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1 Introduction

High-energy nucleus-nucleus (AA) collisions exhibit strong collectivity, which has been
observed through anisotropy in the momentum distribution of emitted final-state particles at
RHIC [1–4] and the LHC [5–8]. This momentum anisotropy is developed by the pressure-
driven expansion of the strongly interacting quark-gluon plasma (QGP), which emerges from
the initial spatial anisotropy in such collisions. The collective nature of the momentum
anisotropy is mostly deduced via particle correlations which span over a wide range of
pseudorapidity. The collective motion of the emitted particles, which reflects the collectivity
of the initial medium, is generally quantified using a Fourier expansion, characterizing the
so-called “anisotropic flow” [9]. In recent years, long-range correlations have been also
observed in smaller collision systems such as high-multiplicity proton-proton (pp) [10–16],
proton-nucleus (pA) [17–20], and in collisions of light nuclei [21, 22]. These observations
raise the question to what extent do small-system collisions and heavy-ion collisions share
the underlying mechanism, which is responsible for the observed long-range correlations. A
crucial evidence of a strongly interacting medium in small-system collisions would be the
presence of jet quenching [23, 24]. However, this phenomenon has not yet been observed in
either high-multiplicity pp or p–Pb collisions [25–29], possibly due to the current experimental
uncertainties being too large to observe it in such small-system collisions.

Current approaches to model heavy-ion collisions divide the evolution of the out-of-
equilibrium, strongly-coupled, quantum-chromodynamic medium into multiple stages, and
each stage is described by an effective theory. To this date, the combination of color-glass
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condensate effective field theory (CGC-EFT) [30, 31], causal hydrodynamics [32–40], and a
hadronic cascade model [41–43] leads to the most successful description of a wide range of
observables in heavy-ion collisions, e.g., particle spectra, centrality dependence of average
particle transverse momenta, and multi-particle correlations [44–51]. By employing global
Bayesian analyses, parameters of the multi-stage model, including those quantifying the
transport properties of the QGP, can be constrained using measured data [52–55]. Despite
the studies describing both heavy AA and pA collisions in a single framework [56], the
origin of the flow-like correlations is still under debate. It is unclear whether the flow-like
behavior originates from the early stages of the collision in the realm of applicability of
CGC-EFT [57, 58] or whether it develops during the collective evolution, where causal
hydrodynamics is applicable [59, 60]. Both scenarios may be responsible for the observed
correlations in the final state [59]. Although collective models are successful in describing
available two-particle correlation data from small-system collisions, they predict the opposite
sign for four-particle azimuthal cumulants compared to experiment [12, 14, 61]. On the
other hand, a semi-analytical toy model based on the Gubser hydrodynamic solution [62, 63]
can explain the two- and four-particle correlations in pp collisions [64]. In particular, this
model has explained the relationship between the sign of the four-particle cumulants and
fluctuations in the initial state [64].

Besides the models based on the causal hydrodynamic framework, there are other
attempts to explain the observed flow-like signals in small-system collisions using alternative
descriptions. For instance, a study based on the A Multi-Phase Transport model (AMPT) [65]
leads to satisfactory agreement with the experimental data [66]. The applicability of fluid-
dynamical simulations and partonic cascade models in small-system collisions was explored in
ref. [67]. In a kinetic-theory framework with isotropization-time approximation, it is possible
to explain the long-range correlations by fluid-like (hydrodynamic) excitation for Pb–Pb
collisions and particle-like (or non-hydrodynamic) excitation for pp or p–Pb collisions [68–
70]. Another potential description for the collectivity in small-system collisions is provided
by PYTHIA 8, in which interacting strings repel one another in a transverse direction
by a mechanism dubbed as “string shoving” [71, 72]. The repulsion of the strings causes
microscopic transverse pressure, giving rise to long-range correlations of particles. The string
shoving approach in PYTHIA 8 successfully reproduces the near-side ridge yield observed
in measurements by ALICE [73] and CMS [12]. A systematic mapping of correlation effects
across collision systems of various sizes is currently underway on the theoretical side, for
example, see ref. [74]. A quantitative description of the full set of experimental data has
not been achieved yet. A summary of various explanations for the observed correlations
in small-system collisions is given in refs. [75–77].

Measurements of anisotropic flow in small-system collisions are strongly affected by
non-flow effects, predominantly originating from correlations among the constituents of jet
fragmentation processes. In case of two-particle correlations, the non-flow contribution is
usually suppressed by requiring a large ∆η gap between the two particles. This separation
in pseudorapidity is also widely used in cumulant methods [13, 78]. However, this ∆η-gap
method removes the non-flow contribution only on the near side (∆φ ∼ 0) and not on the
away side (∆φ ∼ π). Later, a low-multiplicity template fit method was proposed to remove
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non-flow contributions on the away-side [10, 19, 79]. This method takes into account that
the yield of jet fragments increases with increasing particle multiplicity [80–82]. By using the
template fit method, the yield of away-side jet fragments can be subtracted, provided that
the distribution that quantifies the shape of jet fragments is independent of the multiplicity
class and therefore can be described by the low-multiplicity template.

