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Introduction

Motif scanning is a common method in bioinformatics, used for various purposes such

as protein family assignment, secondary structure prediction, and similar tasks. Motif

scanning methods take a motif, which we call a query, as input and search for similar

patterns in a set of sequences. The output consists of sufficiently similar matches, forming

a set of positives, or what is referred to as the response. So, the objective of the motif

scanning method is to detect motifs of sufficient similarity to the query, which is then used

to determine family membership or structural and functional features or assignments.

In this thesis, we are focused on improving the accuracy of motif scanning procedures.

Given a set of motifs obtained from a scanning process, we filter the response based on the

analysis of pairwise similarity of the motifs. We achieve this by transitioning to Euclidean

space, where we consider the distance between motifs instead of their similarity.

This work consists of five chapters. The first chapter covers mathematical concepts

from linear algebra, probability, and statistics that are important later on. The second

chapter explains biological concepts and terms from bioinformatics. The third and fourth

chapters provide a detailed description of the method for improving the accuracy of the

motif scanning procedure when dealing with secondary structure motifs. Finally, in the

last chapter, we demonstrate the method in detail with an alpha helix example. At the end

we present the results that we obtained.
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Chapter 1

Mathematical Background

Theorems, definitions, propositions, and remarks on linear algebra and probability in this

chapter are taken from sources [4], [5], [6], [12] and [14].

1.1 Linear algebra

Definition 1.1.1. Let F be a set with the binary operations of addition + : F×F→ F and

multiplication · : F × F→ F that satisfy the following properties:

1. α + (β + γ) = (α + β) + γ, ∀α, β, γ ∈ F;

2. There exists 0 ∈ F such that α + 0 = 0 + α = α, ∀α ∈ F;

3. For every α ∈ F, there exists −α ∈ F such that α + (−α) = −α + α = 0;

4. α + β = β + α, ∀α, β ∈ F;

5. α(βγ) = (αβ)γ, ∀α, β, γ ∈ F;

6. There exists 1 ∈ F \ {0} such that 1 · α = α · 1 = α, ∀α ∈ F;

7. For every α ∈ F, α , 0, there exists α−1 ∈ F such that αα−1 = α−1α = 1;

8. αβ = βα, ∀α, β ∈ F;

9. α(β + γ) = αβ + αγ, ∀α, β, γ ∈ F.

Then we say that the ordered triple (F,+, ·) is a field, and the elements of the field are

called scalars.

3



4 CHAPTER 1. MATHEMATICAL BACKGROUND

Remark 1.1.2. The set of real numbers R with the usual operations of addition and multi-

plication is a field.

Definition 1.1.3. Let V be a non-empty set with a binary operation of addition + : V×V →
V and a scalar multiplication operation where scalars are from the field F, · : F× V → V.

We say that the ordered triple (V,+, ·) is a vector space over the field F if the following

hold:

1. a + (b + c) = (a + b) + c, ∀a, b, c ∈ V;

2. There exists 0 ∈ V such that a + 0 = 0 + a = a, ∀a ∈ V;

3. For every a ∈ V, there exists −a ∈ V such that a + (−a) = −a + a = 0;

4. a + b = b + a, ∀a, b ∈ V;

5. α(βa) = (αβ)a, ∀α, β ∈ F,∀a ∈ V;

6. (α + β)a = αa + βa, ∀α, β ∈ F,∀a ∈ V;

7. α(a + b) = αa + αb, ∀α ∈ F,∀a, b ∈ V;

8. 1 · a = a, ∀a ∈ V.

Remark 1.1.4. The set Rn with the usual operations of addition and scalar multiplication

is a vector space over the field R. We also say that (Rn,+, ·) is a real vector space.

Definition 1.1.5. For natural numbers m and n, mapping

A : {1, 2, . . . ,m} × {1, 2, . . . , n} → F

is called a matrix of type (m, n) with coefficients from the field F.

Definition 1.1.6. Let V be a vector space over the field F. A scalar product on V is a

mapping ï·, ·ð : V × V → F that satisfies the following properties:

1. ïx, xð g 0, ∀x ∈ V;

2. ïx, xð = 0ô x = 0;

3. ïx1 + x2, yð = ïx1, yð + ïx2, yð, ∀x1, x2, y ∈ V;

4. ïαx, yð = αïx, yð, ∀α ∈ F,∀x, y ∈ V;

5. ïx, yð = ïy, xð, ∀x, y ∈ V.
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Remark 1.1.7. In Rn, the canonical scalar product is defined by

ï(x1, . . . , xn), (y1, . . . , yn)ð =
n
∑

i=1

xiyi.

Definition 1.1.8. A vector space on which a scalar product is defined is called a unitary

space.

Definition 1.1.9. Let V be a unitary space. A norm on V is a function ∥ · ∥ : V → R defined

by

∥x∥ =
√

ïx, xð.

Proposition 1.1.10. The norm on a unitary space V has the following properties:

1. ∥x∥ g 0, ∀x ∈ V;

2. ∥x∥ = 0ô x = 0;

3. ∥αx∥ = |α|∥x∥, ∀α ∈ F,∀x ∈ V;

4. ∥x + y∥ f ∥x∥ + ∥y∥, ∀x, y ∈ V.

Remark 1.1.11. Any function ∥ · ∥ : V → R on a vector space V with the properties from

Proposition 1.1.10 is called a norm. Then (V, ∥ · ∥) is called a normed space.

Remark 1.1.12. The norm induced by the canonical scalar product on Rn, defined in Re-

mark 1.1.7, is given by the formula

∥(x1, . . . , xn)∥ =

√

√

n
∑

i=1

x2
i
.

This norm is called the Euclidean norm.

Definition 1.1.13. Let V be a normed space. A metric or distance on the set V is a mapping

d : V × V → R defined by

d(x, y) = ∥x − y∥.

