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Collective behavior has been observed in high-energy heavy-ion collisions for several decades. Collectivity
is driven by the high particle multiplicities that are produced in these collisions. At the CERN Large Hadron
Collider (LHC), features of collectivity have also been seen in high-multiplicity proton-proton collisions that
can attain particle multiplicities comparable to peripheral Pb-Pb collisions. One of the possible signatures of
collective behavior is the decrease of femtoscopic radii extracted from pion and kaon pairs emitted from high-
multiplicity collisions with increasing pair transverse momentum. This decrease can be described in terms of an
approximate transverse mass scaling. In the present work, femtoscopic analyses are carried out by the ALICE
Collaboration on charged pion and kaon pairs produced in pp collisions at

√
s = 13 TeV from the LHC to study

possible collectivity in pp collisions. The event-shape analysis method based on transverse sphericity is used
to select for spherical versus jetlike events, and the effects of this selection on the femtoscopic radii for both
charged pion and kaon pairs are studied. This is the first time this selection method has been applied to charged
kaon pairs. An approximate transverse-mass scaling of the radii is found in all multiplicity ranges studied when
the difference in the Lorentz boost for pions and kaons is taken into account. This observation does not support
the hypothesis of collective expansion of hot and dense matter that should only occur in high-multiplicity events.
A possible alternate explanation of the present results is based on a scenario of common emission conditions for
pions and kaons in pp collisions for the multiplicity ranges studied.

DOI: 10.1103/PhysRevC.109.024915

I. INTRODUCTION

The manifestation of collective effects in pp (pp) and p-A
collisions with increasing multiplicity of charged particles is
intensely discussed in the literature [1–4]. Surprisingly, these
small colliding systems exhibit several signatures attributed to
the formation of a strongly interacting quark-gluon plasma in
heavy-ion collisions, such as long-range ridgelike structures
[5–7] and strangeness enhancement [8]. A full understanding
of the mechanisms leading to collective effects observed in
pp collisions at large multiplicity has not yet been achieved.
For this reason, it is important to experimentally investigate
the properties of small systems with the aim to discriminate
between different theoretical models. Namely, the hydrody-
namic models present the “heavy-ion view” of pp collisions,
e.g., Ref. [9], while string models are the “high-energy view,”
e.g., models including interactions between strings [10,11].

The femtoscopy technique, which studies the final-state
hadron-hadron interactions via their momentum correlations,
is an effective tool for the extraction of the space-time charac-
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teristics of particle production processes, in particular the radii
of the emitting source and the decoupling time. This method
has already been employed in the past to study high-energy
hadron-hadron [12,13] and heavy-ion collisions [14,15] us-
ing quantum statistical (QS) correlations and/or final-state
interactions (FSI) of particles emitted with small relative
momenta.

The characteristic feature of femtoscopy in heavy-ion col-
lisions is the decrease of the source sizes for pairs of particles
(with masses m and transverse momenta pT,1 and pT,2) with
increasing pair transverse momentum kT = |pT,1 + pT,2|/2 or

transverse mass mT =
√

kT
2 + m2; see, e.g., recent results for

pions from the BNL Relativistic Heavy Ion Collider (RHIC)
[16–18] and the CERN Large Hadron Collider (LHC) [19,20].
It was explained in Ref. [21] that femtoscopy measurements
do not probe the whole volume in the case of an expand-
ing emitting source, but instead the region from which the
particles with similar momenta are emitted, the so-called
homogeneity volume. This region is smaller than the total
volume occupied by the system and decreases with kT (mT).
Several theoretical models based on the hydrodynamic ap-
proach successfully describe pion femtoscopy measurements,
e.g., Refs. [22–26]. It is expected that these models should
describe the femtoscopy measurements for kaons and for
heavier particles also, particularly the mT and multiplicity
dependencies of radii. In Ref. [27], it was shown that for
the particular case of small transverse flow the hydrody-
namics leads to the same mT behavior of the longitudinal
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radii (Rlong) for pions and kaons. It means that the thermal
freeze-out occurs simultaneously and that these two particle
species are subject to the same velocity boost from collective
flow. Modern calculations made within the 3+1-dimensional
(3+1D) hydrodynamic model THERMINATOR-2 [24] at LHC
energies demonstrate the approximate mT scaling of the three-
dimensional radii for pions, kaons, and protons [26] when
the radii versus mT fall with some degree of accuracy on
one curve. The authors of Ref. [26] also investigated one-
dimensional radii (Rinv) in the pair reference frame (PRF) for
the case of lack of available experimental data. They have
verified that the violation of this scaling in the case when
the three-dimensional scaling is presented in the model has a
trivial kinematic origin. It is possible to take it into account
and restore the mT scaling for Rinv for pions, kaons, and
protons. The calculations performed within the hydrokinetic
model, including not only a hydrodynamic phase but also the
hadronic rescattering stage, predicted violation of this scaling
between pions and kaons at LHC energies [28,29], mainly due
to the rescatterings in the hadronic phase. ALICE results for
Pb-Pb collisions at

√
sNN = 2.76 TeV [30] have shown that

the mT scaling expected by pure hydrodynamical scenarios
is broken. The comparison of these two different evolution
scenarios demonstrate the importance of the mT scaling study.

At the LHC, the femtoscopic sizes range for various collid-
ing systems from 2–7 fm for Pb-Pb to 1–2 fm for pp and p-Pb
collisions, which opens a possible access to different energy
densities of the system created during such collisions and
probably helps us understand the conditions required for the
QGP formation. The multiplicity and mT dependencies were
studied for pions and kaons by ALICE for Pb-Pb collisions
(e.g., Refs. [20,30]) and for pp and p-Pb collisions (e.g.,
Refs. [31–36]). In pp collisions, it was observed for both types
of pairs that for higher charged-particle multiplicity ranges the
measured size of the source decreased with increasing mT,
similarly to the trend seen in heavy-ion collisions. Instead,
at low charged-particle multiplicities, the measured source
radii increased with increasing mT [31,33,34]. Unfortunately,
there are almost no theoretical models for pp collisions which
include the space-time coordinates and can be used to describe
femtoscopic observables. Attempts to describe the behavior of
femtoscopic radii in pp collisions at the LHC from the hydro-
dynamic point of view were performed in, e.g., Refs. [37,38],
from the view of the uncertainty principle in Ref. [39], and
from the view of the string models in Ref. [40] using the
Lund hadronization scheme which automatically introduces
the space-momentum correlations, similar to the correlations
in hydrodynamic models, where they arise due to transverse
collective flow.

