly for other objects of that
kind. It should be noted that the first of the above conditions also implies that R = FopF−1.
Therefore, it is evident that unlike the Hopf algebra U(g), the twisted Hopf algebra UF (g)
possesses a nontrivial R-matrix given by

R = FopF−1 = Rα ⊗Rα, R−1 = FF−1
op = R̄α ⊗ R̄α. (2.8)

On the Hopf algebra level we say that UF (g) is quasitriangular.2 As the coproducts in
UF (g) satisfy σ ◦ ∆F (h) = R∆F (h)R−1, the module algebra A⋆ will consequentially be
R-commutative:

f ⋆ g = R̄α(g) ⋆ R̄α(f). (2.9)

As already said, properties (2.5) and (2.7) lie in the core of our NC gravity construction.
They are the foundational blocks upon which the entire construction relies, and from which
everything else follows — a point that will be demonstrated shortly.

Having completed an introduction of the algebraic part of the whole setup used in the
construction, we now turn to the geometric part. First we have the ⋆-Lie derivative. For
a generic tensor field τ , it is given by

£⋆
u(τ) = £f̄α(u) f̄α(τ), (2.10)

where £ is the ordinary Lie derivative. Here the expressions like f̄α(τ) need to be understood
in a sense of the right action,

f̄α(τ) ≡ f̄α ▷ τ, f̄α(τ) ≡ f̄α ▷ τ, (2.11)

where again the right action is implemented through a Lie derivative action. If f̄α itself
is a vector field, then we have

f̄α ▷ τ = £f̄α(τ), f̄α ▷ τ = £f̄α
(τ). (2.12)

2Even stronger claim holds — it is triangular, meaning RR21 = 1 ⊗ 1.
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Now,

• If τ is a smooth function, then f̄α acts as ordinary linear differential operator

£f̄α(τ) = f̄α(τ) = [f̄α]µ∂µτ, (2.13)

i.e. acts as usual derivation.

• If τ is a vector field, then
£f̄α(τ) = [f̄α, τ ], (2.14)

where [ , ] is the usual Lie bracket.

• If τ is a 1-form, then one uses Cartan identity

£f̄α(τ) =
(
d ◦ if̄α + if̄α ◦ d

)
τ, (2.15)

where d and i are the exterior and interior derivatives, respectively.

• If τ is a general tensor, then one has to use the Leibniz rule for Lie derivative to reduce
the expression to Lie derivatives of vector fields and 1-forms:

£f̄α(τ) = £f̄α(τ1 ⊗ τ2) = £f̄α(τ1)⊗ τ2 + τ1 ⊗ £f̄α(τ2). (2.16)

If on the other hand f̄α is an element of the universal enveloping algebra (that is, a
composition of vector fields), then one uses the usual property of modules realized through
a chain of vector fields composed one after another,

f̄α ▷ τ = Xα
1 X

α
2 · · ·Xα

k ▷ τ = Xα
1 ▷ (Xα

2 ▷ · · · ▷ (Xα
k ▷ τ))

= Xα
1 ▷

(
Xα

2 ▷ · · · ▷£Xα
k
(τ)
)
,

(2.17)

where Xα
i , i = 1, . . . , k are vector fields.

One can show that ⋆-Lie derivative satisfies

£⋆
u(f ⋆ g) = £⋆

u(f) ⋆ g + R̄α(f) ⋆£⋆
R̄α(u)(g), (2.18)

£⋆
f⋆u(g) = f ⋆£⋆

u(g) (2.19)

and generates a ⋆-Lie algebra of vector fields, i.e. deformed infinitesimal diffeomorphisms,
satisfying ⋆-Jacobi identities [37–39, 44].

In the subsequent analysis we introduce the following designations: the vector bundle
of vector fields is denoted by χ⋆, the bundle of 1-forms is denoted by Ω⋆ and the vector
bundle of arbitrary tensors of order (p, q) is denoted as T (p,q)

⋆ . Following a deformation of
pointwise multiplication, as outlined in (2.6), we may continue with implementing the same
characteristic deformation pattern when it comes to more general objects like vector fields,
1-forms and tensors. Hence, the product between functions (zero forms) and vectors/1-forms
is deformed into

h ⋆ u = f̄α(h)f̄α(u), (2.20)
h ⋆ ω = f̄α(h)f̄α(ω), (2.21)
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for any h ∈ A⋆, and any vector field u ∈ χ⋆ and 1-form ω ∈ Ω⋆. More generally, for any
tensor fields τ, τ ′ ∈ T (p,q)

⋆

τ ⊗⋆ τ
′ = f̄α(τ)⊗ f̄α(τ ′). (2.22)

In particular, the wedge product between two forms ω, ω′ ∈ Ω⋆ is deformed as

ω ∧⋆ ω
′ = f̄α(ω) ∧ f̄α(ω′). (2.23)

Analogously, a deformation of the Lie bracket [, ] : χ × χ −→ χ into [, ]⋆ : χ⋆ × χ⋆ −→ χ⋆

is given by

[u, v]⋆ = [f̄α(u), f̄α(v)]. (2.24)

Finally, the ⋆-pairing, ⟨ , ⟩⋆ : χ⋆ × Ω⋆ → A⋆ between vector fields and 1-forms can be
introduced as

⟨u, ω⟩⋆ = ⟨f̄α(u), f̄α(ω)⟩. (2.25)

Note that as before, at the level of vector spaces, χ⋆,Ω⋆, T (p,q)
⋆ are isomorphic to χ,Ω, T (p,q).

As a next step in development of NC gravity in a bottom-up approach, it is of es-
sential importance to realize that the 2-cocycle condition (2.5) and the quasitriangularity
properties (2.7) of the R-matrix together imply the following relations involving the ⋆ pairing:

⟨h ⋆ u, ω ⋆ h̃⟩⋆ = h ⋆ ⟨u, ω⟩⋆ ⋆ h̃, h, h̃ ∈ A⋆, u ∈ χ⋆, ω ∈ Ω⋆.

⟨u, h ⋆ ω⟩⋆ = R̄α(h) ⋆ ⟨R̄α(u), ω⟩⋆, (2.26)

⟨ω ⊗⋆ u, τ⟩⋆ = ⟨ω, ⟨u, τ⟩⋆⟩⋆, u ∈ χ⋆, ω ∈ T (0,p)
⋆ , τ ∈ T (q,s)

⋆ , q > p.