As an extension of the studies of the near-side long-range ridge and jet-fragmentation
yields in pp collisions at the center-of-mass energy

√
s = 13 TeV [73] and in p–Pb collisions

at the center-of-mass energy per nucleon pair √
sNN = 5.02 TeV [17, 83], this article studies

the interplay of jet production and collective effects, i.e., short- and long-range correlations
simultaneously in these systems. The article also reports flow coefficients extracted for
collisions tagged with different event-scale selections. The event-scale selection requires a
minimum transverse momentum of the leading particle or the reconstructed jet at midrapidity,
which is expected to bias the impact parameter of pp collisions to be smaller on average [84–86].
At the same time, the transverse momentum of the leading particle or the reconstructed jet
provides a measure of the four-momentum transfer (Q2) in the hard-parton scattering [87–89].
The transverse-momentum threshold implies a higher Q2 for the collision. Such events with
a large Q2 may, on average, have a lower impact parameter than pp events without any
requirement on Q2 [85].

This article is organized as follows. First, the experimental setup and analysis method
are described in section 2 and section 3, respectively. Section 4 discusses the systematic
uncertainties. The results and their comparison with model calculations are presented and
discussed in section 5. Finally, the results are summarized in section 6.

2 Experimental setup and data samples

The analysis is based on pp and p–Pb data collected during the LHC Run 2 period. The pp
collisions had a center-of-mass energy

√
s = 13 TeV, and they were recorded from 2016 to 2018.

The p–Pb collisions had a center-of-mass energy per nucleon-nucleon pair √
sNN = 5.02 TeV,

and they were collected in 2016. It is worth noting that in p–Pb collisions there is a shift
in the center-of-mass rapidity of ∆y = 0.465 in the direction of the proton beam due to
the asymmetric collision system.

A comprehensive description of the ALICE detector and its performance can be found
in refs. [8, 90, 91]. The analysis utilizes the V0 detector [92], the Inner Tracking System
(ITS) [93, 94], and the Time Projection Chamber (TPC) [95].

The V0 detector consists of two stations on both sides of the interaction point, V0A and
V0C, each comprising 32 plastic scintillator tiles, covering the full azimuthal angle within
the pseudorapidity intervals 2.8 < η < 5.1 and −3.7 < η < −1.7, respectively. The ITS
is a silicon tracker with six layers of silicon sensors. The two innermost layers of the ITS
are called the Silicon Pixel Detector (SPD) [96]. In addition to the two SPD layers, the
middle two layers are the Silicon Drift Detector, and the outermost layers are the Silicon
Strip Detector. The TPC is a gas-filled cylindrical tracking detector providing up to 159
reconstruction points for charged tracks traversing the full radial extent of the detector.

The V0 provides a minimum bias (MB) trigger in both pp and p–Pb collisions and an
additional high-multiplicity trigger in pp collisions. The MB trigger is obtained by a time
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coincidence of V0A and V0C signals. Amplitudes of V0A and V0C signals are proportional
to charged-particle multiplicity, and their sum is denoted as V0M. The high-multiplicity
trigger in pp collisions requires the V0M signal to exceed five times the mean value measured
in MB collisions, selecting the 0.1% of MB events with the largest V0M multiplicity. The
centrality in p–Pb collisions is determined using the V0A detector, which is located in the
Pb-going direction [25]. The analyzed data samples of MB and high-multiplicity pp events
at

√
s = 13 TeV correspond to integrated luminosities (Lint) of about 19 nb−1 and 11 pb−1,

respectively [97]. In p–Pb collisions at √
sNN = 5.02 TeV, the corresponding integrated

luminosity is Lint ∼ 0.3 nb−1.
Positions of primary vertices are reconstructed from signals measured by the SPD. The

reconstructed primary vertices are required to be within 8 cm of the nominal interaction point
along the beam direction. Pileup events are identified as events with multiple reconstructed
primary vertices. These events are rejected if the distance between any of the vertices to the
main primary vertex is greater than 0.8 cm. The probability of pileup events is estimated
to range from 10−3 to 10−2 for MB and high-multiplicity events in pp collisions [98]. The
pileup probability is estimated to be negligible in p–Pb collisions [29].

Charged-particle tracks are reconstructed using the combined information from the ITS
and TPC. For charged particles emitted from a vertex located within |zvtx| < 8 cm along the
beam direction, the ITS and TPC provide a pseudorapidity coverage of |η| < 1.4 and 0.9,
respectively. Both detectors have full coverage in azimuth. They are placed in a uniform
magnetic field of 0.5 T that is oriented along the beam direction.

The charged-particle selection criteria are optimized to ensure a uniform efficiency over
the midrapidity range |η| < 0.9 to mitigate the effects of small areas where some ITS layers
are inactive in both collision systems. The selected sample of tracks consists of two classes.
Tracks in the first class must have at least one hit in the SPD. Tracks of the second class
do not have any hits in the SPD, but their origin is constrained to the primary vertex [17].
Charged-particle tracks are reconstructed down to a transverse momentum (pT) of 0.15 GeV/c

with an efficiency of approximately 65% [99]. The efficiency increases to 80% for particles with
pT > 1 GeV/c. The pT resolution is approximately 1% for primary charged particles [100]
with pT < 1 GeV/c, and it linearly increases to 6% at pT ∼ 50 GeV/c in pp collisions and
10% in p–Pb collisions [101].

