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The production of the ψð2SÞ charmonium state was measured with ALICE in Pb-Pb collisions at
ffiffiffiffiffiffiffiffi

sNN
p ¼ 5.02 TeV, in the dimuon decay channel. A significant signal was observed for the first time at
LHC energies down to zero transverse momentum, at forward rapidity (2.5 < y < 4). The measurement of
the ratio of the inclusive production cross sections of the ψð2SÞ and J=ψ resonances is reported as a
function of the centrality of the collisions and of transverse momentum, in the region pT < 12 GeV=c. The
results are compared with the corresponding measurements in pp collisions, by forming the double ratio
½σψð2SÞ=σJ=ψ �Pb-Pb=½σψð2SÞ=σJ=ψ �pp. It is found that in Pb-Pb collisions the ψð2SÞ is suppressed by a factor of
∼2 with respect to the J=ψ . The ψð2SÞ nuclear modification factor RAA was also obtained as a function of
both centrality and pT . The results show that the ψð2SÞ resonance yield is strongly suppressed in Pb-Pb
collisions, by a factor of up to ∼3 with respect to pp. Comparisons of cross section ratios with previous
Super Proton Synchrotron findings by the NA50 experiment and of RAA with higher-pT results at LHC
energy are also reported. These results and the corresponding comparisons with calculations of transport
and statistical models address questions on the presence and properties of charmonium states in the quark-
gluon plasma formed in nuclear collisions at the LHC.

DOI: 10.1103/PhysRevLett.132.042301

Quarkonia, the bound states of a heavy quark-antiquark
pair, represent an important test bench for quantum
chromodynamics (QCD), the theory of strong inter-
actions [1]. The production process of the pair is governed
by the hard scale corresponding to the quark mass and
occurs on a very short time (∼0.1 fm=c), while its binding
is a soft process, characterized by timescales that can be an
order of magnitude larger [2,3]. Static properties of
quarkonia, and, in particular, their complex spectroscopy,
can be reproduced by formulating QCD on a discrete lattice
in space and time [4]. The quarkonium states can also be
used as a probe of strongly interacting extended systems,
and, in particular, of the quark-gluon plasma (QGP), a state
of matter where quarks and gluons are deconfined over
distances much larger than the hadronic size (∼1 fm). In
such a state, which can be created by collisions of heavy
ions at ultrarelativistic energies, the large density of free
color charges leads to a screening of the quark-antiquark
binding and to the dissociation of quarkonia [5]. Effects
related to a collisional damping of the states can also be
present, leading to a loss of correlation in the pair and,
consequently, to a modification of the spectral functions in

the QGP [6]. Finally, the QGP created in the collision
expands and cools down until it crosses the pseudocritical
temperature Tc (of about 157 MeV for a system with zero
net baryonic number [7,8]) for the transition to a hadronic
phase. Close to this transition, if the initial multiplicity of
heavy quark pairs is large, recombination processes, which
counterbalance to a certain extent the suppression in the
QGP, may become sizable [9,10]; i.e., quarks and anti-
quarks close in phase space can recombine to form a
quarkonium state. These processes may already be effective
even in the QGP phase [11].
A further important element in the study of quarkonium

production in heavy-ion collisions is their rich variety of
states. Restricting the discussion to charmonia, bound
states of charm-anticharm quarks, the ground-level J=ψ
vector meson and its radial excitation ψð2SÞ differ in
binding energy by more than a factor of 10 (∼640 versus
∼50 MeV, respectively) and by about a factor of 2 in
size [12,13]. As a consequence, the dissociation of the
charmonium states depends on the temperature of the
medium and is expected to occur sequentially, reflecting
the increasing values of their binding energies [14]. Also,
the recombination processes might, in principle, have
different features, with the larger-size charmonium states
being produced later in the evolution of the system [15].
Current theoretical approaches for the complex phenom-
enology of charmonium production in nuclear collisions
include transport models [16,17], where dissociation and
recombination rates for quarkonium states in the QGP are
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calculated taking into account a lattice-QCD-inspired
evaluation of the dependence of their spectral properties
on the evolving thermodynamic properties of the medium.
In the statistical hadronization model (SHMc) [18], char-
monia are assumed to be formed at hadronization according
to statistical weights and introducing a charm fugacity
factor related to charm conservation and determined by the
charm production cross section (in the frame of SHMc, it
can be more appropriate to use the word “combination”
rather than “recombination,” as there is no binding of
charmonium states in the QGP phase). The availability of
accurate experimental results for various charmonium
states represents a crucial input for the evaluation of the
theory approaches and ultimately for the understanding of
the existence of bound states of heavy quarks in the QGP.
On the experimental side, a suppression of the J=ψ