Furthermore, a deformed connection may be introduced as a linear mapping ∇̂ : χ⋆ −→
Ω⋆ ⊗⋆ χ⋆ which satisfies the (undeformed) Leibniz rule for all h ∈ A⋆ and v ∈ χ⋆,

∇̂(h ⋆ v) = dh⊗⋆ v + h ⋆ ∇̂v. (2.27)

Associated with the connection ∇̂, one may introduce a covariant derivative ∇̂u along the
vector field u, for any u ∈ χ⋆. For all v ∈ χ⋆, it is defined by

∇̂uv = ⟨u, ∇̂v⟩⋆. (2.28)

The following set of axioms satisfied by the covariant derivative then emerges automatically,

∇̂u+vz = ∇̂uz + ∇̂vz,

∇̂g⋆uv = g ⋆ ∇̂uv,

∇̂u(g ⋆ v) = £⋆
u(g) ⋆ v + R̄c(g) ⋆ ∇̂R̄c(u)v,

(2.29)

for all u, v, z ∈ χ⋆ and g ∈ A⋆. Usually, it is customary to introduce the covariant derivative
as a linear map that acts on a double copy of vector fields space (χ⋆ ⊗χ⋆) and acquires values
on the space of vector fields (χ⋆) and in addition obeys the set of axioms (2.29). However,
it has proven as more fruitful to introduce the connection and the associated covariant
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derivative in a way described above and simply take advantage of the properties (2.26) of
the ⋆-pairing. In this scenario, the axioms (2.29) don’t have to be postulated! They follow
naturally, as a sheer consequence of the properties (2.26) and definitions (2.27) and (2.28) for
the connection and associated covariant derivative. Here we see that the whole construction
outlined so far relies solely on the symmetry properties laid down by the 2-cocyclicity of the
twist operator and the quasitriangularity of the R-matrix. Indeed, the axioms (2.29) follow
from the properties (2.26), which are in turn consequence of the properties (2.5) and (2.7).

It can be seen that covariant derivative satisfies the same deformed Leibniz rule as the
Lie derivative £⋆

u. As in the undeformed case, we define the covariant derivative on functions
to be equal to the Lie derivative, for all h ∈ A⋆, ∇̂u(h) = £⋆

u(h). Moreover, the last relation
in (2.29) can be generalized3 to arbitrary tensors τ and τ ′,

∇̂u(τ ⊗⋆ τ
′) = ∇̂u(τ)⊗⋆ τ

′ + R̄c(τ)⊗⋆ ∇̂R̄c(u)(τ ′). (2.30)

Consider a local frame {∂µ} of vector fields and its ⋆-dual frame {dxν} of 1-forms; they
are dual with respect to ⋆ pairing. In this sense, they form the ⋆-dual basis4 ⟨∂µ, dx

ν⟩⋆ = δµ
ν .

The coefficients of affine connection Γ̂µ
νλ in noncommutative theory may now be introduced

in the usual way as

∇̂∂µ∂ν ≡ ∇̂µ∂ν = Γ̂λ
µν ⋆ ∂λ. (2.31)

Using (2.31) along with the properties of ⋆ pairing and utilizing the fact that covariant
derivative and Lie derivative coincide when acting on scalars, it is possible to extract

∇̂∂µdx
ν ≡ ∇̂µdx

ν = −Γ̂ν
µλ ⋆ dx

λ. (2.32)

Having introduced connection and associated covariant derivative, the build-up of NC
gravity has got prepared for the remaining and final stage in the construction. The construction
of deformed Riemann curvature and Ricci tensor now becomes straightforward. The torsion
and Riemann curvature tensors are introduced as

T̂ (u, v) = ∇̂uv − ∇̂R̄c(v)R̄c(u)− [u, v]⋆ ≡ ⟨u⊗⋆ v, T̂ ⟩⋆, (2.33)

R̂(u, v, z) = ∇̂u∇̂vz − ∇̂R̄c(v)∇̂R̄c(u)z − ∇̂[u,v]⋆z ≡ ⟨u⊗⋆ v ⊗⋆ z, R̂⟩⋆, (2.34)

for all u, v, z ∈ χ⋆. Tensorial character of these quantities is ensured by checking the
multilinearity

T̂ (f ⋆ u, v) = f ⋆ T̂ (u, v), T̂ (u, f ⋆ v) = R̄c(f) ⋆ T̂ (R̄c(u), v), (2.35)

and similarly for the Riemann curvature tensor. The components T̂ λ
µν and R̂ λ

µνσ may
be determined as

T̂ λ
µν = ⟨dxλ, T̂ (∂µ, ∂ν)⟩⋆,

R̂ λ
µνσ = ⟨dxλ, R̂(∂µ, ∂ν , ∂σ)⟩⋆.

(2.36)

3As shown in [39], the actual relation is more complicated for a general type of Drinfeld twists. However, if
the twist is composed of affine Killing vector fields in both slots, the relation simplifies to (2.30).

4Dual basis is in general not the same as in commutative setting, but for our application it is.
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As for the R-commutativity of the ⋆-product, one can show that the Riemann tensor
and the torsion tensor are R-antisymmetric in the first two slots:

R̂(u, v, z) = −R̂(R̄c(v), R̄c(u), z), T̂ (u, v) = −T̂ (R̄c(v), R̄c(u)). (2.37)

Unlike the commutative Riemann tensor, this one isn’t R-antisymmetric in the last two
indices. As a consequence, NC Ricci tensor defined as

R̂(u, v) = ⟨dxα, R̂(∂α, u, v)⟩⋆ (2.38)

is not R-symmetric.
Finally, the metric g is an element of Ω⋆ ⊗⋆ Ω⋆ and may be written as

g = gµν ⋆ dx
µ ⊗⋆ dx

ν = ga ⊗⋆ ga ∈ Ω⋆ ⊗⋆ Ω⋆, (2.39)

where the sum over a is understood. Analogously, the inverse metric g−1 ≡ g⋆ is an element
of χ⋆ ⊗⋆ χ⋆, g

−1 = g−1 b ⊗ g−1
b ∈ χ⋆ ⊗⋆ χ⋆. These two are related by

⟨⟨v, g⟩⋆, g
−1⟩⋆ = ⟨v, ga⟩⋆ ⋆ ⟨ga, g

−1 b⟩⋆ ⋆ g
−1
b = v for all v ∈ χ⋆,

⟨⟨ω, g−1⟩⋆, g⟩⋆ = ⟨ω, g−1 b⟩⋆ ⋆ ⟨g−1
b , ga⟩⋆ ⋆ ga = ω for all ω ∈ Ω⋆.

(2.40)

3 NC gravity theory

In the previous section we outlined the Hopf algebra framework and its corresponding NC
differential geometry. In order to go a step further and study physics, i.e. NC gravity, we still
miss one important ingredient. Namely, we need an equation of motion for the metric g, i.e.
the equivalent of Einstein’s equation in the NC setup. This would determine the dynamics of
NC spacetime. In the commutative theory one can define vacuum solutions called Einstein
manifolds by imposing that the Ricci tensor is zero, Rµν(g) = 0. We are primarily interested
in generalizing the notion of Einstein manifolds because later on we will be investigating
the NC corrections to the metric perturbations around a vacuum solution, that is around
a black hole. Whilst it may be tempting to simply postulate R̂µν = 0, considering that
this relation has a correct commutative limit, it is however in contradiction with the NC
differential geometry point of view.5 Namely, postulating R̂µν = 0, also implies R̂νµ = 0,
forcing the NC Ricci tensor (2.38) to be a symmetric tensor, which is in contradiction with
the NC geometric definition (2.38).6 Therefore, we postulate the NC Einstein manifolds as

R̂µν(g) = 0, (3.1)

where R̂µν is the R-symmetrized NC Ricci tensor defined by

R̂µν ≡ 1
2
〈
dxα, R̂(∂α, ∂µ, ∂ν) + R̂(∂α, R̄

A(∂ν), R̄A(∂µ)
〉

⋆
. (3.2)

5One can also show perturbatively that this relation leads to a system of partial differential equations that
are overcomplete, which means that they give rise to a trivial solution where all NC corrections are zero. In
the appendix B it is proven that the equation (3.2) with the R-symmetrized version of the NC Ricci tensor
admits non trivial solutions.

