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Introduction

The study of avascular tumour growth has been a signi�cant area of research in the �eld of
mathematical biology and medicine. This is primarily due to the potential insights it can
provide into the early stages of cancer development, which can be crucial for early detec-
tion and treatment. In this thesis, I focus on several classical phenomenological models
of growth, describing, �tting, analyzing, and comparing them in the context of avascular
tumour growth.

The data used in this study are time series of average sizes of avascular tumours grown
in vitro, measured at discrete time points up to the lifetime of the tumour spheroid in cul-
ture. These measurements are part of the research under the Croatian Science Foundation
project ”Methods Developing in Mathematical Modelling in Biology and Medicine”.

Through this work, I aim to contribute to the understanding of avascular tumour growth
dynamics, potentially aiding in the development of more e� ective treatment strategies. I
also hope to demonstrate the power and versatility of mathematical modeling as a tool in
biological and medical research.

1





Chapter 1

Tumours

1.1 About Tumours

Tumours, also known as neoplasms, are the result of uncontrolled growth of cells that can
appear in any part of the body. The study of tumours is known as oncology. There are
two main types of tumours: benign and malignant. Benign tumours are non-cancerous and
do not spread to other parts of the body, while malignant tumours, or cancers, have the
ability to invade nearby tissues and spread through the bloodstream or lymphatic system
which can cause serious health problems. In this thesis, I will study the growth of avascular
tumours, i.e., tumours that do not have access to blood.

Tumour spheroids are three-dimensional cell culture models that closely mimic thein
vivo tumour. They are used extensively in cancer research because they replicate many of
the morphological and physiological characteristics of solid tumours, including cell-cell
and cell-matrix interactions, nutrient and oxygen gradients, and drug penetration [1]. In
this paper, I will also explore the growth dynamics of tumour spheroids, providing insights
into the behaviour of avascular tumours.

Tumour discovery

The discovery and understanding of tumours have evolved signi�cantly over the centuries,
with advancements in medical technology and research playing a crucial role. The earliest
known references to tumours date back to ancient civilizations. The Edwin Smith Papyrus,
an Egyptian medical text from around 1600 BC, contains descriptions of tumours, indicat-
ing that ancient physicians had some understanding of these abnormal growths [2].

However, the modern understanding of tumours began to take shape in the 19th century
with the advent of the microscope. This revolutionary tool allowed scientists to observe
cells and tissues at an unprecedented level of detail. One of the key �gures in this era

3



4 CHAPTER 1. TUMOURS

was Rudolf Virchow, a German physician and pathologist. Often referred to as the ”father
of modern pathology,” Virchow was the �rst to propose that all cells, including cancerous
ones, originate from other cells, a theory known as cellular pathology [3]. His work laid
the foundation for the modern understanding of tumour formation and growth.

The late 19th and early 20th centuries saw further advancements in tumour detection
and diagnosis. The discovery of X-rays by Wilhelm Conrad Roentgen in 1895 was partic-
ularly transformative. For the �rst time, doctors could non-invasively visualize the internal
structures of the body, making it possible to detect tumours that were not palpable or visible
from the outside [4].

In the mid-20th century, the development of molecular biology and genetics provided
new insights into the mechanisms behind tumour growth and development. Scientists be-
gan to understand that tumours were the result of genetic mutations that lead to uncon-
trolled cell growth. This understanding has been re�ned and expanded over the decades,
leading to the identi�cation of numerous genes and pathways involved in tumour forma-
tion.

Today, tumours are classi�ed into benign(in situ) and malignant (invasive) types. It
is also classi�ed into liquid, such as leukaemia, and solid tumours, such as carcinomas
or sarcomas. Nowadays, the detection and diagnosis of tumours involve a combination
of techniques, including physical examination, imaging tests like X-rays and MRIs, and
molecular diagnostic tests. Despite these advancements, tumours remain a signi�cant
global health concern, highlighting the ongoing need for research and innovation in this
�eld. The journey from the ancient descriptions in the Edwin Smith Papyrus to the sophis-
ticated understanding we have today is a testament to the progress of medical science and
the relentless pursuit of knowledge.

Tumour classi�cation

One of the most fascinating �ndings in the �eld of tumours is that all tumour cells originate
from a single cell that has undergone genetic mutations. These mutations can be caused
by various factors, including exposure to carcinogens, genetic predisposition, and lifestyle
choices. The genetic changes in tumour cells can lead to uncontrolled growth, invasion
of surrounding tissues, and metastasis to distant organs. The di� erences between tumour
types are based on molecular mechanisms, risk factors and spread patterns.
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Figure 1.1: Cancer cells and normal cells

Ilustration from [5], here Figure 1.1, represents cancer cells colored in blue, while red-
colored cells represent normal cells.

Tumours can be classi�ed based on several factors, including histology, di� erentiation
(grade), or expansion (TNM) [6].

There are �ve primary classi�cations of cancer, distinguished by their histological fea-
tures: carcinoma, sarcoma, myeloma, leukaemia, and lymphoma. Additionally, there are
certain hybrid types that exhibit characteristics of more than one category. Carcinomas are
the most prevalent type of cancer [7].

Considering the di� erentiation of tumour cells, there are four grades: grade I (well-
di� erentiated), grade II (moderately di� erentiated), grade III (poorly di� erentiated), and
grade IV (undi� erentiated) [6].

The TNM classi�cation system is based on three key factors: the size and depth of the
primary tumour (T), the presence of regional lymph node involvement (N), and the pres-
ence of distant metastasis (M). This system is used to stage tumours and guide treatment
decisions [8].
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Tumour properties

Tumours have several key properties that distinguish them from normal tissues. These
properties are known as the hallmarks of cancer [9] and include:

ˆ Activating invasion and metastasis:Tumour cells have the ability to invade sur-
rounding tissues and spread to distant organs through the bloodstream or lymphatic
system.

ˆ Inducing angiogenesis:Tumours stimulate the growth of new blood vessels to sup-
ply nutrients and oxygen, allowing them to grow and survive.

ˆ Enabling replicative immortality: Tumour cells have the ability to divide inde�-
nitely, unlike normal cells that have a limited lifespan.

ˆ Resisting cell death (apoptosis):Tumour cells can evade programmed cell death,
allowing them to survive and proliferate.

ˆ Sustaining proliferative signaling: Tumour cells can activate signaling pathways
that promote cell growth and division. They have the ability to divide uncontrollably,
leading to the formation of masses or lesions.

ˆ Evading growth suppressors:Tumour cells can bypass mechanisms that normally
inhibit cell growth, allowing them to proliferate unchecked.

ˆ Deregulating cellular energetics:Tumour cells go through metabolic reprogram-
ming to maintain their high proliferation rate and energy demands.

ˆ Avoiding immune destruction: Tumour cells can evade the immune system's surveil-
lance and destruction, allowing them to grow unchecked.

Tumour types

Tumour, a complicated and heterogeneous disease, includes a wide range of malignancies
that can a� ect almost any organ of the body. These tumours are caused by abnormal cell
growth and division, which frequently results in the production of masses or lesions that
disrupt normal body activities. There are more than 100 di� erent types of tumours that can
occur in various parts of the body. Each type of tumour has its own characteristics, causes,
and treatment methods.

Skin canceris one of the most frequent types of cancer, consisting of basal cell carci-
noma, squamous cell carcinoma, and melanoma. UV radiation exposure from sunshine and
tanning beds are among the leading causes of skin cancer. While basal and squamous cell
carcinomas are generally less malignant, melanoma can spread quickly and pose a serious
hazard if not diagnosed early [10].
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Lung cancer ranks among the deadliest cancers worldwide, owing mostly to tobacco
use, while exposure to environmental pollutants such as asbestos and radon also plays a
role. Lung cancer can be asymptomatic until advanced stages, resulting in a poor prognosis.
Screening programs aimed at high-risk individuals, such as smokers, seek to enhance early
detection rates and outcomes [11].

Breast canceris another common malignancy that primarily a� ects women, but men
can also develop it. Breast cancer can be classi�ed into several subtypes, the most fre-
quent of which are hormone receptor-positive and HER2-positive. Early identi�cation us-
ing mammography and advancements in treatment modalities, such as targeted medicines
and immunotherapy, have dramatically improved survival rates [12].

Prostate cancermostly a� ects men and is one of the top causes of cancer-related death
among men. Although many instances proceed slowly and do not require rapid treatment,
aggressive types can spread to distant organs, posing a serious threat to health. Screening
with prostate-speci�c antigen (PSA) tests and digital rectal exams can assist identify people
who are at risk [13].

Colorectal cancer includes tumours of the colon and rectum and is one of the most
common cancers worldwide. Risk factors include a high-processed-meat, low-�ber diet,
sedentary lifestyle, and genetic predisposition. Screening techniques like colonoscopy can
detect precancerous polyps or early-stage cancers, allowing for appropriate intervention
[14].

Leukaemia, a malignancy of the blood and bone marrow, is caused by an abnor-
mal production of white blood cells. This broad category of disorders includes acute
lymphoblastic leukaemia (ALL), acute myeloid leukaemia (AML), chronic lymphocytic
leukaemia (CLL), and chronic myeloid leukaemia (CML). While some types of leukaemia
are more common in youngsters, others primarily a� ict adults, emphasizing the age-
related nature of cancer occurrence [15].