3 Analysis procedure

3.1 Two-particle angular correlations

Two-particle angular correlations are measured as a function of the relative azimuthal angle
(∆φ) and the relative pseudorapidity (∆η) between a trigger and associated particles

1
Ntrig

d2 Npair
d∆ηd∆φ

= B(0, 0) S(∆η, ∆φ)
B(∆η, ∆φ)

∣∣∣
pT, trig, pT, assoc

, (3.1)

where pT,trig and pT,assoc denote the transverse momentum of the trigger and associated
particles, respectively. While the transverse momentum range for associated particles is
fixed to 1 < pT,assoc < 4 GeV/c for trigger particles, several transverse momentum ranges are
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considered. The lower limit of pT,trig and pT,assoc (> 1 GeV/c) is chosen in order to avoid
jet-like contributions from lower pT particles which extend into the larger ∆η range because
of the limited η acceptance [73]. The numbers of trigger particles and trigger-associated
particle pairs are denoted as Ntrig and Npair, respectively. The average number of pairs in the
same event, denoted by S(∆η, ∆φ), is given by 1

Ntrig
d2Nsame
d∆ηd∆φ . The B(∆η, ∆φ) represents the

number of pairs in mixed events and is normalized with its value at the point where ∆η = 0
and ∆φ = 0, denoted as B(0, 0). To correct for acceptance effects, S(∆η, ∆φ) is divided
by B(∆η, ∆φ)/B(0, 0). The particles are weighted by the inverse of the tracking efficiency,
which is obtained in the same way as in ref. [73]. In that study, the tracking efficiency and
the secondary contamination (fake rate) were calculated using a detector simulation with the
PYTHIA 8 event generator and the GEANT3 transport code [102]. To account for differences
in particle composition between real data and PYTHIA, the tracking efficiency is determined
from the above mentioned PYTHIA-based simulation with reweighted primary particle-species
composition. The weights reflect realistic abundances of different particle species, which
were extracted by a data-driven method [101, 103]. Events to be mixed are required to
have primary vertices within the same 2 cm wide zvtx interval. The correlation functions are
averaged over the vertex intervals, resulting in the final per-trigger yield [104, 105].

The fully corrected correlation functions from pp and p–Pb collisions are shown in
figure 1. The z-axis is scaled in order to exhibit the ridge structures at large ∆η regions.
As a result, the jet peaks are sheared off in all figures. The flow modulation structure is
clearly observed to emerge in the high-multiplicity collisions for both systems, while it is
not seen in the low-multiplicity collisions. The away-side regions are populated mostly by
back-to-back jet correlations.

The per-trigger yield is determined by integrating the correlation function at large ∆η

(1.6 < |∆η| < 1.8) to remove non-flow contributions from near-side jet fragments. The
per-trigger yield as a function of ∆φ is expressed as

Y (∆φ) = 1
Ntrig

dNpair
d∆φ

=
∫

1.6<|∆η|<1.8

[
1

Ntrig

d2Npair
d∆ηd∆φ

]
1

δ∆η
d∆η, (3.2)

where the factor δ∆η = 0.4 normalizes the obtained per-trigger yield per unit of pseudora-
pidity. The per-trigger yields are extracted for the considered pT,trig and pT,assoc intervals in
several multiplicity classes: 0–0.1%, 1–5%, 5–20%, 20–60%, and 60–100% in pp collisions, and
0–5%, 5–10%, 10–20%, 20–40%, 40–60%, and 60–100% in p–Pb collisions. The conversion
of the measured forward event multiplicities to the charge-particle multiplicities Nch at
midrapidity (|η| < 0.5) used in section 5 is based on ref. [98].

3.2 Extraction of flow coefficients

As discussed in refs. [10, 19], the correlation function in a given multiplicity interval is
fitted with

YHM(∆φ) = G (1 + 2v2,2 cos(2∆φ) + 2v3,3 cos(3∆φ)) + F YLM(∆φ), (3.3)

where YLM(∆φ) is the measured per-trigger yield from low-multiplicity events. The normal-
ization factor for the first three Fourier terms, which parameterize the long-range, flow-like
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Figure 1. Two-dimensional correlation functions are presented for high-multiplicity (0–0.1% or 0–5%,
on the left) and low-multiplicity (60–100%, on the right) events in

√
s = 13 TeV pp collisions in the top

panels. The corresponding distributions for √
sNN = 5.02 TeV p–Pb collisions are shown in the bottom

panels. All correlation functions are shown for 1 < pT,trig < 2 GeV/c and 1 < pT,assoc < 4 GeV/c,
respectively.

correlation, is denoted as G. The scale factor F compensates for the increased yield of away-
side-jet hadrons in the analyzed multiplicity class relative to the low-multiplicity template
that corresponds to the 60–100% class [81, 82]. The fit determines the scale factor F , pedestal
G, and vn,n and is performed in various high-multiplicity classes as well as in different pT,trig
intervals. This method assumes that YLM does not contain a near-side-peak structure that
would originate from jet fragmentation or a near-side ridge. Furthermore it is assumed that
the shape of the away-side-peak structure remains the same when changing the multiplicity
class. The first assumption is ensured using the selected low-multiplicity template which
does not have a strong near-side-peak structure compared to the studied higher-multiplicity
classes. The second assumption, which involves the modification of jet shapes, was tested by
projecting the near-side jet peaks onto ∆η. This modification of the jet shape is considered
as one of the sources of systematic uncertainty and will be discussed in section 4.
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Figure 2. Per-trigger yield in 1.6 < |∆η| < 1.8 extracted from 0–0.1% and 60–100% multiplicity
percentile events in

√
s = 13 TeV pp collisions. The data are fitted with the template fit method

described by eq. 3.3. The black markers show the signal for the 0–0.1% multiplicity percentile. The
red squares correspond to the low-multiplicity signal. The red and gray curves correspond to the
extracted v2,2 and v3,3 signals, respectively. To improve visibility, the baselines of flow signals are
shifted by FYLM,min, which represents the minimum yield of FYLM(∆φ). The signal-to-fit ratio is
shown in the bottom panel. The χ2 divided by the number of degrees of freedom is 0.894.