Proposition 1.1.14. The metric on a normed space has the following properties:

1. d(x, y) g 0, ∀x, y ∈ V;

2. d(x, y) = 0ô x = y, ∀x, y ∈ V;

3. d(x, y) = d(y, x), ∀x, y ∈ V;
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4. d(x, y) f d(x, z) + d(z, y), ∀x, y, z ∈ V.

Remark 1.1.15. Let X be a non-empty set. Any function d : X × X → R on the set X with

the properties from Proposition 1.1.14 is called a metric or distance. Then (X, d) is called

a metric space.

Remark 1.1.16. The metric induced by the Euclidean norm onRn, defined in Remark 1.1.12,

is given by the formula

d
(

(x1, . . . , xn), (y1, . . . , yn)
)

=

√

√

n
∑

i=1

(xi − yi)2.

This metric is called the Euclidean metric, and the space Rn together with this metric is

called an n-dimensional Euclidean space.

Definition 1.1.17. Let (X, d) be a metric space, and let a ∈ X and r ∈ R, r > 0. The set

K(a, r) = {x ∈ X | d(a, x) < r},

is called an open ball in X with center at a and radius r.

Remark 1.1.18. In an n-dimensional Euclidean space Rn, an open ball with center at a

and radius r is given by

K(a, r) =























x ∈ Rn |

√

√

n
∑

i=1

(ai − xi)2 < r























.

1.2 Probability theory

Probability Space

Definition 1.2.1. A random experiment, or a random trial, is an experiment whose out-

comes, i.e., results, are not uniquely determined by the conditions under which we conduct

the experiment.

Definition 1.2.2. The sample space Ω is a non-empty set that represents the set of all

outcomes of a random experiment. The elements ω of the set Ω are called elementary

events.

Definition 1.2.3. A family F of subsets of Ω (F ¢ P(Ω)) is a σ-algebra of sets on Ω if:

1. ∅ ∈ F ;
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2. A ∈ F ⇒ Ac ∈ F ;

3. Ai ∈ F , i ∈ N⇒
⋃∞

i=1 Ai ∈ F .

Definition 1.2.4. Let F be a σ-algebra on the set Ω. The ordered pair (Ω,F ) is called a

measurable space.

Definition 1.2.5. Let (Ω,F ) be a measurable space. A function P : F → R is a probability

(on F , on Ω) if it satisfies:

1. P(A) g 0,∀A ∈ F ;

2. P(Ω) = 1;

3. Ai ∈ F , i ∈ N and Ai ∩ A j = ∅ for i , j =⇒ P

(

⋃∞
i=1 Ai

)

=
∑∞

i=1 P(Ai).

Definition 1.2.6. An ordered triple (Ω,F ,P), where F is a σ-algebra on Ω and P is a

probability on F , is called a probability space.

Random variable

Definition 1.2.7. Let S be an arbitrary non-empty set and A be a family of subsets of S

(A ¢ P(S )). Denote by σ(A) the smallest σ-algebra of subsets of S containing A. We

call it the σ-algebra generated byA .

Definition 1.2.8. Let B denote the σ-algebra generated by the family of all open sets on

R. B is called the Borel σ-algebra on R, and the elements of the σ-algebra B are called

Borel sets .

Definition 1.2.9. Let (Ω,F ,P) be a probability space. A function X : Ω→ R is a random

variable (on Ω) if X−1(B) ∈ F for arbitrary B ∈ B, i.e., X−1(B) ¢ F .

Definition 1.2.10. Let (Ω,F ,P) be a probability space, and let X : Ω → Rn. We say that

X is an n-dimensional random vector (or simply a random vector) (on Ω) if X−1(B) ∈ F
for every B ∈ Bn, i.e., X−1(Bn) ¢ F .

Definition 1.2.11. Let X be a random variable on (Ω,F ,P). X is a simple random variable

if its range is a finite set.

X is a simple random variable if and only if

X =

n
∑

k=1

xkKAk
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where x1, x2, . . . , xn are real numbers, and A1, A2, . . . , An are pairwise disjoint events with
⋃n

k=1 Ak = Ω. KAk
denotes the characteristic function of the set Ak.

Let X1, X2 : Ω→ R. Then we define the functions X1 ( X2 and X1 ' X2 on Ω by:

(X1 ( X2)(ω) = max{X1(ω), X2(ω)}, ω ∈ Ω,

and

(X1 ' X2)(ω) = min{X1(ω), X2(ω)}, ω ∈ Ω.
Using first of the two functions, we define the positive and negative parts of the real

function X on Ω:

X+ = X ( 0, X− = (−X) ( 0.

X+ and X− are non-negative real functions, and we have:

X = X+ − X−,

|X| = X+ + X−.

Corollary 1.2.12. X is a random variable if and only if X+ and X− are random variables.

Theorem 1.2.13. Let X be a non-negative random variable on Ω. Then there exists an

increasing sequence (Xn, n ∈ N) of non-negative simple random variables such that X =

limn→∞ Xn (on Ω).

Mathematical expectation and variance

The definition of mathematical expectation is conducted in three steps. First, the mathe-

matical expectation of a simple random variable is defined, then of a non-negative random

variable, and finally of a general random variable.

Let (Ω,F ,P) be a probability space. Let K be the set of all simple random variables

defined on Ω, and K+ the set of all non-negative functions in K .

Let X ∈ K , X =
∑n

k=1 xkKAk
, where A1, A2, . . . , An ∈ F are mutually disjoint.

Definition 1.2.14. Mathematical expectation of X, or simply the expectation of X, is de-

noted by E[X] and defined as:

E[X] =

n
∑

k=1

xkP(Ak).

Now let X be a non-negative random variable defined on Ω. According to Theorem

1.2.13, there exists an increasing sequence (Xn)n∈N of non-negative simple random variables

such that X = limn→∞ Xn. The sequence (E[Xn])n∈N is an increasing sequence in R+, so

limn→∞ E[Xn] exists and may be equal to +∞.
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Definition 1.2.15. Mathematical expectation of X, or simply the expectation of X, is de-

fined as

E[X] = lim
n→∞

E[Xn].