Osteosarcomais a type of bone cancer that typically develops in osteoblast cells that
form bone. It most commonly occurs in children and young adults, but also in older adults.
Symptoms often include bone pain, swelling, and fractures [16]. The exact cause of os-
teosarcoma is unknown. Despite being a relatively rare, osteosarcoma is the most common
type of bone cancer in children and teens.

This is just a small fraction of the possible types of tumours. Each of these tumour
types can be further subdivided into subtypes with di� erent characteristics and prognoses.
Understanding the many forms of cancer, their prevalence, and related risks is critical for
improving prevention and treatment techniques.
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Figure 1.2: Cancer incidence for male patients in 2015 in the United States [17].
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Figure 1.3: Cancer incidence for female patients in 2015 in the United States [17].
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Figure 1.4: Cancer deaths for male patients in 2015 in the United States [17].
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Figure 1.5: Cancer deaths for female patients in 2015 in the United States [17].

In Figure 1.2 and Figure 1.3, we can see the incidence of cancer for male and female
patients in the United States in 2015, respectively. In Figure 1.4, we can see deaths caused
by cancer in the United States in 2015 for male, while Figure 1.5 represents the data for
female. Same tumour types are colored exactly the same in all graphs.
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Figure 1.6 shows the distribution of cancer cases by age groups in the United States
in 2022. As the population ages, the incidence of cancer is expected to rise. That is why
tumours are also known as ”the disease of the elderly” because the risk of developing
cancer increases with age but can a� ect individuals of all ages. However, certain age
groups may be more susceptible to speci�c types of malignancies. For instance, childhood
tumours such as leukaemia and brain tumours are more prevalent in younger age groups,
while prostate and breast cancers are commonly diagnosed in older individuals. However,
advancements in research, early detection, and personalized treatment approaches o� er
hope in mitigating the burden of tumour across diverse populations.
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Figure 1.6: Cancer cases by age groups in the United States in 2022 [18].

1.2 Osteosarcoma

Osteosarcoma (OS) is a primary malignant bone tumour with worldwide incidence of 3.4
cases per million people per year. The mail feature of OS is osteoid production in asso-
ciation with malignant mesenchymal cells [19]. OS incidence is bimodal, with peaks of
incidence at age 18 and ages over 60 [20]. It is a rare cancer, accounting for less than 1% of
all cancers diagnosed each year. It develops particularly in the long bones of the arms and
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legs [16]. The tumour is solid, hard, irregular, and often painful. If the tumour is located
near a joint, it may cause limited range of motion and di� culty moving the a� ected limb.
In advanced cases, the tumour may spread to other parts of the body, such as the lungs,
causing additional symptoms.

The exact cause of OS is unknown, but it is thought to be related to rapid bone growth,
as it often occurs during adolescence when children are growing rapidly [1]. Other risk
factors for osteosarcoma include genetic predisposition, exposure to radiation, and certain
genetic conditions such as Li-Fraumeni syndrome or Rothmund–Thomson syndrome and
hereditary retinoblastoma.

The diagnosis of OS typically involves a combination of imaging tests, such as X-rays,
CT scans, and MRIs, and a biopsy to con�rm the presence of cancer cells [21]. Once the
diagnosis is con�rmed, additional tests may be done to determine the extent of the disease
and whether it has spread to other parts of the body.

The treatment of OS typically involves a combination of surgery, chemotherapy, and
sometimes radiation therapy [21]. The primary goal of treatment is to remove the tumour
and prevent it from spreading to other parts of the body. Surgery is usually the �rst line
of treatment and involves removing the tumour and a margin of healthy tissue around it
to ensure that all cancer cells are removed. Chemotherapy is often used before and after
surgery to shrink the tumour and kill any remaining cancer cells. Radiation therapy may
be used in some cases to kill cancer cells that remain after surgery or to relieve pain and
other symptoms.

The prognosis for OS depends on several factors, including the stage of the disease, the
location and size of the tumour, and the patient's age and overall health. In general, the
prognosis is better for patients with localized disease that has not spread to other parts of
the body. With advances in treatment, the survival rates for osteosarcoma have improved
signi�cantly in recent years, with many patients achieving long-term remission or cure.
Stage I is rare and has a 90% survival rate, while stage III has a 30% survival rate.

Based on the predominant matrix production, tumours can be further divided into �-
broblastic, chondroblastic, osteoblastic and telangiectatic OS [20], and based on the ag-
gressiveness of the tumour into low, intermediate and high grade OS [22].

Chondroblastic osteosarcoma

Chondroblastic osteosarcoma is a subtype of osteosarcoma that is characterized by the
presence of a signi�cant amount of cartilage in the tumour. It is one of the most common
subtypes of OS. The treatment for chondroblastic OS typically involves a combination of
surgery to remove the tumour and chemotherapy to kill any remaining cancer cells. Despite
treatment, the prognosis for this subtype of osteosarcoma is often poorer than for other
subtypes, due to its aggressive nature and tendency to spread to other parts of the body.
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Osteosarcoma stem cells

Osteosarcoma stem cells are a subtype of cancer stem cells found in osteosarcoma. These
cells have the ability to self-renew and generate the diverse cells that make up the tumour.
They play a key role in tumour growth, spread, and resistance to therapy.

Osteosarcoma stem cells exhibit several key characteristics that distinguish them from
other tumour cells. They are capable of long-term self-renewal, can di� erentiate into vari-
ous types of tumour cells, and show resistance to many conventional cancer therapies. They
also express speci�c markers, such as CD133 and Stro-1, which can be used to identify and
isolate these cells [23].

Understanding osteosarcoma stem cells can provide new insights into cancer therapy.
Since these cells are resistant to many conventional therapies, targeting osteosarcoma stem
cells could be an e� ective way to treat OS. Research is ongoing to develop therapies that
speci�cally target these cells, with the aim of improving outcomes for patients with OS.

1.3 Tumour Spheroids

Tumour spheroids are three-dimensional cell culture models that are very useful tools for
studying tumour biology. They can be generated from a variety of tumour cell lines and are
used in cancer research to study tumour growth, invasion, metastasis, and drug resistance.

Formation of tumour spheroids

The multicellular tumour spheroids, hereafter MTS, culture system o� ers a particularly
convenient experimental paradigm for studying tumours. They are formed when mono-
layer tumour cells are grown by di� erent in vitro methods [24]. Oxygen and nutrition
come through the surface of tumour spheroids. A three-layered model of MTS is illus-
trated in Figure 1.7: necrotic core layer a, quiescent or nonproliferating cells layer b, and
proliferating cells layer c. These three layers are distinct. In the necrotic region, which
is the inner part of the tumour, the de�ciency of oxygen and nutrients causes starvation-
induced cell death. The quiescent layer refers to an area where cells are at rest and are not
in an active process of division or proliferation, while the proliferating layer refers to the
area of the tumour where cells are actively proliferating and dividing.
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a b c

Figure 1.7: Multicellular tumour spheroid

Advantages of using tumour spheroids in research

Tumour spheroids o� er several advantages over traditional two-dimensional cell culture
models. They more accurately replicate the physical and biochemical characteristics of
tumours in the body [1]. This makes them a valuable tool for studying tumour growth,
invasion, and metastasis. Tumour spheroids are also more resistant to chemotherapy and
radiation therapy than monolayer cultures, making them useful for studying drug resis-
tance mechanisms. Additionally, tumour spheroids can be easily manipulated and imaged,
allowing researchers to study tumour behavior in real-time. These advantages make tumour
spheroids an invaluable tool for cancer research and drug development.

The importance of research in the �eld of tumour spheroids

Research in the �eld of tumour spheroids is essential for a lot of reasons. Firstly, re-
searching tumours helps uncover the causes of cancer, i.e. the genetic predisposition,
environmental factors, and lifestyle choices. Understanding causes can reduce the risk
of developing cancer. Secondly, the better we understand di� erent types of tumours, the
more competent we become in their diagnosis and treatment. Early detection of tumours
increases the chances of successful treatment and improves patient prognosis. Thirdly,
studying tumours can help with the development of new therapies, including targeted ther-
apies, immunotherapies, and other innovative approaches to cancer treatment. This can
result in improved treatment options and increased survival rates. Fourthly, each tumour is
unique, necessitating personalized treatment approaches that take into account the speci-
�cities of each patient and their tumour. Studying tumours help in the development of
personalized therapeutic approaches. Finally, if we understand the causes and mechanisms
of tumour development, we can develop preventive strategies that can reduce cancer in-
cidence. This may involve lifestyle changes, screening programs, and other interventions
that mitigate exposure to risk factors. In the end, tumour research is essential to progress-
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ing the war against cancer, boosting cancer patient quality of life and reducing mortality
through improved prevention, diagnosis, and treatment.

1.4 Tumour Growth Phases and the Role of Spheroid
Cultures

Solid tumours progress through two distinct phases of growth:the avascular phaseand
the vascular phase. Understanding these phases is crucial for developing e� ective models
and treatments.

The initial phase of tumour growth is avascular, meaning the tumour lacks its own
blood supply. During this phase, the tumour cells rely on di� usion to receive nutrients and
oxygen. This phase can be e� ectively studied in the laboratory using three-dimensional
multicellular spheroids. These spheroids mimic the early stages of tumour growth and
have growth kinetics similar toin vivo tumours. Typically, avascular tumour nodules grow
to a few millimeters in diameter [25].

As the tumour grows, it transitions to the vascular phase, where it can stimulate the
formation of new blood vessels, a process known as angiogenesis. This transition is crit-
ical as it allows the tumour to receive a su� cient blood supply, supporting rapid growth
and the potential for metastasis. Tumours secrete various chemical substances to induce
surrounding tissues to sprout new blood vessels toward the tumour.