6In the commutative case this does not pose a problem since Rµν is a symmetric tensor by construction.
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Here we have to emphasize that this proposal is different then the one found in [37–39, 44].
How can (3.1) be obtained from some conveniently adopted action principle or from a
generalized Einstein tensor compatible with a ⋆-derived NC Bianchi identity [37, 38] is a
matter of further investigation and will be reported elsewhere.

For calculating NC corrections in (3.1) we need a specific choice of the twist F . In this
paper we will be interested in the Moyal-type twists of the form

F = exp
(
iΘαβV 1

α ⊗ V 2
β

)
, (3.3)

where V i
µ are some vector fields and Θµν is a constant antisymmetric tensor. In addition,

we require that these two vector fields commute, thus F being an Abelian twist. We will
use the standard vector basis {∂µ} and demand that basis vectors commute with V i

µ. A
basis of vector fields of this kind is referred to as a nice basis [44]. Because of the nice basis
and Abelian twist, many formulas that we obtain later on will look like their commutative
counterparts with the ⋆-product replacing the usual pointwise product.

Another important point that we need to specify before studying gravity is a choice of
the NC connection ∇̂. The NC connection is completely determined by the coefficients Γ̂ν

µλ

in (2.31). Analogously to the commutative case, we define a unique7 torsion free, T̂ = 0,
and metric compatible, ∇̂(g) = 0, NC Levi-Civita connection

Γ̂µ
νρ ≡ Ωµ

νρ = 1
2g

⋆µα ⋆
(
∂νgρα + ∂ρgνα − ∂αgνρ

)
, (3.4)

where g⋆µα is the unique ⋆-inverted metric satisfying

g⋆σρ ⋆ gρν = δσ
ν and gνρ ⋆ g

⋆ρσ = δ σ
ν . (3.5)

The components of torsion and curvature tensors (2.36) are given by

T̂µ
νρ = Ωµ

νρ − Ωµ
ρν , (3.6)

R̂ σ
µνρ = ∂µΩσ

νρ − ∂νΩσ
µρ +Ωβ

νρ ⋆ Ωσ
µβ − Ωβ

µρ ⋆ Ωσ
νβ . (3.7)

Moreover, for the Moyal-type of deformation (3.3), the R-symmetrization reduces to usual
symmetrization and we have

R̂µν = R̂(µν) ≡
1
2(R̂µν + R̂νµ). (3.8)

The choice of V i
µ and values of Θµν are a matter of quantum-gravity phenomenology and

should, at least in principle, be constrained by experiments. In a current lack of such
inputs, we will use certain symmetry arguments in order to find solutions to (3.1) with the
deformation (3.3). First we may consider an implementation of a symmetry described by
some Killing vectors Kα and demand that the deformation (3.3) also respects it. In other
words, we require that the twist carrying deformation is built from these Killing vectors.
This can be achieved by defining a Killing twist

F = exp
(
iΘαβKα ⊗Kβ

)
. (3.9)

7The proof of uniqueness can be found in [39].
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It is straightforward to see that any solution to the commutative Einstein equation is also
a solution of the NC Einstein equation (3.1), due to £Kαg = 0 and the fact that all NC
corrections to (3.4), (3.5), (3.6), (3.7) vanish [39]. One comes at the same conclusion under
even less stringent conditions, when a deformation is carried out by a semi-Killing twist [39]

F = exp
(
iΘαβKα ⊗ Vβ

)
. (3.10)

Note that in the latter case, only one slot is occupied by the Killing vector field. This is
probably one of the reasons why there was not much progress in finding NC corrections to
gravity using this formalism.8 However, we are interested in metric perturbations h around
some fixed background g̊, so that the full metric is given by

g = g̊ + h. (3.11)

For this reason, we will not build our twist out of Killing vectors of the full metric g, but rather
out of the Killing vectors of the background g̊. It is interesting to note that for the Killing
twist (3.9), using £K g̊ = 0 and £Kh ̸= 0, all NC corrections to (3.4), (3.5), (3.6), (3.7) that
are linear in h vanish and the lowest non-vanishing NC corrections appear to be quadratic
in the metric perturbation h.

The conclusion that can be drawn here is the following: if the full symmetry of the
background g̊ is to be respected, then the NC effects are inherently nonlinear in perturbation,
and one is forced to study quadratic commutative corrections, which would go beyond the
linearized theory for metric perturbations. This could be an interesting line of research, but we
leave it for a future work. Here, we will rather focus on a semipseudo-Killing twist of the form

F = exp
(
− i

a

2
(
K ⊗X −X ⊗K

))
, (3.12)

where a ∈ R, X is some vector field and K is a Killing field of the background metric. In the
next section we will show that given £X g̊ ̸= 0,9 this twist gives rise to NC corrections that
are linear in h, providing us with a NC formalism for linearized metric perturbations.

4 Linearized noncommutative gravity on a fixed background

The twist (3.12) is a Drinfeld twist, i.e. satisfies the conditions (2.5). Our Lie algebra of
diffeomorphisms g is therefore two-dimensional, being generated by X and K. The ⋆-product
according to (2.6) is

f ⋆ g = fg + i
a

2
(
K(f)X(g)−X(f)K(g)

)
+O(a2). (4.1)

We use now the twist (3.12) to study a noncommutative gravitational perturbation theory.
The full metric gµν is the sum of the background and perturbation hµν , where |hµν | ≪ |̊gµν |.

gµν = g̊µν + hµν , g̊µν g̊νλ = δµ
λ. (4.2)

8Apart from the work in [44].
9This condition does not hold for the flat Minkowski space since £X g̊ = £Xη = 0 for any X, i.e. flat space

NC perturbations are of the second order in h.
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As already said, K is the Killing vector field for the background g̊µν ,

K (̊gµν) = £K (̊gµν) = 0, K (̊gµν) = £K (̊gµν) = 0. (4.3)

The h metric is assumed to be small relative to g̊ and thus we carry out the calculations up to
the first order in h. When switching on a deformation, which is controlled by the parameter
of deformation a, we also keep only the first order correction terms in a. It will turn out that
perturbation and deformation parts come in pairs, and are thus always coupled.

Due to relative simplicity of the twist (3.12) and the nice basis, the conditions (2.40)
for the metric inverse simplify significantly and reduce to (3.5). Restricting to the linear
perturbations (∼ O(h)) and the leading order in NC deformation (∼ O(a)), the solutions
to the above stated conditions give for the inverse metric

g⋆µν = g̊µν − hµν + g̃µν = gµν − gµρgρλ ∧ gλν , (4.4)

where the following abbreviation was used

f ∧ g = i
a

2
(
K(f)X(g)−X(f)K(g)

)
. (4.5)

The inverse metric of gµν may also be written in the form

g⋆µν = g̊µν − g̊µα ⋆ hαβ ⋆ g̊
βν , (4.6)

which manifestly shows that a deformation, when present, is always coupled to perturbation
hµν . It turns out that such ⋆-inverse metric is not symmetric but Hermitian [44].