Now let X be an arbitrary random variable on Ω. It holds that X = X+ − X−, where

X+ and X− are non-negative random variables and X+, X− g 0.

Definition 1.2.16. We say that the mathematical expectation of X, or simply the expecta-

tion of X, exists (or is defined) if at least one of the quantities E[X+], E[X−] is finite, i.e., if

min{E[X+],E[X−]} < +∞. Then by definition, we set

E[X] = E[X+] − E[X−].

We list basic properties of mathematical expectation:

Theorem 1.2.17. We have:

1. If E[X] exists and c ∈ R, then E[cX] exists and

E[cX] = cE[X].

2. If X f Y , then

E[X] f E[Y].

In the sense that

if −∞ < E[X], then −∞ < E[Y] and E[X] f E[Y],

or

if E[Y] < ∞, then E[X] < ∞ and E[X] f E[Y].

3. If E[X] exists, then

|E[X]| f E[|X|].

4. If E[X] exists, then E[XKA] exists for every A ∈ F . If E[X] is finite, then E[XKA]

is finite for every A ∈ F .

5. Let X and Y be non-negative random variables. Then

E[X + Y] = E[X] + E[Y].

Definition 1.2.18. Let X be a random variable on (Ω,F ,P) and let E[X] be finite. Then

we define the variance of X, denoted by Var(X) or σ2
X, as follows:

Var(X) = E[(X − E[X])2].

Remark 1.2.19. The positive square root of the variance is called the standard deviation

of X and is denoted by σX.
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Distribution function

Definition 1.2.20. Let X be a random variable on Ω. The distribution function of X is the

function FX : R→ [0, 1], defined as:

FX(x) = P(X−1(ï−∞, x])) = P({ω ∈ Ω : X(ω) f x}) = P(X f x), x ∈ R.

Remark 1.2.21. If it is clear which random variable we are referring to, we write F instead

of FX.

Theorem 1.2.22. The distribution function F of the random variable X is non-decreasing

and right-continuous on R, and satisfies:

F(−∞) = lim
x→−∞

F(x) = 0

F(+∞) = lim
x→+∞

F(x) = 1.

A function F : R → [0, 1] with these properties is called the cumulative distribution

function (on R) or simply, the distribution function.

Classification of random variables

Definition 1.2.23 (Discrete Random Variable). Let X be a random variable on Ω. X is

discrete if there exists a finite or countable set D ¢ R such that P{X ∈ D} = 1.

Discrete random variables are typically specified by providing the set D = {x1, x2, . . .}
and the probabilities pn = P{X = xn}, which can be represented in tabular form:

X ∼























x1

p1

x2 . . .

p2 . . .

xn . . .

pn . . .























.

The above table is called the distribution of the random variable X. In the distribution

table, xn ∈ R, xi , x j for i , j, pn > 0, and
∑

n pn = 1.

Definition 1.2.24. A function g : R→ R is a Borel function if g−1(B) ∈ B for every B ∈ B,

i.e., if g−1(B) ¢ B.

Definition 1.2.25. Let X be a random variable on the probability space (Ω,F ,P), and

let FX denote its cumulative distribution function. X is absolutely continuous, or simply,

continuous random variable, if there exists a non-negative real-valued Borel function f

on R( f : R→ R+) such that

FX(x) =

∫ x

−∞
f (t) dλ(t), x ∈ R.
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If X is a continuous random variable, the function f is called the probability density func-

tion of X, denoted sometimes as fX.

Definition 1.2.26. Let µ, σ ∈ R, σ > 0. A continuous random variable X has a normal

distribution with parameters µ and σ2 if its density function f is given by

f (x) =
1

σ
√

2π
e
− (x−µ)2

2σ2 , x ∈ R.

We denote this as X ∼ N(µ, σ2).

Remark 1.2.27. X is the standard normal distribution if X ∼ N(0, 1), hence the probability

density function f (x) is given by

f (x) =
1
√

2π
e−

x2

2 , x ∈ R.

Descriptive statistics

In this section, we define the terms that are necessary for further understanding of the

paper. We introduce concepts such as the arithmetic mean, sample standard deviation,

sample variance, and data standardization.

Let x1, x2, . . . , xn be n values (observations) of the variable X, comprising a dataset. If

X is a numerical variable, it is a sequence of numbers. We assume that X is a numerical

variable.

The arithmetic mean of the data is a measure of central tendency defined as:

x̄ =
1

n

n
∑

i=1

xi.

The sample variance is a measure of data dispersion, representing the average squared

deviation of the data points from their arithmetic mean, given by:

s2 =
1

n − 1

n
∑

i=1

(xi − x̄)2.

From the previous definitions, the sample standard deviation, which is the square root

of the variance, is given by:

s =

√

√

1

n − 1

n
∑

i=1

(xi − x̄)2.
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Data standardization is a common procedure in statistics before processing data and

building models or algorithms. Data are transformed by subtracting the mean and dividing

by the sample standard deviation:

x′i =
xi − x̄

s
.



Chapter 2

Biological Background and

Bioinformatics

Proteins and their structures

Proteins

Proteins are essential biomolecules composed of amino acids. They serve as the building

blocks of cells, tissues, and organs, participating in virtually every physiological function

in living organisms. Amino acids are organic molecules that contain both an amino group

(NH2) and a carboxyl group (COOH). Each amino acid has a specific side chain, known

as an R group, that defines its characteristics.

Label Name Label Name

A Alanine M Methionine

C Cysteine N Asparagine

D Aspartic Acid P Proline

E Glutamic Acid Q Glutamine

F Phenylalanine R Arginine

G Glycine S Serine

H Histidine T Threonine

I Isoleucine V Valine

K Lysine W Tryptophan

L Leucine Y Tyrosine

Table 2.1: Standard amino acids: labels and names

Proteins are formed by linking amino acids together in a linear chain through peptide

13
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bonds. This chain has two ends: the N-terminus (amino terminus), which has a free amino

group, and the C-terminus (carboxyl terminus), which has a free carboxyl group. The se-

quence of amino acids in a protein, read from the N-terminus to the C-terminus, determines

the protein’s unique structure and function [15].