The vascular phase is marked by signi�cant changes in the tumour's ability to invade
surrounding tissues and spread to distant parts of the body. Endothelial cells (EC) from
nearby capillaries are activated, degrade their basal lamina, and migrate toward the tumour,
forming new capillary sprouts. These sprouts eventually fuse, forming a network that
penetrates the tumour and establishes circulation [25].

Spheroid cultures are crucial for modeling the avascular phase of tumour growth and
studying the initial stages of angiogenesis. They help researchers understand how tumours
survive without a blood supply and what triggers the transition to the vascular phase. By
examining spheroids, scientists can gather data on the e� ects of various treatments on
tumour growth and the e� ectiveness of anti-angiogenic therapies.

In summary, the avascular and vascular phases of tumour growth represent key stages
in the development of solid tumours. Spheroid cultures provide a valuable tool for studying
these phases, o� ering insights into tumour biology and aiding in the development of new
therapeutic strategies. Understanding these phases helps researchers tackle the complex
challenges of tumour growth and metastasis.



Chapter 2

Mathematical Models

2.1 Introduction to Mathematical Models

Mathematical modeling has a distinctive philosophy and methodology, which stands in
contrast to the empirical approach of deducing mechanisms from a limited (usually small)
set of observations.

Predictions

Problem of
Interest

Assumptions

Formulation
of problem in
mathematical

terms
Solution using

analytical and/or
numerical
tehniques

Interpretation;
solution in

original context

Axioms
Mathematical

structures;
Theorems
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ck

Simpli�cations
The Mathematical Model

Figure 2.1: Mathematical modeling process

In Figure 2.1, we can see diagrammatic representation of the fundamental stages of the

15
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mathematical modeling process and their interconnections.
In this paper, I will develop mathematical models to describe the growth of avascular

tumoursin vitro and �t these models to experimental data to estimate the model parameters.
The goal is to gain insights into the mechanisms that drive tumour growth and to develop
predictive models that can guide future research and treatment strategies.

What is a mathematical model?

Mathematical models are an essential tool in tumour research. Following [37], one possible
de�nition of a mathematical model is;

De�nition 2.1.1. Mathematical modelis an abstract, simpli�ed mathematical construc-
tion related to part of the ”real world” and created for a speci�c purpose.

It is aimed to mirror reality through the use of mathematics. The purpose of a mathe-
matical model is to capture the essential features of a system and to make predictions about
its behavior. Mathematical models can take many forms, including di� erential equations,
di� erence equations, and agent-based models. They can be used to describe a wide range
of systems, from physical systems like the motion of planets to biological systems like the
growth of tumours. In the context of tumour research, mathematical models are used to
describe the growth and spread of tumours, the response of tumours to treatment, and the
interactions between tumour cells and the immune system.

Why are mathematical models useful?

Mathematical models are useful in tumour research for several reasons. Firstly, they pro-
vide a quantitative framework for understanding tumour growth and behavior. By using
mathematical models, researchers can simulate the behavior of tumours under di� erent
conditions, predict how tumours will grow and respond to treatment, and identify new ther-
apeutic targets. Secondly, mathematical models can help to integrate data from di� erent
sources, such as experimental data, clinical data, and imaging data, to gain a more com-
prehensive understanding of tumour biology. Thirdly, mathematical models can be used
to test hypotheses and generate new insights into tumour biology. By comparing model
predictions with experimental data, researchers can re�ne their understanding of tumour
growth and behavior. Finally, mathematical models can be used to guide experimental de-
sign and optimize treatment strategies. By using mathematical models to predict the e� ects
of di� erent treatments, researchers can identify the most e� ective treatment strategies and
optimize patient outcomes.
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Limitations of mathematical models

While mathematical models are a powerful tool in tumour research, they also have limita-
tions. Some of limitations are;

ˆ Simpli�cations: Mathematical models are simpli�cations of reality and may not
capture all the complexities of tumour biology. For example, many models assume
homogeneous tumour growth, whereas tumours are often heterogeneous with di� er-
ent cell types and microenvironments. Also, simple models are easy to manage, but
they may not be accurate enough so the results can be misleading and that is the
reason why more complex models are needed.

ˆ Assumptions: Mathematical models rely on assumptions that may not always hold
true in practice. For example, many models assume that tumour growth is expo-
nential, whereas tumours often exhibit more complex growth patterns. Also, the
assumptions can be wrong and that can lead to wrong results.

ˆ Data: Mathematical models require data to parameterize and validate them. If the
data used to develop the model is incomplete or inaccurate, the model predictions
may be unreliable. Also, the data can be limited and that can lead to wrong results.

ˆ Computational complexity: Mathematical models can be computationally inten-
sive and require specialized software and expertise to develop and analyze. This can
be a barrier to their use in tumour research. Also, the complexity of the models can
be a problem because they can be hard to manage and analyze.

ˆ Parameters: Realistic simulations require many parameters, which are often dif-
�cult to estimate. The uncertainty in parameter values can lead to uncertainty in
model predictions. Also, the parameter space can be too large to have meaningful
conclusions.

ˆ Choosing the model:Selecting the appropriate mathematical model is crucial for
accurate results. The choice depends on the speci�c research question, the available
data, and the biological processes that need to be captured. However, there is often
a trade-o� between model complexity and interpretability. While complex models
may capture the biological processes more accurately, they can be more di� cult to
analyze and interpret. On the other hand, simpler models may be easier to understand
and analyze, but they may not capture all the relevant biological processes. There-
fore, choosing the right model requires careful consideration and expert knowledge
because incorrect models may well �t limited data.
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ˆ Interpretation: Mathematical models can be di� cult to interpret, especially for
non-experts. Understanding the assumptions, parameters, and predictions of a model
can be challenging, and misinterpretation can lead to incorrect conclusions.

Despite these limitations, mathematical models are a valuable tool in tumour research
and can provide important insights into tumour biology and treatment. Let's take a look at
a couple of interesting models used in tumour research, and after that, at a general model
of growth.

2.2 Classical Growth Models: Logistic, von Bertalan� y,
and Gompertz

There are several mathematical models that have been developed for various purposes but
also can be used to describe tumour growth too. These models are based on di� erent
assumptions and capture di� erent aspects of tumour biology. Some of the most well-
known models include the logistic model, the von Bertalan� y model, and the Gompertz
model. Each of these models has its strengths and limitations, and they can be used to
describe di� erent aspects of tumour growth.

Logistic model

The logistic modelwas introduced in a series of three papers by Pierre François Verhulst
between 1838 and 1847, who devised it as a model of population growth by adjusting the
exponential growth model. It is most often characterized by one of the following forms:

y0 = � Ly
 
1 �

y
KL

!
= � Ly � � Ly2; � L =

� L

KL
:

It is somewhat unclear why is this model named logistic (French:logistique), but it is
believed that it was concocted as a contrast tologarithmic. This is because, at the time, the
termlogarithmicwas used to describe the today's exponential growth. And thus, the term
logisticwas used to describe the growth that is bounded by a certain limit.

The logistic model is a simple model that describes the growth of a population or tu-
mour over time. It is based on the assumption that the growth rate of the population or
tumour is proportional to the current population size, but that the growth rate decreases as
the population or tumour approaches a maximum size. The logistic model is characterized
by a sigmoidal growth curve, with an initial period of exponential growth followed by a
period of decelerating growth as the population or tumour reaches its carrying capacity,
which we will de�ne later on. The logistic model is widely used in tumour research to
describe the growth of avascular tumours.
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Von Bertalan� y model

The von Bertalan� y modelis a growth model that was �rst proposed by Ludwig von Berta-
lan� y in 1938. It is a non-linear model that describes the growth of an organism over time.
The model is based on the assumption that the growth rate of an organism is proportional
to the di� erence between the organism's maximum growth rate and its current growth rate.
The von Bertalan� y model is given by the equation:

y0 = � By� � � By� :

Several variations of the von Bertalan� y model have been developed to describe dif-
ferent aspects of growth, such as the growth of tumours, �sh, and other organisms. The
model characterized by� = 2

3 and� = 1 is based on thesurface ruleand is often named
after von Bertalan� y. We call this modelclassical von Bertalan� y model. The surface rule
states that the surface area of an organism is proportional to the square of the cube root
of its volume. This rule is based on the observation that the surface area of an organism
determines its metabolic rate, while the volume of an organism determines its growth rate.
As an organism grows, its volume increases faster than its surface area. This changes the
surface area to volume ratio, which is crucial for metabolic processes.

Gompertz model

Various mathematicians have developed models to describe tumour growth over the years,
some with more success than others. Many of the early models were based on exponential
growth, but it was soon realized that tumour growth is more complex than that. A simple
exponential model predicts unbounded growth regardless of how small the growth factor
is. In reality, tumours do not grow inde�nitely but reach a maximum size.

Earlier I have listed some limitations of mathematical models, and one of them is data
- mathematical models require data to parameterize and validate them. If the data used to
develop the model is incomplete or inaccurate, the model predictions may be unreliable.
This was one of the main reasons for the lack of success of the early models. However,
modern experimental tehniques have provided researchers with more accurate data on tu-
mour growth, allowing them to develop more sophisticated models that better capture the
complexities of tumour biology.