From the metric compatibility condition and relations (2.36) it then follows that co-
efficients of the Levi-Civita connection in the nice basis, torsion, and Riemann curvature
tensor are in local coordinates given by (3.4), (3.6) and (3.7). Using the wedge notation
defined in (4.5) and prefix δ which stands for just h-linear quantities, connection, torsion
and Riemann tensor are

Ωµ
νρ = Γ̊µ

νρ+δΓµ
νρ+

(
g̊µσ∧δΓλ

νρ

)
g̊σλ−

(
hµσ∧Γ̊λ

νρ

)
g̊σλ

≡Γµ
νρ+Ω̃µ

νρ,

(4.7)

T̂µ
νρ =Ωµ

νρ−Ωµ
ρν =0, (4.8)

R̂ σ
µνρ = R̊ σ

µνρ +δR σ
µνρ +∂µΩ̃σ

νρ−∂νΩ̃σ
µρ+Γ̊β

νρ∧δΓσ
µβ+δΓβ

νρ∧Γ̊σ
µβ

+Γ̊β
νρΩ̃σ

µβ+Ω̃β
νρΓ̊σ

µβ−Γ̊β
µρ∧δΓσ

νβ−δΓβ
µρ∧Γ̊σ

νβ−Γ̊β
µρΩ̃σ

νβ−Ω̃β
µρΓ̊σ

νβ ,
(4.9)

where tilde above the quantity just designates the a-linear part. This leads to the corrections
within the same order in the vacuum NC Einstein equations (3.1). After acknowledging
the explicit structure of the twist (3.12) and (4.5), the components for deformed Riemann
tensor take the form

R̂ σ
µνρ = R̊ σ

µνρ +δR σ
µνρ +∂µΩ̃σ

νρ−∂νΩ̃σ
µρ+Ω̃β

νρΓ̊σ
µβ−Γ̊β

µρΩ̃σ
νβ−Ω̃β

µρΓ̊σ
νβ .

+ia2
[
K(δΓβ

νρ)X (̊Γσ
µβ)−X (̊Γβ

νρ)K(δΓσ
µβ)−K(δΓβ

µρ)X (̊Γσ
νβ)+X (̊Γβ

µρ)K(δΓσ
νβ)
]
.

(4.10)
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NC Ricci tensor defined in (2.38) is obtained in the nice basis by simply identifying σ ≡ µ

and summing over µ,

R̂νρ = R̂ µ
µνρ

= R̊ µ
µνρ +δR µ

µνρ +∂µΩ̃µ
νρ−∂νΩ̃µ

µρ+Γ̊β
νρΩ̃

µ
µβ+Ω̃β

νρΓ̊
µ
µβ−Γ̊β

µρΩ̃
µ
νβ−Ω̃β

µρΓ̊
µ
νβ

+ia2
[
K(δΓβ

νρ)X (̊Γµ
µβ)−X (̊Γβ

νρ)K(δΓµ
µβ)−K(δΓβ

µρ)X (̊Γµ
νβ)+X (̊Γβ

µρ)K(δΓµ
νβ)
]
,

(4.11)

where
Ω̃µ

νρ = i
a

2
[
K(−hµσ)X (̊Γλ

νρ)−X (̊gµσ)K(δΓλ
νρ)
]̊
gσλ. (4.12)

As K is a Killing vector for the background metric, K (̊gσλ) = K (̊gσλ) = 0, and [K,X] =
[K, ∂µ] = 0, Ricci tensor may be rewritten in the form

R̂νρ = R̊νρ+δRνρ+i
a

2£K

[
−∂µ

(
hµαX (̊Γλ

νρ)̊gαλ

)
−∂µ

(
X (̊gµα)δΓλ

νρ g̊αλ

)
+∂ν

(
hµαX (̊Γλ

µρ)̊gαλ

)
+∂ν

(
X (̊gµα)δΓλ

µρ g̊αλ

)
+δΓβ

νρX (̊Γµ
µβ)−X (̊Γβ

νρ)δΓ
µ
µβ−δΓ

β
µρX (̊Γµ

νβ)

+X (̊Γβ
µρ)δΓ

µ
νβ−Γ̊β

νρh
µαX (̊Γλ

µβ )̊gαλ−Γ̊β
νρX (̊gµα)δΓλ

µβ g̊αλ−hβαX (̊Γλ
νρ)̊gαλΓ̊µ

µβ

−X (̊gβα)δΓλ
νρ g̊αλΓ̊µ

µβ+Γ̊β
µρh

µαX (̊Γλ
νβ )̊gαλ+Γ̊β

µρX (̊gµα)δΓλ
νβ g̊αλ

+hβαX (̊Γλ
µρ)̊gαλΓ̊µ

νβ+X (̊gβα)δΓλ
µρ g̊αλΓ̊µ

νβ

]
. (4.13)

In the next section we will use this NC linearized formalism for the case of Schwarzschild
background and axial gravitational perturbations.

5 Schwarzschild background and NC corrections to the Regge-Wheeler
potential

In 1953 Regge and Wheeler found an equation of motion for axial metric perturbations
around the Schwarzschild singularity [8]. They showed that the equation of motion can be
cast into a Schrödinger form with the nowadays celebrated Regge-Wheeler potential. A
brief overview of their work is given in appendix A. In this section we will generalize their
work using the NC formalism and show that the equation of motion for the axial metric
perturbations can also be cast into a Schrödinger form with the NC Regge-Wheeler potential
now playing the central role.

The background metric g̊ is Schwarzschild,

ds2 = −
(
1− R

r

)
c2dt2 + 1

1−R/r
dr2 + r2

(
dθ2 + sin2 θdφ2

)
, R ≡ 2GM

c2 , (5.1)

and the twist (3.12) is built out of the following vector fields

K = α∂t + β∂φ, X = ∂r. (5.2)
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Using (3.12) and (5.2) one can easily verify that this twist is Drinfeld, Abelian and the vector
fields (5.2) commute with the spherical basis {∂t, ∂r, ∂θ, ∂φ}. The twist built out of K and X
from (5.2) produces the following commutation relations between the coordinates

[t ⋆, r] = iaα, (5.3)
[φ ⋆, r] = iaβ. (5.4)

Notice that depending on the choice of the parameters α, β and a, one can get various
Moyal-like NC spaces or κ-deformed spaces [52–57] when switching to Cartesian coordinates.

For the axial metric perturbation we use an ansatz written in the Regge-Wheeler
gauge (A.8)

htθ = 1
sin θ

∑
ℓ,m

hℓm
0 (r)∂φYℓm(θ, φ)e−iωt, htφ = − sin θ

∑
ℓ,m

hℓm
0 (r)∂θYℓm(θ, φ)e−iωt,

hrθ = 1
sin θ

∑
ℓ,m

hℓm
1 (r)∂φYℓm(θ, φ)e−iωt, hrφ = − sin θ

∑
ℓ,m

hℓm
1 (r)∂θYℓm(θ, φ)e−iωt.

(5.5)

Now that we know the form of the complete metric gµν , we may take an advantage of the
formulas obtained in the previous section, starting from the ⋆-metric inverse and all the
way up to the NC Ricci tensor. Calculations are performed up to the first order in hµν and
noncommutativity parameter a. As discussed in section 3, postulating the equation R̂µν = 0
leads to problems. For that specific case we obtain a set of nonseparable equations that
admit only trivial solutions. Therefore we want to solve (3.1), i.e.

