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Abstract: We investigate a single-particle density of states in the three-dimensional system described
by effective two-band Hamiltonian, which describes a ground state in two distant electronic phases:
the semimetalic nodal-loop phase and the insulating gapped phase. An analysis of valence bands
and Fermi surfaces in both phases indicates that the density of states crucially depends on the
parameter in the Hamiltonian of the system that controls a topological alternation of the Fermi
surface. The signature of that alternation is expected to play an important role in all quantities closely
related to the density of electronic states, such as charge transport and the optical conductivity of the
system for example.

Keywords: single-particle density of states; effective two-band Hamiltonian; 3D nodal-loop semimetals

1. Introduction

A number of physical properties of solids, expectantly those related to charge transport,
are often described by so-called effective electron Hamiltonian, referring to the domain
spanned over a small portion of the Brillouin zone in a restricted energy interval around the
Fermi energy. Based on the underlying symmetry of the crystal lattice, at the specific points
of the Brillouin zone, a minimal multi-band Hamiltonian can be constructed, which is
sufficient to describe some single-particle and collective models of the system [1]. One such
example is the Bernevig–Hughes–Zhang Hamiltonian [2], which appears to be sufficient
to describe the electron properties of a number of systems mapped to it. In the case when
two bands are located near the Fermi level and other bands are sufficiently far in energy,
the minimal Hamiltonian can be further reduced to the two-band effective Hamiltonian
represented by a 2 × 2 matrix. The electron bands of the two-band effective Hamiltonian
have an electron–hole symmetry and, in multiple cases, they are simple enough to permit
an analytical result for a number of band-related calculations and obtained transport
functions. Examples of systems whose electron bands are described by the two-band model
are numerous and can be easily found in all three dimensions. We mention just some
notable examples like the Su–Schrieffer–Heeger model (SSH) [3] and Peierls model [4] in
1D, massless and massive 2D Dirac system [5–7], Weyl systems or multiple Weyl point
systems [8–11], massless 3D Dirac [12], Mexican-hat systems [13,14], nodal-line systems [15],
and electron gas in a weak periodic potential [16].

In all of the mentioned systems, the single-particle and optical properties have been
analytically derived, thus providing an insight into the underlying mechanisms and physi-
cal scales. In reality, however, many of specific properties that make the mentioned systems
interesting are observed on small intrinsic energy scales no bigger then few meV around
the Fermi energy. This also makes it challenging to experimentally distinguish between
different possible ground states. For that reason, the single particle density of states (DOS)
calculations is important since it provides direct information about electron bands. Those
can be directly measured by, for example, measuring DOS at the Fermi energy via Pauli
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paramagnetic susceptibility or, indirectly, as a part of the joint density of states approach to
the inter-band conductivity [17]. Generally, the number of analytically solvable electron
models is rather small, which is exactly why every case of effective Hamiltonian yielding
an analytical result is important. Besides an academic value, it provides a way to observe
similarities in the electron properties between different models in various dimensions, by
changing the parameters of the initial Hamiltonian promoted into the final result, precisely
addressing the underlying mechanisms leading to them.

In this paper, we define and analyze the two-band effective Hamiltonian capable of
describing two different electronic ground states (phases). The first one is the nodal-loop
phase (NLP), and it is characterized by the touching of the valence bands over a ring. The
second one is the gapped phase (GP), characterized by the separation of the valence bands
by a finite energy gap. We find the corresponding electron dispersions for both phases and
assume that the doping procedure (Fermi energy shifting) leaves the valence bands intact.
We analyze the Fermi surface (FS) for each phase together with the identification of the
van Hove points. Electron dispersions are presented in terms of dimensionless variables
in which their properties are determined by a single parameter λ. It is shown that the
NLP has a torus-like FS, which, depending on parameter λ, can be a doughnut-like or
self-intersecting spindle, while the FS in the case of GP has a trivial shape related to usual
doped 3D insulators. The DOS calculations are performed by finding the corresponding
integration boundaries for each phase. Finally, the expressions for DOS in both phases are
given. The DOS of both of the phases is analyzed in detail, with particular emphasis placed
on the behavior near van Hove points and in connection to the parameter λ, where the
DOS in the NLP showed a richer structure compared to the GP. It is our intention to use
the two-band model in order to shed additional light upon otherwise complicated band
structures that are inherent to the majority of the nodal-line systems [18,19].