in Pb-Pb collisions was observed by the NA50 experi-
ment at the CERN Super Proton Synchrotron (SPS) [19]
(center of mass energy per nucleon-nucleon collision
ffiffiffiffiffiffiffiffi

sNN
p ¼ 17.3 GeV) and subsequently confirmed at the
Relativistic Heavy Ion Collider by PHENIX [20] and
STAR [21] (Au-Au at

ffiffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV). At the LHC

(Pb-Pb at
ffiffiffiffiffiffiffiffi

sNN
p ¼ 2.76 and 5.02 TeV), the ALICE

Collaboration has unambiguously demonstrated the exist-
ence and role of the recombination processes, by observ-
ing at low transverse momentum (pT), and in central
collisions, a smaller suppression compared to lower-
energy results [22]. At high pT , CMS and ATLAS results
indicate a strong J=ψ suppression [23,24], reaching a
value of ∼4 for central collisions, where the geometric
overlap of the colliding nuclei is maximal. The suppres-
sion in Pb-Pb collisions is quantified via the nuclear
modification factor RAA, defined as the ratio between the
J=ψ yield in Pb-Pb and the product of the corresponding
J=ψ cross section in pp collisions times the average
nuclear thickness function hTAAi [25], a quantity propor-
tional to the number of nucleon-nucleon collisions.
The ψð2SÞ measurements are more challenging, due to

the ∼7.5 lower branching ratio to muon pairs with respect
to the J=ψ and the ∼6 times smaller production cross
section in pp collisions at LHC energy [26]. The most
accurate result until today was obtained by NA50, which
measured a decrease of the cross section ratio between
ψð2SÞ and J=ψ by a factor of ∼2, in Pb-Pb collisions at
ffiffiffiffiffiffiffiffi

sNN
p ¼ 17.3 GeV [27], when increasing the collision
centrality. Both transport [11,28] and statistical hadroniza-
tion models [29] were able to reproduce the main features
of this result (see, e.g., Fig. 37 in Ref. [30]). More recently,
ψð2SÞ production was studied by ATLAS [23] and
CMS [24,31], measuring the double ratio between the
ψð2SÞ and J=ψ cross sections in Pb-Pb and pp collisions at
ffiffiffiffiffiffiffiffi

sNN
p ¼ 5.02 TeV. Their analyses, carried out at midra-
pidity, show in the high-pT region a strong relative
suppression of the ψð2SÞ with respect to J=ψ , by a factor
of ∼2. For a complete characterization of ψð2SÞ production

at these energies, an extension of these results toward low
pT , the kinematic region where recombination effects
are maximal, is needed. To date, the previous result by
ALICE [32] at

ffiffiffiffiffiffiffiffi

sNN
p ¼ 2.76 TeV does not allow a firm

conclusion, due to the large uncertainties.
In this Letter, we present results on inclusive ψð2SÞ

production, obtained by ALICE in Pb-Pb collisions at
ffiffiffiffiffiffiffiffi

sNN
p ¼ 5.02 TeV. The ψð2SÞ is studied by means of its
decay to muon pairs in the region 2.5 < y < 4 and down to
zero pT . Measurements of the (double) ratio of production
cross sections between the ψð2SÞ and J=ψ , as well as
of the ψð2SÞRAA, are given. The ALICE detector is
described extensively in Refs. [33,34]. In particular, muon
detection is carried out by a forward spectrometer consist-
ing of a 3 Tm dipole magnet, a system of two hadron
absorbers, and five tracking (cathode pad chambers)
and two triggering (resistive plate chambers) stations.
The minimum-bias (MB) trigger is obtained as a coinci-
dence of signals from the two V0 scintillator arrays
(−3.7 < η < −1.7 and 2.8 < η < 5.1), also used for the
rejection of beam-gas interactions and for the determination
of the centrality of the collisions (see below).
The data analyzed in this Letter were collected in 2015