The study of femtoscopic correlations in pp collisions is
more challenging than in A-A collisions due to the strong non-
femtoscopic contributions, i.e., correlations due to multibody
resonance decays, minijets, and energy-momentum conserva-
tion. Typically, a baseline distribution function is constructed
to remove these non femtoscopic effects, after which the
hadron-hadron correlations due to pure QS and FSI can be
studied. There are various methods to exclude them: (1) the
“double ratio” technique, dividing the experimental correla-
tion function by the baseline extracted from Monte Carlo

simulations [31]; (2) the “cluster subtraction” technique, using
the opposite-sign pair (e.g., π+π−) distributions as a baseline
[41]; (3) a “hybrid method” between (1) and (2), as described
in Refs. [41,42]); and (4) the three-particle cumulant method
[43], which significantly suppresses the minijet related con-
tributions and can be used as an alternative to the study of
two-particle correlations.

A method to suppress, in particular, minijet contribu-
tions in two-particle correlation functions was suggested in
Ref. [44] and it is based on applying event-shape selections.
It was shown that it is possible to differentiate between jetlike
and spherical event topologies using a global characteristic of
the event such the transverse sphericity [45,46] and the trans-
verse spherocity [47,48]. It was observed for the first time in
Ref. [44] that the pion radii for jetlike events are smaller than
the source radii for spherical events. In jetlike events, the radii
dependence on multiplicity is such that they increase with
increasing kT in the lowest multiplicity interval and decrease
with kT for the highest multiplicities. There are no multiplicity
dependences for these events. The radii for spherical events
show an increase in system size with increasing multiplicity.
They do not show any visible trend with kT, which differs
from the results of sphericity-integrated (minimum-bias) pion
and kaon analyses in Refs. [31,34], where the obtained radii
decrease with increasing kT. This different behavior suggests
[44] that the lower part of the transverse sphericity spectrum
contributes to the observed slope in minimum bias (MB) pp
collisions.

In this work, the femtoscopic correlations of identical
charged pions and kaons are investigated in pp collisions at√

s = 13 TeV. The purpose of this analysis is to study the
transverse-momentum and multiplicity dependence of pion
and kaon femtoscopic radii separately for jetlike and spherical
events. The influence of the sphericity selections on the kaon
femtoscopic radii is studied for the first time.

The article is organized as follows. Section II briefly de-
scribes the ALICE experimental setup. Section III presents the
event selection criteria. Section IV introduces the definition
of sphericity and discusses the analysis methods to extract the
femtoscopic correlation function for pion and kaon pairs and
the estimation of the systematic uncertainties. The extracted
femtoscopic parameters are shown and discussed in Sec. V.
The results are summarized in Sec. VI.

II. EXPERIMENTAL SETUP

A detailed description of the ALICE detector and its
performance can be found in Refs. [49,50]. In the present
analysis, the information from the inner tracking system (ITS)
[51], the time projection chamber (TPC) [52], the time-of-
flight (TOF) [53], and the V0 [54] detectors are used.

The V0 detector is used for triggering on collision events.
It is composed of two small-angle scintillator arrays, located
at 340 and 90 cm from the nominal interaction point along
the beam line and covering 2.8 < η < 5.1 (V0A) and −3.7 <

η < −1.7 (V0C), respectively. The events are selected with
the MB trigger, which requires simultaneous signals in both
parts of the V0 detector in coincidence with two beam bunches
crossing in the ALICE interaction region. The rejection of
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pile-up events is performed by using the vertexing capabilities
of the silicon pixel detector (SPD) [50], which forms the two
innermost layers of the ITS. Events with multiple vertices
identified with the SPD (in-bunch pile-up) are removed from
the analysis. Pile-up events from different bunch crossings are
rejected by requiring the tracks to have hits in the SPD. The
remaining leftover pile-up is negligible in the present analysis.

Charged particles are reconstructed with the central barrel
ITS and TPC detectors placed inside a solenoidal magnet pro-
viding a uniform 0.5 T field parallel to the beam direction. The
primary vertex is reconstructed using the ITS. This detector is
a silicon tracker with six layers of silicon sensors covering
the pseudorapidity range |η| < 0.9 [51]. The TPC is the main
tracking detector in ALICE, which measures the ionization
energy loss of particles. The chamber is divided into two
halves by a central electrode. The end caps on either side are
composed of 18 sectors (covering the full azimuthal angle)
with 159 pad rows placed radially in each sector. The TPC
covers an acceptance of |η| < 0.9 for tracks which reach the
outer radius of the detector.

Particle identification (PID) for reconstructed tracks is car-
ried out using the TPC together with the TOF [53] detectors.
The TOF is a cylindrical detector consisting of 18 azimuthal
sectors divided into five modules along the beam axis with
active element multigap resistive plate chambers. Pions and
kaons were identified using the TPC and TOF detectors.
The deviation of the specific energy loss (dE/dx) measured
in the TPC from the one calculated using the Bethe-Bloch
parametrization was required to be within a certain number
of standard deviations (nσTPC ). A similar nσTOF method was ap-
plied for the particle identification in the TOF. The deviation
is computed between the measured time of flight and the one
calculated for a given particle path length, momentum, and
mass.

III. DATA SELECTION

The data samples used in this work were recorded by
ALICE in 2016–2018 during the LHC Run 2 period at

√
s =

13 TeV. After application of all selection criteria, about 109

minimum bias events were analyzed.
Events were accepted if they had the collision vertex po-

sition measured along the beam line within ±10 cm from the
nominal interaction point. The charged particle tracks were
required to be reconstructed with the ITS and TPC detec-
tors with a χ2 per number of degrees of freedom (χ2/NDF)
smaller than 4.0, and each track segment was reconstructed
from at least 70 out of the 159 possible space points. The
distance of closest approach (DCA) to the primary vertex was
required to be smaller than 0.3 cm in both the transverse plane
and the longitudinal direction.

Femtoscopic correlation functions of identical particles are
sensitive to two-track reconstruction effects because the par-
ticles of interest have close momenta and close trajectories.
Two kinds of two-track effects, splitting and merging, were
studied. The splitting of the tracks means that one track is
reconstructed as two. The track merging means that two dif-
ferent tracks are reconstructed as one. To remove these effects,
the distance between the tracks of two particles was calculated

TABLE I. Charged pion selection criteria.