2. The Two-Band Hamiltonian

The low-energy Hamiltonian of the 3D system under consideration, in the basis of
the plane waves characterized by the wave vector k = (kx, ky, kz), presented as a real
2 × 2 matrix, reads

Ĥ = (∆ + νbk2)σz + ckzσx. (1)

In the above expression, σz and σx are the Pauli matrices, while ∆, b and c are positive
parameters. Index ν = ±1 is the phase index, with ν = −1 denoting the NLP and
ν = +1 denoting the GP. Hamiltonian (1) contains the square of the total Bloch wave
vector k2 = k2

x + k2
y + k2

z. The diagonalization of Equation (1) is straightforward, yielding
electron–hole symmetric eigenvalues for each phase ν,

ε±ν (k) = ±
√
(∆ + νbk2)2 + c2k2

z. (2)

We scale electron dispersion Equation (2) to the gap parameter ∆, introducing dimensionless
variables ω±

ν (κ) = ε±ν (k)/∆, κ =
√

b/∆ k (i.e., κ2 = k2b/∆) and parameter λ2 = c2/(b∆).
We obtain the dispersions Equation (2) in dimensionless form

ω±
ν (κ) = ±

√
(1 + νκ2)2 + λ2κ2

z (3)

determined by two parameters: (1) the phase parameter ν = ±1 essentially controlling the
band topology, and (2) parameter λ that controls the physical properties of bands, such as
van Hove points and effective mass parameters. Below, we provide a detailed description
of band properties.

3. Valence Bands and Fermi Surface

Here, we investigate the properties of electron dispersions Equation (3) and the Fermi
surface in a doped system. Initially, we assume that both phases are undoped, i.e., that
the Fermi level is located between the bands. The doping procedure consists of filling the
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conduction band ω+
ν (κ) up to some finite value of Fermi energy ωF (in units of ∆). An

analytical analysis of the dispersion relation leads to the ν-dependent polynomial in λ,

Pν(λ) =
λ4

4
+ νλ2, (4)

which appears to be important for further calculations and the description of the spectral
properties as well as the DOS (it is shown in Figure 1). For ν = −1 (NLP), P−(λ) is a
non-monotonic function, i.e., P−(λ) ≶ 0 for λ ≶ 2, with its minimum at P−(λ =

√
2) = −1,

while for ν = +1 (GP), P+(λ) is a positive monotonic function.

Figure 1. The Pν(λ) polynomial according to Equation (4).

3.1. The Nodal-Loop Phase (NLP)

This phase appears for ν = −1. In the intrinsic case, when the Fermi energy ωF = 0,
the main property of the NLP is the presence of the nodal ring of radius κ0 = 1 located in the
(κx, κy) plane along the touching line of two bands (3). If ωF is increased, a doughnut-like
Fermi surface emerges (see Figure 2). The exact properties of this Fermi surface depend on
the value of parameter λ. There are two cases to be closely examined:

(a) Case λ ∈ (0,
√

2): The Fermi surface is shown in Figure 2a. As the Fermi en-
ergy ωF increases from zero, the point-like (the nodal point) cross-section, along
the κx = 0, or κy = 0, plane, evolves into two crescent shapes. As ωF further
increases, the crescent shapes are inflated and eventually touch each other, form-
ing two self-intersecting circles. The FS at this particular Fermi energy ωT is a
type of torus called the self-intersecting spindle. The energy ωT =

√
−P−(λ) at

which it occurs is the van Hove saddle point. The radius of each self-intersecting
circle is r = (

√
1 + ωT +

√
1 − ωT)/2, while their centers are displaced by 2R =√

1 + ωT −
√

1 − ωT apart. For such a torus, it is evident that R < r. As ωF increases
further, the FS becomes composed of two ellipsoid-like surfaces (a smaller one cen-
tered inside the bigger one)—one decreasing and the other increasing in size—until
ωF = 1 is reached. At ωF = 1, an elliptic van Hove point appears, at which the FS is
a single ellipsoid-like surface. In the special case λ = 0, the two bands touch over a
sphere of radius κ0 = 1. Then, if the Fermi energy is 0 < ωF < 1, the FS comprises
two concentric spheres and, if ωF > 1, the FS is a single sphere.