and 2018 and correspond to an integrated luminosity
Lint ∼ 750 μb−1. The collisions were classified from central
to peripheral according to the decreasing energy deposition
in the V0 detectors, which can be related to the degree
of geometric overlap of the colliding nuclei [25,35].
Events were recorded using a dimuon trigger, given by
the coincidence of a MB trigger together with the detection
of a pair of particles with opposite charges in the triggering
system of the muon spectrometer. The trigger algorithm
applies a nonsharp pT threshold, which has 50% efficiency
at 1 GeV=c and becomes fully efficient (> 98%) for
pT > 2 GeV=c. Selection criteria were applied at the single
muon and muon pair levels (see Ref. [36] for details).
Opposite-sign dimuons were selected in the rapidity
interval 2.5 < y < 4.
The signal extraction procedure for the ψð2SÞ and J=ψ

was based on χ2 minimization fits of the opposite-sign
dimuon invariant-mass spectra. The combinatorial back-
ground was subtracted with the help of an event mixing
procedure, described in detail in Ref. [32]. The resonance
signals were described by a double-sided Crystal Ball
function or a pseudo-Gaussian with a mass-dependent
width [37]. The position of the pole mass of the J=ψ , as
well as its width, were kept as free parameters in the fitting
procedure. For the ψð2SÞ, due to the much smaller
statistical significance of its signal, its mass was bound
to that of the J=ψ , via the mass difference of the two
resonances as provided by the Particle Data Group [38],
mψð2SÞ ¼ mFIT

J=ψ þ ðmPDG
ψð2SÞ −mPDG

J=ψ Þ. The width was also

bound to that of the J=ψ , imposing the same ratio of the
J=ψ and ψð2SÞ widths as the one measured in the data
sample of pp collisions at

ffiffiffi

s
p ¼ 13 TeV [39] or in
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Monte Carlo (MC) simulations (see details below).
The same data sample, or the MC, was also used to fix the
non-Gaussian tails of the resonance mass spectra. The
continuum component of the correlated background
remaining in the dimuon distributions after mixed-event
subtraction and originating mainly from semimuonic
decays of pairs of heavy-flavor hadrons was parametrized
using various empirical functions. Fits were performed
in two invariant mass intervals, 2 < mμμ < 5 GeV=c2 and
2.2 < mμμ < 4.5 GeV=c2, roughly centered in the reso-
nance region. The resonance signals were extracted in four
pT classes for the centrality range 0%–90% and in
four centrality classes. For the latter series, the selections
pT < 12 GeV=c and 0.3 < pT < 12 GeV=c were used for
the two most central and peripheral classes, respectively, to
remove the low-pT contribution from photoproduction [40]
which becomes important for peripheral collisions. For
each kinematic and/or centrality selection, the numbers of
detected ψð2SÞ and J=ψ were obtained by averaging the
results of the various fits. For the complete data sample
(0%–90%), they amount to 1.3 × 104 and 9.2 × 105,
respectively. All the invariant mass spectra and the results
of the corresponding fits are reported as Supplemental
Material [41].
The product of acceptance times efficiency (A × ε) has

been calculated by means of a MC simulation. The pT and
y distributions for the generated J=ψ were matched to those
extracted from data using an iterative procedure as done in
Ref. [42], and the same distributions were also used for the
ψð2SÞ. The misalignment of the detection elements as well
as the time-dependent status of each electronic channel
during the data-taking period were taken into account in the
simulation. The resonance signals were embedded into real
events in order to properly reproduce the effect of detector
occupancy and its variation from one centrality class to
another and then reconstructed. The centrality and pT-
integrated A × ε values, relative to the 2.5 < y < 4 interval,
are 13.5% and 17.3% for J=ψ and ψð2SÞ, respectively. As a
function of pT and centrality, the A × ε vary within a factor
of ∼2 and by about 5%, respectively.
The evaluation of the double ratios and the nuclear

modification factors requires the measurement of the char-
monium cross sections in pp collisions at

ffiffiffi

s
p ¼ 5.02 TeV.

Results from Ref. [43] were used for this purpose, by
appropriately combining, where necessary, the ψð2SÞ cross
sections and the ratios σψð2SÞ=σJ=ψ , in order to match the pT

binning used in this analysis.
The normalization of the yields per event in Pb-Pb

collisions is obtained calculating the number of “equiv-
alent”minimum-bias events as the product of the number of
dimuon-triggered events (∼4 × 108) times the inverse of the
probability of having a dimuon trigger in a MB event (F),
following the procedure described, e.g., in Ref. [44]. For
the 0%–90% centrality class, the value of the normalization
factor is F ¼ 13.1� 0.1. Finally, the hTAAi values were

taken from Ref. [25] for the centrality intervals directly
quoted there or by combining their values for the other
intervals.
A summary of the systematic uncertainties affecting the

