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Odderon mechanism for transverse single spin asymmetry
in the Wandzura-Wilczek approximation

Sanjin Benić, Davor Horvatić , Abhiram Kaushik, and Eric Andreas Vivoda
Department of Physics, Faculty of Science, University of Zagreb,

Bijenička cesta 32, 10000 Zagreb, Croatia

(Received 24 October 2022; accepted 5 December 2022; published 26 December 2022)

We compute the transverse single spin asymmetry in forward p↑p → hX and p↑A → hX collisions from
the odderon mechanism originally suggested by Kovchegov and Sievert [Phys. Rev. D 86, 034028 (2012)].
Working in the hybrid approach of the color glass condensate effective theory, we first identify the relevant
collinear parton distribution function (PDF) of the transversely polarized proton p↑ as the intrinsic twist-3
gTðxÞ distribution. We further argue that the complete polarized cross section also contains contributions
from the kinematical and the dynamical twist-3 PDFs, in addition to the intrinsic twist-3 PDF. By restricting
to the Wandzura-Wilczek approximation, where the dynamical twist-3 PDFs are dropped, we find that the
odderon contribution to the polarized cross section for inclusive hadron production is exactly zero at the
next-to-leading order in the strong coupling.

DOI: 10.1103/PhysRevD.106.114025

I. INTRODUCTION AND MOTIVATION

Transverse single spin asymmetry (SSA) [1–4] is a
phenomenon associated with azimuthally asymmetric
particle production in collisions involving a transversely
polarized proton p↑. SSA is characterized by a sine
modulation Ph⊥ × S⊥ ¼ Ph⊥S⊥ sinðϕh − ϕSÞ. Here, Ph⊥
is the transverse momentum of the produced hadron, and
S⊥ is the spin of the transversely polarized proton. Decades
of dedicated measurements have demonstrated its persist-
ence even at the highest collision energies, with the SSA
being largest in the forward region of the produced particle,
typically a hadron. This is so across different collision
systems such as ep↑ and p↑p but also most recently for
p↑A collisions [5,6].
On the theory front, it is known that the presence of

the phase in the cross section is crucial to generate SSA. In
the forward region, where the momentum fraction x in the
target is small, one naturally expects the phenomenon
of gluon saturation [7–10] to play an important role in
determining SSA [11–19]. In this work, we are revisiting
the computation by Kovchegov and Sievert [11], where
they used the color glass condensate (CGC) effective theory
[7–10] for gluon saturation, to suggest a new mechanism

for SSA. The special property of this mechanism is in
supplying the phase by the odderon distribution [20–22]

Oðx⊥; y⊥Þ≡ 1

2iNc
trhVðx⊥ÞV†ðy⊥Þ − Vðy⊥ÞV†ðx⊥Þi; ð1Þ

that is, the imaginary part of the dipole distribution
trhVðx⊥ÞV†ðy⊥Þi=Nc. Here, Vðx⊥Þ is a fundamental
Wilson line with h� � �i denoting the color average. This
“odderon mechanism,” as we will refer to it in this
work, leads to a substantial A suppression of SSA,
∼A−7=6 parametrically [11].
In the following Sec. II, we take as a starting point the

polarized cross section in the hybrid approach [14–17]
with a transversely polarized proton described by the
collinear twist-3 PDFs and the dense target (a nuclei or
a proton in the forward collision) by Wilson line correlators
arising from the CGC. In the context of the twist-3 parton
distribution functions (PDFs), the computation of Ref. [11]
is clarified in terms of the gTðxÞ distribution. We carefully
emphasize, however, that the complete twist-3 hadronic
cross section contains additional terms associated with the

kinematic twist-3 function gð1Þ1T ðxÞ, that is, the first moment
of the worm-gear transverse-momentum dependent (TMD)
distributions [23], as well as the dynamical Efremov-
Teryaev-Qiu-Sterman (ETQS) functions [24,25]; see,
e.g., Eq. (3) below. Working in the Wandzura-Wilczek
(WW) approximation [26], that neglects the dynamical
twist-3 part of the cross section, our computation first
confirms that the cross section is proportional to the
odderon distribution (1). However, as we explicitly show
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in Secs. III–V, due to the specific form of the resulting hard
factor, the odderon contribution to SSA for inclusive
hadron production turns out to be exactly zero at the
next-to-leading order (NLO) in the strong coupling αS for
all possible partonic channels. In the concluding Sec. VI,
we also briefly outline several new ways the odderon could
appear in SSA after all.