Selection criterion Value

pT 0.15 < pT < 4.0 GeV/c
|η| <0.8
DCAtransverse <0.3 cm
DCAlongitudinal <0.3 cm
nσTPC <3 (for p < 0.5 GeV/c)√

nσ 2
TPC

+ n2
σTOF

<3 (for 0.5 < p < 4.0 GeV/c)

Number of track points in TPC �70

at up to nine points throughout the TPC volume (every 20 cm,
from 85 to 245 cm in the radial direction) and then averaged.
It was required that the particles for each pair had an average
TPC separation of at least 3 cm.

Pions and kaons were selected in the pseudorapidity |η| <

0.8 range. For pions, the transverse momentum 0.15 < pT <

4.0 GeV/c range was used. The pion selection criteria are
presented in Table I. The pion purity is about 99% for track
momenta p < 2.0 GeV/c, while, for the 2 < pT < 4 GeV/c
interval, it decreases to 80% due to an increasing contami-
nation from kaons. The selection criteria for the kaons are
reported in Table II. In order to avoid strong contamination
from pions, narrower momentum ranges were used for kaons,
namely 0.15 < pT < 1.5 GeV/c. The dominant contamina-
tion for charged kaons is from e± in the particle momentum
range 0.4 < p < 0.5 GeV/c, resulting in a kaon purity of
approximately 90%. Outside this range, the kaon purity is
about 99%.

IV. ANALYSIS TECHNIQUE

Pions and kaons were selected in the same raw charged-
particle multiplicity intervals Ntrk of (1–18), (19–30), and
(>30) in order to compare the obtained results in the
same multiplicity conditions. The sphericity calculations (see
Sec. IV A) require at least three tracks with pT > 0.5 GeV/c.
Therefore, the lowest multiplicity interval is (1–18) if the
sphericity calculation is not performed, while it is (3–18)
when the sphericity is calculated. From now on, the low-
est multiplicity interval will be denoted as (1–18) for both

TABLE II. Charged kaon selection criteria.

Selection criterion Value

pT 0.15 < pT < 1.5 GeV/c
|η| <0.8
DCAtransverse <0.3 cm
DCAlongitudinal <0.3 cm
nσTPC <2 (for 0.15 < p < 0.4 GeV/c)

<1 (for 0.4 < p < 0.45 GeV/c)
<2 (for 0.45 < p < 1.5 GeV/c)

nσTOF <2 (for 0.5 < p < 0.8 GeV/c)
<1.5 (for 0.8 < p < 1.0 GeV/c)
<1.0 (for 1.0 < p < 1.5 GeV/c)

Number of track points in TPC �70
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TABLE III. Raw charged-particle multiplicity (Ntrk) intervals and
corresponding average 〈dNch/dη〉 calculated from corrected multi-
plicity distributions in the |η| < 0.8 range. The values are quoted
with their systematic uncertainties, the statistical uncertainties are
negligible.

Ntrk 〈dNch/dη〉ST>0.7 〈dNch/dη〉ST<0.3 〈dNch/dη〉
3(1)–18 7.8 ± 0.4 6.2 ± 0.3 5.1 ± 0.2
19–30 15.0 ± 0.7 13.5 ± 0.6 14.3 ± 0.7
>30 25.4 ± 1.0 21.8 ± 0.9 24.7 ± 0.1

cases. The multiplicity for primary charged tracks [55] was
estimated using the combined reference multiplicity estimator
(SPD tracklets and tracks reconstructed in the ITS and the
TPC) in the |η| < 0.8 range. The SPD tracklets are track
segments built by associating pairs of hits in the two SPD
layers. For each raw multiplicity interval, the average charged-
particle pseudorapidity density 〈dNch/dη〉 was obtained by
converting the measured event multiplicities using Monte
Carlo simulations with the PYTHIA 8.2 event generator [56]
(with the Monash tune [57]) and the GEANT 3 package [58]
for the transport of the generated particles through the ALICE
detector. The intervals and their corresponding 〈dNch/dη〉,
for both cases with and without sphericity event selections
(ST, defined in the next section), are shown in Table III.
The systematic uncertainties for these densities were evalu-
ated as the difference between their magnitudes when taking
into account, or not, the detector efficiency correction using
the Monte Carlo simulation mentioned above. The estimated
value for these uncertainties is about 5%.

A. Transverse sphericity

In collider experiments, the study of the shape of the emit-
ting source is often performed in the transverse x-y plane in
order to avoid distortions related to the Lorentz boost in the
beam direction along the z axis [46]. Following this princi-
ple, the transverse sphericity (ST) was used to study event
characteristics in pp collisions at the LHC by the ALICE
Collaboration [45]. The transverse sphericity is defined as

ST = 2 min(λ1, λ2)

λ1 + λ2
, (1)

where λ1 and λ2 are the eigenvalues of the matrix of transverse
particle momenta,

ST = 1∑
i pi

T

∑
i

1

pi
T

⎛
⎝(

pi
x

)2
pi

x pi
y

pi
x pi

y

(
pi

y

)2

⎞
⎠, (2)

with pi
x and pi

y being the components of the transverse mo-
mentum for ith particle �pi

T. The transverse sphericity takes
values in the (0–1) range. By definition of sphericity, in case
of ST → 0, the emitting source is a strongly elongated ellipse,
while ST → 1 corresponds to a nearly isotropic source in
momentum or coordinate space. To ensure good resolution of
the transverse sphericity calculation, only events with more
than two primary tracks in |η| < 0.8 and pT > 0.5 GeV/c
were selected [45]. Following Ref. [44], ST > 0.7 was used in

FIG. 1. The experimental probability P of having events of dif-
ferent transverse sphericity ST in the given raw multiplicity Ntrk

intervals (1–18), (19–30), and (>30). There are no corrections ap-
plied for the efficiency of the sphericity selection. Only statistical
uncertainties are shown and are smaller than the marker size.

this analysis to select spherical events. It is expected that, for
these events, the multiple soft particle production processes
dominates. For jetlike events with ST < 0.3, hard processes
such as jets and minijets become dominant.

Figure 1 shows the experimental probability of having
events with different transverse sphericity for the given raw
multiplicity intervals: (1–18), (19–30), and (>30). Sphericity
is correlated with multiplicity, so the number of events with
small ST values is higher in the lowest multiplicity interval,
while the larger multiplicity intervals contain more events
with large sphericity values.