calculation of the (double) ratios and ψð2SÞRAA is given in
Table I. They were obtained following similar procedures
as those adopted for previous charmonium analyses at
forward rapidity, that are detailed, e.g., in Refs. [45,46].
For the signal extraction, the systematic uncertainty was
calculated as the root mean square of the values of the
number of ψð2SÞ obtained by combining different fitting
ranges, signal, and residual background shapes. In addition,
two different normalization ranges of the mixed-event
spectra were tested. Fits with a χ2=n:d:f: > 2.5 were
excluded from the calculation. For the ingredients entering
the A × ε calculation, the systematic uncertainties related to
tracking, triggering, and matching of candidate tracks
between tracking and triggering detectors were obtained
by comparing information obtained in MC and in data, as
described in Ref. [46]. The uncertainty due to the generated
y and pT resonance shapes in the MC was estimated as in
Ref. [42], taking into account the statistical uncertainty on
the measured distributions used for their definition in the
iterative procedure and the possible correlations between
the distributions in y and pT . The uncertainty on F was
obtained by comparing the results of two different evalu-
ations as discussed in Ref. [44], while for hTAAi they were
computed by varying the input parameters of the Glauber
calculation used for their estimate [25]. For the centrality
evaluation, the systematic uncertainty was obtained varying
by �1% the value of the V0 signal amplitude correspond-
ing to the most central 90% of the hadronic Pb-Pb cross
section and reextracting the resonance signal under this

TABLE I. Contributions to the systematic uncertainties (in
percentage). In each column, values with an asterisk correspond
to the systematic uncertainties correlated as a function of the
corresponding variable. The pp reference entry includes a 1.8%
luminosity uncertainty.

Versus centrality Versus pT

ψð2SÞRAA

Signal extraction 16–22 12–25
Tracking effic. 3* 3
Trigger effic. 1.6* 1.5–2
Matching effic. 1* 1
MC input 2* 2
F 0.7* 0.7*
hTAAi 0.7–2.3 1*
Centrality 0–7 0.3*
pp ref. 4.7* 7.9–11.1

(Double) ratios

Signal extraction 16–23 12–24
pp ref. 6.7* 5.5–8.8
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hypothesis, as detailed in Ref. [45]. For the pp reference,
uncertainties were obtained by combining the correspond-
ing values from the narrower pT intervals reported in
Ref. [43]. A further uncertainty related to the evaluation
of the pp luminosity is also considered in the RAA
evaluation [43]. All the uncertainties discussed in this
paragraph are added in quadrature to obtain the total
systematic uncertainty.
When the ψð2SÞ to J=ψ cross section ratios are com-

puted, all uncertainties cancel out except the one related to
the signal extraction which is dominated by the former
resonance. For the double ratios, the uncertainties on the
pp cross section ratio between ψð2SÞ and J=ψ were also
obtained starting from Ref. [43]. All the results shown in
this Letter and the corresponding model calculations refer
to inclusive quarkonium production, which includes non-
prompt quarkonia, originating from the decay of b hadrons.
In Fig. 1, the ratio of ψð2SÞ and J=ψ cross sections (not

corrected for the branching ratios of the dimuon decay) is
shown as a function of centrality, expressed as the average
number of participant nucleons hNparti. In the lower panel,
the values of the double ratio can be read, showing a ψð2SÞ
suppression, with respect to J=ψ , by a factor of about 2
from pp to Pb-Pb. No significant centrality dependence of

the results is seen, within the uncertainties. Comparison
with calculations of a transport approach (TAMU) [15] and
of the SHMc model [18,47] are also shown. The TAMU
model reproduces the cross section ratios over centrality,
while the SHMc model tends to underestimate the data
in central Pb-Pb collisions. The ALICE results are also
compared with the corresponding inclusive (double) ratios
obtained by NA50 in 0 < y < 1 [27], which reach smaller
values for central events.
In Fig. 2, the nuclear modification factors for ψð2SÞ