(b) Case λ ∈ (
√

2, 2): The Fermi surface is shown in Figure 2b. As ωF increases, the
thickness of the “doughnut” reaches a special value when its cross-section with a
plane κx = 0, or κy = 0, is two circles, i.e., the FS becomes a torus. As in the
previous case, this happens at the particular value of Fermi energy, ωT =

√
−P−(λ).

In this case, the FS forms a standard torus with radius of the circular cross-section
r = (

√
1 + ωT −

√
1 − ωT)/2 and a radius from the center of the torus to the center of

the cross-section R = (
√

1 + ωT +
√

1 − ωT)/2 > r. As ωF is increased with respect
to ωT , two circles of the cross-section inflate, deform, and touch each other at ωF = 1.
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This point is the van Hove saddle point, which is responsible for the kink in the DOS
of the 3D system, as we shall show later. As ωF is further increased, the FS attains an
ellipsoidal-like shape.

(c) Case λ > 2: The Fermi surface shows no distinctive or interesting features other than
a compact doughnut-like shape. We do not show it graphically.

Figure 2. The NLP phase. The 3D Fermi surface (upper panel), the band energy, ω+
−(κ) (brown)

and ω−
−(κ) (blue), dependence at κy = 0 (middle panel), and its cross-section in the (κx, κz) plane

(i.e., κy = 0) (lower panel), determined by electron dispersion Equation (3). The FSs are shown at
different dopings, i.e., the different value of the Fermi energy ωF, for (a) λ = 0.5 ∈ (0,

√
2) and

(b) λ = 1.7 ∈ (
√

2, 2). The Fermi energies ωF in cross-sections are (in ascending shades of gray from
light to dark): 0.1, 0.3, 0.8, 1, and 1.5. The red contour is for ωF = ωT(λ), i.e., 0.4841 in (a) and 0.8955
in (b).

3.2. The Gapped Phase (GP)

This phase appears for ν = +1. Dominated by the band gap parameter ∆, the FS of
a doped gapped phase becomes a simple ellipsoid-like structure existing only for ωF > 1
(see Figure 3a), in which parameter λ increases the axial anisotropy, i.e., the larger λ is,
the flatter the ellipsoid (see Figure 3b) is. In fact, it can be shown that the FS can be, to
an excellent approximation, written in terms of the reduced ellipsoid equation with the
coefficients depending on the Fermi energy ωF (measured from the middle of the band
gap) and parameter λ,
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κ2
x

ωF − 1
+

κ2
y

ωF − 1
+

κ2
z√

ω2
F + P+(λ)−

√
1 + P+(λ)

= 1. (5)

Comparison of κx = 0 or κy = 0 plane cross section of (3) and (5) for various ωF and λ is
shown in Figure 3b. In the special case λ = 0, Equations (3) and (5) reduce to the equation
for the sphere with the radius κ0 =

√
ωF − 1.

Figure 3. The GP phase. (a) The 3D Fermi surface, for different values of ωF > 1 (left panel), and the
band energy, ω+

+(κ) (brown) and ω−
+(κ) (blue), dependence at κy = 0 (right panel), determined by

electron dispersion Equation (3). (b) The FS cross-section in the (κx, κz) plane at the Fermi energy
ωF = 3.5 for different λ = 0, 2, 4, 8 (rounder to flatter ellipses). The yellow curve is the exact result
from Equation (3), while the blue curve is an approximation Equation (5).

Electron bands (3) in both NLP and GP phases are shown in Figure 4.

Figure 4. Electron bands (3) in (a) NLP (ν = −1) and (b) GP (ν = +1) phase along the characteristic
directions in the momentum space (see the inset). The Γ = (0, 0) point is in the origin of momentum
space, while Kx,z are some points equally far away from the origin. Since the energy dependence
on κx and κy are equivalent, all energies are plotted as ω±

ν (κx, κy = 0, κz). Bands ω+ (upper) and
ω− (lower) posses the electron–hole symmetry. For the NLP case (a), the parameter values are
λ = 0.5 <