R̂µν = R̂(µν) = 0. (5.6)

It turns out that with this choice we obtain a system of partial differential equations that
are separable. The radial part will turn out to be governed by three different functions of r.
Before writing down the components of R̂(µν), we introduce the parameter λ as an eigenvalue
of the Killing field’s action on the perturbation:

hµν ∝ e−iωteimφ =⇒ £Khµν = iλ hµν , (5.7)
for K = α∂t + β∂φ, λ = −αω + βm. (5.8)

As in the commutative case, out of 10 components of the R̂µν , 3 are identically zero and out
of 7 remaining, there are only 3 that differ in the radial part. The full R̂µν is

R̂µν =



0 0 ∂φ

sinθYℓm(θ,φ) −i
4r4 M̂1(r) sinθ∂θYℓm(θ,φ)M̂1(r)

0 0 ∂φ

sinθYℓm(θ,φ) −i
4r4(r−R)2 M̂2(r) sinθ∂θYℓm(θ,φ) 1

4r4(r−R)2 M̂2(r)

Sym Sym (sinθ∂2
θφ−cosθ∂φ)

1−cos2 θ
Yℓm(θ,φ) i

r2 M̂3(r) (sinθ∂2
θθ−cosθ∂θ− 1

sinθ∂
2
φφ)Yℓm(θ,φ) −1

2r2 M̂3(r)

Sym Sym Sym (sinθ∂2
θφ−cosθ∂φ)Yℓm(θ,φ) i

r2 M̂3(r)


,

(5.9)
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where

M̂1(r) = 2r(2R− ℓ(ℓ+ 1)r)h0 + 4ir2ω(r −R)h1 + 2r3(r −R)(iωh′1 + h′′0)

+ λa
(
(2ℓ(ℓ+ 1)r +R)h0 + irω(4r − 3R)h1 + r(4r − 5R)h′0 + r2R(iωh′1 + h′′0)

)
,

(5.10)
M̂2(r) = 4ir4(r −R)ωh0 + 2r2(r −R)

(
r3ω2 − (r −R)(ℓ(ℓ+ 1)− 2)

)
h1 − 2iωr5(r −R)h′0

+ λa
(
2ir3ω(r − 2R)h0 +

(
(2ℓ(ℓ+ 1) + 12)r(r −R)2 − 9(r −R)2R− r4Rω2)h1

+ ir4Rωh′0 + 2r(r −R)3h′1

)
, (5.11)

M̂3(r) =
ir3ω

r −R
h0 +Rh1 + r(r −R)h′1 − λa

(
ir2Rω

2(r −R)2h0 − 3r −R

r
h1 −

1
2Rh

′
1

)
. (5.12)

The vacuum Einstein equation (3.1) reduces to three radial equations: M̂1 = 0, M̂2 =
0, M̂3 = 0. These equations represent a system of coupled ordinary differential equations
of the second order but for only two functions: h0 and h1. It can be shown, however, that
these three components are linearly dependent (see appendix B). Therefore, we are free to
use any two of the three equations to solve the system. We express h0 from equation M̂3 = 0
and plug it into equation M̂1 = 0 to get

r(r −R)
(
ℓ(ℓ+ 1)r(R− r) + 2r2 − 6rR+ 5R2 + ω2r4

)
h1

+ r2(r −R)2
(
(5R− 2r)h′1 + r(r −R)h′′1

)
+ λa

[(
ℓ(ℓ+ 1)r(r −R)2 − 6r3 + R

2 (49r
2 − 64rR+ 26R2 − ω2r4)

)
h1

+ r(r −R)2
(
3(r − 2R)h′1 +

1
2rRh

′′
1

)]
= 0.

(5.13)

To further reduce this equation to a Schrödinger form, we introduce the NC tortoise coordinate
r̂∗ and modify the h1(r) function as

dr

dr̂∗
= 1− R

r
+ λa

R

2r2 =⇒ r̂∗ = r +R log r −R

R
+ λa

2
R

r −R
, (5.14)

h1(r) =
r2

r −R

(
1 + λa

2
(3
r
− 1
r −R

+ 1
R

log r

r −R

))
W (r). (5.15)

For details see appendix C. Equation governing the gravitational perturbations becomes

d2W

dr̂2
∗

+
(
ω2 − V (r)

)
W = 0,

V (r) =
(r −R)

(
ℓ(ℓ+ 1)r − 3R

)
r4 + λa

ℓ(ℓ+ 1)(3R− 2r)r +R(5r − 8R)
2r5 .

(5.16)

The first term in the potential V (r) is the usual Regge-Wheeler potential VRW and the second
term is the correction coming from the spacetime noncommutativity.
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Figure 1. The figure is drawn for R = 2 (M = 1) and ℓ = 2 for a wider range of r and V (r).
Around the peak and further away from the horizon, the behaviour appears to be very similar to the
commutative case.

In order to illustrate the NC effects of the potential V (r), we simplify our problem
by choosing α = 0 and β = 1. In such case [φ ⋆, r] = ia and λa = am, where m is the
magnetic quantum number. This is the case of purely angular Killing field K = ∂φ, and we
see that different multipoles (ℓ,m) of the perturbation interact with different gravitational
potentials since λ = m. We plot the potential for the quadrupole mode ℓ = 2 and several
values of am = ±0.2,±0.1 in figure 1.

We can also see that around the peak of the potential, r0 ≈ 1.5R, deviations of the
potentials on figure 2 can be interpreted as Zeeman-like splitting. Similar effect was observed
in the case of charged scalar field in a vicinity of the Reissner-Nordström black hole [46, 47].

The property of Zeeman-like spliting and a unique peak around r0 ∼= 1.5R persists also
for higher multipoles as illustrated in figure 3. Calculation of the QNM frequencies for the
potential (5.16) using the WKB method is given in [78]. There we see that the NC effects
manifest in a significant decrease (in an absolute value) of the imaginary part of the QNM
frequency, which points to the conclusion that noncommutativity destabilizes the system.

6 Concluding remarks and discussion

Utilizing the framework of Hopf algebras, we employed a Drinfeld twist to induce the
spacetime noncommutativity. We then applied the formalism of twisted noncommutative
geometry based on Hopf algebras with a purpose of formulating a noncommutative theory of
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Figure 2. Plot of the potential for R = 2 (M = 1) and ℓ = 2, but only around the peak.
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Figure 3. Plot of the potential for R = 2 (M = 1) and ℓ = 2, 3, 4.
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gravity in a bottom-up approach. As a final outcome, we came out with a proposal for the
noncommutative vacuum Einstein equation. This proposal turns out to have a correct and
smooth commutative limit, it is devoid of any inconsistencies and after all, it appears to be the
only one that allows for nontrivial solutions. Its deeper origins and a general mathematical
structure, including the extension to a divergentless quantity, namely the noncommutative
Einstein tensor, will be addressed in a future work.

As a next step, the proposed noncommutative Einstein equation was implemented in
the context of linearized gravitational perturbation theory on an arbitrary background and
was shown to give rise to the equations of motion that are of the first order in both the
perturbation and deformation parameter. Specifying this procedure to the Schwarzschild
background and for the axial perturbations in particular, we obtained the noncommutative
corrections to the Regge-Wheeler potential. The axial perturbations of the Schwarzschild
black hole in the regime of noncommutative spacetime thus appear to be driven by the
quantum corrected Regge-Wheeler potential of the form (5.16).