(this analysis) and J=ψ (from Ref. [45]) are compared,
as a function of hNparti. With the limited number of
centrality intervals that could be defined, the RAA values
for the ψð2SÞ do not show a clear trend and are generally
consistent with an RAA value of about 0.4. In Fig. 2,
calculations with the TAMU model are also shown,
indicating a good agreement with the measured RAA for
both J=ψ and ψð2SÞ. The SHMc model reproduces, within
uncertainties, the J=ψRAA centrality dependence, while it
underestimates the ψð2SÞ production in central and semi-
central collisions.
Figure 3 shows the ψð2SÞRAA, compared with the

corresponding result for the J=ψ [46], as a function of
pT . The corresponding CMS measurements [48] in the
region jyj < 1.6 and 6.5 < pT < 30 GeV=c are also
reported. The main feature is an increase of the nuclear
modification factor at low pT, similar to what was observed
for the J=ψ and understood as a direct consequence of the
recombination process of charm and anticharm quarks.
The strong suppression of the ψð2SÞ (RAA ∼ 0.15 at
pT ¼ 10 GeV=c) persists up to pT ¼ 30 GeV=c as shown
by the CMS data, that agree within uncertainties with those
of ALICE in the common pT range, in spite of the different
rapidity coverage. A comparison with predictions from the
TAMU model [15] is shown, indicating that also the pT
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dependence of the RAA is well reproduced for both J=ψ and
ψð2SÞ, as was the case for the centrality dependence. For
completeness, we include in Supplemental Material [41] a
plot with the (double) ratio of the ψð2SÞ cross sections as a
function of pT .
The contribution of nonprompt quarkonia, originating

from the decay of b hadrons, could be estimated knowing
the fraction FB of nonprompt charmonia in pp collisions
and their RAA in Pb-Pb collisions. An approximate estimate
can be carried out using FB values from LHCb [49,50] and
the RAA of nonprompt D mesons measured by ALICE [51]
and used as a proxy for nonprompt quarkonia. It shows that
prompt J=ψ and ψð2SÞRAA would be smaller by less than
1σ with respect to their inclusive values. However, it should
be noted that the input quantities for this evaluation do not
precisely correspond to the same kinematic or collision
energy region of our data.
The picture emerging from these results shows a clear

hierarchy of suppression of J=ψ and ψð2SÞ over the whole
pT and centrality intervals explored. Apart from the overall
larger ψð2SÞ suppression, visible in the double ratios and in
the comparison of the RAA, no significant difference in the
pT and centrality dependence of the suppression effects
between the two states can be seen. The comparison with
SPS results shows that the relative suppression of ψð2SÞ
with respect to J=ψ in central Pb-Pb events tends to be
stronger at low collision energy compared to LHC.
However, part of this effect could be due to the different
size of the nonprompt component, almost negligible at low
energy. When comparing the results with the predictions of
statistical and transport models, a significantly better
agreement is obtained with the latter, in particular, for
central events, as visible in Figs. 1 and 2. We underline that
the data-model comparisons are consistently done for
inclusive production. The results shown in this Letter favor
the scenario where bound states are dissociated or

recombined in the QGP phase, according to the modifica-
tion of their spectral properties expected from lattice QCD.
In summary, we have provided first accurate results on

ψð2SÞ production in Pb-Pb collisions at LHC energy
down to zero pT , in the rapidity region 2.5 < y < 4.
Measurements of the cross section ratios between ψð2SÞ
and J=ψ , of the double ratio between Pb-Pb and pp
collisions, and of the nuclear modification factors were
shown. A relative suppression by a factor of ∼2 of the
ψð2SÞ with respect to the J=ψ is observed, with no
significant centrality dependence within the uncertainties.
The RAA values for the ψð2SÞ show a hint for a decrease as
a function of pT , reminiscent of the same effect observed
for the J=ψ and connected with charm quark recombina-
tion processes. As a function of centrality, values around
RAA ∼ 0.4 are observed. The theory comparisons show a
good agreement with the predictions of the transport model,
that include recombination of charm quarks in the QGP
phase, while the SHMc model tends to underestimate the
data in central Pb-Pb collisions.
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R. Sahoo,47 S. Sahoo,60 D. Sahu,47 P. K. Sahu,60 J. Saini,132 K. Sajdakova,37 S. Sakai,123 M. P. Salvan,97 S. Sambyal,91

I. Sanna,32,95 T. B. Saramela,110 D. Sarkar,134 N. Sarkar,132 P. Sarma,41 V. Sarritzu,22 V. M. Sarti,95 M. H. P. Sas,137

J. Schambach,87 H. S. Scheid,63 C. Schiaua,45 R. Schicker,94 A. Schmah,94 C. Schmidt,97 H. R. Schmidt,93 M. O. Schmidt,32

M. Schmidt,93 N. V. Schmidt,87 A. R. Schmier,120 R. Schotter,127 A. Schröter,38 J. Schukraft,32 K. Schwarz,97 K. Schweda,97

G. Scioli,25 E. Scomparin,55 J. E. Seger,14 Y. Sekiguchi,122 D. Sekihata,122 I. Selyuzhenkov,97,140 S. Senyukov,127 J. J. Seo,57