√
2 (upper panel) and λ = 1.7 >

√
2 (lower panel). There are two characteristic points, the

nodal point κx0 = 1 and point κz0 = (1 − λ2/2)1/2. For the GP case (b), the parameter value is λ = 3.
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4. Density of States

Here, we present a calculation of the density of states (DOS) for the energy dispersion
from Equation (2) for both NLP and GP. Due to the electron–hole symmetry, we use only
the upper band ε+ν (k) in the calculations. By definition, the DOS per unit volume of a spin
degenerate band is [20]

Nν(ε) =
2
V ∑

k
δ(ε − ε+ν (k)). (6)

To simplify further calculation, we use the dimensionless variables defined in Section 2
and, changing the sum in Equation (6) to an integral in the spherical coordinate system,
we obtain

Nν(ω) =
1

2π2

√
∆
b3

∫
κ2 dκ

∫ π

0
sin θdθδ

(
ω −

√
(1 + νκ2)2 + λ2κ2 cos2 θ

)
. (7)

To further evaluate (7), we decompose the δ-function with respect to the θ variable
into a sum

δ

(
ω −

√
(1 + νκ2)2 + λ2κ2 cos2 θ

)
= ∑

θ0

δ(θ − θ0)
ω

|λ2κ2 cos θ0 sin θ0|
, (8)

where θ0 are the two zero-points of the argument of the δ-function with respect to variable θ,

θ0 = ±Arccos

√
ω2 − (1 + νκ2)2

λ2κ2 . (9)

Using the identities Equations (9) and (8) with Equation (7), with substitution u = κ2,
we obtain

Nν(ω) =
1

2π2

√
∆
b3

ω

λ

∫
I

du√
ω2 − (1 + νu)2

. (10)

The interval of u-integration I is determined by three restrictions that are enumerated
here:

➀ u ≥ 0 (the trivial restriction),

➁ the positive expression under the square root in denominator in (10): ω2 − (1+ νu)2 ≥
0,

➂ the domain restriction in (9): 0 ≤ cos2 θ0 ≤ 1 implying 0 ≤ ω2 − (1 + νu)2 ≤ λ2u.

By the common intersection of these three conditions, the intervals of integration are
found, which depend on phase ν, energy ω, and parameter λ. From here on, we investigate
the DOS for every electronic phase separately.

5. Density of States in the Nodal-Loop Phase

We set ν = −1 in the mentioned restrictions to find the permitted value of u. Thus,
we obtain:

➀ u ∈ [0, ∞⟩,
➁ u ∈ [1 − ω, 1 + ω],
➂ u ∈ ⟨−∞, 1 − ψ−

+(ω, λ)] ∪ [1 − ψ−
−(ω, λ), ∞⟩.

In the above conditions, we have introduced an auxiliary function ψν
±(ω, λ) defined

as

ψν
±(ω, λ) =

λ2

2
±
√

ω2 + Pν(λ) (11)

where, again, Pν(λ) is given by (4). The final condition for the interval of u-integration is
found by taking the intersection u ∈ ➀ ∩ ➁ ∩ ➂. The boundaries in ➁ and ➂ depend on ω
and λ and, for the specific values of those two parameters, they will shift relatively to each
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other giving the different intersection. It is shown, after rather tedious calculation, that,
depending on value of parameter λ, the interval of allowed values of u falls in two classes:

(1.) λ <
√

2

0 < ω < ωT , u ∈ [1 − ω, 1 + ω]

ωT < ω < 1, u ∈ [1 − ω, 1 − ψ−
+(ω, λ)] ∪ [1 − ψ−

−(ω, λ), 1 + ω]

ω > 1, u ∈ [1 − ψ−
−(ω, λ), 1 + ω]

(2.) λ >
√

2

0 < ω < 1, u ∈ [1 − ω, 1 + ω]

ω > 1, u ∈ [1 − ψ−
−(ω, λ), 1 + ω]

(12)

where we have used ωT =
√
−P−(λ) from Section 3. The integration boundaries in

integral (10) are determined by expressions (12), while the primitive function is of the form∫ du√
ω2 − (1 − u)2

= −Arctan
1 − u√

ω2 − (1 − u)2
(13)

Applying the above, frequently using the identity

π

2
− Arctan

a√
ω2 − a2

= Arccos
a
ω

, (14)

we finally obtain the result

N−(ω, λ) = N0
ω

λ

[
1 − 1

π
Arccos

ψ−
−(ω, λ)