Regarding the obtained quantum corrected potential, a feature that instantly comes on
spot is the effect of blurring or smearing of the black hole horizon. This feature is readily
manifested on figures 1–3, which show that different multipoles (ℓ,m) of the perturbation
interact with different gravitational potentials, especially in the region close to the horizon. The
same conclusion is further confirmed by inspecting the zeros of the potential, showing a small
λa-dependent shift around the core central value R driven by the spacetime noncommutativity.
We point out that a similar feature reminiscent of the Zeeman-like splitting was already
observed in the case of charged scalar field in a vicinity of the Reissner-Nordström black
hole [46, 47].

Having reduced the gravitational scattering problem to an equivalent problem of scattering
in quantum mechanics, where the scattering potential has the form of the corrected Regge-
Wheeler barrier (5.16), it would be of interest to investigate a rate of energy loss at which
gravitational radiation takes the energy away from the compact binary system, which may
consist of two black holes or neutron stars that rotate around each other. This would tell
us how discrete structure of spacetime would influence the process of orbital decay. The
energy radiated by a compact binary system may be calculated within the framework of black
hole perturbation theory10 [58–63]. As a matter of fact, these orbital decay and dissipative
processes were the first instance where the reality of gravitational waves was confimed, albeit
in an indirect way. Namely, the existence of gravitational waves had been indirectly confirmed
in the late 1970s through the measurements of the orbital decay of the Hulse-Taylor binary
pulsar [69], on what occasion the observed energy loss due to gravitational radiation in
the Hulse-Taylor binary turned out to almost perfectly match the result predicted by the
Einstein quadrupole formula. In this context it is worthy to note that the rate of energy loss
at which gravitational waves pull out energy from the system, obtained along the lines of
references [58–63], contains the Einstein qudrupole formula as its leading contribution. At the

10Another approach involves the post-Newtonian theory [64–68]. However, as this approach is based upon
the slow-motion and weak-field approximation and the orbital velocity during the late stages of the inspiral falls
rather deep into a relativistic regime, the post-Newtonian expansion does seem inadequate in this situation.
Instead, a required level of accuracy in the final stages of the inspiral is more likely achieved within the
framework of black hole perturbation theory.
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present time, pulsars are again at the forefront of the search for tracking down gravitational
waves, this time from binary systems of central galactic black holes.

Indeed, recently reported findings of the North American Nanohertz Observatory for
Gravitational Waves (NANOGrav) point toward the evidence for a Gravitational-wave
Background (GWB), i.e. gravitational waves with slowly evolving frequencies that contribute
to a noise-like broad band signal in the nHz range [70, 71]. It is believed that they originate
from supermassive black-hole binaries with masses of 108 − 1010 solar masses. NANOGrav
findings resulted from studying the pulsar timing data set gathered on the basis of continual
observation of 67 pulsars over a period of 15 years and identifying the statistical correlations
among them.

Another topic of significant interest involves the tidal deformability of the compact
astrophysical objects. This feature is encoded within the so called tidal Love numbers
(TLNs) [72–76] which describe the response of a rigid body and in particular any self-
gravitating object to external tidal forces. TLNs of the self-gravitating object immersed
in a tidal environment depend on the object’s internal structure and the properties of the
external gravitational field. Distinctive feature of Einstein’s GR is that all tidal Love numbers
for black holes identically vanish. Under this circumstance any minute deviation of TLNs
from zero, deduced from gravitational-wave measurements in a binary inspiral, would be
a smoking-gun of new physics at the horizon scale. TLNs different from zero would either
signal that the observed object is not a black hole, but some other exotic compact object (if
we asuume that the GR is correct) or that the observed object is indeed a black hole, but GR
needs an upgrade at the horizon scale and in the strong field regime. In this context TLNs
may serve as an instrument for discriminating between various proposals for an accurate
theory of gravity valid at the horizon scale [77].

It is therefore of significant priority to determine the exact analytical form of TLNs for
quantum corrected Regge-Wheeler potential that we obtained here. This potential embodies
a particular theory of gravity, the one that goes beyond the standard GR and incorporates in
itself a noncommutative nature of spacetime. If TLNs for the Schwarzschild black hole in this
particular theory of gravity turn out to be different from zero, this would mark a distinguishing
characteristic which might single out this particular proposal among all other proposals aiming
at realistic description of gravity in the strong field regime and horizon scale conditions.

We plan to extend our analysis in several different directions. Primarily, it remains to
redo the calculations for the polar perturbations in order to get noncommutative/quantum
corrections to the Zerilli potential. Moreover, it would be tempting to delve into higher orders
in the noncommutativity parameter and encompass more realistic backgrounds that we are
more likely to encounter in the astrophysical environment, such as the Kerr metric. The
latter would bring the results of our study closer to the experimentalist forefront.

From the perspective of experimentalists, the primary concern revolves around the
spectrum. The QNM spectrum was initially computed in [78] directly using the WKB
method, revealing that the noncommutative effects do not significantly affect the linear
stability of the black hole. To delve deeper into the analysis of this spectrum, more robust
techniques such as the Leaver’s continued fraction method are necessary.
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A Perturbations of Schwarzschild black hole in the a → 0 limit

Here we present a brief overview of the calculations for the perturbation of the Schwarzschild
black hole in the a → 0 limit. This procedure was pioneered by Regge and Wheeler [8] in
1957. Modern and concise review of the subject is presented in [45], which will serve as our
main reference. Behaviour of the tensor spherical harmonics under parity transformation
is elaborated in more detail in [79].

We start by splitting the total metric gµν into the Schwarzschild background g̊µν and
perturbation hµν :

gµν = g̊µν + hµν . (A.1)

Exploiting the spherical symmetry, one can decompose the perturbation into spherical
harmonics derived from the standard spherical harmonics

Yℓm(θ, φ) =
√

(2ℓ+ 1)(ℓ−m)!
4π(ℓ+m)! Pℓm(cos θ) eimφ. (A.2)

The perturbation metric in spherical basis is

htθ = 1
sin θ

∑
ℓ,m

hℓm
0 (r)∂φYℓm(θ, φ)e−iωt, htφ = − sin θ

∑
ℓ,m

hℓm
0 (r)∂θYℓm(θ, φ)e−iωt,

hrθ = 1
sin θ

∑
ℓ,m

hℓm
1 (r)∂φYℓm(θ, φ)e−iωt, hrφ = − sin θ

∑
ℓ,m

hℓm
1 (r)∂θYℓm(θ, φ)e−iωt,

hab = sin θ
∑
ℓ,m

hℓm
2 (r)ϵc(aD

c∂b)Yℓm(θ, φ)e−iωt, (A.3)

where the indices a and b in the last equation belong to the set {θ, φ}. ϵab is the totally
antisymmetric symbol such that ϵθφ = +1 and Da is the 2-dimensional covariant derivative
associated with the metric of the 2-sphere, dθ2 + sin2 θdφ2. All the other components of
the axial perturbations vanish.