One of the most successful models is the Gompertz model, which was �rst proposed
by Benjamin Gompertz in 1825. In its conception, the Gompertz model was not used
to describe growth, but rather to describe human mortality rates. Gompertz developed this
model to explain the observed increase in mortality rates with age, which he noted followed
a speci�c exponential pattern. If we denote the distribution of human age withM(t), then
the Gompertz model is given by the equation:

M(t) = pe� ea� bt
= pABt

;
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with constantsa;b, andp, wherep > 0;b < 0, andA; B > 0. In the early 20th century,
biologists like L.J. Winsor and Raymond Pearl recognized the potential of the Gompertz
model for describing biological growth, particularly in populations and tumour growth.
Winsor speci�cally published work in 1932 using the Gompertz curve to model growth,
highlighting its applicability beyond mortality.

Mechanism of adaptation of the Gompertz model to growth

To see that the Gompertz model is a good �t for tumour growth, we need to understand
how it works. We start with a simple growth equation:

dN
dt

= aN;

whereN is the magnitude of a growing quantity,t is time, anda is the intristic growth
coe� cient. The quantitydN

dt is termedrate of growth.
Now we assume that the growth coe� cienta is not constant, but rather changes with

time in the following way:
da
dt

= � ka;

wherek is a positive constant, so-calledrate of decayof the growth coe� cient. With the
initial conditiona(0) = a0, the solution to this di� erential equation is:

a(t) = a0e� kt:

Substituting this into the original growth equation, we get:

dN
dt

= a0e� ktN:

This is a separable di� erential equation, which can be solved by integrating both sides:
Z

dN
N

=
Z

a0e� ktdt

ln jNj = �
a0

k
e� kt + C; C 2 R

N(t) = e�
a0
k e� kt+C:

With the initial conditionN(0) = N0, we get:

N(t) = N0e
a0
k (1� e� kt):

This expression de�nes the Gompertz distribution function, or Gompertz growth equation.



2.3. GENERAL MODEL OF GROWTH 21

Gompertz model for tumour growth

As I've mentioned earlier, the early models of tumour growth were based on exponential
growth, which predicted unbounded growth. However, it was soon realized that tumour
growth is more complex than that and that tumours reach a maximum size. A noteworthy
study by Laird [40] in 1965 compared the growth rates of various tumours and extrapolated
the growth curve to one cell.

In her study, Laird gathered extensive empirical data on the growth of tumours in mice.
This involved measuring tumour volumes over time under controlled conditions. She com-
pared several mathematical models of growth, including the exponential growth model,
the cubic growth model, and the Gompertz model, to see which best �t the empirical data.
After applying these models to her data and assessing their �t by examining how well they
could predict tumour growth over time, she found that Gompertz model, characterized by
its sigmoidal shape, matched the observed tumour growth patterns more closely than other
models.

This conclusion was no surprise, as the Gompertz model's theoretical basis also sup-
ported its application to biological growth. The model's form, which represents a decel-
erating growth rate as the tumour size increases, corresponded well with the biological
understanding of tumour growth constraints, such as limited resources and increasing cell
death rates as tumours grow larger.

2.3 General Model of Growth

While the Gompertz model is a good �t for many tumour growth data, it is not the only
model that can be used to describe tumour growth. I have already mentioned the logis-
tic model and the classical von Bertalan� y model, which are also commonly used in tu-
mour research. There are many other models that have been developed to describe tumour
growth, each with its strengths and limitations.

However, in this paper, I will use just one additional model that generalizes Gompertz
model;

x0 = (� � � h(x; 
 ))x;

where

h(x; 
 ) =
( x
 � 1


 
 , 0
ln(x) 
 = 0;

where� > 0, �
 + � > 0 and
 > � 1. Later we will show that it generalizes logistic and
classical von Bertalan� y models too.
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Figure 2.2: The graph of the model givenx0 = 0:1 and
 , 0.

Figure 2.3: The graph of the model givenx0 = 0:1 and
 = 0.

In Figure 2.2 we can see the graph of the model givenx0 = 0:1 and
 , 0. Speaking of
left �gure, the red color represents the graph with� = 1:5, � = 0:5, 
 = � 0:1, while black
color represents the graph with� = 3, � = 2, 
 = � 0:1. In the right �gure, the di� erence is
that
 = 1 and it is scaled di� erently.

In Figure 2.3 we can see the graph of the Gompertz model givenx0 = 0:1. The red
color represents the graph with� = 1:5, � = 0:5, while black color represents the graph
with � = 3, � = 2.

Proposition 2.3.1.The general solution of the given di� erential equation with initial con-
dition x(0) = x0 when
 = 0 is:

x(t) = e
� � (� � � ln(x0))e� � t

� :

And when
 , 0:

x(t) =

0
BBBBBB@
� �

�
� � (�
 + � )x� 


0

�
e� (�
 +� )t

�
 + �

1
CCCCCCA

� 1



:



2.3. GENERAL MODEL OF GROWTH 23

Proof. We split the proof into two cases:


 = 0 : In this case, the di� erential equation becomes:

x0 = (� � � ln(x))x
x0

(� � � ln(x))x
= 1

This equation is separable so we can solve it by integrating both sides. Let's start
with the left side:

Z
dx

x(� � � ln(x))
=

"
y = ln(x)
dy = 1

xdx

#
=

=
Z

dy
� � � y

=

= �
1
�

ln j� � � yj + C1 =

= �
1
�

ln j� � � ln(x)j + C1:

The right side is justt + C2 so we have:

�
1
�

ln j� � � ln(x)j = t + C3; C3 2 R:

ln j� � � ln(x)j = � � t + C4; C4 2 R:

� � � ln(x) = C5e� � t; C5 2 R:

ln(x) =
� � C5e� � t

�
; C5 2 R:

x(t) = e
� � C5e� � t

� ; C5 2 R:

Usingx(0) = x0, we can �ndC5:

x0 = e
� � C5

� =) C5 = � � � ln(x0):

So the solution is:

x(t) = e
� � (� � � ln(x0))e� � t

� :

Notice that this is Gompertz model.



24 CHAPTER 2. MATHEMATICAL MODELS


 , 0 : In this case, the di� erential equation becomes:

x0 =
 
� � �

x
 � 1



!
x

=
 
� �

� x




+

�



!
x

= � x �
�



x
 +1 +
�



x

= �
�



x
 +1 +
 
� +

�



!
x:

We can see that this is aBernoulli di� erential equationwith n = 
 + 1. This means
that we need to divide the equation withx
 +1:

x0 = �
�



x
 +1 +
 
� +

�



!
x

x0

x
 +1
= �

�



+
 
� +

�



!
x� 


and substitutey = x� 
 and, consequently,y0 = � 
 x� 
 � 1x0:

�
1



y0 = �
�



+
 
� +

�



!
y

y0 = � � (�
 + � ) y
y0

� � (�
 + � ) y
= 1

This is a separable di� erential equation, so we can solve it by integrating both sides:
Z

dy
� � (�
 + � ) y

=
Z

dt

� ln(� � (�
 + � ) y)
�
 + �

= t + C1; C1 2 R

ln(� � (�
 + � ) y) = � (�
 + � )t + C2; C2 2 R

� � (�
 + � ) y = C3e� (�
 +� )t; C3 2 R

y =
� � C3e� (�
 +� )t

�
 + �
; C3 2 R
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Now, usingy = x� 
 , we get:

x(t) =
 
� � C3e� (�
 +� )t

�
 + �

! � 1



; C3 2 R:

All that is left is to use the initial conditionx(0) = x0 to �nd C3:

x0 =
 
� � C3

�
 + �

! � 1



=) C3 = � � (�
 + � )x� 

0 :

So the solution is:

x(t) =

0
BBBBBB@
� �

�
� � (�
 + � )x� 


0

�
e� (�
 +� )t

�
 + �

1
CCCCCCA

� 1



:

�

As can be seen, the solution to the given di� erential equation is quite complex. The
model is based on the observation that tumour growth is initially exponential but slows
down as the tumour reaches a certain size. Since the tumour can't grow inde�nitely, it is
useful to introduce the concept ofcarrying capacity, which is often denoted withK.

De�nition 2.3.2. Carrying capacityis the size which the population of a species tends to
approach, given the food, water and other necessities available in the environment.

In Figure 2.4 we can see that for any initial valuexi, the population sizex(t) approaches
the carrying capacityK ast ! 1 . This means that carrying capacity is stableequilibrium
pointof the model. Equilibrium point is a state of balance andstablemeans that the system
will return to this state if it is slightly perturbed.
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Figure 2.4: The graph representation for the model given� = 2, � = 1 and
 = 0. The blue
color represents the graph with initial valuex1 = 10, orange color withx2 = 5, green color
with x3 = 1, while red color represents the graph withx4 = 0:1. Purple colored is carrying
capacityK.

Proposition 2.3.3.The carrying capacity of the given model, assuming that0 < x0 < K
is:

K =

8
>><
>>:

�
1 + �


�

� 1

 
 , 0

e
�
� 
 = 0

Proof. It can easily be seen thatx(t) is an increasing function both when
 = 0 and
 , 0.
That means that the carrying capacity is the limit ofx(t) whent ! 1 . We split the proof
into two cases:


 = 0 :

K = lim
t!1

x(t)

= lim
t!1

e
� � (� � � ln(x0))e� � t

�

= e
� � (� � � ln(x0))�0

�

= e
�
� :
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 , 0 :

K = lim
t!1

x(t)

= lim
t!1

0
BBBBBB@
� �

�
� � (�
 + � )x� 


0

�
e� (�
 +� )t

�
 + �

1
CCCCCCA

� 1



=

0
BBBBBB@
� �

�
� � (�
 + � )x� 


0

�
� 0

�
 + �

1
CCCCCCA

� 1



=
 
1 +

�

�

! 1



:

�

I've mentioned earlier that the early models of tumour growth were not successful be-
cause they predicted unbounded growth. By introducing the concept of carrying capacity,
the model can now capture the fact that tumours can't grow inde�nitely. In the previous
proposition I've found the values of carrying capacity for both cases when
 = 0 and
 , 0,
thus proving that the model does not predict unbounded growth.