ω
Θ(ω − 1)

+
1
π

(
Arccos

ψ−
+(ω, λ)

ω
− Arccos

ψ−
−(ω, λ)

ω

)
Θ(ω − ωT)Θ(1 − ω)Θ

(√
2 − λ

)]
,

(15)

where the constant factor is

N0 =
1

2π

√
∆
b3 . (16)

The constraints on ω and λ in (12) appear in terms of the Heaviside Θ-functions in
Equation (15). Also notice that, for λ >

√
2, the third contribution vanishes. The DOS (15)

is shown in Figure 5 as a function of ω for several values of parameter λ.
Also, in the vicinity of high symmetry points, we expand Equation (15) using the

approximative Taylor expansion for x ≪ 1,

Arccos[±(1 − x)] ≈ (1 ∓ 1)
π

2
±
√

2x. (17)

First, we analyze the intersecting spindle case, for λ <
√

2 (Figure 5a). The N−(ω, λ <√
2) = N0ω/λ function is linear in ω from ω = 0 up to ω = ωT, where the van Hove

singularity, due to presence of the saddle point in spectrum, is located. The DOS at this point
is N−(ωT, λ) = N0ωT/λ while, for ω just above ωT, Equation (15) can be expanded to

N−(ω ⪆ ωT , λ <
√

2) ≈ N0

√
1 − λ2

4

[
1 − 1

π

√
8
λ

(
1 + λ2/2
1 − λ2/2

)1/4√
ω − ωT

]
. (18)

For ω > ωT , DOS monotonically decreases until the next van Hove singularity, due
to the presence of the elliptic point in spectrum at ω = 1, is reached. Since ω = 1 is a
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limiting point that divides two-surfaced and a single-surfaced FS, we inspect, in detail the
corresponding DOS. Inserting ω = 1 in Equation (15), we obtain

N−(ω = 1, λ) =
N0

λ

[
1 − 1

π
Arccos

(
λ2

2
−
∣∣∣∣1 − λ2

2

∣∣∣∣)]. (19)

Figure 5. Density of states of the nodal semimetal (ν = −1) with energy dispersion Equation (3) as
a function of scaled energy (ω). (a) DOS in the case of self-intersecting spindle phase, appearing
for λ <

√
2, shown for several values λ. (b) DOS in the torus phase of the nodal system, appearing

for λ >
√

2, shown for several values λ. Black dashed curve in each graph depicts the separatrix,
λ =

√
2, between regimes (a,b).

Equation (19) is shown in Figure 6 (inset). For λ <
√

2, it increases as function of λ,
forming a cusp for λ =

√
2, after which it decreases as N−(ω = 1, λ >

√
2) = N0/λ.

In the high-energy limit, ω ≫ 1, only the first two terms in Equation (15) remain.
Expanding ψ−

−(ω ≫ λ, λ)/ω ≈ λ2(ω − P−(λ)/λ2)/(2ω2)− 1 and using expansion (17),
we obtain

N−(ω ≫ 1, λ <
√

2) ≈ N0

π

√
ω − P−(λ)

λ2 ∼
√

ω. (20)

Equation (20) is similar to the DOS of the 3D free electron gas. This result is to be
expected since, for large wave vectors (i.e., the large energy), the dispersion (3) becomes
roughly parabolic in the wave vector since the κ4 term dominates over the κ2

z term.
Some results, found for DOS in the case of intersecting torus, apply for the “doughnut

torus” case, λ >
√

2. The third term in Equation (15) vanishes, and what remains is DOS
linear in ω, i.e., N−(ω, λ >

√
2) = N0ω/λ, for ω < 1. For ω = 1, DOS has a discontinuity,

as shown by Equation (19), and, just above ω = 1, it has a square root dependence,

N−(ω ⪆ 1, λ >
√

2) ≈ N0

λ

1 − 1
π

√
2λ2

λ2 − 2

√
ω − 1

, (21)

which diverges for λ =
√

2 and therefore signals that additional elements have to be
retained in the expansion of ψ−

−(ω, λ). Thus, for λ =
√

2, the result up to the leading order
in ω is

N−(ω ⪆ 1, λ =
√

2) ≈ N0√
2

[
1 − 23/4

π
(ω − 1)1/4

]
, (22)

where it is worth noticing the analytical property that DOS depends on the forth root of
energy, appearing only in this case. Finally, in the high-energy limit, N−(ω ≫ 1, λ >

√
2)

follows the square root dependence given by Equation (20).
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Figure 6. DOS in the NLP phase for two special cases: (1) λ ≫ 1 & λ ≫ ω, according to Equation (23);
(2) λ = 0, according to Equation (26). The inset shows DOS taken at the “critical point” ω = 1,
depending on parameter λ2, according to Equation (19).