The difference between spherical events, jetlike events,
and events without sphericity selection can be clearly seen
in Fig. 2, which presents the experimental and Monte Carlo
distributions of the azimuthal angle difference �ϕ between
the trigger and the associated particles, where the trigger par-
ticle is the particle with the largest pT in the event, ptrig

T > 0.5
GeV/c, passoc

T < ptrig
T . All distributions are normalized by the

number of associated particles: Nassoc(ST(0, 1)) = Nassoc(ST <

0.3) + Nassoc(ST > 0.7) + Nassoc(ST(0.3, 0.7)).
The Monte Carlo simulations, with PYTHIA 8 as event

generator and GEANT 3 for the simulation of the detector and
the propagation of particles through the detector material, de-
scribe the �ϕ distributions reasonably well for all sphericity
selections. The jetlike events demonstrate a strong anisotropic
structure. The peak at �ϕ ≈ 0 corresponds to correlations
within the jet determined by the trigger particle. The peak
at �ϕ → π corresponds to the correlation of the particle
associated with the jet moving in the opposite direction. Both
peaks are absent for the sphericity selection ST > 0.7. The �ϕ

distribution shows some specific features with respect to the
distribution without sphericity selection, which are reasonably
well described by PYTHIA 8. The spherical events are much
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FIG. 2. The pion raw experimental distribution of the azimuthal
angle difference �ϕ between the trigger and the associated particles
for ST > 0.7 (red circles), ST < 0.3 (blue squares), and ST(0, 1)
(green stars) compared with MC PYTHIA 8 calculations shown with
the corresponding open markers. The calculations include particle
transport through the ALICE detector using the GEANT 3 transport
package. The statistical uncertainties are smaller than the marker
size.

more isotropic than the jetlike ones, and the jet structures are
suppressed.

B. Correlation functions

The particle source created in hadronic or nuclear colli-
sions is usually investigated using momentum correlations
of two or more emitted particles. This analysis studies
two-particle correlations. The observable of interest is the
correlation function (CF) defined as

C(p1, p2) = A(p1, p2)/B(p1, p2), (3)

where A(p1, p2) is the two-particle momentum distribution in
the given event, and B(p1, p2) is a reference distribution [59].
The former includes information on the source as well as on
the FSI of the emitted hadrons and/or QS effects. The latter is
constructed by mixing particles emitted in two different colli-
sions to avoid any influence of pair correlation. In the present
work, the reference distribution is constructed by mixing ten
events with similar multiplicity and of close sphericities. It
is also required that events in a mixed event pool have their
vertex positions within 2 cm from each other along the beam
direction.

Due to the experimental limitation in the number of pairs,
the CF is commonly defined in terms of a single kinematic
variable instead of using the particle momentum vectors
[see Eq. (3)]. In the following, the Lorentz-invariant qinv =√

q2 − q2
0 is used, where q = p1 − p2 is the pair momen-

tum difference and q0 = E1 − E2 is the energy component
difference.

The measured correlation functions are corrected using the
so called double-ratio technique for the MC simulated ones
CMC(qinv). This procedure assumes that the signal and the
background are factorized. The corrected correlation function

can be written as

Ccorr (qinv) = Cdata (qinv)

CMC(qinv)
. (4)

Generally, the CF includes several effects, such as fem-
toscopic effects (QS + Coulomb in the case of π±π± and
K±K± correlations), minijet contributions at low qinv, and
long-range correlations due to energy-momentum conserva-
tion at high qinv. The latter are present in the same-event pair
relative-momentum distribution and absent in the mixed-event
distribution determining the CFs. If spherical events are se-
lected with ST > 0.7, contributions of minijets are strongly
suppressed. However, there is still influence of long-range
correlations due to the conservation laws. Therefore, to correct
the experimental CFs for these long-range effects in spherical
events, a MC model which correctly describes the shape of the
experimental CFs at large qinv are used. The experimental CFs
can be divided by the MC ones [Eq. (4)], and the resulting CFs
are considered to contain only femtoscopic effects, which can
be fitted with a function including QS and Coulomb interac-
tion. For pp collisions at

√
s = 13 TeV, the PYTHIA 8 [56] MC

model gives the best description of the experimental function
outside the low qinv region. For jetlike (ST < 0.3) events, there
is a large contribution of minijets at low qinv in addition to the
long-range correlations at high pair relative momentum. They
can also be corrected using PYTHIA 8 calculations in order to
consider femtoscopic correlations only.

The analysis was performed separately for positively and
negatively charged pions and kaons at two magnetic field
polarities, after which the two-particle correlations were com-
bined using their statistical uncertainties as weights.

The analysis for pions and kaons was performed in
the same three multiplicity intervals. For pions, five pair
transverse momentum kT intervals were used: (0.15–0.3),
(0.3–0.5), (0.5–0.7), (0.7–0.9), and (0.9–1.2) GeV/c. The
analysis for kaons was performed in two kT intervals: (0.15–
0.5), (0.5–1.2) GeV/c.

1. Pion correlation functions

Figure 3 shows the pion experimental CF (green solid
circles) for events with ST > 0.7 in pp collisions at

√
s =

13 TeV. The PYTHIA 8 (Monash) model calculations including
the ALICE detector response were used to describe nonfemto-
scopic effects and are also shown in the figure (blue crosses).
All distributions are normalized to unity in the 0.7 < qinv <

0.8 GeV/c range, which is well outside the QS and Coulomb
FSI region (qinv � 0.4 GeV/c) and before the noticeable large
qinv slope associated with energy and momentum conserva-
tion. The CFs shown in Fig. 3 are flat for the low multiplicity
intervals in the region 0.5 < qinv < 1.0 GeV/c. For the two
highest kT intervals, some slope of baseline appears. At qinv >

1.0 GeV/c, the aforementioned kinematic effects are present
especially for the lowest multiplicity intervals.

The CFs decrease at qinv → 0 for the PYTHIA 8 calcula-
tions for the lowest multiplicity interval (Ntrk � 18) in the
(0.5–0.7), (0.7–0.9), and (0.9–1.2) GeV/c kT intervals. The
occurrence of such minima is related to the three-tracks re-
quirement, necessary for the transverse sphericity calculation
[45]. Indeed, the number of available events with three tracks
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FIG. 3. The π±π± experimental correlation functions (green solid circles) as function of the invariant pair relative momentum qinv in pp
collisions at