Since the model is a generalization of the Gompertz model, it is expected to exhibit
similar behavior. The Gompertz model is characterized by its sigmoidal shape, which rep-
resents a decelerating growth rate as the tumour size increases. This is consistent with
the biological understanding of tumour growth constraints, such as limited resources and
increasing cell death rates as tumours grow larger. The model is also based on the obser-
vation that tumour growth is initially exponential but slows down as the tumour reaches a
certain size. This is consistent with the empirical data on tumour growth, which shows that
tumours do not grow inde�nitely but reach a maximum size.

Before we try to �t the model to the data, we will �nd the point where the exponential
growth stops and the decelerating growth starts. This point is called thein�ection point.
Before we can de�ne the in�ection point, we need to de�ne when the function isconcave
andconvex.

De�nition 2.3.4. A real function f(x) is convexon an interval I� R if:

(8x1; x2 2 I) (8x1 < x2) =)
 
f

� x1 + x2

2

�
�

f (x1) + f (x2)
2

!
:

A real function f(x) is concaveon an interval I� R if:

(8x1; x2 2 I) (8x1 < x2) =)
 
f

� x1 + x2

2

�
�

f (x1) + f (x2)
2

!
:
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De�nition 2.3.5. Let I � R be an interval and f(x) a real function on I. The point x0 2 I is
called anin�ection point of f(x) if there exists� > 0 such that f(x) is convex onhx0 � �; x0i
and concave onhx0; x0 + � i , or vice versa.

These de�nitions do not provide a direct way to �nd the in�ection point, but the fol-
lowing lemma does.

Lemma 2.3.6.Let f(x) be a real function on an interval I� R and x0 2 I. If f (x) is twice
di� erentiable at x0, then x0 is an in�ection point of f(x) if f 00(x0) = 0 and f00(x) changes
sign at x0.

Using these de�nitions and the given result, one can �nd that the in�ection points are:

ˆ When
 = 0, the in�ection point is (t� ; x(t� )) =
�

� 1
� ln

�
�

� � � ln(x0)

�
; e

� � �
�

�
.

ˆ When
 , 0, the in�ection point is (t� ; x(t� )) =
�

� 1
�
 +� ln

�
�


(�
 +� )x� 

0 � �

�
;
�

�
 +�
�
 +�

� 1


�
.

Transformation of solutions using convex combinations

In this subsection, we will transform the solutions of the di� erential equations obtained
earlier using convex combinations of certain basis functions. This reformulation is partic-
ularly advantageous for the practical part of my paper, where leveraging the properties of
convex combinations will facilitate more e� cient and interpretable analyses.

De�nition 2.3.7. Let f(x) and g(x) be real functions on an interval I� R. A convex
combinationof f(x) and g(x) is a function h(x) of the form:

h(x) = � f (x) + (1 � � )g(x);

where� 2 [0;1].

The particular reformulation we will use has the following form:

x(t) = f
�
f � 1(x0)e� � t + f � 1(K)

�
1 � e� � t

��
;

where f (x) is an invertible function,x0 is the initial condition,K is the carrying capacity,
and� is a constant.

Proposition 2.3.8.The reformulation of the solutions of the general model are given be-
low:

f (x) =
(

x� 1

 ; 
 , 0

ex; 
 = 0
; � =

(
�
 + �; 
 , 0
�; 
 = 0
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Proof. We split the proof into two cases:


 = 0 :

x0 = � x � � x ln(x)
x0

x
= � � � ln(x)

d
dt

ln(x) + � ln(x) = �

d
dt

�
e� t ln(x)

�
= � e� t

Integrating both sides from 0 tot, we get:

e� t ln(x(t)) � e� �0 ln(x0) =
Z t

0
� e� sds

e� t ln(x(t)) � ln(x0) =
"
�
�

e� s

#t

0

e� t ln(x(t)) � ln(x0) =
�
�

�
e� t � 1

�

ln(x(t)) = ln(x0)e� � t +
�
�

�
1 � e� � t

�

x(t) = eln(x0)e� � t+ �
� (1� e� � t):

This means thatf (x) = ex and� = � .


 , 0 :

x0 = � x � � x
x
 � 1




x0 = � x +
�



x �
�



x
 +1

x0x� 1� 
 =
 
� +

�



!
x� 
 �

�
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Now we can substitutey = x� 
 and, consequently,y0 = � 
 x� 
 � 1x0 andy0 = x� 

0 :

�
1



y0 =
�
 + �



y �

�



y0e(�
 +� )t + (�
 + � )ye(�
 +� )t = � e(�
 +� )t

�
ye(�
 +� )t

�0
= � e(�
 +� )t

Integrating both sides from 0 tot, we get:

ye(�
 +� )t � y0 =
�

�
 + �

�
e(�
 +� )t � 1

�

y = y0e� (�
 +� )t +
�

�
 + �

�
1 � e� (�
 +� )t

�

x =
 
x� 


0 e� (�
 +� )t +
�

�
 + �

�
1 � e� (�
 +� )t

� ! � 1



:

This means thatf (x) = x� 1

 and� = �
 + � .

�

Remark 2.3.9.One additional advantage of this reformulation is that it allows us to easily
check if the carrying capacity values we have obtained earlier are correct. By substituting
t = 1 into the reformulated solutions, we can see that the carrying capacity values are
indeed correct:

f � 1
1 (K1) =

�
�

=) K1 = e
�
� ;

f � 1
2 (K2) =

�
�
 + �

=) K2 =
 
1 +

�

�

! 1



:

Why is the general model called general?

In the previous sections, the general model of growth was introduced and its solutions
were derived. Following this, the solutions were transformed using convex combinations of
certain basis functions. This reformulation, mentioned earlier, is bene�cial for the practical
part of this paper, and the reasons for its usefulness will now be explained.

To do so, I will �rst reformulate the logistic and classical von Bertalan� y models using
convex combinations of certain basis functions.
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Proposition 2.3.10.The reformulations of the logistic model x0 = � Lx � � Lx2 and the
classical von Bertalan� y model x0 = � Bx

2
3 � � Bx are given below:

f (x) =
(

x� 1; logistic model
x3; classical von Bertalan� y model

; � =
(

� L; logistic model
� B

3 ; classical von Bertalan� y model

Proof. We will prove these claims separately:

Logistic Model :

x0 = � Lx � � Lx2

x0

x2
=

� L

x
� � L

Substitutingy = x� 1 andy0 = � x� 2x0, we get:

y0 + � Ly = � L

y0e� Lt + � Lye� Lt = � Le� Lt

�
ye� Lt�0 = � Le� Lt

Integrating both sides from 0 tot, we get:

ye� Lt � y0 =
Z t

0
� Le� Lsds

y = y0e� � Lt +
� L

� L

�
1 � e� � Lt�

x =
 

1
x0

e� � Lt +
� L

� L

�
1 � e� � Lt�

! � 1

:

This means thatf (x) = x� 1 and� = � L.

Classical von Bertalan� y Model :

x0 = � Bx
2
3 � � Bx

x0x� 2
3 = � B � � Bx

1
3
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Substitutingy = x
1
3 andy0 = 1

3x� 2
3 x0, we get:

y0 +
� B

3
y =

� B

3

y0e
� B
3 t +

� B

3
ye

� B
3 t =

� B

3
e

� B
3 t

�
ye

� B
3 t

� 0

=
� B

3
e

� B
3 t

Integrating both sides from 0 tot, we get:

ye
� B
3 t � y0 =

Z t

0

� B

3
e

� B
3 sds

y = y0e
� � B

3 t +
� B

� B

�
1 � e� � B

3 t
�

x =
 
x

1
3
0 e� � B

3 t +
� B

� B

�
1 � e� � B

3 t
� !3

:

This means thatf (x) = x3 and� = � � B

3 .

�

Now let's take a closer look at some of the reformulated solutions:

ˆ General model when
 , 0: x =
�
x� 


0 e� (�
 +� )t + �
�
 +�

�
1 � e� (�
 +� )t

�� � 1

 ,

ˆ Logistic model: x =
�
x� 1

0 e� � Lt + � L

� L

�
1 � e� � Lt� � � 1

,

ˆ Classical von Bertalan� y model: x =
�
x

1
3
0 e� � B

3 t + � B
� B

�
1 � e� � B

3 t
�� 3

.