We also single out two specific cases:
1. The first one is for energy ω that satisfies inequality λ ≫ 1 & λ ≫ ω. It is shown in

Figure 6, the λ2 = 1000 case. In this interval, the auxiliary function ψ−
−(λ ≫ ω) → 0, so the

Equation (15) reduces to

N−(λ ≫ ω, λ ≫ 1) ≈ N0
ω

λ
×
{

1, ω < 1
1/2, ω > 1.

(23)

DOS in this case is linear in ω, with different slopes below and above ω = 1, and it
is highly reduced in amplitude. This property of linearity, especially in the ω > 1 case, is
particularly noticeable for the small parameter ∆ in Equation (2) if other bands are much
higher (lower) in energy compared to ∆. In this limit, this 3D system effectively resembles
the 2D behavior (see the results for DOS in Ref. [21]).

2. The second specific case is for λ = 0. It is a case when Hamiltonian (1) is given only
by the first term featuring the σz Pauli matrix. Diagonalization leads to energies

ω±
κ = ±

∣∣∣1 − κ2
∣∣∣. (24)

Although trivial in appearance, dispersion (24) leads to the unique properties of the
corresponding DOS. To see them, we analyze Equation (15), in which the third term can be
written as

Arccos
ψ−
+(ω, λ)

ω
− Arccos

ψ−
−(ω, λ)

ω
= Arccos

(
λ2

ω2

(
1 +

√
1 − ω2

)
− 1
)

. (25)

Setting the λ → 0 in the above expression and using expansion (17) together with
Equation (20) in which limλ→0 P−(λ)/λ2 = −1, we obtain

N−(ω, λ = 0) =
N0

π

[(√
1 + ω +

√
1 − ω

)
Θ(1 − ω) +

√
1 + ω Θ(ω − 1)

]
. (26)

This special form of DOS is shown in Figure 6 with the dome-like feature for ω below 1.
This can be seen as a natural limit of the trend shown in Figure 5 as λ is decreasing.

6. Density of States in the Gapped Phase

Here, we investigate the DOS of the gapped phase by setting ν = +1 in the restrictions
enumerated in Section 4, obtaining permitted intervals of u-integration for each case:

➀ u ∈ [0, ∞⟩,
➁ u ∈ [−1 − ω, −1 + ω],
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➂ u ∈ ⟨−∞, 1 − ψ+
+(ω, λ)] ∪ [1 − ψ+

−(ω, λ), ∞⟩.
In the conditions above, an auxiliary function (11) is implemented and the intersection

u ∈ ➀ ∩ ➁ ∩ ➂ determines the integration boundaries. We remind the reader that in the
GP, ω > 1 (i.e., the band is located above the band gap), which makes the integration
boundaries easy to determine:

u ∈ [1 − ψ+
−(ω, λ), −1 + ω]. (27)

Inserting the integration boundaries (27) in (10), and using (13) and (14), we obtain DOS in
the GP phase,

N+(ω, λ) = N0
ω

λ

[
1 − 1

π
Arccos

ψ+
−(ω, λ)

ω

]
Θ(ω − 1), (28)

shown in Figure 7. As in the NLP case, we can determine the limiting values.
First, by expanding the expression (28) for energies just above the band gap, i.e., ω ⪆ 1,

we obtain
N+(ω ⪆ 1, λ) ≈ N0

π
√

1 + λ2/2

√
ω − 1 Θ(ω − 1). (29)

Second, in the high energy limit, ω ≫ λ ≈ 1, similarly to Equation (20), we obtain

N+(ω ≫ 1, λ) ≈ N0

π

√
ω − P+(λ)

λ2 ∼
√

ω. (30)

The “square root behavior” in both cases, resembling the 3D free electron gas, is not
surprising since we work with the band with the elliptic point at its bottom.