Proteins exhibit diverse functions. They act as enzymes, structural components, sig-

naling molecules, gene expression regulators, and more. The specific function of a protein

is linked to its three-dimensional conformation, which is determined by the amino acid

sequence. Understanding protein structure and function is crucial for cellular insights and

therapeutic development.

Protein structure

Protein structures are categorized into primary, secondary, tertiary, and quaternary. The

primary structure is the linear sequence of amino acids connected by peptide bonds, which

dictates the folding and formation of the protein’s secondary structure. The secondary

structure consists of local folding patterns of the backbone that are stabilized by hydro-

gen bonds. The tertiary structure refers to the overall three-dimensional shape of a single

polypeptide chain. The quaternary structure is the assembly of multiple polypeptide chains

into a functional complex.

Secondary structure

As mentioned, the secondary structure consists of local folding patterns of the backbone

that are stabilized by hydrogen bonds between nearby amino acids in the polypeptide chain.

There are two main types of secondary structures: α-helices and β-sheets. The α-helix is a

right-handed helical structure formed by the twisting of the polypeptide chain into a coil-

like shape, and it is the most common structural arrangement in the secondary structure.

The β-sheet consists of strands of polypeptide chains that are extended and aligned along-

side each other, with adjacent strands held together by hydrogen bonds. β-sheets can be

antiparallel or parallel, depending on the relative direction of the polypeptide chains [16].

Figure 2.1: Formation of hydrogen bonds in the α-helix
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Figure 2.2: Formation of hydrogen bonds in the β-sheet

Protein motif and motif scanning methods

A protein motif is a short, conserved sequence of amino acids within a protein, often as-

sociated with a recognizable structural part that performs a specific function, such as bind-

ing, catalysis, or structural stability. These motifs provide insights into protein evolution

since they are more conserved than other regions and often act as independent units within

proteins. The presence of specific motifs helps predict the function of uncharacterized pro-

teins.

Motif scanning methods are widely used techniques in bioinformatics for analyzing se-

quences. They aim to identify conserved patterns in protein sequences, detecting motifs

similar to the query to determine family membership or structural and functional features.

These methods take a motif, the query, as input and find similar subsequences within a

given set of sequences, which is the chosen list of proteins. The output consists of suf-

ficiently similar matches, referred to as the “response”. Typically, these methods involve

using a local alignment algorithm and a similarity function. The response is generated in

two steps: first, all local alignment results are ranked by similarity to the query, and then

only those above a certain similarity threshold are selected [10].





Chapter 3

Method - Outlines

3.1 A brief description

The goal is to improve the accuracy of motif scanning procedures by detecting as many

significant motifs as possible (true positives) while minimizing the number of wrong as-

signments (false positives). Accuracy is measured by how closely the response matches

the biologically relevant sequences in the sample. To enhance accuracy, we employ an ap-

proach based on pairwise similarity, examining not just the similarity to the query but also

the mutual similarity among protein motifs within the response. Given a large response that

presumably contains a significant number of false positives, we search for subsets where

each pair of elements is sufficiently similar. The largest of these subsets is considered the

new, modified response. This strategy is sensible because true positives are more likely to

be similar to each other than false positives. We apply this approach to responses from two

iterative motif scanners: PSI-BLAST and IGLOSS.

IGLOSS, which stands for Iterative Gapless Local Similarity Search, utilizes an input scale

parameter, which is the confidence level, to set the threshold for what is considered “suffi-

cient similarity.” The response generated by IGLOSS consists of protein motifs with simi-

larity greater than or equal to the specified scale. A higher scale parameter punishes devi-

ations from the motif more severely, thus selecting more similar sequences. Consequently,

the number of data points in the response is inversely proportional to the confidence level

[11].

PSI-BLAST, or Position-Specific Iterative Basic Local Alignment Search Tool, differs from

IGLOSS by allowing gaps. The confidence level in PSI-BLAST is the e-value, where a

smaller e-value indicates greater similarity between the query and responses. With PSI-

BLAST, a smaller e-value means a higher threshold, leading to the selection of more sim-

17
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ilar sequences and resulting in fewer data points in the response. In contrast to IGLOSS,

the number of data points in PSI-BLAST is proportional to the confidence level [1].

We systematically work with a lower threshold for two reasons: to hopefully avoid false

negatives and to ensure we have a sizable set of positives to work with. Therefore, when

using IGLOSS, smaller values are used for the input scale parameter, whereas with PSI-

BLAST, larger values are used for the e-value.

3.2 Method summary

The analysis begins with a sequence of letters, known as the query, which possesses a spe-

cific property relevant to the study. Using defined criteria and techniques, we identify a

relatively large set of similar sequences that potentially share this property with the query,

referred to as positives. From this set, we aim to find a subset more likely to possess the

same property as the query, known as true positives. Our goal is to identify a subset within

the given set of positives, aiming to discard as many false positives as possible while re-

taining the true positives.

The developed method is based on analyzing pairwise similarity, unlike search engines,

which calculate similarity to the query [10]. We assume that true positives are more densely

clustered compared to false positives and will be located within a sphere. By finding this

sphere, we obtain points such that each pair is “sufficiently” close to each other. However,

we encounter two key challenges: the annotation for protein secondary structure is not reli-

able, and we lack a characteristic query. To tackle these challenges, we consider the “once

green, always green” approach and the coherent query or relevant query approach.

The main goal of this method is to blindly identify a suitable subset without any prior

knowledge of secondary structure annotation. By achieving this, we eliminate reliance on

annotation accuracy, as successful identification of protein motifs sharing the same sec-

ondary structure annotation can occur without prior knowledge of their annotation. Thus,

while the method initially depends on annotation accuracy for testing and validation, it

aims to operate independently in practice.

3.3 Motivation

We closely follow the approach stated in [12], where a sphere predominantly containing

true positives was identified blindly, i.e. without any prior knowledge of true positives.