√
s = 13 TeV for the raw multiplicity Ntrk intervals of (1–18), (19–30), and (>30) in the (0.15–0.3), (0.3–0.5), (0.5–0.7), (0.7–0.9),

and (0.9–1.2) GeV/c kT intervals. A sphericity selection of ST > 0.7 is applied. The data are compared with PYTHIA 8 calculations, shown by
blue crosses. The error bars represent the statistical uncertainties, while the systematic uncertainties are negligible.

with pT > 0.5 GeV/c decreases at small qinv. Figure 4 il-
lustrates the pion experimental correlation function in pp
collisions at

√
s = 13 TeV compared with PYTHIA 8 model

calculations for events with ST < 0.3. The CFs for jetlike

events shown in this figure exhibit a pronounced slope over
the full qinv range, indicating the presence of nonfemtoscopic
effects. These effects are especially pronounced for kT >

0.5 GeV/c. As can be seen from the figure, the PYTHIA 8

FIG. 4. The π±π± experimental correlation functions (green solid circles) as function of the invariant pair relative momentum qinv in pp
collisions at

√
s = 13 TeV for the raw multiplicity Ntrk intervals of (1–18), (19–30), and (>30) in the (0.15–0.3), (0.3–0.5), (0.5–0.7), (0.7–0.9),

and (0.9–1.2) GeV/c kT intervals. A sphericity selection of ST < 0.3 is applied. The data are compared with PYTHIA 8 calculations shown by
blue crosses. The error bars represent the statistical uncertainties, while the systematic uncertainties are negligible.
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FIG. 5. The K±K± experimental correlation functions (green solid circles) as function of the invariant pair relative momentum qinv in pp
collisions at

√
s = 13 TeV for the raw multiplicity Ntrk intervals of (1–18), (19–30), and (>30) in the (0.15–0.5) and (0.5–1.2) GeV/c kT

intervals. A sphericity selection of ST > 0.7 is applied. The data are compared with PYTHIA 8 calculations shown by blue crosses. The PYTHIA

8 calculations are approximated with a second-order polynomial (red curves). The error bars represent the statistical uncertainties, while the
systematic uncertainties are negligible.

model calculations describe reasonably well the pion exper-
imental data for jetlike events at large qinv values.

2. Kaon correlation functions

Figure 5 shows the kaon experimental CF (green solid cir-
cles) for events with ST > 0.7 and the corresponding PYTHIA

8 calculations (blue crosses) in pp collisions at
√

s = 13 TeV.
The strength of the charged kaon correlations, represented

by the magnitude of C(qinv) for qinv → 0, is smaller than
observed for the pions and decrease with kT. The CFs for
spherical events are flat at qinv > 0.5 GeV/c both for the data
and the MC calculations. The nonfemtoscopic background
contributions obtained using PYTHIA 8 were fitted with a
second-order polynomial, which then was used for the correc-
tion of the experimental CFs for nonfemtoscopic effects. The
fit allows reducing the impact of statistical fluctuations on the
extracted femtoscopic parameters. Figure 6 presents the kaon
experimental correlation function for events with ST < 0.3
in pp collisions at

√
s = 13 TeV, for the raw multiplicity

intervals Ntrk of (1–18), (19–30), and (>30) in the (0.15–0.5)
and (0.5–1.2) GeV/c kT intervals. Similarly to the pion CFs
for jetlike events (see Fig. 4), the kaon jetlike CFs shown
in Fig. 6 exhibit a pronounced slope at low qinv, indicating
the presence of nonfemtoscopic effects. Such background is
especially pronounced for kT > 0.5 GeV/c. As can be seen in
the figure, the estimate of the femtoscopic signal with respect
to the background effects in the highest Ntrk > 30 multiplicity

interval is not possible since the correlation functions coincide
with PYTHIA 8 within statistical uncertainties.

C. Correlation function parametrization

In the previous analyses performed by the ALICE Collab-
oration in pp collisions, the Gaussian distribution of a particle
source in the pair reference frame (PRF) was assumed for pi-
ons [31] and kaons [34]. In those cases, the fit was performed
using the Bowler-Sinyukov formula [60,61]

C(qinv) = N
{
1− λ + λK (r, qinv)

[
1+ exp

(−R2
invq2

inv

)]}
, (5)

where N is a normalization coefficient and K (r, qinv) is the
Coulomb function with a radius r defined as

K (r, qinv) = C(QS + Coulomb)

C(QS)
. (6)

The parameters Rinv and λ describe the size of the source and
the correlation strength, respectively [see Eq. (5)]. The term
C(QS) in Eq. (6) is a theoretical CF calculated with pure
QS weights (wave function squared) and C(QS + Coulomb)
corresponds to QS + Coulomb weights. However, since the
pion CFs are strongly non-Gaussian due to the large resonance
contribution, an exponential Bowler-Sinyukov function was
used to fit the pion CF, as in Ref. [44]:

C(qinv) = N{1 − λ + λK (r, qinv)

× [1 + exp (−Rinvqinv)]}D(qinv), (7)
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FIG. 6. The K±K± experimental correlation functions (green solid circles) as function of the invariant pair relative momentum qinv in
pp collisions at

√
s = 13 TeV for the raw multiplicity Ntrk intervals of (1–18), (19–30), and (>30) in the (0.15–0.5) and (0.5–1.2) GeV/c

kT intervals. A sphericity selection of ST < 0.3 is applied. The data are compared with PYTHIA 8 calculations, shown by blue crosses
and approximated with a second-order polynomial (red curves). The error bars represent the statistical uncertainties, while the systematic
uncertainties are negligible.

where D(qinv) = bqinv + 1 accounts for the slope of the base-
line which remains after the division by PYTHIA 8.

The measured pion CFs shown in Figs. 3 and 4 were
divided by the PYTHIA 8 baseline and fit with the exponen-
tial Bowler-Sinyukov formula of Eq. (7). Figure 7 presents
some examples of the pion CF fit with the Gaussian Bowler-
Sinyukov formula of Eq. (5) (dotted line) and the exponential
one of Eq. (7) (solid line). The exponential fit function de-
scribes the pion CF well for both spherical and jetlike events,
although the description is not ideal for qinv < 0.05 GeV/c.

The kaon CFs for spherical and jetlike events were cor-
rected using a second-order polynomial to describe the
nonfemtoscopic background as explained above and fitted

with the Gaussian Bowler-Sinyukov formula [Eq. (5)]. An
example of such a fit is shown in Fig. 8 for both spherical
and jetlike events. For the largest multiplicity bin for ST < 0.3
selection, kaon CFs do not exhibit any femtoscopic peak after
the correction for the baseline and, therefore, the fit was not
performed.