Figure 2 shows the template fit results for the 0–0.1% multiplicity interval in pp collisions
at

√
s = 13 TeV. Values of the extracted scale factor F in different multiplicity intervals

and systems are summarized in table 1. In pp collisions, the value of F is observed to
increase slightly as the event multiplicity increases. The F value, which is measured for the
highest-multiplicity bin, is approximately 25% larger than the value found for the 20–60% bin.
A similar dependence on multiplicity is observed for p–Pb collisions, although the dependence
on the multiplicity interval is weaker. In the first three columns of table 1, representing
collisions with higher multiplicities, there is an increase in the F value, while as shown by the
subsequent columns, there is a decrease for lower multiplicity collisions. When comparing the
F values from pp and p–Pb collisions, which have similar centrality, the value of F in p–Pb
collisions is found to be smaller and closer to unity. This suggests that the jet fragmentation
yield on the away-side increases with multiplicity, and that this feature is more pronounced
in pp collisions. The difference between the two systems is likely to be explained by the
true-geometry-driven centrality in p–Pb collisions, as opposed to the jet-dominated bias
in pp collisions. The previous analyses published by ALICE in refs. [17, 83] assumed that
the jet contribution remains constant as a function of multiplicity (i.e. F was assumed to
be 1). However, this assumption may lead to an underestimation of non-flow contamination
in the measurements of anisotropic flow.
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V0M (pp) 0–0.1% 1–5% 5–20% 20–60%
F 1.504±0.017 1.414±0.030 1.360±0.019 1.208±0.015

V0A (p–Pb) 0–5% 5–10% 10–20% 0–20% 20–40% 40–60%
F 1.135±0.026 1.140±0.026 1.152±0.021 1.145±0.017 1.092±0.015 1.083±0.015

Table 1. The scale factor F for various multiplicity intervals in pp collisions (top) and p–Pb collisions
(bottom), with 1 < pT,trig < 2 GeV/c and 1 < pT,assoc < 4 GeV/c. The table reports statistical
uncertainties only. Average systematic uncertainty of F is about 3.8% for both collision systems and
multiplicity intervals.

In the following, the near and away-side jet fragmentation yields are calculated to verify
the template fit method by comparing the jet fragmentation yields to the PYTHIA model.
The away-side jet fragmentation yields in the PYTHIA model are obtained using the standard
∆φ analysis [106], while in the data, the away-side jet fragmentation yields are extracted
using the template fit method because of the flow modulations in the data. The comparison
between the data and the PYTHIA model provides a validation of the template fit method.

Equivalently to eq. (3.2), measured data are used to obtain the near-side ∆η corre-
lations with

Y (∆η) = 1
Ntrig

dNpair
d∆η

=
∫
|∆φ|<1.3

[
1

Ntrig

d2 Npair
d∆ηd∆φ

]
1

δ∆φ
d∆φ − DZYAM, (3.4)

where δ∆φ = 2.6 and DZYAM defines the baseline of the ZYAM background subtraction [107].
The baseline is obtained by finding the minimum of the distribution defined by the integral
in eq. (3.4). As flow has a weak η dependence [7, 108, 109], the jet-fragmentation yield can
be calculated after the ZYAM background subtraction [107]. The near-side jet-like yields
were extracted by integrating the Y (∆η)

Y near
frag =

∫
|∆η|<1.3

(
1

Ntrig

dNpair
d∆η

)
d∆η. (3.5)

The away-side jet-like yield in data is calculated by integrating the low-multiplicity
template over π/2 < ∆φ < 3/2π and scaling it by the parameter F from eq. (3.3), Y away,HM

frag =
Y away,LM

frag ×F . The Y away,LM
frag is directly obtained by integrating the away-side low-multiplicity

∆φ correlation function in the low-multiplicity sample over π/2 < ∆φ < 3π/2. As PYTHIA
does not include any flow contributions in its model, Y away can be directly measured from
the ∆φ correlation functions.

Figure 3 presents the Y near
frag and Y away

frag , for both ALICE data and PYTHIA 8 Tune
4C [110], as a function of the V0M multiplicity intervals in pp collisions at

√
s = 13 TeV. The

transverse momentum range for trigger particles is 1 < pT,trig < 2 GeV/c and for associated
particles 1 < pT,assoc < 4 GeV/c. The near- to away-side ratio for ALICE and PYTHIA data
is shown in the bottom panel. While PYTHIA overestimates both near-side and away-side
yields measured by ALICE, the corresponding ratio is consistent with the ALICE data in the
all considered V0M multiplicity intervals. The value of this ratio can be explained by the pair
acceptance effect caused by the limited ALICE η acceptance [106]. The observed agreement

– 8 –



J
H
E
P
0
3
(
2
0
2
4
)
0
9
2

0.04

0.06

0.08

0.10

0.12

Y f
ra

g
ALICE Near side

PYTHIA 8 Tune 4C Near side

ALICE Away side (× 2), Template fit

PYTHIA 8 Tune 4C Away side (× 2)