D. Serebryakov,140 L. Šerkšnytė,95 A. Sevcenco,62 T. J. Shaba,67 A. Shabetai,103 R. Shahoyan,32 A. Shangaraev,140

A. Sharma,90 D. Sharma,46 H. Sharma,107 M. Sharma,91 S. Sharma,76 S. Sharma,91 U. Sharma,91 A. Shatat,72 O. Sheibani,114

K. Shigaki,92 M. Shimomura,77 J. Shin,11 S. Shirinkin,140 Q. Shou,39 Y. Sibiriak,140 S. Siddhanta,51 T. Siemiarczuk,79

T. F. Silva,110 D. Silvermyr,75 T. Simantathammakul,105 R. Simeonov,36 B. Singh,91 B. Singh,95 R. Singh,80 R. Singh,91

R. Singh,47 S. Singh,15 V. K. Singh,132 V. Singhal,132 T. Sinha,99 B. Sitar,12 M. Sitta,55,130 T. B. Skaali,19 G. Skorodumovs,94

M. Slupecki,43 N. Smirnov,137 R. J. M. Snellings,58 E. H. Solheim,19 J. Song,114 A. Songmoolnak,105 F. Soramel,27

R. Spijkers,84 I. Sputowska,107 J. Staa,75 J. Stachel,94 I. Stan,62 P. J. Steffanic,120 S. F. Stiefelmaier,94 D. Stocco,103

I. Storehaug,19 P. Stratmann,135 S. Strazzi,25 C. P. Stylianidis,84 A. A. P. Suaide,110 C. Suire,72 M. Sukhanov,140 M. Suljic,32

R. Sultanov,140 V. Sumberia,91 S. Sumowidagdo,82 S. Swain,60 I. Szarka,12 S. F. Taghavi,95 G. Taillepied,97 J. Takahashi,111

G. J. Tambave,20 S. Tang,6,125 Z. Tang,118 J. D. Tapia Takaki,116 N. Tapus,124 L. A. Tarasovicova,135 M. G. Tarzila,45

G. F. Tassielli,31 A. Tauro,32 G. Tejeda Muñoz,44 A. Telesca,32 L. Terlizzi,24 C. Terrevoli,114 G. Tersimonov,3 S. Thakur,4

D. Thomas,108 A. Tikhonov,140 A. R. Timmins,114 M. Tkacik,106 T. Tkacik,106 A. Toia,63 R. Tokumoto,92 N. Topilskaya,140

M. Toppi,48 F. Torales-Acosta,18 T. Tork,72 A. G. Torres Ramos,31 A. Trifiró,30,52 A. S. Triolo,30,52 S. Tripathy,50

T. Tripathy,46 S. Trogolo,32 V. Trubnikov,3 W. H. Trzaska,115 T. P. Trzcinski,133 A. Tumkin,140 R. Turrisi,53 T. S. Tveter,19

K. Ullaland,20 B. Ulukutlu,95 A. Uras,126 M. Urioni,54,131 G. L. Usai,22 M. Vala,37 N. Valle,21 L. V. R. van Doremalen,58

M. van Leeuwen,84 C. A. van Veen,94 R. J. G. van Weelden,84 P. Vande Vyvre,32 D. Varga,136 Z. Varga,136 M. Vasileiou,78

A. Vasiliev,140 O. Vázquez Doce,48 V. Vechernin,140 E. Vercellin,24 S. Vergara Limón,44 L. Vermunt,97 R. Vértesi,136
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74Lawrence Berkeley National Laboratory, Berkeley, California, USA

75Lund University Department of Physics, Division of Particle Physics, Lund, Sweden
76Nagasaki Institute of Applied Science, Nagasaki, Japan

77Nara Women’s University (NWU), Nara, Japan
78National and Kapodistrian University of Athens, School of Science, Department of Physics, Athens, Greece

79National Centre for Nuclear Research, Warsaw, Poland
80National Institute of Science Education and Research, Homi Bhabha National Institute, Jatni, India

81National Nuclear Research Center, Baku, Azerbaijan
82National Research and Innovation Agency - BRIN, Jakarta, Indonesia
83Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

84Nikhef, National institute for subatomic physics, Amsterdam, Netherlands
85Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom

86Nuclear Physics Institute of the Czech Academy of Sciences, Husinec-Řež, Czech Republic
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125Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
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130Università del Piemonte Orientale, Vercelli, Italy
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