D. Systematic uncertainties

In this section, the systematic uncertainties estimated for
the extracted source parameters Rinv and λ for π±π± and
K±K± correlations at different sphericities are discussed.

FIG. 7. Examples of the pion CFs fitted with the Gaussian Eq. (5) (dotted line) and the exponential (solid line) Bowler-Sinyukov formulas
(7) for spherical (left panel) and jetlike (right panel) events. Only statistical uncertainties are shown. Systematic uncertainties are negligible.
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FIG. 8. Examples of the kaon CFs fitted with the Gaussian (dotted line) Bowler-Sinyukov formula (5) for spherical (left panel) and jetlike
(right panel) events. Only statistical uncertainties are shown. Systematic uncertainties are negligible.

The systematic uncertainty contributions related to particle
selection and fit criteria �sys = |y0 − yvar| were considered,
taking into account their statistical significance level deter-
mined by the Barlow factor [62]

B = |y0 − yvar|√
σ 2

0 + σ 2
var − 2ρσ0σvar

, (8)

where y0 is the default value, yvar is a value obtained with
some variation of either the selection criteria or fit conditions,
σ0 is the statistical uncertainty of the default value, σvar is the
statistical uncertainty of the femtoscopic parameters obtained
using varied analysis criteria, and ρ characterizes the correla-
tion between y0 and yvar.

The systematic uncertainty contribution is taken into ac-
count if B > 1, i.e., only systematic uncertainties whose
statistical significance level exceeds 68% are included in
the total systematic uncertainty value. The systematic un-
certainties �i

sys, corresponding to each variation i of the
particle selection and fit criteria and having B > 1, were
added in quadrature to give the total systematic uncertainty �

value

�sys =
√∑

i

(
�i

sys

)2
. (9)

As event selection criterion variation, the sphericity in-
tervals were varied by ±0.05 [44], resulting in a systematic
uncertainty of up to 10% for the radii and λ parameters for
pions and kaons.

The systematic uncertainties related to the track selection
(pT and η intervals, DCAtransverse, DCAlongitudinal, the values of
the number of track points in TPC) were estimated by varying
each selection criterion (see Tables I and II) with variation
limits up to ±20%. Another source of systematic uncertainty
is the misidentification of particles and the associated purity
correction. The same ±20% variation of the parameters nσTPC

and nσTOF used for the purity correction estimation was per-
formed. The purity correction influences only the λ parameter.
For pions, single-particle purity is ≈99% at p < 1.5 GeV/c,
so the correction for purity is negligible. For kaons, it is <1%.
The estimated systematic uncertainty for pions for spherical
events is 2–5% for Rinv and λ, while for jetlike events it is
1–15% for Rinv and 1–20% for λ. For kaons, it is <5% for

spherical events, and 10–20% for jetlike events for both Rinv

and λ.
To minimize the influence of two-track effects, the tracks

in this analysis were required to have an average TPC sep-
aration of at least 3 cm. The systematic uncertainty related
to these effects was estimated from comparing the resulting
femtoscopic parameters with those obtained with the average
TPC separation up to 10 cm. This comparison showed that the
influence of the two-track effects on the extracted parameters
was negligible.

It is known that usually the extracted femtoscopic param-
eters noticeably depend on the fit range if the baseline is
not flat, which is the case for CF in pp collisions. To es-
timate the related systematic uncertainty, three different fit
ranges are considered: the standard 0 < qinv < 0.8 GeV/c, the
shorter 0 < qinv < 0.7 GeV/c, and the longer 0 < qinv < 0.9
GeV/c ones. The systematic uncertainty for pion and kaon
due to the variation in fit range is 1–12% for Rinv and 5–20%
for λ.

The Coulomb interaction, described by the factor K
in Eq. (6), is included in the default fitting procedure
[Eqs. (5)–(7)]. The influence of strong interactions on the ex-
tracted femtoscopic observables is estimated using the factor
K (qinv) = C(QS + Coulomb + strong)/C(QS) and is taken
as a systematic uncertainty. The strong interaction for both
pions and kaons was calculated using the fully dynamical
lattice QCD result [63]. The resulting systematic uncertainty
for pions is 3–7% for Rinv and λ for both spherical and jetlike
events. The systematic uncertainty related to the strong inter-
actions for kaons is 7–15% for radii and correlation strengths
for both spherical and jetlike events.

The systematic uncertainty introduced by the fit range vari-
ation was the only one observed to be fully correlated. For this
uncertainty ρ = 1 in Eq. (8), while for all other uncertainties
ρ = 0 was used.

V. RESULTS AND DISCUSSION

One of the goals of this work is to compare the kaon
and pion radii for spherical and jetlike events in order to
understand if the extracted radii follow the same mT scaling
behavior as observed in heavy-ion collisions.
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FIG. 9. The Gaussian pion (blue circles) and kaon (green crosses) radii for spherical (ST > 0.7) and jetlike (ST < 0.3) events as function of
the average pair transverse mass mT for different multiplicity intervals. The lines approximating the pion and kaon radii by the linear function
of Eq. (10) are shown for spherical events by dotted blue and green lines, respectively, and for jetlike events by dotted-dashed lines. The lines
for combined fit for pion and kaon points are shown by black solid and dashed lines for spherical and jetlike events, respectively. Statistical
(bars) and systematic (boxes) uncertainties are shown.

To compare the strongly non-Gaussian pion source with
the Gaussian kaon one, the exponential pion radii have to
be converted to a Gaussian form. The Gaussian parametriza-
tion assumes a radial Gaussian distribution with the first
moment of the distribution 1/R

√
π , while the exponential

parametrization assumes a Lorentzian one with the first mo-
ment of distribution 1/R. Therefore, in order to compare the
radii, the exponential radii should be divided by

√
π . Figure 9

presents the mT dependence of Gaussian radii for spherical
and jetlike events for pions and kaons in different raw multi-
plicity intervals. As discussed in Sec. IV B 1, the pion radii
for ST > 0.7, Ntrk < 18, and kT > 0.50 GeV/c (mT > 0.52
GeV/c2) have to be interpreted with caution because the base-
line used to describe the nonfemtoscopic effects was distorted
at low qinv (see Fig. 3) by the pT > 0.5 GeV/c three-track
requirement requested for the calculation of the transverse
sphericity.