0.2

0.4

aw
ay

/n
ea

r

0 0.1%  1 5%   5 20%  20 60% 
V0M Event classes

ALICE pp
√
s = 13 TeV

1 < pT,trig < 2GeV/c
1 < pT,assoc < 4GeV/c

Figure 3. The Yfrag for the near- and away-side as a function of multiplicity percentiles with both
ALICE and PYTHIA data. Systematic uncertainties are represented by the boxes. The bottom panel
presents ratios of the yields. Here the reported uncertainty is obtained by adding statistical error and
systematic uncertainty in quadrature. For PYTHIA, the statistical uncertainty is smaller than the
thickness of the lines.

implies that the enhanced jet fragmentation yields in the away-side in high-multiplicity events
with respect to low-multiplicity events [81, 82] are taken into account by the low-multiplicity
template method. In summary, the difference between the near-side and away-side jet
fragmentation yields in PYTHIA is solely caused by the jet acceptance effects which affect
the two-particle correlation functions. The corresponding ratio in data, where the away-side
jet fragmentation yields are measured with the low-multiplicity template, agrees well with
PYTHIA as well as with the expectation in ref. [106].

The flow coefficients, vn, of the trigger particles, can be extracted from the template
fit with the use of the observed factorization of vn,n coefficients to single harmonics [10, 19]
by using

vn(pT,trig) = vn,n(pT,trig, pT,assoc)/
√

vn,n(pT,assoc, pT,assoc), (3.6)

where vn,n(pT,assoc, pT,assoc) denote vn,n coefficients extracted using trigger and associated
particles with pT in the range 1–4 GeV/c. In the following sections, unless explicitly stated
otherwise, vn will refer to vn(pT,trig). Different event scale selections were investigated by
selecting events that include a hard jet or a high-pT leading particle at midrapidity (i.e.,
the particle with the highest reconstructed pT inside the acceptance region in an event).
This event scale was set by requiring a minimum pT of the leading track (pT, LP) or the
reconstructed jet (pch

T, jet) at midrapidity [73]. The leading particle track was required to
be within |η| < 0.9 and 0 < φ < 2π, and the jets were reconstructed with the anti-kT
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Sources
Systematic uncertainty (%)

Y near Y away,LM F v2 v3

pp pp pp pp p–Pb pp p–Pb
Primary vertex ±0.2–0.5 ±0.1 ±1.0–2.5 ±0.2–1.8 ±0.8 ±1.4 ±3.9
Pileup rejection ±0.1–0.5 ±0.2 ±0.4–1.5 negl. ±0.6 negl. ±1.4

Tracking ±1.0–3.0 ±2.0 ±0.6–2.4 ±0.2–3.0 negl. ±5.0–6.9 negl.
Event mixing ±0.2–0.7 ±0.2–0.5 ±0.0–3.3 ±0.3–4.6 ±0.8 ±2.8–3.1 ±0.8

Low-mult. definition N.A. ±0.5–3.5 ±0.7–6.0 negl. ±1.9 negl. ±9.2
ITS–TPC matching ±2.0–3.0 ±2.0–3.0 N.A. N.A. N.A. N.A. N.A
Efficiency correction ±1.0–4.4 ±1.0–4.4 N.A. N.A. N.A. N.A. N.A

∆η gap range N.A. N.A. ±0.1–3.2 ±1.0–5.0 ±0.4 negl. negl.
Jet shape modification N.A. N.A. N.A ±1.0 ±1.0 ±3.0 ±8.0
Total (in quadrature) ±2.5–6.1 ±5.0–5.5 ±1.8–7.1 ±1.3–5.8 ±2.5 ±6.8–8.0 ±12.8

Table 2. The relative systematic uncertainties of Y near, Y away,LM, F , v2, and v3. The quantities
Y near, Y away,LM, F are only measured in pp collisions, whereas v2 and v3 are measured in both pp
and p–Pb collisions. The quoted ranges correspond to minimum and maximum uncertainties. Those
uncertainties that are considered to be negligible are marked “negl.”. The systematic variations which
are not relevant for the measurement are denoted as “N.A.”.

algorithm [111, 112], with R = 0.4 using charged particles only. Jet constituents were
combined using the boost-invariant pT recombination scheme. The jets are selected in the full
azimuth (0 < φ < 2π) and their pseudorapidity is constrained to |ηjet| < 0.4. The pT of jets
pch

T, jet is corrected for the underlying event density that is measured using the kT algorithm
with R = 0.2 following the procedure described in ref. [113].

4 Systematic uncertainties

Systematic uncertainties are estimated by varying the analysis selection criteria and corrections.
Independent systematic checks are performed and the differences between results obtained
from each variation and the default selection are considered as the systematic uncertainty for
each source [114]. The total systematic uncertainty is obtained by adding the contributions
from different sources in quadrature. A summary of all systematic uncertainties is provided
in table 2.

The uncertainty attributed to the chosen primary vertex range is estimated by varying
the selected range from |zvtx| < 8 cm to |zvtx| < 6 cm. The variation of the range allows
testing detector acceptance effects on the measurement.

Another source of systematic uncertainty is related to pileup rejection. The rejection
of pileup events is adjusted by modifying the number of track contributors required for the
reconstruction of pileup event vertices, changing it from the default value of 3 to 5.