It is now fairly easy to see why the general model is called general. By using� =
� L � � L; � = � L; and
 = 1 in the general model, we get the logistic model, and by using
� = � B � � B; � = 1

3� B and
 = � 1
3, we get the classical von Bertalan� y model. This means

that the general model is a generalization of both the logistic and classical von Bertalan� y
models, among many others.
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Remark 2.3.11. I have mentioned earlier that this reformulation gives us an easy way to
check if our carrying capacity values are correct. It also allows us to easily calculate the
carrying capacity values for the logistic and classical von Bertalan� y models:

KL = lim
t!1

x(t) = lim
t!1

 
x� 1

0 e� � Lt +
� L

� L

�
1 � e� � Lt�

! � 1

=
� L

� L
;

KB = lim
t!1

x(t) = lim
t!1

 
x

1
3
0 e� � B

3 t +
� B

� B

�
1 � e� � B

3 t
� !3

=
 
� B

� B

!3

:

Another useful property of this reformulation is that it allows us to easily �nd the in�ection
points of the logistic and classical von Bertalan� y models:

In�ection point of the logistic model: (t� ; x(t� )) =
 
�

1
� L

ln
 

� � L

� L � � Lx� 1
0

!
;

� L

2� L

!
;

In�ection point of the classical von Bertalan� y model:

(t� ; x(t� )) =

0
BBBBBBB@�

3
� B

ln

0
BBBBBBB@

� B

3� B � 3� Bx
1
3
0

1
CCCCCCCA;

 
2� B

3� B

!3
1
CCCCCCCA:





Chapter 3

Fitting the Models to the Data

3.1 Data Collection

As I previously mentioned, the data used in this paper is from the Croatian Science Founda-
tion project ”Methods Developing in Mathematical Modelling in Biology and Medicine”.
It consists of time series of average sizes of avascular tumours grownin vitro, measured at
discrete time points up to the lifetime of the tumour spheroid in culture. It was collected
using a combination of experimental techniques, including cell culture, microscopy, and
image analysis.

Data preparation

After obtaining ethical approval and informed consent, I have analyzed chondroblastic os-
teosarcoma taken from a young male patient. The tumour was sampled after the chemother-
apy. To have a data set that can be used for further analysis, the data was preprocessed.
The process of tumourin vitro growth was done by a biologist. The process includes the
following steps:

1. The frozen tumour cells were kept in crio tubes on -80°C.

2. Tumour cells were thawed for the experiment and placed in adherent Petri dishes.

3. Tumour cells were grown in a culture medium DMEM/F-12 (Dulbecco's Modi�ed
Eagle Medium/Nutrient Mixture F-12) with 10% FBS and 1% penicillin-streptomycin.

4. The next steps were done in a laminar �ow hood under sterile conditions.

5. When 80-90% con�uence was reached, cells were washed with PBS (10mL) to re-
move inhibitors and dead cells.

35
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6. The 1mL of trypsin-EDTA was added so the cells could detach from the Petri dish
and left at 37°C in a humidi�ed atmosphere with 5% CO2 for 4 minutes.

7. Medium DMEM/F-12 (5mL) was added to block the action of trypsin.

8. The cells were resuspended so they could be lifted from the surface.

9. They were transferred to a falcon tube of 15mL and centrifuged at 1300rpm for 5
minutes.

10. The supernatant was removed and the medium for spheroid growth (1mL of double
concentrated DMEM/F-12 without FBS (Fetal Bovine Serum), with ITS (Insuline,
Transferrin, Selenium), putrescine and progesterone) was added to the cells.

11. The cells were resuspended again.

12. The cell suspension was aliquoted in test tubes of 20� L and 20� L of trypan blue was
added. It was resuspended again.

13. The 13� L of the cell suspension was put in the hemocytometer and the number of
cells was counted and concentration was calculated.

14. The cell suspension was made at a concentration of 10 cells/� L. Cells were seeded
in 96 well plates in a total volume of 100� L. Respectively, 50� L of cell suspension
and 50� L of 2% methylcellulose. Growth factors FGF and EGF were added to the
cells.

15. The plate was incubated for 24 hours.

16. The tumour cells started to grow and form a spheroid.

17. The spheroids were monitored by z-slices of 5� m thickness using a confocal mi-
croscope Leica SP8 x FLIM. 40x magni�cation was used. They were monitored
three times a week (Monday, Wednesday, and Friday) for nearly two months. Every
Monday and Friday FGF and EGF were added to the medium.



3.1. DATA COLLECTION 37

The pictures of z-slices of each spheroid were taken, and the size of the spheroid was
measured using the ImageJ software. The volume of each spheroid was then calculated
using the ReViMS software.

Figure 3.1: Images of the tumour spheroid at the beginning, middle, and end of the exper-
iment

In Figure 3.1, we can see the images of the same tumour spheroid at the beginning,
middle, and end of the experiment. The spheroid grows over time, and its size increases.
The images were taken on the 1st, 12th and 28th day of the experiment, respectively. Each
image represent one z-slice of the spheroid.

Conjecture 3.1.1. The size of the tumour spheroid in a contolled environment follows a
sigmoidal (S-shaped) curve over time.

The S-shaped curveis a curve that resembles the letter ”S”. It has three parts: the initial
phase where the growth is slow, the exponential phase where the growth is rapid, and the
plateau phase where the growth slows down [39].

ImageJ software

After receiving the pictures of z-slices of the spheroids in .tif format, the goal was to
measure the size of each spheroid. I used the ImageJ software, which is a free image-
processing program developed by the National Institutes of Health. The software is widely
used in scienti�c research for image analysis and processing. The �rst step for each z-slice
of each spheroid was to transform the .tif image into a binary image. The threshold tool
was used to segment the area of interest from the background. After �lling the holes in the
segmented region, the area of the spheroid z-slice was calculated by counting the number
of pixels in the segmented region. The area of interest of the spheroid in each slice was
then recorded in the data set. The pictures with areas of interest were saved and used for
further analysis.

In Figure 3.2, we can see the z-slice of a spheroid taken with a confocal microscope.
The area of interest in the z-slice obtained by the ImageJ software is shown in Figure 3.3.
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Figure 3.2: Z-slice of an osteosarcoma
spheroid imaged on a Leica TCS SP8
X confocal microscope. Magni�cation
40x.

Figure 3.3: Area of interest in the picture
of z-slice of a spheroid after processing
in ImageJ software.

ReViMS software

After measuring the size of each spheroid in each z-slice, the next step was to calculate the
volume of each spheroid. The ReViMS software was used for this purpose. ReViMS is a
software tool for reconstructing 3D models from 2D images, widely used in scienti�c re-
search for visualizing and analyzing complex structures in 3D. The �rst step was to import
the pictures of the spheroid z-slices processed in the ImageJ software into the ReViMS.
The software then reconstructed a 3D model of the spheroid based on the 2D images. The
volume of each spheroid was calculated by the software and recorded in the data set. Re-
construction method was linear interpolation. Parameters used for the reconstruction were
0.645� L for x-pixels and y-pixels, and 5� m for z-distance between consecutive section.

Figure 3.4: Area of interest of z-
slice of a tumour spheroid.

Figure 3.5: 3D model of a tumour
spheroid.
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Figure 3.4 shows the area of interest in the z-slice of a spheroid processed using the
ImageJ software. The 3D model of the spheroid obtained by the ReViMS software is
shown in Figure 3.5.

3.2 Data Set

As a basis for the further analysis, we assume that the number of cells in the spheroid is
proportional to its size.

The data set consists of 16 tumour spheroids that survived (almost) the entire experi-
ment. Each spheroid was analyzed 3 times to improvethe accuracyof the measurements.
The accuracy of a measurement is the degree of closeness of the measurement to the true
value of the quantity being measured.

For each spheroid,the average sizewas calculated and recorded in the data set. The
average size is the sum of all sizes divided by the number of measurements.

Average volumes (in� m3) for 16 spheroids are represented in Table 3.1. The average
volume of all spheroids at each time point is given in the last column and denoted by
V. Here, values are rounded to the nearest whole number. Missing values are denoted
by a dash and were not included in the calculations because those spheroids were not
measured at that time points. The data set from the Table 3.1 was divided by 104 to make
the calculations easier and is used for further analysis and model �tting.

Volume (� m3) Spheroid
Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 V
1. - 23705 36349 26409 42815 10371 19319 24432 - 9110 22305 15131 21006 20093 28721 14395 22440
4. - 36956 44448 31590 24520 26817 39820 25091 25499 - 19856 17939 43546 24886 25301 40138 30458
6. - 55479 46190 50053 50158 53871 48753 51174 40295 40372 33303 50573 59753 43547 77397 36630 49170
8. 76893 87892 32990 105248 81646 50199 39806 50668 81446 72301 63817 - 104052 39432 84324 59139 68657
11. 58687 68369 85603 126069 61764 43346 93235 99736 65122 81847 74367 58767 97276 51582 82310 56069 75259
13. 75227 63724 79314 109122 76465 235573 56767 126578 75327 62726 59641 51689 55017 61460 97437 126725 88299
15. 59212 54491 64895 123310 57094 247182 - 56424 69041 97648 83984 46673 53986 74497 65493 50850 80319
18. 60498 28017 76462 122903 59986 123633 - 51555 51685 60822 28207 39934 47261 64311 142925 53710 67461
20. 50871 56735 64955 68933 50992 117555 - 60439 44946 136130 81070 43543 52415 77680 69215 33819 67286
22. 40062 41803 103796 63844 39783 106102 103785 48157 33978 - 54124 - 55953 56352 90259 76387 65313
25. 28807 50386 81990 32680 28607 52271 100007 65768 25590 38470 46056 84780 62956 39167 84200 63246 55311
27. 28245 44382 58865 35348 29894 50385 67462 58041 31494 39115 52941 95934 51501 46094 82020 73026 52797
29. 26079 76647 77202 17424 27846 60011 - 37709 20694 50912 87365 70234 56224 66148 81933 64225 54710
32. 26936 66144 100341 20565 15201 38964 - 52178 17485 42073 78774 72940 - 71362 76914 67710 53399
34. 14986 69570 83685 20384 15370 31348 - - - 24850 60987 45697 - 41169 61046 42791 42657
36. 16849 68356 83023 15044 16902 35880 - - - 37704 42059 51602 - 63665 62631 36039 44146
43. 11948 - 57400 9936 12189 39159 - - - 19087 45529 - - 65272 53742 38143 35240
48. 16028 - 76663 - 17428 37972 - - - 25393 - - - 50941 53518 42641 40073
50. 12189 - 49259 - 15606 - - - - 30356 - - - 33866 53465 48857 34800

Table 3.1: Data set of the average volume size of tumour spheroids
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3.3 Data Visualization

To better understand the data set, I have visualized the data in several ways, but �rst I
will present some of the notations used in the following sections; ifni is the number of
spheroids measured ati th time point, thenVi is the mean volume ofni spheroids at time
point ti;

Vi =
1
ni

niX

j=1

Vi j ;

whereVi j is the volume ofj th spheroid ati th time point.