The pion and kaon radii for spherical and jetlike events
(Figs. 9 and 10) were fitted in each multiplicity interval with
a linear function,

f (mT) = a + bmT, (10)

where a and b are free parameters. The results of this fitting
are presented in Tables IV and V. The individual fits for pions
and kaons are compared with the combined fit of pion and
kaon radii. It should be noted that for kaons the line is not
exactly a fit since there are only two points available, but it
illustrates the slope of the radii with mT. It allows quantifying
how much the kaon radius data points deviate from this fit
and, thus, how well the approximate mT scaling manifests
itself. Both the spherical (ST > 0.7) and the jetlike (ST < 0.3)
radii for pions and kaons decrease with increasing mT. The
statistical uncertainties are large, especially for kaons, but
there is an indication that the spherical radii demonstrate a

FIG. 10. The Gaussian pion (blue circles) and kaon (green crosses) radii for spherical (ST > 0.7) and jetlike (ST < 0.3) events corrected
for the Lorenz boost with factor in Eq. (11) as function of the average pair transverse mass mT for different multiplicity intervals. The lines
approximating the pion and kaon radii by the linear function of Eq. (10) are shown for spherical events by dotted blue and green lines,
respectively, and for jetlike events by dotted-dashed lines. The lines for combined fit for pion and kaon points are shown by black solid and
dashed lines for spherical and jetlike events, respectively. Statistical (bars) and systematic (boxes) uncertainties are shown.
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TABLE IV. The parameters of the approximation by the linear function of Eq. (10) of the femtoscopic radii in PRF calculated for pions
and kaons for spherical and jetlike events, as a function of pair transverse mass for the different multiplicity intervals from Fig. 9.

Type of fit Ntrk b a χ 2/NDF

3(1)–18 −0.18 ± 0.16 1.39 ± 0.09 0.18/3
Pions, spherical events 19–30 −0.55 ± 0.14 1.74 ± 0.09 1.95/3

>30 −0.69 ± 0.14 1.98 ± 0.10 1.77/3

3(1)–18 −0.76 ± 0.20 1.50 ± 0.14 0.90/3
Pions, jetlike events 19–30 −0.80 ± 0.14 1.64 ± 0.14 1.2/3

>30 −0.81 ± 0.21 1.69 ± 0.17 0.63/3

3(1)–18 −0.43 ± 0.60 1.44 ± 0.42
Kaons, spherical events 19–30 −0.66 ± 0.43 1.75 ± 0.34

>30 −0.85 ± 0.38 1.99 ± 0.31

3(1)–18 −1.38 ± 0.93 2.12 ± 0.78
Kaons, jetlike events 19–30 −1.25 ± 1.38 2.06 ± 1.12

>30

3(1)–18 −0.24 ± 0.15 1.39 ± 0.09 2.10/5
Pions and kaons, spherical events 19–30 −0.56 ± 0.14 1.72 ± 0.09 2.25/5

>30 −0.69 ± 0.14 1.97 ± 0.09 2.00/5

3(1)–18 −0.67 ± 0.16 1.47 ± 0.14 1.60/5
Pions and kaons, jetlike events 19–30 −0.78± 0.17 1.63 ± 0.14 1.30/5

>30

flatter dependence compared to the jetlike ones for Ntrk < 30,
while a more pronounced slope appears for Ntrk > 30 (see
Table IV). The spherical kaon radii are smaller than the cor-
responding spherical pion radii, and the difference increases
with increasing multiplicity. The jetlike pion radii are smaller
than spherical ones, and the difference increases with increas-
ing multiplicity.

The mT scaling for pions and kaons was predicted in a
case of negligible transverse flow and common freeze-out
for 3D radii in the longitudinally comoving system (LCMS)
[27], where the pair relative momentum is decomposed over
(qout, qside, qlong). Here, the “long” component goes along
the beam direction, “out” goes along the pair transverse mo-
mentum, and “side” goes perpendicular to the latter in the

TABLE V. The parameters of the approximation by the linear function of Eq. (10) of the femtoscopic radii in the PRF calculated for pions
and kaons for spherical and jetlike events, as a function of pair transverse mass for the different multiplicity intervals from Fig. 10.

Type of fit Ntrk b a χ 2/NDF

3(1)–18 −0.40 ± 0.13 1.36 ± 0.08 0.24/3
Pions, spherical events 19–30 −0.73 ± 0.12 1.68 ± 0.08 0.81/3

>30 −0.87 ± 0.12 1.91 ± 0.09 0.69/3

3(1)–18 −0.85 ± 0.17 1.43 ± 0.13 0.39/3
Pions, jetlike events 19–30 −0.90 ± 0.16 1.55 ± 0.12 0.51/3

>30 −0.91 ± 0.19 1.61 ± 0.15 0.27/3

3(1)–18 −0.55 ± 0.56 1.50 ± 0.40
Kaons, spherical events 19–30 −0.79 ± 0.42 1.81 ± 0.33

>30 −0.99 ± 0.37 2.05 ± 0.31

3(1)–18 −1.47 ± 0.9 2.15 ± 0.76
Kaons, jetlike events 19–30 −1.35 ± 1.35 2.10 ± 0.10

>30

3(1)–18 −0.39 ± 0.13 1.36 ± 0.08 0.45/5
Pions and kaons, spherical events 19–30 −0.70 ± 0.12 1.67 ± 0.08 1.25/5

>30 −0.87 ± 0.12 1.90 ± 0.09 0.75/5

3(1)–18 −0.71 ± 0.14 1.44 ± 0.12 10.1/5
Pions and kaons, jetlike events 19–30 −0.82 ± 0.15 1.54 ± 0.12 3.10/5

>30
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FIG. 11. The Gaussian pion radii with ST > 0.7 (open circles), ST < 0.3 (solid circles), and without sphericity selection (solid crosses).
Statistical (bars) and systematic (boxes) uncertainties are shown.

transverse plane, while the longitudinal total pair momentum
vanishes. Theoretical calculations within the 3+1D hydrody-
namic model coupled with the statistical hadronization code
THERMINATOR-2 taking into account the resonance contribu-
tion showed an effective power-law scaling of 3D LCMS radii
over the pair transverse mass for pions, kaons, and protons
[26]. The same scaling was also observed in Ref. [26] for
the one-dimensional radii in the RPF. However, it is often
challenging to do measurements in the LCMS due to limited
number of events and, therefore, the measurements are per-
formed in the PRF and then transformed from the PRF to
the LCMS by applying a Lorentz boost in the direction of
the pair transverse momentum with velocity βT = pT/mT as
γTRout (where γT =

√
1 − β2

T ). Therefore, the transverse (out)
component of the 3D radius changes differently for pions and
for kaons due to the different Lorentz boosts. In Ref. [26], it
was shown that the scaling could be restored if the radii were
divided by the following scaling factor:

f =
√

(
√

γ T + 2)/3. (11)

The factor f was estimated through numerical simulations
reproducing the 3D radius growth with γT. After applying
these kinematic corrections [Eq. (11)], the authors of Ref. [26]
observed that the one-dimensional Rinv correlation radii for
pions, kaons, and protons, as measured by ALICE in Pb-Pb
collisions at

√
sNN = 2.76 TeV [36], lied on a common curve

(with the accuracy of 10%). The effect of the factor f was
found to be the same for CFs with different non-Gaussian tails
since the extracted radii values are mainly determined by the
fit in the region of the femtoscopic peak. Therefore, this effect
could be similar in collisions of different types.