The systematic uncertainty due to the choice of track-selection criteria is estimated by
employing alternative track-selection criteria, which single out so-called “global track”, which
are described in ref. [115]. A global track is required to have two hits in the ITS (at least one
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in the SPD) and at least 70 clusters in the TPC. Due to inefficiencies in certain parts of the
SPD, the azimuthal distribution of global tracks is not uniform. This can be corrected by
using corresponding mixed events and accounting for the corresponding tracking efficiency.

An additional systematic uncertainty from the event-mixing is estimated by varying the
interval of the primary vertex range, where events are mixed. The default size of the primary
vertex bins of mixed events is decreased from 2 cm to 1 cm.

The systematic uncertainty associated with the low-multiplicity definition is estimated by
changing the range of the low-V0M-multiplicity interval. There is no universal definition for
the low-multiplicity interval. The default range for the low-multiplicity interval in the present
article is 60–100%, and it is changed to 70–100% to estimate the related systematic uncertainty.
Note that for the measurement of Y near, the low-multiplicity-interval definition is irrelevant.

The systematic uncertainty resulting from matching a track reconstructed by the TPC
and the corresponding signal in the ITS is estimated by evaluating the fraction of mismatches
in real data using simulations. Primary tracks have a higher matching efficiency than
secondary tracks produced far from the interaction point or in interactions with detector
material. To address the effect of different fractions of primary and secondary tracks in
data and simulations on the matching efficiency, particle abundances in the simulation are
reweighted to reflect real data. This resulted in modified matching efficiency.

The systematic uncertainty arising from the efficiency correction is estimated by per-
forming a closure test, where two correlation functions are compared. The first correlation
function is constructed using true information from the Monte Carlo samples described
in section 2. This provides a baseline for the expected correlation function. The second
correlation function is constructed using reconstructed tracks corrected for tracking efficiency.
By comparing the two correlation functions, it is possible to estimate the magnitude of the
uncertainty introduced by the correction.

Due to the limited η acceptance of the TPC, non-flow contributions, mainly originating
from fragmentation of jets, affect the flow measurement. As the shape of short-range
correlations, mostly attributed to jets, is getting broader with decreasing pT, the systematic
uncertainty from η acceptance significantly depends on pT. To estimate the related uncertainty,
the long range ∆φ correlations are measured for an extended ∆η gap, the default size of
∆η gap 1.6 is increased to 1.7.

Finally, it is worth considering the possible impact of the multiplicity dependence of
the jet-shape modifications discussed in section 3. This is studied by examining the shape
modification of the jet-peak distribution in the near-side region as a function of ∆η and
multiplicity. The observed change in the width is used to estimate the possible effect on the
long-range, per-trigger-yield distribution as a function of ∆φ. The effect on v2 is found to be
less than 1% in pp and p–Pb collisions for the kinematic ranges analyzed. The effect on v3 is
found to be less than 8% in p–Pb collisions. These values are included in the total systematic
uncertainty. However, it is important to note that other analyses with different kinematic
ranges should also perform a similar check to assess the systematic uncertainty associated
with this effect. It is possible that this effect may not always be as small as in our analysis.
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Figure 4. The magnitude of v2 (left) and v3 (right) as a function of pT for the 0–0.1% multiplicity
interval in pp collisions at

√
s = 13 TeV and 0–20% in p–Pb collisions at √

sNN = 5.02 TeV. The boxes
around the data points represent the estimated systematic uncertainty and the error bars correspond
to statistical errors.

5 Results

5.1 Transverse-momentum and multiplicity dependence of anisotropic flow

Figure 4 illustrates the extracted values of v2 and v3 as a function of pT,trig as obtained from
eq. (3.3). The results correspond to the high-multiplicity pp collisions at

√
s = 13 TeV and

p–Pb collisions at √
sNN = 5.02 TeV. Both sets of results demonstrate an increasing trend in

the magnitudes of vn with rising pT,trig. The v2 data points reach a maximum between 2.5 and
3.0 GeV/c, similarly to what has been observed in Pb–Pb collisions [5, 116]. The magnitudes
of v2 in p–Pb collisions are higher than those in pp collisions, which might be related to
the larger p–Pb system size together with a likely longer lifetime of the hypothetically
created medium. However, the magnitudes of v3 are similar in both systems, indicating
that v3 is less sensitive to the size of the systems. These results are comparable to those
obtained by ATLAS in different multiplicity classes, where the same method was used to
extract the flow coefficients [19]. Even though the ∆η and pT,assoc ranges used by ATLAS
are wider, 2.0 < |∆η| < 5.0 and 0.5 < pT,assoc < 5 GeV/c, respectively, the results are
consistent within uncertainties.

Figure 5 presents the magnitudes of v2 and v3, as a function of charged-particle multiplicity
at midrapidity for both pp collisions at

√
s = 13 TeV and p–Pb collisions at √

sNN = 5.02 TeV.
As in figure 4, the ∆η gap is 1.6 < |∆η| < 1.8 and v2 is measured in 1 < pT < 4 GeV/c for both
collision systems. Additionally, the corresponding results for pp collisions at

√
s = 13 TeV with

1 < pT < 2 GeV/c are presented. First, it is observed that the magnitude of vn increases with
increasing multiplicity for both collision systems and pT-ranges. Second, v2 in p–Pb is higher
than in pp collisions in the measured multiplicity range. These two observations are compatible
with previous results from refs. [10, 11, 19]. There is no significant difference between the two
collision systems when considering the v3 dependence on multiplicity as shown on the right-
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Figure 5. The magnitudes of v2 (left panel) and v3 (right panel) for two different collision systems,
pp and p–Pb as a function of charged-particle multiplicity at midrapidity. For pp collisions, two
different pT intervals are shown, 1.0 < pT < 2.0 GeV/c and 1.0 < pT < 4.0 GeV/c. The boxes around
the data points represent the estimated systematic uncertainties and the error bars corresponds to
statistical errors.