We have two images showing candidates for a specific family of plant enzymes. The first
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image displays candidates for Arabidopsis thaliana, a wild plant. It shows a well-defined

grouping that can be placed within a sphere, suggesting a single evolutionary origin. In this

case, the criteria for the blind search is to find a sphere with the given radius containing the

most elements. It turns out that the sphere satisfying this criteria, for Arabidopsis thaliana,

predominantly consists of true positives. This demonstrates the method’s effectiveness in

identifying relevant candidates without prior knowledge of true positives.

In contrast, the second image shows candidates for soybean, where multiple groupings

were identified that cannot be placed in a single sphere, possibly due to the hybridized

nature of soybeans, indicating multiple evolutionary origins. Furthermore, a characteristic

query is used to find the best candidates via a search engine. The characteristic query

represents the characteristic features of the target. However, we do not have such a query

and must ensure good candidates through other means.

Figure 3.1: Arabidopsis thaliana Figure 3.2: Soybean





Chapter 4

Method - Details

4.1 Procedure for identifying queries and good hits

We have a list of proteins with annotated secondary structure elements, internally named

Structureome, consisting of 224,002 proteins. Protein secondary structure annotation de-

scribes the secondary structure of each amino acid subsequence. Here’s a part of the first

row in the list and its annotation:

MVLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPETLEKFDRVKHL

----HHHHHHHHHHHHHHGGGHHHHHHHHHHHHHHH -GGGGGG-TTTTT-

The procedure for identifying a query begins by selecting the secondary structure of

interest, either Helix (H) or Sheet (S). We then extract sequences of amino acids of length

10 f L f 30 where each element of its corresponding annotation is the letter H. From the

provided example, potential queries are EGEWQLVLHVWAKV and VAGHGQDILIRLFKS. This

process yields a list of all possible queries for helices, amounting to a total of 196,237. For

sheets we extract sequences of length 8 f L f 15 where each element of its corresponding

annotation is the letter S.

A “good hit” denotes sequences with the same secondary structure annotation as the

query. In other words, a good hit is simply another term for a true positive. Hits are the

motifs that are “sufficiently” similar to the given query and are obtained from the search

engine. For each hit, we examine its annotation. If the annotation consists only of H

elements, allowing for one gap (“-”), it is considered a good hit, i.e., a true positive. For

sheets, the process is analogous, with the symbol S used instead of H.

21
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4.2 Data preparation

We perform sequence length adjustment to ensure uniformity in the length of retrieved se-

quences for analysis. Depending on the search engine used, IGLOSS maintains sequences

at length L, while PSI-BLAST allows sequences to be shorter or equal to L. Shorter se-

quences in PSI-BLAST are extended with gaps (“-”) to match the query length. For exam-

ple, if the query is:

ENIKKEACWTISNIT

and the retrieved hit is:

DACWAISYLS

it is adjusted to:

ENIKKEACWTISNIT

-----DACWAISYLS

This adjustment ensures consistency in sequence length, facilitating accurate compari-

son and analysis in subsequent steps of the procedure.

Transition to Euclidean space

Sequences of amino acids are composed of letters, but the lack of a natural metric for

comparing data creates an obstacle in conducting statistical analysis. To overcome this

challenge, we represent amino acids with numerical values, enabling the transition to a

vector space RL×5 [3]. Each amino acid is thereby defined by a 5-dimensional vector from

the amino acid representation table 4.1. In this space, data is transformed into L × 5-

dimensional vectors.

Data standardization

To ensure searching for a favorable cluster is a reasonable strategy, data must first be stan-

dardized. If the variance of the data along one coordinate is significantly larger than along

other coordinates, the Euclidean distance would be dominated by that coordinate, resulting

in the loss of the spherical shape where all coordinates should have equal influence.

Standardization is adjusted to avoid division by very small numbers, thus reducing the

possibility of outliers occurring. This adjustment is achieved through the formula:

x′i =
xi − x̄

s + 0.1
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Amino Acid Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

A -0.591 -1.302 -0.733 1.570 -0.146

C -1.343 0.465 -0.862 -1.020 -0.255

D 1.050 0.302 -3.656 -0.259 -3.242

E 1.357 -1.453 1.477 0.113 -0.837

F -1.006 -0.590 1.891 -0.397 0.412

G -0.384 1.652 1.330 1.045 2.064

H 0.336 -0.417 -1.673 -1.474 -0.078

I -1.239 -0.547 2.131 0.393 0.816

K 1.831 -0.561 0.533 -0.277 1.648

L -1.019 -0.987 -1.505 1.266 -0.912

M -0.663 -1.524 2.219 -1.005 1.212

N 0.945 0.828 1.299 -0.169 0.933

P 0.189 2.081 -1.628 0.421 -1.392

Q 0.931 -0.179 -3.005 -0.503 -1.853

R 1.538 -0.055 1.502 0.440 2.897

S -0.228 1.399 -4.760 0.670 -2.647

T -0.032 0.326 2.213 0.908 1.313

V -1.337 -0.279 -0.544 1.242 -1.262

W -0.595 0.009 0.672 -2.128 -0.184

Y 0.260 0.830 3.097 -0.838 1.512

- 7.500 10.000 -6.000 -8.000 -1.000

Table 4.1: Amino acids and their corresponding factors

where x̄ and s denote the arithmetic mean and standard deviation of the data, respectively.

Each data point xi is transformed accordingly.

4.3 Graphical representation of data

We utilize t-Distributed Stochastic Neighbor Embedding (t-SNE) to visually represent our

data [9]. This statistical method effectively reduces the dimensionality of the data while

preserving local structure. In other words, points that are close to each other in the original

high-dimensional space remain close in the reduced-dimensional space. For example, if

points B and C are both near point A in the high-dimensional space, and B is closer to

A than C, t-SNE tries to maintain this local relationship in the reduced space so that B

remains closer to A than C. By transitioning to two dimensions, it becomes possible to
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visualize the separation of true positives from false positives.