II. GENERAL REMARKS

In the hybrid approach, a dilute projectile proton is
described using collinear PDFs, while the distributions of
the dense target (nuclei, or a proton in forward collisions)
are given in terms of Wilson line correlators. To set up our
notations, we first write down the unpolarized pA → hX
cross section in terms of the familiar twist-2 PDFs and
fragmentation functions (FFs). For convenience, this is
given in the following way:

Eh
dσ
d3Ph

≡ 1

2ð2πÞ3
Z

dzh
z2h

DðzhÞ

×
Z

dxp

�
1

2
fðxpÞTr½=PpSð0Þðp1Þ�

þ 1

2
GðxpÞð−gαβ⊥ ÞSð0Þαβ ðp1Þ

�
; ð2Þ

where we have separated out the twist-2 hadron FF DðzhÞ
and the twist-2 PDF in the quark (gluon) fðxpÞ [GðxpÞ]
initiated channel. The proton and the nucleus move along

the light cone with momenta in the center-of-mass frame
given as Pþ

p ¼ P−
A ¼ ffiffiffiffiffiffiffi

s=2
p

, where s is the collision
energy squared per nucleon,1 while Ph is the momenta
of the produced hadron h. Here and in the following, we use
the light-cone variables p� ¼ ðp0 � p3Þ= ffiffiffi

2
p

. Furthermore,
p1 is the momentum of the parton moving collinearly with
the proton p1 ¼ xpPp, and gαβ⊥ ¼ gαβ − nαn̄β − n̄αnβ with
nα ¼ δα−, n̄α ¼ δαþ is a transverse projector to the physical

gluon polarizations. Sð0Þðp1Þ [Sð0Þαβ ðp1Þ] is an all-order two-
parton scattering kernel in the quark (gluon) initiated
channel containing the hard factor and also the target
distribution that we will be computing within the CGC
hybrid approach. We have absorbed the CGC flux factor
1=2Pþ

p into the definition of Sð0Þðp1Þ.

A. Polarized cross section

In order to generalize to collisions with a transversely
polarized proton, the polarized cross section dΔσ is com-
puted up to twist 3 in the polarized proton PDF. We will be
restricting here to the usual twist-2 FF,DðzhÞ—the particular
contribution arising from twist-3 FFs [27,28] has been
computed in p↑A [17]. We are also not considering various
pole contributions to dΔσ; see [16]. Our starting point is a
separate (nonpole) contribution that has already been dis-
cussed in semi-inclusive deep inelastic scattering (SIDIS)
[29,30]. Adapting to the p↑A computation, we have the
following gauge-invariant all-order expression2:

Eh
dΔσ
d3Ph

¼ 1

2ð2πÞ3
Z

dzh
z2h

DðzhÞ
�
MN

2

Z
dxpgTðxpÞTr½γ5=S⊥Sð0Þðp1Þ� þ

MN

2

Z
dxpg

ð1Þ
1T ðxpÞTr

�
γ5=PpSλ⊥

�
∂Sð0Þðk1Þ
∂kλ1⊥

�
k1¼p1

�

þ iMN

4

Z
dxpdx0pTr

��
=Ppϵ

n̄nλS⊥
GFðxp; x0pÞ
xp − x0p

þ iγ5=PpSλ⊥
G̃Fðxp; x0pÞ
xp − x0p

�
Sð1Þλ ðxpPp; x0pPpÞ

��
: ð3Þ

The first part of Eq. (3) is arising from the gTðxpÞ
distribution function. This is also referred to as an intrinsic
(i.e., ∼hPpS⊥jψ̄ψ jPpS⊥i) contribution. The second part
is a kinematical (hPpS⊥jψ̄∂ψ jPpS⊥i) contribution that is

proportional to gð1Þ1T ðxpÞ, namely, the first moment of
the worm-gear TMD.3 In the third (dynamical
∼hPpS⊥jψ̄Fψ jPpS⊥i) part, we have the ETQS distribu-
tions GFðxp; x0pÞ and G̃Fðxp; x0pÞ. Note the appearance of
the same two-parton scattering kernel Sð0Þðp1Þ as in Eq. (2).