hand-side panel of figure 5. The v3 measurements exhibit a comparable subtle dependence on
multiplicity, with higher values observed in collisions with greater particle multiplicities. For
the two different pT intervals presented for the pp collisions, the v2 in 1.0 < pT < 4.0 GeV/c

shows a hint of larger magnitude than the v2 in 1.0 < pT < 2.0 GeV/c. The difference in
magnitude is significant only in the highest multiplicity point. This agrees with what is
observed in figure 4, where the v2 magnitude has its largest value in 2.5 < pT < 3.0 GeV/c.
It is found that for the considered pT selections, the observed multiplicity dependencies
differ only marginally. It is worth noting that the results presented from pp and p–Pb
collisions were obtained from two different beam energies. In ref. [19], it was found that
the magnitudes of v2 and v3 in pp collisions between 13 and 5.02 TeV show no significant
variation with center-of-mass energy.

5.2 Event-scale dependence of the flow coefficients

Figure 6 presents the extracted magnitude of v2 and v3 as a function of the minimum pT
of the leading particle pLP

T,min and that of the jet (pjet
T,min) as introduced in section 1. The

results are presented for the 0–0.1% multiplicity class of pp collisions at
√

s = 13 TeV and
for the two different pT-ranges. To reduce the impact of the detector edge effects on the jet
measurements, the jet axes are required to have a pseudorapidity |ηjet| < 0.4, following a
similar selection as in refs. [117–119]. The v2 and v3 values for both pT ranges do not show
any dependence on event-scale selection within the uncertainties. This finding is consistent
with the results of the ridge yields [73] and v2 measurements with a tagged Z boson from
the ATLAS collaboration [120]. These results suggest that the presence of a hard-scattering
process does not significantly change the long-range correlation involving soft particles.
However, the presented measurements are only limited to the low pjet

T . Future measurements
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with multi-jet events at midrapidity with higher Q2 reach can shed more light on the expected
impact parameter dependence [84–86].

5.3 Comparisons with models

In this section, the results are compared to various model calculations. The results from
p–Pb collisions are compared with hydrodynamic calculations using the parameterization
from an improved global Bayesian analysis. The analysis involves new sophisticated collective
flow observables as obtained from two different beam energies in Pb–Pb collisions [55],
constraining the initial conditions and transport properties of the QGP. This hydrodynamic
model, TRENTo+iEBE-VISHNU, consists of the TRENTo model [121] to simulate the initial
condition, which is connected with a free streaming to a 2+1 dimensional causal hydrodynamic
model VISH2+1 [122]. The evolution is continued after hadronization with a hadronic cascade
model (UrQMD) [41, 42]. A model calculation is performed using the best-fit parameterization
for transport coefficients selected based on maximum a posteriori (MAP) for Pb–Pb collisions
at √

sNN = 5.02 TeV. Two different MAP values are used for the calculations. They are based
on ref. [55] and ref. [52] and in figure 7 they are labeled MAP(2021) and MAP(QM2018),
respectively. The parameterization for the initial conditions, which include a sub-nucleon
structure with six constituent partons per nucleon (m = 6), is taken from a model calibration
with additional p–Pb data [56]. All kinematic selections, such as the transverse momentum
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Figure 7. The measured and calculated evolution of v2 (left) and v3 (right) in pp and p–Pb
collisions as a function of charged-particle multiplicity at midrapidity. The blue and red markers
represent the measured p–Pb and pp data, respectively. The calculations provided by hydrodynamical
models [52, 55, 64, 74] are presented with colored lines. The corresponding bands mark their statistical
uncertainty. For GubsHyd calculations, the statistical uncertainty is smaller than the line thickness.

and pseudorapidity intervals, are matched to the data reported in this article. The flow
coefficients in the hydrodynamic calculation are extracted with the two-particle cumulant
method, as the TRENTo+iEBE-VISHNU does not contain any non-flow.

Figure 7 shows that TRENTo+iEBE-VISHNU overestimates both v2 and v3. In the
studied range, the v2 and v3 data increase with multiplicity. However, TRENTo+iEBE-
VISHNU predicts the opposite trend, which is similar to what is found in large collision
systems [47]. The large discrepancies in the prediction might be alleviated by inclusion of the
newly measured p–Pb constraints in a future Bayesian parameter estimation as well as by
improvements of the initial condition model for small-system collisions.