Due to the invariance of the theory under space-time diffeomorphisms, the parametrization
with the functions hℓm

0 , hℓm
1 and hℓm

2 is redundant. Let us consider a small (comparable
to hµν) change of coordinates

xµ → xµ + ξµ. (A.4)

This induces the transformation

hµν → hµν +∇µξν +∇νξµ (A.5)
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at the linear level. Here the covariant derivative and lowering of indices is done using the
background metric. In the axial sector, the nonzero components of the generator ξµ that
preserve the odd parity of the perturbations can be decomposed into spherical harmonics
as follows:

ξθ =
∑
ℓ,m

ξℓm(r)∂θYℓ,m(θ, φ)e−iωt, ξφ =
∑
ℓ,m

ξℓm(r)∂φYℓ,m(θ, φ)e−iωt, (A.6)

and the induced gauge transformations on the functions h0, h1 and h2 are

h0 → h0 + iωξ, h1 → h1 −
dξ

dr
+ 2
r
ξ, h2 → h2 − 2ξ, (A.7)

where we dropped the ℓm for simplicity. As a consequence, one can always choose a
gauge in which hℓm

2 = 0, which is the well-known Regge-Wheeler (RW) gauge for the axial
perturbations [45]. Notice that this gauge choice is possible for ℓ ≥ 2 only.11 We drop the
indices ℓ and m in the equations below for clarity, since at the linear level no coupling between
modes with different values of these parameters is expected.

In the RW gauge the perturbation is

htθ = 1
sin θ

∑
ℓ,m

hℓm
0 (r)∂φYℓm(θ, φ)e−iωt, htφ = − sin θ

∑
ℓ,m

hℓm
0 (r)∂θYℓm(θ, φ)e−iωt,

hrθ = 1
sin θ

∑
ℓ,m

hℓm
1 (r)∂φYℓm(θ, φ)e−iωt, hrφ = − sin θ

∑
ℓ,m

hℓm
1 (r)∂θYℓm(θ, φ)e−iωt.

(A.8)

Using this ansatz we obtain the following expression for the Ricci tensor:

Rµν =



0 0 ∂φ

sinθYℓm(θ,φ) −i
4r4M1(r) sinθ∂θYℓm(θ,φ)M1(r)

0 0 ∂φ

sinθYℓm(θ,φ) −i
4r4(r−R)2M2(r) sinθ∂θYℓm(θ,φ) 1

4r4(r−R)2M2(r)

Sym Sym (sinθ∂2
θφ−cosθ∂φ)

1−cos2 θ
Yℓm(θ,φ) i

r2M3(r) (sinθ∂2
θθ−cosθ∂θ− 1

sinθ∂
2
φφ)Yℓm(θ,φ) −1

2r2M3(r)

Sym Sym Sym (sinθ∂2
θφ−cosθ∂φ)Yℓm(θ,φ) i

r2M3(r)


,

(A.9)
where

M1(r)= 2r(2R−ℓ(ℓ+1)r)h0+4ir2ω(r−R)h1+2r3(r−R)(iωh′1+h′′0), (A.10)
M2(r)= 4ir4(r−R)ωh0+2r2(r−R)

(
r3ω2−(r−R)(ℓ(ℓ+1)−2)

)
h1−2iωr5(r−R)h′0, (A.11)

M3(r)=
ir3ω

r−R
h0+Rh1+r(r−R)h′1. (A.12)

The vacuum Einstein equation reduces to three radial equations M1 = 0, M2 = 0, M3 = 0.
We have three equations, but only two functions h0 and h1. It can be shown, however, that

11For the monopole (ℓ = 0) and dipole (ℓ = 1) case, the function h2 is identically zero and it can be shown
that h0 and h1 can be gauged away by ξµ, i.e. they are nondynamical. The monopole mode of the axial
gravitational perturbations represents a change in the black hole mass and the dipole mode corresponds to a
shift in the location and value of the black hole’s angular momentum.
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these three equations are linearly dependent (see (B.4) in appendix B). We express h0 from
equation (5.12) and plug it into equation (5.11) to get

((
2−ℓ(ℓ+1)

)
r2+

(
ℓ(ℓ+1)−6

)
Rr+5R2+ω2r4

)
h1+r(r−R)

(
(5R−2r)h′1+r(r−R)h′′1

)
= 0.

(A.13)
We then substitute h1(r) = r2

r−RQ(r) so that the above equation becomes

(r −R)(3R− ℓ(ℓ+ 1)r) + r4ω2

r2(r −R)2 Q+ R

r(r −R)Q
′ +Q′′ = 0. (A.14)

After introducing the tortoise coordinate r∗ satisfying dr
dr∗

= 1 − R
r , we have

d2Q

dr2
∗
+
(
ω2 − VRW(r)

)
Q = 0,

VRW(r) =
(r −R)

(
ℓ(ℓ+ 1)r − 3R

)
r4 .

(A.15)

VRW(r) is the Regge-Wheeler potential. It vanishes at the horizon and the spatial infinity
and is characterized by the single peak near the light ring at 3

2R.

B Dependence of the Ricci components

To be on equal footing with [45] in the a → 0 limit, we multiply (5.10) by 1
4r2 and (5.11)

by 1
4r2(r−R)2 . Components (5.10), (5.11) and (5.12) become respectively

Etφ = 1
4r2

[
2r(2R−ℓ(ℓ+1)r)h0+4ir2ω(r−R)h1+2r3(r−R)(iωh′1+h′′0)

+λa
(
(2ℓ(ℓ+1)r+R)h0+irω(4r−3R)h1+r(4r−5R)h′0+r2R(iωh′1+h′′0)

)]
,

(B.1)

Erφ = 1
4r2(r−R)2

[
4ir4(r−R)ωh0+2r2(r−R)

(
r3ω2−(r−R)(ℓ(ℓ+1)−2)

)
h1−2ir5(r−R)h′0

+λa
(
2ir3ω(r−2R)h0+

(
2(ℓ(ℓ+1)+12)r(r−R)2−9(r−R)2R−r4Rω2)h1

+ir4Rωh′0+2r(r−R)3h′1

)]
, (B.2)

Eθφ = ir3ω

r−R
h0+Rh1+r(r−R)h′1−λa

(
ir2Rω

2(r−R)2h0−3r−R
r

h1−
1
2Rh

′
1

)
. (B.3)

From [45] we infer that components of the Ricci tensor satisfy the dependence relation (B.4)
below with E(r) = 0. In our case, however, the same dependence relation produces additional
λaE(r) term on the right:

dErφ

dr
+ ir2ω

(r −R)2Etφ + R

r(r −R)Erφ + ℓ(ℓ+ 1)− 2
2r(r −R) Eθφ = λaE(r), (B.4)
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where

E(r)= iω
2ℓ(ℓ+1)r2+(5−3ℓ(ℓ+1))Rr−R2

4(r−R)3 h0+irω
6r2−15rR+8R2

4(r−R)3 h′0+iω
Rr2

2(r−R)2h
′′
0

+
(
(r−R)2(4(ℓ(ℓ+1)−6)r2−2(ℓ(ℓ+1)−27)Rr−27R2)−ω2r4(4r2−7Rr+2R2)

)
h1

+
(
2(ℓ(ℓ+1)+6)r3−(3ℓ(ℓ+1)+31)Rr2+(ℓ(ℓ+1)+24)R2r−5R3−2Rr4ω2)h′1+ r−R

2r h′′1.

(B.5)

Therefore we need to generalise this dependence relation by finding a-linear differential
operators which act on components of the Ricci tensor and produce zero on the right.