4.4 Characteristic query

As mentioned earlier, one of the two challenges is the lack of a characteristic query. To

address this, we begin by randomly selecting a query of length L and executing the entire

procedure described thus far. Utilizing t-SNE, we monitor how the candidates behave spa-

tially. If some clustering of true positives (TP) emerges, we extract motifs from this cluster

to formulate a new query, internally named coherent or relevant. This coherent or relevant

query then serves as our characteristic query. In cases where multiple clusters are iden-

tified, we prioritize the densest cluster for motif extraction [2]. And now, conducting the

entire procedure with the established characteristic query results in much better clustering.

4.5 Confusion matrix - success rate

To measure the success of the method, we establish notation and define relevant accuracy

measures. Subsequences/protein motifs annotated as having the same secondary structure

are marked as condition positive (CP), while the rest are marked as condition negative

(CN). Protein motifs returned by the method are denoted as positive (P), and the remaining

as negative (N).

Depending on the actual and predicted state, each datum is assigned one of four out-

comes: true positive (TP), false negative (FN), false positive (FP), or true negative (TN).

True positives (TP) and false positives (FP) are defined as follows:

TP = P ∩ CP

FP = P ∩ CN

Likewise, true negatives (TN) and false negatives (FN) are defined as follows:

TN = N ∩ CN

FN = N ∩ CP

The relationships of these groups are illustrated with a confusion matrix, providing an

overview of the classification result.

From the table, we can derive eight ratios, forming four complementary pairs, where

the sum of each pair equals 1. These ratios are calculated by dividing the size of each

of the four groups (TP, FN, FP, TN) by their sum in the corresponding row or column,

representing the sizes of the remaining four groups (CP, CN, P, N).
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Predicted State

Positive (P) Negative (N)

Actual State
Condition Positive (CP) True Positive (TP) False Negative (FN)

Condition Negative (CN) False Positive (FP) True Negative (TN)

Table 4.2: Confusion matrix

Typically, the diagnostic ability of an application is assessed by comparing sensitivity

or true positive rate (TPR):

TPR =
TP

CP

and false positive rate (FPR):

FPR =
FP

CN

Generally, when using a method like ours, there is an expected serious imbalance between

the sizes of the condition positive (CP) and condition negative (CN) sets. CN is several

orders of magnitude larger than CP, so for any reasonable test outcome, the false positive

rate (FPR) will be close to 0. Consequently, precision or positive predictive value (PPV) is

considered:

PPV =
TP

P

In such cases, PPV and TPR are used as accuracy measures and are combined by their

harmonic mean, called the F1-score:

F1 = 2 · PPV · TPR

PPV + TPR

This is a standard way to measure the general accuracy of a search procedure by combining

precision (PPV) and sensitivity (TPR). We could have applied this to our analysis provided

that sets CP and CN were marked correctly. However, that is not the case.
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4.6 Radius estimation

We aim to separate the true positives from the set of positives. The assumption is that true

positives are close to each other and form a dense cluster in non-standardized data. After

standardization, this dense cluster takes on a sphere-like shape. Therefore, it is reasonable

to attempt to enclose such a cluster in a sphere [5].

The model

The goal is to estimate a sphere that separates true positives from false ones. We use nu-

merical vectors of length 5L instead of amino acid sequences of length L. For intuitive

understanding, we act as if we are working with sequences, not their numerical representa-

tions. We introduce the conservation coefficient, denoted by α, which represents how well

the motifs in the sphere will be similar on average. Specifically, α represents the relative

frequency of the dominant amino acid per column in a hypothetical motif profile, averaged

over all columns.

The estimate

We define α ∈ (0, 1) as the conservation coefficient for any amino acid in the characteristic

motif. The radius estimate relies on the parameter α, which is set a priori. To determine

the radius, we calculate the expected distance between amino acid sequences sampled from

the α-convex combination of distributions. This calculation assumes an average amino acid

distribution along positions. Using a probabilistic geometry theorem, we can then estimate

the radius. Finally, we adjust this estimate to account for standardized data.

Procedure

First, we need to define the average amino acid distribution R. The distribution R with

probabilities for each amino acid is given by:

R ∼
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Here, ri are the probabilities for amino acids, with i ∈ {1, 2, . . . , 20}. Next, let Ai be the

average distribution of amino acids with the conservation assumption of the i-th amino acid

in the percentage α · 100. Specifically, Ai is given by:

Ai ∼
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where i ∈ {1, 2, . . . , 20}.

The probability pi
j
is formulated as:

pi
j = α · 1{i= j} + (1 − α) · r j, j ∈ {1, 2, . . . , 20}

where 1{i= j} represents the indicator function, which is equal to 1 if i equals j, and 0

otherwise. r j are the probabilities from the average distribution R.

Consider two amino acid sequences of length L, sampled from a certain distribution. Let

X = (X1, X2, . . . , XL) and Y = (Y1,Y2, . . . ,YL) represent the two observed sequences. We

aim to calculate their expected distance. Using the definition of Euclidean distance and the

linearity of expectation, we obtain:

E

[

d2(X,Y)
]

= E



















L
∑

i=1

(Xi − Yi)
2



















=

L
∑

i=1

E

[

(Xi − Yi)
2
]

Due to the lack of specific information about amino acids in any position, we assume they

are some “average” amino acids, denoted as X and Y . Therefore:

E

[

d2(X,Y)
]

=

L
∑

i=1

E

[

(X − Y)2
]

= L · E
[

(X − Y)2
]

The expected square distance between two amino acids ai
j
and ai

k
sampled from distribution

Ai is given by:

E

[

(ai
j − ai

k)
2
]

=

20
∑

j,k=1

(ai
j − ai

k)
2 pi

j p
i
k

By averaging over the distribution R, we obtain the value of the expected square distance

between two amino acids:

E

[

(X − Y)2
]

=

20
∑

i=1

ri

20
∑

j,k=1

(ai
j − ai

k)
2 pi

j p
i
k

Consequently, we have:

E

[

d2(X,Y)
]

= L · E
[

(X − Y)2
]

Theorem 4.6.1 (Jensen’s Inequality). Let φ : R → R be a convex function and E
[

φ(X)
]

<

∞. Then the following holds:

φ
(

E[X]
) f E

[

φ(X)
]

.
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Finally, using the Jensen’s Inequality, we obtain an upper bound for the expected dis-

tance:

E
[

d(X,Y)
] f
√

L · E
[

(X − Y)2
]

This upper bound serves as an approximation for the expected distance:

E
[

d(X,Y)
] ≈
√

L · E
[

(X − Y)2
]

Theorem 4.6.2. The expected distance between two points uniformly distributed in a sphere

in an n-dimensional space approximates to r
√

2 as n → ∞, where r is the radius of the

sphere.