The results are also compared with IP-Glasma+MUSIC+UrQMD hydrodynamic cal-
culations [74]. This model uses IP-Glasma initial conditions [30] including sub-nucleonic
fluctuations with three hot spots per nucleon. The hydrodynamic evolution is performed
by MUSIC [36] and coupled with UrQMD [41, 42], which performs hadronic cascade. The
model calculations are performed assuming constant η/s = 0.12 and a temperature dependent
ζ/s(T ) [123]. This model describes well the multiplicity dependence of v2 in p–Pb collisions
and the magnitude at the highest multiplicity within the statistical uncertainties of the
model but overestimates the data for the lower multiplicity classes. As for pp collisions, the
calculations clearly miss both the observed magnitude except for Nch > 25 as well as the
trend of the multiplicity dependence. The model shows that v2 decreases with increasing
multiplicity, while the experimental result shows the opposite. For v3, the model accurately
describes the magnitudes and multiplicity dependence across the measured multiplicity ranges.
The magnitudes of v3 are slightly smaller in pp collisions than in p–Pb collisions accord-
ing to the calculations, which agrees with the data within the uncertainties. The level of
agreement between data and the IP Glasma model calculations is found to be similar to
the results reported in ref. [13].
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Finally, the results are compared with the GubsHyd model, a semi-analytical model
based on the analytical Gubser solution to hydrodynamic equations [62, 63], known as Gubser
flow. In Gubser flow, the initial state of conformal matter is linearly perturbed by an initial
elliptic shape. The model is employed to shed light on the possible sources of the observed
discrepancy between more realistic models mentioned above and the measurements in pp
collisions [64]. Instead of modeling the initial entropy density in this model, as it is typically
done in TRENTo or IP-Glasma, the initial state fluctuation is modeled directly. It assumes
that proton ellipticity ϵ2 and RMS radius rrms fluctuate independently. These fluctuations are
described by Gaussian probability distributions, which have widths σϵ and σr, respectively.
The multiplicity dependence of the v2{2} of two-particle correlation functions depends on σr

and χσϵ, where the coefficient χ encapsulates a correction for idealizations used in GubsHyd,
including the absence of dissipation effects. The values of σr and χσϵ were obtained by
comparing the model with data. Since no non-flow effect is considered in the calculation,
v2{2} is comparable with the flow measurements in the present study. The calculations for
two sets of parameters are compared to data in figure 7. The “param0” parameterization is
based on the prediction proposed in ref. [64] that χσϵ = 0.097 and σr = 0.4 fm. The other
parameterizations “param1” and “param2” employ different χσϵ and σr values. The model
captures the multiplicity dependence of v2 well.

In summary, the measured v2 value decrease with decreasing multiplicity in both pp and p–
Pb collisions. This trend is also predicted by GubsHyd model calculations (refs. [64] and [124]).
Interestingly, the opposite trend is observed for the IP-GLASMA+MUSIC+UrQMD hy-
drodynamic calculations of v2, where the value decreases with increasing charged-particle
multiplicity [74]. Approaching a lower bound for the size of a hydrodynamized system as
predicted in ref. [64], the decreasing trend of v2, obtained by lowering the charged-particle
multiplicity, changes and turns out to raise again after the observed minimum. However, this
change in multiplicity dependence of v2 at low multiplicities is still challenging to test with the
current experimental uncertainties. For v3, the IP-Glasma+MUSIC+UrQMD hydrodynamic
calculations [74] are the only ones that accurately describe its magnitude and multiplicity
dependence across the measured ranges. The calculations predict that the magnitudes of v3
are slightly smaller in pp collisions than in p–Pb collisions, within the measured multiplicity
ranges. The discrepancies between the predictions and the data can be further studied
by including these measurements in a future Bayesian parameter estimation, as well as by
improving the initial-condition model for the small-system collisions.

6 Conclusions

Long-range angular correlations for pairs of charged particles are studied in pp collisions at√
s = 13 TeV and p–Pb collisions at √

sNN = 5.02 TeV. Flow coefficients are extracted from
long-range correlations (1.6 < |∆η| < 1.8) for a broad range of charged-particle-multiplicity
classes using the template method, which allows one to subtract the enhanced away-side jet
fragmentation yields in high-multiplicity events with respect to low-multiplicity events. The
method that was used to measure the flow coefficients within the considered kinematic ranges
has been verified to be stable. The systematic uncertainties on v2 and v3 measurements, which
reflect the possible differences in the away-side jet peak shapes in high- and low-multiplicity

– 16 –



J
H
E
P
0
3
(
2
0
2
4
)
0
9
2

events, were found to be 1% and 3–8%, respectively.However, it is important that these
systematic uncertainties are reevaluated, when analyzing different kinematic ranges, as the
effect may not always be negligible. The measured pT dependence of v2 and v3 is consistent
with the measurements by ATLAS and shows that both v2 and v3 increase with pT and
reach their maximum at 2.5 < pT < 3.0 GeV/c. The measurement of v2 as a function of
charged-particle multiplicity in |η| < 0.5 shows a weak multiplicity dependence both for pp
and p–Pb collisions and tends to decrease toward lower multiplicities. The pp data suggests
that the v2 signal may disappear when the measurement is pursued further below Nch = 10.

The comparisons to viscous hydrodynamic models show that the magnitudes of v2 and
their multiplicity dependence are not described by state-of-the-art hydrodynamic calculations,
which simulated initial conditions with two initial state models, especially for low-multiplicity
p–Pb and pp collisions. As initial state effects tend to be more important at low multiplicity [56,
59], these results may help to constrain the modeling of the initial state. Furthermore, the
events including hard probes such as jets or high-pT leading particles do not show any changes
both in v2 and v3 within the uncertainties, which implies that the long-range correlation of
soft particles is not significantly modified by the presence of the hard-scattering process. Even
though it would be interesting to compare these results to the EPOS LHC [125] and PYTHIA8
String Shoving models [71, 72] as done in ref. [17] for the ridge yields, it is not possible to
reliably extract the flow coefficients because these models exhibit a near-side ridge structure in
low-multiplicity events, thus making the use of the low-multiplicity template ill defined [126].
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