The average volumes of all MTS at each time point are illustrated in Figure 3.6. Time
points (in days) are represented on the x-axis, while the y-axis indicates the corresponding
average volumes.

In my investigation of spheroid growth, I have chosen to focus on the �rst 15 days of
the experiment, which span the initial 7 time points. Beyond this period, the spheroids
cease to grow and begin to enter a declining phase. Examining these 7 time points, the plot
shows that the average volume really follows a S-shaped curve over time.

Figure 3.6: Average volume of tumour spheroids at each time point

Another interesting plot is shown in Figure 3.7. It shows the volumes of the individual
16 tumour spheroids. Each line represents the volume of one spheroid over time.
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Figure 3.7: Volumes of 16 individual MTS

For further analysis, I need to list some statistical measures of the data set.
Thevarianceis a measure of the dispersion or spread of a set of data points around the

mean. Thestandard deviationis the square root of the variance. Variance is calculated as
the average of the squared di� erences between each data point and the mean. The formula
for the variance is:

Var(X) =
1
n

nX

i=1

(xi � x)2;

wherexi are data points,x is the mean of the data set, andn is the number of data points.
For sample variancewe divide byn � 1 instead ofn.

In this paper, the standard deviation is calculated as:

stdi =

vt
1

ni � 1

niX

j=1

(Vi j � Vi)2

In Figure 3.8 we can see thecoe� cients of variationfor each time point. The coe� cient
of variation is a measure of the relative variability of the data set around the mean. It is
calculated as the ratio of the standard deviation to the mean. The plot shows that the
coe� cient of variation does not exhibit a consistent pattern of increase or decrease but
rather �uctuates up and down.

To check if mean volumes are linearly dependent onstandard error, I have plotted the
mean volumes against the standard errors in Figure 3.9 and usedlinear regressionto plot
the best-�t line. Standard error (SE) is a measure of the dispersion of the sample mean
around the true population mean. It is calculated as the ratio of the standard deviation to
the square root of the sample size. Linear regression is a statistical method to model the
relationship between a dependent variable and one or more independent variables by �tting
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a linear equation to the observed data. The plot shows that there exists a linear relationship
between these two variables.

Figure 3.8: Coe� cient of variation for
each time point

Figure 3.9: Standard error vs. mean volume

Figure 3.10, presented prior to model �tting, depicts the mean volume with intervals of
� 2�SE against time on the x-axis. The goal is to identify a model that accurately encom-
passes these intervals. Based on this plot, it appears that the in�ection point (t� ; x(t� )) is in
the close proximity of the point (6; 5), suggesting a critical transition in growth dynamics.
Moreover, the carrying capacityK seems to lie within the range of [7; 10].

Figure 3.10: Mean volumes of 16 MTS� 2�standard errors
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3.4 Methods of Fitting

In this section I will describe the methods used to �t models to the data. The analysis
was conducted using theMatlab programming language. Given that the functionx(tj� ) is
nonlinear with respect to the parameters� = (�; �; x0; 
 ), the method used for �tting is
the weighted nonlinear least squares method[39]. This method is used to estimate the
parameters of a nonlinear model by minimizing the sum of the squares of the di� erences
between the observed values and the values predicted by the model. For a model given by
y = x(tj� ), wherey represents the predicted value,t denotes the independent variable, and�
is the vector of parameters in parameter space� , the method identi�es the values of� that
minimize the function:

L(� ) =
nX

i=1

wi (Yi � x(ti j� ))2 ;

wheren is the number of time points,w is the weight andYi is the observed value at time
ti.

If Yi = Vi, then the weight iswi � 1
SE(Vi )2 , where SE(Vi) = stdip

ni
. Furthermore, if we

assume that SE(Vi) � Vi, then we can takewi = 1

Vi
2 .

Hence, the function to minimize becomes:

L(� ) =
nX

i=1

1

Vi
2

�
Vi � x(ti j� )

�2
:

This method gives the vector of parameters�̂ = (�̂; �̂; x̂0; 
̂ ) such that:

L(�̂ ) = min
� 2�

L(� ):

The method used in Matlab, calledfminsearch[43], is a function designed to �nd the
minimum of a scalar function with multiple variables, starting from an initial estimate.
This function helps determine the parameters of models that best �t the data.Fminsearch
employs the Nelder-Mead simplex algorithm, a direct search method that doesn't require
the function's gradient. The algorithm operates based on a simplex, a geometric �gure
that extends the concept of a triangle to higher dimensions. It begins with an initial sim-
plex, a set of points in the parameter space, and iteratively moves this simplex towards the
function's minimum. During each iteration, the algorithm evaluates the function at the sim-
plex's vertices and updates the simplex's position accordingly. The algorithm stops when
the simplex converges to a small size or after a maximum number of iterations is reached.
It returns the model parameters that minimize the function. This algorithm is both robust
and e� cient, making it suitable for �tting a wide variety of models to data.
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3.5 Model Fitting

The idea was to �nd parameters�; �; x0 and
 that best �t the data. Initially, I used the
Gompertz, logistic and classical von Bertalan� y models to �t the data. After that, I used the
general model and tried to �nd an even better �t. Since thefminsearchfunction in Matlab
requires an initial guess for the parameters, I have chosen to use the estimated parameters
of either the Gompertz, logistic or classical von Bertalan� y model in the general model,
depending on which provided the best �t to the data.

For the initial guess of parameterx0 for �rst three models, I used the mean volume
of the spheroids at the �rst time point. Additionally, I applied a slightly di� erent data
transformation for each model to determine initial guesses for� and� . The fminsearch
method was used with termination tolerance (TolFun) set to default value 10� 4 together
with maximum number of iterations (MaxIter) and function evaluations (MaxFunEvals)
set both to 14000.

Gompertz model

Let's take a look on the results using the Gompertz model. The black color will be used
for this model in all plots.

Figure 3.11: Transformed data with linear
regression line

Figure 3.12: Fitted Gompertz model

In Figure 3.11 we can see the line calculated using linear regression on transformed
data. The intercept and slope of this line serve as initial parameters for� and� . Remem-
ber that
 = 0 in this model. X-axis represents the logarithmic transformation of mean
volumes, while the y-axis shows the values calculated by the formulayi = log(Vi+1)� log(Vi )

ti+1� ti
.

Figure 3.12 shows the �t of the Gompertz model to the data. Parameters estimated by
thefminsearchfunction are� G = 0:3169,� G = 0:1279 andx0G = 1:6249. The value of the
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criterion function isL( ˆ� G) = 0:0831. However, the model �ts the data poorer than it was
expected - it does not capture the second data point and fails to reach the plateau phase.
Using the formula for carrying capacity from above, it is easy to calculate thatKG = 11:91
in the Gompertz model. This value could be too high for this data set. The in�ection point
is (tG; x(tG)) = (5:3870;4:3817) which is (perhaps) too early for this data set. Moreover,
within this time interval, the model does not exhibit a clear S-shaped curve.

Logistic model

Considering the logistic model, which is colored in red in all plots, the results were as
follows.

The line �tting the transformed data is shown in Figure 3.13. The intercept and slope
of this line, along withx0 mentioned earlier, serve as initial parameters. This model cor-
responds to the general model with
 = 1. In this plot, the data transformation uses the

formulayi =
1

Vi+1
� 1

Vi
ti+1� ti

on the y-axis and1
Vi

on the x-axis.

In Figure 3.14, the �t of the logistic model to the data is shown. The parameters esti-
mated by thefminsearchfunction are� L = 0:2582,� L = 0:0269 andx0L = 1:6601, with a
value of the criterion functionL( ˆ� L) = 0:0655. The logistic model �ts all data points and ex-
hibits a nicer S-shaped curve compared to the Gompertz model. It also looks like its carry-
ing capacity is lower than the Gompertz model's. If we calculate carrying capacity and in-
�ection point, we getKL = 9:6 which is nearly reached, and (tL; x(tL)) = (6:0624;4:8019).
These values are more appropriate and suitable for this data set.

Figure 3.13: Transformed data with linear
regression line

Figure 3.14: Fitted logistic model
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Classical von Bertalan� y model

Before we try to �t the general model, let's review the results using the classical von Berta-
lan� y model, indicated by the color green in all plots.