To compute the cross section, we also need its finite-k1⊥
variant Sð0Þðk1Þ, as well as Sð1Þλ ðxpPp; x0pPpÞ, which is a
three-parton scattering kernel containing an additional
gluon from the polarized proton. We should appreciate
the appearance of the k1⊥ derivative as a consequence of
performing the computation up to twist 3 but also due

to the connection of ∂Sð0Þðk1Þ=∂k1⊥ with Sð1Þλ ðxpPp; x0pPpÞ
through the Ward identity for the gluon from the
proton [29,30].
We point out here that the computation in Ref. [11] is

on the parton level, taking transversely polarized spinors
uðp; S⊥Þ for the initial quark. Thanks to the decomposition
uðp; S⊥Þūðp; S⊥Þ ¼ ð=pþmÞð1þ γ5=S⊥Þ=2 [33], only the
m
2
γ5=S⊥ piece is relevant for the polarized quark in the

current context (the remaining S⊥-dependent term even-
tually gets interpreted as the transversity PDF, but this does

1Here, P−
A is the center-of-mass momentum per nucleon.

2We are using the convention ϵ0123 ¼ þ1 ¼ −ϵ0123 and
γ5 ¼ iγ0γ1γ2γ3.

3Instead of gð1Þ1T ðxÞ, sometimes a function g̃ðxÞ is used [31],
with the relation g̃ðxÞ ¼ −2gð1Þ1T ðxÞ [32].
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not contribute in what follows). Thus, the computation in
Ref. [11] clearly corresponds to the term in Eq. (3) that is
proportional to gTðxpÞ. Namely, when changing from a
polarized free quark projectile to a polarized nucleon
projectile, one naturally replaces the quark mass m by
the nucleon mass MN .
The above introduced distributions satisfy the QCD

equation of motion identity [31,32]

xgTðxÞ ¼ gð1Þ1T ðxÞ −
1

2

Z
dx0

GFðx; x0Þ þ G̃Fðx; x0Þ
x − x0

: ð4Þ

The gTðxÞ distribution satisfies another important relation
connecting it to the twist-2 helicity PDF ΔqðxÞ [31,32],
thus revealing that gTðxÞ itself has a twist-2 piece

gTðxÞ ¼
Z

1

x

dx0

x0
Δqðx0Þ þ ðgenuine twist − 3Þ: ð5Þ

The remainder is given in terms of the ETQS functions; see
[31,32] for the explicit expression. Our computation will be
based on the WW approximation, that is, ignoring genuine
(dynamical) twist-3 contributions everywhere. This, in
particular, means that we are taking into account the

gTðxpÞ and the gð1Þ1T ðxpÞ contributions to dΔσ in Eq. (3),
while we are ignoring the genuine twist-3 contributions in
the definition of gTðxÞ in Eq. (5) and in the equation of

motion identity, Eq. (4). This allows us to fix gð1Þ1T ðxÞ
through Eq. (4) as gð1Þ1T ðxÞ ≃ xgTðxÞ, rendering Eq. (3) into
the following compact form:

Eh
dΔσ
d3Ph

≃
1

2ð2πÞ3
MN

2

Z
dzh
z2h

DðzhÞ
Z

dxpgTðxpÞ ×
�
Sλ⊥

∂

∂kλ1⊥
tr½γ5=k1Sð0Þðk1Þ�

�
k1¼p1

; ð6Þ

that we will take as the starting point of our explicit
computations below.
The attractive feature of the WW approximation is that

we can compute gTðxÞ [via Eq. (5)] and, thus, also Eq. (6)
from, say, global fits of the helicity PDFs. The distribution
gTðxÞ has been recently studied on the lattice [34], and a
separate global analysis was performed to constrain the

gð1Þ1T ðxÞ distributions in Ref. [35]. The general conclusion
from these works is that, given the current uncertainties,

both gTðxÞ and gð1Þ1T ðxÞ are roughly consistent with the WW
approximation. While this provides a justification for the
present computation, we acknowledge that the current
uncertainties found in the aforementioned works do

accommodate sizeable deviations (even up to 40% in
certain regions of x) from the WW approximation. A
complete computation that goes beyond the WW approxi-

mation does not mean only considering gTðxÞ or gð1Þ1T ðxÞ
with genuine twist-3 pieces included, but would also
require dealing with the full complexity of the dynamical
twist-3 contributions at NLO contained in the second line
of Eq. (3). While we reflect on this in the concluding
section, a full NLO computation with genuine twist-3
effects is beyond the scope of this work.
The analogous expression for the gluon initiated channel

is adapted from Eqs. (17) and (25) in Ref. [36] [see also
Eq. (32) in Ref. [37]] to read