Third, in the case of energies over which the parameter λ is the dominant variable, i.e.,
λ > ω, by setting ψ+

−(ω, λ) → 0 we obtain

N+(ω > 1, λ ≫ ω) ≈ N0
ω

2λ
. (31)

As expected, this is the same result as in Equation (23) (see Figure 7, case λ = 10),
which follows from the correct expansion of Equation (3) with dominant λ-term.

Finally, let us examine the λ → 0 limit, in which the expression (29) reduces to

N+(ω, λ = 0) =
N0

π

√
ω − 1 Θ(ω − 1), (32)

which is a DOS of the 3D parabolic insulator.

Figure 7. Density of states in the gapped phase (ν = +1) of the system, with energy dispersion
Equation (3) as a function of scaled energy ω, for different values of parameter λ, according to
Equation (28).
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7. Conclusions

We present analytical results comprising electron bands and density of states (DOS)
for the effective low-energy two-band electron Hamiltonian, which models the so-called
nodal-loop phase (NLP) and the gapped phase (GP) depending on parameters. This way
to model the real materials is quite common and useful for the description of the response
to the low-energy excitations, the most common among them being the different types of
transport properties, such as optical conductivity, for systems with two bands close to the
Fermi energy. Besides in the common models, where the density of state naturally appears,
such as the plasmon properties, Coulomb screening, or superconductivity mechanisms, it
has recently been shown that it plays a key role in the description of the dynamical charge
transport in the Holstein-like systems in which it turns out that electron relaxation can be
described solely in terms of electron DOS [22]. In that sense, an analytical character of DOS,
presented in this paper for the considered Hamiltonian, is of an utmost importance in order
to understand the underlying mechanisms leading to the properties of the above-mentioned
quantities depending on it.

In this paper, we present analysis of exactly those features. We observe a vanishing
value of DOS at the Fermi energy (in the intrinsic case), followed by the linear increase
with energy in the NLP case, typical for semimetalic systems, or square-root behavior
above the bottom of the band in the GP case, characteristic for 3D insulators with parabolic
electron dispersion. Also, we provide a detailed description of DOS around the van Hove
singularities appearing due to the presence of the peculiar points in the electron spectrum.
In the NLP case, the hyperbolic (saddle) point and the elliptic point are encountered,
while the GP case features only the elliptical point at the bottom of the band. A good
analysis of similar Hamiltonian with the NLP, from its topological properties to the real
materials described by it, is given in Refs. [1,23]. On the other hand, an example of
the application of the NLP Hamiltonian to the description of the optical conductivity is
given in Refs. [24,25]. The band structure of the corresponding real systems can be quite
complex and is usually addressed by different ab initio methods [18,19]. This work intends
to complement those methods via the precise, analytical description of the bands and
DOS properties in the most relevant region—the narrow interval around the Fermi energy
located either in the vicinity of the nodal line or the band gap. The validity of the presented
model is closely related to the validity of the effective Hamiltonian (1) in the sense of its
deviation from the particular real system, as well as to the nature of an effect one wants to
describe. For example, the optical excitations (“vertical transitions”) are very suitable in
that matter. Although the presented model is primarily intended to be an analytical tool to
help describe and understand features in a number of quantities depending on DOS, we
need to at least discuss its experimental observability. The direct experimental observation
of DOS is achieved by measuring the Pauli susceptibility, which, on the other hand, requires
the doping mechanism to vary the Fermi energy, leaving the bands intact in the process.
In other techniques, such as STM and ARPES, DOS appears within the convolution, leading
to the specific, technique-dependent response function, and is not directly observable as is.
The description of those techniques and corresponding response functions is far out of the
scope and main message of this paper and will be discussed elsewhere.
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14. Rukelj, Z.; Radić; D. Topological Properties of the 2D 2-Band System with Generalized W-Shaped Band Inversion. Quantum Rep.

2022, 4, 476–485. [CrossRef]
15. Barati, S.; Abedinpour, S.H. Optical conductivity of three and two dimensional topological nodal-line semimetals. Phys. Rev. B

2017, 96, 155150. [CrossRef]
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