Once again, the line �tting the transformed data is shown in Figure 3.15. The intercept
and slope of this line, along withx0, serve as initial parameters. This model is equivalent
to the general model when
 = � 1

3. The plot shows the transformation of the data using the

formulayi =
V

1
3
i+1� Vi

1
3

ti+1� ti
on the y-axis andVi

1
3 on the x-axis.

The �t of the classical von Bertalan� y model to the data is shown in Figure 3.16.
The parameters estimated by thefminsearchfunction are� B = 0:6285,� B = 0:2605 and
x0B = 1:6106. The value of the criterion function isL( ˆ� B) = 0:0896. However, this model
does not capture second data point, it does not reach the plateau phase nor has a clear S-
shaped curve. Its carrying capacity isKB = 14:04, which is the highest among all models
and, based on the plot, it is too high for this data set. The in�ection point is (tB; x(tB)) =
(4:9906;4:1613), which is, like in the Gompertz model, (perhaps) too early for this data
set.

Figure 3.15: Transformed data with linear
regression line

Figure 3.16: Fitted classical von Berta-
lan� y model

Comparison of the models

Upon initial inspection, the logistic model appears to best �t the data. To compare them
easier, let's take a look at the plots of the �tted models in Figure 3.17. Once again, black
represents the Gompertz model, red represents the logistic model, and green represents the
classical von Bertalan� y model. The logistic model stands out as the most suitable because
its carrying capacity is well-matched to the data and nearly reached, it �ts all data points,
exhibits the nicest S-shaped curve, and its in�ection point appears most appropriate.
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Another helpful criterion for decision-making is the analysis ofresiduals. Residuals
are the di� erences between observed values and those predicted by the model. If a model
�ts the data well, residuals should be randomly scattered around zero. The standardized
residual plots are shown in Figure 3.18. All residuals show a similar pattern, prompting
further analysis to determine which model's residuals perform best.

Figure 3.17: Fitted models Figure 3.18: Standardized residuals of the �t-
ted models

I have calculated thesum of squared residuals (SSR), mean squared error (MSE)and
mean absolute error (MAE)for each model. SSR measures the total sum of the squared
di� erences between actual and predicted values; SSR=

P n
i=1(yi � ŷi)2. It is used to assess

the overall error of the model. MSE represents the average of these squared di� erences;
MSE = 1

n

P n
i=1(yi � ŷi)2, providing a measure of the average squared error. MAE is the aver-

age of the absolute di� erences between actual and predicted values; MAE= 1
n

P n
i=1 jyi � ŷi j,

indicating the average absolute error of the model. Smaller values indicate better perfor-
mance for all three metrics.

The results are summarized in Table 3.2. The logistic model has the smallest SSR,
MSE and MAE, making it the best model for this data set.

Model SSR MSE MAE
Gompertz 2.7021 0.3860 0.5308
Logistic 2.0650 0.2950 0.4606

classical von Bertalan� y 2.9920 0.4274 0.5616

Table 3.2: Results of the residuals analysis
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General model

Given that residual analysis cleared up the preference, I have decided to use the logistic
model as the initial guess for the general model.

Unlike previous models, the general model requires initial guesses for all four param-
eters instead of three. The initial guesses for�; � and x0 are estimated parameters from
logistic model using� = � L � � L, � = � L andx0 = x0L , while the initial guess for
 is 1
because that is the value of
 in the logistic model. The general model is represented in
blue in all plots.

Figure 3.19 shows the �t of the general model to the data, while Figure 3.20 represents
both logistic and general model on the same plot. The values of the parameters are� =
0:1654,� = 3:5278e � 29, x0 = 1:7620 and
 = 32:1934 and the value of the criterion
function is L(�̂ ) = 0:0351. The plateau phase is reached and carrying capacity isK =
8:0604, while the in�ection point is (t; x(t)) = (8:5421;7:2296) which is (perhaps) a bit
late. Based on the plots, the general model �ts the data a bit di� erent than the logistic
model. It reaches the plateau phase before and the in�ection point is later, but both models
�t all data points, and have a nice S-shaped curve.

Figure 3.19: Fitted general model Figure 3.20: Fitted logistic and general mod-
els

Let's check the residuals in Figure 3.21. The SSE,, MSE and MAE are calculated and
presented in Table 3.3. The general model has smaller SSR, MSE and MAE, making it
better than the logistic model.
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Figure 3.21: Standardized residuals of logistic and general model

Model SSR MSE MAE
Logistic 2.0650 0.2950 0.4606
General 1.1313 0.1616 0.3258

Table 3.3: Results of the residuals analysis for logistic and general model

Since both models �t the data well, it is challenging to determine whether the general
model is truly better than the logistic model for this data set, especially given the small
number of data points. To check if there is a statistically signi�cant di� erence between
these two models, let's see the results ofpost hocanalysis.

3.6 Post hocAnalysis

The �rst analysis I have used is theF-test[39]. F-test is a statistical test used to compare
the variances of two samples. The null hypothesis is that the parameter
 is equal to the
logistic model's
 and the alternative hypothesis is that it is not;

H0 :
 = 1

H1 :
 , 1:

F-test is calculated as:

f =
L0( ˆ� 0)� L(�̂ )

d f1

L(�̂ )
d f2

H0� F(d f1;d f2);

whereL0( ˆ� 0) is the value of the criterion function for the logistic model withˆ� 0 = ( ˆ� 0; ˆ� 0; x̂00),
L(�̂ ) is the value of the criterion function for the general model with�̂ = (�̂; �̂; x̂0; 
̂ ), d f1
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is the di� erence in the number of parameters between the general and logistic models, and
d f2 is the number of time points minus the number of parameters in the general model.
Here,d f1 = 4 � 3 = 1 andd f2 = 7 � 4 = 3. Following that, we easily calculatef :

f =
0:0655� 0:0351

1
0:0351

3

= 2:5983:

The critical value isF(1;3) = 10:128 using the F-distribution table with the level of sig-
ni�cance � = 0:05. P-valueis calculated asP(F > f = 2:5983jH0) = 0:2054. A p-value
is a measure that indicates the strength of evidence against the null hypothesis in statistical
hypothesis testing. If the p-value is below a certain signi�cance level (here 5%), it suggests
that the observed data is statistically signi�cant. This means there is su� cient evidence to
reject the null hypothesis in favor of an alternative hypothesis, implying that the results are
unlikely to have occurred by chance alone. Sincep > � , we fail to reject the null hypothe-
sis. Also, the calculatedf is less than the critical value, so we can conclude that there is no
statistically signi�cant di� erence between the general and logistic models in terms of their
e� ectiveness.

There is one more interesting calculation to do. That is the 95% con�dence intervals for
the parameters� . To do that, we used bootstrap method [42]. Using estimated parameters
�̂ = (�̂; �̂; x̂0; 
̂ ) of the general model, we created new data:

V�
ki = x(ti j�̂ ) + �̂ � Vi � " �

ki;

wherek = 1;2; :::;999 is the number of bootstrap samples,i = 1;2; :::;7 is the number of
time points,x(ti j�̂ ) is the volume predicted by the general model at timeti with parameters
�̂ , �̂ is the square root of the criterion function in general model over the number of data
points minus the number of estimated parameters; ( ˆ� =

p
L(�̂ )=(7 � 4)),Vi mean volume at

time ti and" �
ki is a random number from the standard normal distributionN(0;1), di� erent

for eachk andi.
Then we used thefminsearchfunction to �nd the parameters of the general model for

each bootstrap sample and stored it in the vectorˆ� � . The initial parameters used forfmin-
searchcall were the estimated parameters of the general model with the change of ˆx0 for
V�

k1. The MaxIter and MaxFunEvals were changed to 200000. We sorted the vectorˆ� � for
each parameter and calculated the 2:5% and 97:5% quantiles. To calculate the con�dence
intervals for� , we used the formula:

�̂ �
(25) � �̂ � �̂ � � � �̂ �

(975) � �̂:
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Parameter Lower bound Upper bound
� 0.091503 0.216434
� 0 7.1e-29
x0 1.330777 2.248796

 -1 61.301633

Table 3.4: Con�dence intervals for the parameters of the general model

The results, using previously mentioned conditions� > 0 and
 > � 1, are shown in
Table 3.4. The con�dence intervals for� , � andx0 are narrow, while for
 it is wider. As
we can see,
 = 1 is within limits of 95% CI for
 .

3.7 Conclusion

To conclude, both the logistic and general models �t the data better than Gompertz and
classical von Bertalan� y models. To decide which of these two models is better, thepost
hoc analysis was used and showed that there is no statistically signi�cant di� erence be-
tween them. The general model has 4 parameters, while the logistic model has 3, so the
general model is more complex and it is better and easier to use the logistic model for
further analysis. It is important to note that this analysis is based on only 7 time points and
16 MTS, suggesting the need for more data to make more meaningful conclusions.
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Summary

In this thesis, the aim was to analyze the growth of tumour spheroids using the Gompertz,
logistic, classical von Bertalan� y and general models of growth. The data set contains
average volumes of 16 multicellular tumour spheroids of chondroblastic osteosarcoma tu-
mours measured at 7 time points. The models were �tted to the data and compared. The
Gompertz and classical von Bertalan� y models provided poor �ts to the data, while the
logistic and general models �t the data well. To decide which model is the best, thepost
hocanalysis was used. The F-test showed that there is no su� cient evidence to conclude
that the models are signi�cantly di� erent in terms of their e� ectiveness. Since the logistic
model has one parameter less than the general model, it is more parsimonious and should
be used for further analysis.
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