By invoking the Theorem 4.6.2 [8], we obtain the estimate for the radius:

rold =
E
[

d(X,Y)
]

√
2

=

√
L
√

2
·
√

E

[

(X − Y)2
]

After obtaining the estimate, we adjust it for standardized data. Let stdold and stdnew be

the standard deviations of data before and after standardization, respectively. Since radius

and standard deviation are proportional quantities, the final radius estimate is given by:

rnew = rold ·
stdnew

stdold

By substituting rold, we obtain:

rnew =

√
L ·
√

E

[

(X − Y)2
]

√
2

· stdnew

stdold

As mentioned earlier, when using PSI-BLAST, we allow for gaps. Therefore, we need to

incorporate gaps into the average amino acid distribution R. To adjust for the addition of

a new element “-” (gap), we reduce the probability of all other elements (amino acids) by

the same amount. The sum of the subtracted portion from each probability constitutes the

probability of the added element “-” (chosen probability for a gap is 1%). This adjustment

ensures that the total probability remains 1. The adjusted distribution R is then:

R ∼
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The rest of the procedure follows analogously.



Chapter 5

Results

For our analysis, it is necessary to have a relatively large set of positives. Generally, PSI-

BLAST responses are small (around 100-200 positives), which tends to be insufficient for

our analysis. Therefore, we also tried IGLOSS, whose response is more suitable for our

analysis (around 4000-5000 positives). In addition to having a large set of positives, it

is also very important to assume that each subsequence has a unique annotation. This

assumption is crucial because it validates the concept of searching for secondary structure

motifs.

29
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5.1 An example

We start with a sequence of letters ENIKKEACWTISNIT. This is our query of length

L = 15 and is identified as an alpha helix. Using the search engine PSI-BLAST, we try

to identify a relatively large set of similar subsequences. However, due to PSI-BLAST’s

nature, some motifs in the response are shorter than the query length L = 15. To address

this, we extend these shorter motifs with gaps to match the length of the query.

We represent amino acids using numerical values from the factor table 4.1. Protein

motifs initially of length 15 are transformed into vectors of length 75. After standardizing

the data, we visually observe the behavior of true positives and false positives using t-SNE.

Each candidate is annotated, with true positives marked in green and false positives marked

in red.

Figure 5.1: Some clustering

If some clustering of true positives (TP) emerges, we extract motifs from this cluster

to formulate a new query, internally named coherent or relevant. This coherent or rele-

vant query then serves as our characteristic query. In this case, where multiple clusters

are identified, we prioritize the most dense cluster (cluster with most elements) for motif

extraction.
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The characteristic query is now a set of sequences of length L = 15 and it looks like

this:

-DIKKEAAWAISNAT

ENIKKEACWTISNIT

EMLQLEAAWALTNI -

-SMLRNATWTLSN --

-NIQKEATWTMSNIT

EQILQEALWALSNI -

KSIKKEACWTISNIT

-SLIRTATWTLSNL -

--IQFESAWALTNI -

Conducting the entire procedure with the established characteristic query results in

significantly improved clustering, as can be seen in Figure 5.2.

Figure 5.2: Better clustering

We attempt to place this improved cluster within a sphere that encloses nearly all of

true positives. To define this sphere, we use the centroid of all true positives as the center

and estimate the radius with α = 0.68. We get:

E
[

d(X,Y)
] ≈
√

L · E
[

(X − Y)2
]

=
√

15 · 3.6799
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rold =
E
[

d(X,Y)
]

√
2

= 10.0779

rnew = rold ·
stdnew

stdold

= 3.2453

With such a defined sphere, we successfully enclose almost all elements of the cluster, i.e.,

true positives. This can be seen in Figure 5.3.

Figure 5.3: Sphere

In this case, the sphere contains only true positives.
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We encountered a challenge in our analysis: obtaining a sufficiently large set of candi-

dates (positives) was problematic with PSI-BLAST, prompting us to explore IGLOSS as an

alternative. However, our attempt with IGLOSS response revealed significant annotation

unreliability, as depicted in Figure 5.4.

Figure 5.4: An example of “bad annotation”

The resulting chaos can be partially explained by the fact that all types of helices are

marked the same. Locally, this chaos stems from the absence of a characteristic query

and the lack of a unique (consistent) annotation of the subsequence, i.e., the same sub-

sequence is sometimes marked as a helix and sometimes not in the list of proteins. We

address this challenge with the “once green, always green” approach. This means if a sub-

sequence is labeled as a helix once, we consider every such subsequence a helix regardless

of its annotation. With these “corrected” data, we then take the centroid of all true positives

as the center of the sphere and use the estimated radius where α = 0.68 as the radius. For

α = 0.68, we calculate:

E
[

d(X,Y)
] ≈
√

15 · E
[

(X − Y)2
]

=
√

15 · 3.2973

rold =
E
[

d(X,Y)
]

√
2

= 9.0301

rnew = rold ·
stdnew

stdold

= 6.4756
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Now, if a subsequence belongs to the sphere, we color every such subsequence green.

Otherwise, it is colored red. This method successfully “corrected” the annotation, as can

be seen in Figure 5.5.