Note that in the expressions for the Erφ and Eθφ there appear no second derivatives
of h0 and h1. This means that the most general relation is of the form

dErφ

dr
+ ir2ω

(r −R)2Etφ + R

r(r −R)Erφ + ℓ(ℓ+ 1)− 2
2r(r −R) Eθφ (B.6)

+ λa

(
C0

rφErφ + C1
rφ

dErφ

dr
+ C0

tφEtφ + C0
θφEθφ + C1

θφ

dEθφ

dr

)
= 0, (B.7)

where Ci
µν(r) are some radial functions. This reduces to

C0
rφErφ + C1

rφ

dErφ

dr
+ C0

tφEtφ + C0
θφEθφ + C1

θφ

dEθφ

dr
− E = 0 (B.8)

when (B.4) is used. Each Ci
µν multiplies some linear combination of (h0, h

′
0, h

′′
0, h1, h

′
1, h

′′
1).

By extracting coefficients in front of these functions it is possible to write the equation (B.8)
in matrix form as

C0
rφ

C1
rφ

C0
tφ

C0
θφ

C1
θφ

−1



T


ir2ω
r−R − iωr3

2(r−R) 0 1
2

(
2−ℓ(ℓ+1)+ ω2r3

r−R

)
0 0

iωr(r−2R)
(r−R)2

iωRr2

2(r−R)2 − iωr3

2(r−R)
ω2r2(2r−3R)

2(r−R)2
1
2

(
2−ℓ(ℓ+1)+ ω2r3

r−R

)
0

R
r −

1
2ℓ(ℓ+1) 0 1

2r(r−R) iω(r−R) 1
2 iωr(r−R) 0

iωr3

r−R 0 0 R r(r−R) 0
iωr2(2r−3R)

(r−R)2
iωr3

r−R 0 0 2r r(r−R)
E1 E2 E3 E4 E5 E6





h0
h′0
h′′0
h1
h′1
h′′1


=0,

(B.9)
where

E1 = iω
2ℓ(ℓ+1)r2+(5−3ℓ(ℓ+1))rR−R2

4(r−R)3 , (B.10)

E2 = iωr
6r2−15rR+8R2

4(r−R)3 , (B.11)

E3 = iω
Rr2

2(r−R)2 , (B.12)

E4 =
(r−R)2(4(ℓ(ℓ+1)−6)r2−2(ℓ(ℓ+1)−27)Rr−27R2)+ω2r4(−4r2+7Rr−2R2)

4r3(r−R)3 , (B.13)

E5 =
2(ℓ(ℓ+1)+6)r3−(3ℓ(ℓ+1)+31)Rr2+(24+ℓ(ℓ+1))R2r−5R3−2ω2Rr4

4r2(r−R)2 , (B.14)

E6 =
r−R
2r . (B.15)
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Existence of such functions Ci
µν is guaranteed by the vanishing determinant of the above

matrix. This proves that components (B.1)–(B.3) are linearly dependent up to the first order
in a and therefore R̂(µν) = 0 admits nontrivial solutions.

C Schrödinger form of the radial equation of motion

To interpret the problem in terms of quantum mechanical scattering on a potential barrier
it is necessary to transform both the function h1(r) and independent variable r in the
equation (5.13):

r(r−R)
(
ℓ(ℓ+1)r(R−r)+2r2−6rR+5R2+ω2r4

)
h1+r2(r−R)2

(
(5R−2r)h′1+r(r−R)h′′1

)
+λa

[(
ℓ(ℓ+1)r(r−R)2−6r3+R

2 (49r
2−64rR+26R2−ω2r4)

)
h1

+r(r−R)2
(
3(r−2R)h′1+

1
2rRh

′′
1

)]
=0. (C.1)

First, we substitute h1(r) = r2

r−RQ(r) so that the equation becomes

(r −R)(3R− ℓ(ℓ+ 1)r) + r4ω2

r2(r −R)2 Q+ R

r(r −R)Q
′ +Q′′

+ λa

(
2ℓ(ℓ+ 1)r(r −R)2 − (3r − 2R)(2r −R)(r − 2R)− r4Rω2

2r3(r −R)3 Q

+ (r − 2R)(3r − 2R)
r2(r −R)2 Q′ + R

2r(r −R)Q
′′
)

= 0.

(C.2)

With this substitution Regge and Wheeler were able to reduce a→ 0 limit of this equation
to the Schrödinger equation (A.15) by introducing the tortoise coordinate r∗ satisfying
dr
dr∗

= 1− R
r . The same substitution and tortoise coordinate in the full equation (C.2) do not

work because of the additional a-linear terms. Requiring that in a→ 0 limit our equation
becomes (A.15) fixes the most general form of substitution and ⋆-tortoise coordinate r̂∗:

Q(r) =
(
1 + λa ψ(r)

)
W (r), dr

dr̂∗
=
(
1− R

r

)(
1 + λa ξ(r)

)
. (C.3)

To make the calculations shorter it is benefitial to cast equation (C.2) in condensed form as(
A+ λaB + f−2(1 + λaC)ω2

)
Q+

(
R

r2f
+ λaD

)
Q′ +

(
1 + λaE

)
Q′′ = 0, (C.4)

where f(r) = 1 − R
r and

A(r)= 3R−ℓ(ℓ+1)r
r3f

, B(r)= 2ℓ(ℓ+1)r(r−R)2−(3r−2R)(2r−R)(r−2R)
2r6f3 ,

C(r)= −R
2r2f

, D(r)= (r−2R)(3r−2R)
r4f2 , E(r)= R

2r2f
.

(C.5)
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Keep in mind that ′ indicates derivative with respect to r everywhere
(

d
dr̂∗

is written

explicitly
)
. Using (C.3) equation (C.4) becomes

(
A+ λa

(
B +Aψ + R

r2f
ψ′ + ψ′′

)
+ ω2f−2

(
1 + λa(C + ψ)

))
W

+ λa

(
D + 2ψ′ − ξ′ − R

r2f
E

)
W ′ + f−2

(
1 + λa(E − 2ξ + ψ)

)
d2W

dr̂2
∗

= 0.
(C.6)

Requiring that this equation after multiplication by some radial function12 becomes of the form

d2W

dr̂2
∗

+
(
ω2 −

(
VRW(r) + aVNC(r)

))
W = 0, (C.7)

i.e. that the noncommutativity is present in the effective potential only, is equivalent to
requiring

D + 2ψ′ − ξ′ − R

r2f
E = 0, (C.8)

C + ψ = E − 2ξ + ψ. (C.9)

Equation (C.8) ensures there is no W ′ term in (C.6) and equation (C.9) makes sure that
terms multiplying ω2 and d2W

dr̂2
∗

can be set to 1 after dividing the whole equation (C.9)

with f−2
(
1 + λa(E − 2ξ + ψ)

)
= f−2

(
1 + λa(C + ψ)

)
. Condition (C.9) gives solution for

ξ = 1
2(E − C) and by plugging this into (C.8) we get ψ. Explicitly,

ξ = R

2r(r −R) , ψ = 1
2

(3
r
− 1
r −R

+ 1
R

log r

r −R

)
. (C.10)

After dividing equation (C.6) with f−2
(
1 + λa(E − 2ξ + ψ)

)
= f−2

(
1 + λa(C + ψ)

)
we get

(
f2A+ λaf2

(
B + R

r2f
ψ′ + ψ′′ −AC

)
+ ω2

)
W + d2W

dr̂2
∗

= 0. (C.11)

To get (5.16) one just needs to substitute the expressions from (C.5) and (C.10).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

12Function is allowed to have a-linear terms.
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