The simplest way to see the possible difference in the pp
collisions is to apply this correction to the radii measured in
this work. Figure 10 shows that the extracted pion and kaon
radii for spherical events become closer to each other than in

the case without such correction (Fig. 9) considered above.
The obtained mT scaling of the pion and kaon radii is not
as good as for the Pb-Pb case [26], which can be explained
by different influence of resonance decay contributions in pp
and Pb-Pb collisions. The large uncertainties for kaon radii
do not allow making any conclusion about the mT scaling in
jetlike events. The understanding of the mT trend of the jetlike
pion and kaon radii requires further study. The radii shown in
Fig. 10 were also fitted with the linear function of Eq. (10)
(see Table V). The χ2/NDF for the fit of the uncorrected radii
(Table IV) are larger than for the corrected ones (Table V) for
spherical events in all multiplicity intervals. This suggests an
approximate mT scaling for the radii for spherical events if the
differences in Lorentz boosts for pions and kaons are taken
into account.

It is also instructive to consider the difference between
the radii with and without sphericity selection, as shown in
Fig. 11 for the pion radii for ST > 0.7, ST < 0.3, and without
a selection on sphericity. It can be seen that for large multi-
plicities (Ntrk > 18) the radii extracted from the data without
sphericity selections are close to those obtained in spherical
events. This can be naturally explained by the experimental
sphericity distributions presented in Fig. 1. The figure shows
that all events tend to have large value of ST and that the high-
multiplicity intervals consist mainly of events with ST > 0.7.
Therefore, the corresponding radii are close to each other
within uncertainties. For the Ntrk < 18 interval, the fraction of
particles with ST < 0.3 becomes large, and the radii calculated
without sphericity selection for this multiplicity interval are
in between the ST > 0.7 and ST < 0.3 sphericity selected re-
sults, reflecting some interplay between all sphericity selected
contributions.

Figure 12 demonstrates the mT dependence of the corre-
lation strength parameters λ for pions and kaons for both
spherical (left panel) and jetlike (right panel) events. The λ

parameters for pions were converted to a Gaussian form by
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FIG. 12. The Gaussian pion and kaon λ parameters for spherical (left panel) and jetlike (right panel) events as a function of the average
pair transverse mass mT for different multiplicity intervals. The λ parameters are corrected for purity. Statistical (bars) and systematic (boxes)
uncertainties are shown.

dividing them by
√

π in the same way as was done for the
radii (see the discussion in the beginning of this section). The
obtained pion λ weakly decreases with increasing mT, and this
behavior is similar for both sphericity selections. The kaon λ

parameters are close to the pion ones, and all of them are in
the range of ≈0.4–0.5. The main factors that could decrease
the λ parameters compared to the ideal case of unity are the
non-Gaussian shape of CFs due to contribution of particles
from short-lived (strongly decaying) and medium-lived (ω for
pions, K0

S for kaons) resonances and the Rinv distortion in the
PRF due to the Lorenz boost in the out direction resulting in
values for Rside and Rlong being smaller than Rout. For pions,
the λ values are also reduced due to long-lived resonances
such as η and η′.

The decrease of the pion and kaon sphericity integrated
radii with increasing pair transverse mass in pp collisions was
observed at LHC energies before as an indication of collective
behavior, originating from either initial- or final-state correla-
tions. However, there was not even an approximate mT scaling
shown. The intriguing analogy with heavy-ion collisions was
interpreted as a possibility of the collective behavior due to
quark-gluon plasma formation [31,34,41,42].

The study presented here demonstrates a similar decrease
of radii for both spherical and jetlike events. There is an
indication of an approximate mT scaling of the radii for pions
and kaons in spherical events if the kinematic correction for
these particle species is taken into account. However, the fact
that the decreasing mT dependence and even the approximate
mT scaling are observed in all multiplicity intervals including
the lowest ones suggests that this effect does not support the
hypothesis of collective expansion of hot and dense matter
as in heavy-ion collisions. A more realistic hypothesis is that
of common emission conditions for pions and kaons in pp

collisions for the multiplicity intervals studied in this work,
similar to the simplified scenario described in Ref. [26].

VI. SUMMARY

Correlations of two charged identical pions π±π± and
kaons K±K± were measured in pp collisions at

√
s = 13 TeV

at the LHC. One-dimensional pion and kaon correlations were
classified using the global event-shape variable, transverse
sphericity. For spherical events, the correlation functions show
a strong suppression of minijet contributions. In contrast,
the correlation functions for jetlike events manifest large ef-
fects related to nonfemtoscopic correlations at small relative
momentum.

The Monte Carlo PYTHIA 8 (Monash) model describes
both spherical and jetlike pion and kaon correlation func-
tions outside the femtoscopic region effect. Therefore, it was
used to subtract nonfemtoscopic correlations from the femto-
scopic signal region. The pion correlation functions corrected
for minijet contributions as modeled by PYTHIA 8 are de-
scribed by the exponential Bowler-Sinyukov function. The
Bowler-Sinyukov function using a single Gaussian was used
to describe the kaon correlations. The pion femtoscopic radii
extracted for spherical events are larger than those for jetlike
events. Both pion and kaon radii demonstrate a decreasing
trend with increasing pair transverse mass mT.

The Lorentz-boost corrected pion and kaon radii for both
spherical and jetlike events show an approximate scaling
behavior with mT in all multiplicity intervals. The observa-
tion of such behavior for small multiplicity intervals, where
the formation of QGP plasma seems to be impossible, can
be interpreted as an indication of the emission occurring
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simultaneously for π and K in pp collisions for all considered
multiplicities.
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