Figure 5.5: An example of “fixed annotation”
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5.2 Queries for helices

Queries of length L = 12

For the query NGPLQWLDKVLT, the characteristic query is:

ASPEQWQEKAET

RKYLQWLTERLT

IHTLDWDDKMLE

RSALPTLKKVLT

YGILSHLDWVNN

ETPLQLLEKVKN

NKHLQDLMEGLT

HRALQLLDEVLH

MGSLYWLLPNLT

EGKLQHLENELT

SGWGQLLDRGAT

VGTLQRLPKVIG

NGPLQWLDKVLT

SKALDLLDKMLT

YGALRWFAGVLE

NGNLQYQGKDIT

which resulted in the following:

Figure 5.6: “Bad annotation” Figure 5.7: “Fixed annotation”
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For the query TLVEQALKALGC, the characteristic query is:

WAVEQAHFALFF

PDVEQRFKAMGF

TGSMDALKAAGF

TLVEQALKALGC

SLVGQALFGDGA

ALQASALKAWGG

GLVFKWLKANGG

DATSATLKALGC

EVKEQAIWALGN

which resulted in the following:

Figure 5.8: “Bad annotation” Figure 5.9: “Fixed annotation”
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The query SYGLLGNSVDAL resulted in such good groupings that the coherent/rele-

vant approach for the characteristic query was unnecessary.

Figure 5.10: “Fixed annotation”

Query of length L = 20

For the query GAYRAMNKAALNFYETVRRD, the characteristic query is:

AFTLAVNVIAKKVTSTARID

GADCLMVKPAGAYLDIVREL

GTTCVTTGWGLTRYSTARID

NNYLNGLKLQGNFYNDAVID

GADMVMVKPGMPYLDIVRRV

GDFKAMYKALEGRPMTVRYL

GGFDSVNDWANKGYEVVVSN

EHLRTKNVAVRSFREGVRIT

ALVRTHSKKALMRYEDVYMP

MYLHKEQHSRLGFYSTARID

SFDRDKTIALIMNSSTARID

DAQGAMNKALELFRKDIAAK

GARRWINIDGKTMDITVKGL
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GAGALAGAGALAGASTARID

INAGDLLKALLKPKSTARID

IQYLAVVASSHKGKSTARID

GADMLMVKPGMPYLDIVREV

KAYRRHDEVGTPFAVTVDYD

TELRLLTKALRPLPSTARID

which resulted in the following:

Figure 5.11: “Fixed annotation”
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5.3 Queries for sheets

Queries of length L = 8

All the queries for sheets of length L = 8 resulted in such good groupings that the coher-

ent/relevant approach for the characteristic query was unnecessary.

For the query SCHSGSCS the results were:

Figure 5.12: “Bad annotation” Figure 5.13: “Fixed annotation”

For the query SCQAGACS the results were:

Figure 5.14: “Bad annotation” Figure 5.15: “Fixed annotation”
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For the query GKDDYVKA the results were:

Figure 5.16: “Fixed annotation”



5.3. QUERIES FOR SHEETS 41

Queries of length L = 9

All the queries for sheets of length L = 9 resulted in such good groupings that the coher-

ent/relevant approach for the characteristic query was unnecessary.

For the query DDYNTPDGT the results were:

Figure 5.17: “Bad annotation” Figure 5.18: “Fixed annotation”

For the query NIDNEEIDE the results were:

Figure 5.19: “Bad annotation” Figure 5.20: “Fixed annotation”
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Query of length L = 10

The query WLRDFLWAQA resulted in such good groupings that the coherent/relevant

approach for the characteristic query was unnecessary.

Figure 5.21: “Fixed annotation”
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5.4 Conclusion

As we have seen with PSI-BLAST responses, gaps do not present a problem - they can be

handled by the same techniques - in particular, standardization. Consequently, the issue

of different motif lengths in PSI-BLAST response or other data sets containing gaps is

successfully resolved. Additionally, the coherent/relevant query approach has proven to be

a good option for addressing the lack of a characteristic query. By using the characteristic

query obtained in this way, we have shown that secondary structure motifs cluster together,

as can be seen from Figures 5.5, 5.7, 5.9, 5.10, 5.11, 5.13, 5.15, 5.16, 5.18, 5.20, 5.21.

Typically, there are several clusters where good annotation would provide types. We have

shown that with good annotation, it would be possible to attempt a blind search. In Figures

5.5, 5.7, 5.9, 5.13, 5.15, 5.16, 5.20, 5.21, we see that the structure of our response is similar

to that of MADS-box family in soybean [12]; the clusters cannot be placed into a single

sphere. Even if they could be placed into a sphere, as in Figures 5.10, 5.11, 5.18, it is not

worth doing a blind search because we lack control due to poor annotation.

We are quite confident that we have improved the annotation, but we cannot be certain.

To conclude, secondary structure motifs could be analyzed using an analogous technique to

that used for plant enzymes or other motifs, but for that, we need more accurate annotation

and a better characteristic query.
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Summary

This thesis is concerned with the classification of protein motifs based on their secondary

structure. A protein motif is a short sequence of amino acids that has remained partially

conserved throughout evolution and can be associated with a recognizable part of the pro-

tein structure performing a distinct function. The goal is to improve the accuracy of motif

scanning procedures by detecting as many significant motifs as possible (true positives)

while minimizing the number of wrong assignments (false positives).

To enhance accuracy, we employ an approach based on pairwise similarity, examining

not just the similarity to the query but also the mutual similarity among protein motifs. By

describing amino acids using numerical vectors, the problem is placed in Euclidean space

where distance is considered instead of similarity. The assumption is that protein motifs

sharing the same secondary structure annotation will group together and be located within

a sphere. By finding this sphere, we obtain points such that each pair is “sufficiently” close

to one another.

However, we encounter two key challenges: the annotation for protein secondary struc-

ture is not reliable, and we lack a characteristic query. We addressed these challenges to

the best of our ability, but due to unreliable annotation, we couldn’t fully test the method.

We showed that true positives do, in fact, cluster and could be found using this method.

However, for this approach to be fully effective, we need more accurate annotation and a

better characteristic query.
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