Eh
dΔσ
d3Ph

¼ 1

2ð2πÞ3
Z

dzh
z2h

DðzhÞ
�
iMN

Z
dxpG3TðxpÞ

1

pþ
1

ϵnαβS⊥Sð0Þα0β0 ðp1Þωα0αωβ0β

− iMN

Z
dxp
x2p

g̃ðxpÞðgβλ⊥ ϵαn̄nS⊥ − gαλ⊥ ϵβn̄nS⊥Þ
�
∂Sð0Þαβ ðk1Þ

∂kλ1

�
k1¼p1

−
1

2

Z
dxpdx0p
xpx0p

Mαβγ
F ðxp; x0pÞ

Sð1Þα0β0γ0 ðxpPp; x0pPpÞ
x0p − xp

ωα0αωβ0βωγ0γ

�
; ð7Þ

where ωαβ ¼ gαβ − n̄αnβ. In the first line, we have the
intrinsic contribution with G3TðxpÞ being the gluonic
counterpart of gTðxpÞ. In the second line, g̃ðxpÞ is the
gluonic kinematical function (see [38,39] for the defini-
tion), and Mαβγ

F ðxp; x0pÞ is the three-gluon correlator. In the
WW approximation, G3TðxÞ becomes related to the gluon
helicity PDF ΔGðxÞ as [38]

G3TðxÞ ≃
1

2

Z
1

x

dx0

x0
ΔGðx0Þ; ð8Þ

while g̃ðxÞ ≃ x2G3TðxÞ [38]. The WW truncation then
amounts to the first two lines of Eq. (7).
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B. A recap of the leading-order inclusive
hadron production

The leading-order (LO) amplitude for inclusive hadron
production from the qðk1Þ → qðqÞ channel in the n · A ¼
Aþ ¼ 0 gauge is simply given as [40]

M ¼ γþ
Z
x⊥
eiðq⊥−k1⊥Þ·x⊥ ½Vðx⊥Þ − 1�: ð9Þ

Here, Vðx⊥Þ ¼ P exp ½ig R∞
−∞ dxþA−

a ðxÞta� is the fundamen-
tal Wilson line with A−

a ðxÞ being the classical field of the
target, and we use

R
x⊥ ≡

R
d2x⊥. In Eq. (9), we have omitted

the overall light-cone delta function ð2πÞδðkþ1 − qþÞ, as well
as the initial and final state spinors, thus leaving a matrix in
spinor (and color) space. From M, we obtain the leading-
order result for Sð0Þðk1Þ as

Sð0Þðk1Þ≡ 1

2Pþ
p

1

Nc
hM̄=qMið2πÞδðkþ1 − qþÞ

¼ ð2πÞδðkþ1 − qþÞ xp
2kþ1

γþ=qγþ

×
Z
x⊥x0⊥

Sðx⊥; x0⊥Þeiðq⊥−k1⊥Þ·ðx⊥−x
0⊥Þ; ð10Þ

where 1=2Pþ
p is the flux factor, 1=Nc is coming from

averaging over the color of the initial state quark, and

Sðx⊥; x0⊥Þ≡ 1

Nc
trhVðx⊥ÞV†ðx0⊥Þi ð11Þ

is the color averaged dipole distribution. Here and in the
following, we are suppressing the dependence of the nuclear
distributions on the momentum fraction xA ¼ k−2 =P

−
A, where

k2 is the partonic momenta from the nuclei. At the LO we
have the momentum conservation k1 þ k2 ¼ q. We readily
conclude that tr½γ5=k1Sð0Þðk1Þ�∼ tr½γ5=k1γþ=qγþ�∼ϵþþqk1 ¼0,
and so Eq. (6) vanishes at the LO. As we also have

tr½γ5=S⊥Sð0Þðp1Þ� ¼ 0, the gTðxÞ and the gð1Þ1T ðxÞ terms in
Eq. (3) vanish separately at the LO.
The analogous expressions in the gðk1Þ → gðkgÞ channel

are [41]

M ¼ ð−2kþ1 Þ
Z
x⊥
eiðkg⊥−k1⊥Þ·x⊥ ½Uðx⊥Þ − 1� ð12Þ

and

Sð0Þαβ ðk1Þ ¼
1

2Pþ
p

1

N2
c − 1

hM†MidαβðkgÞ

¼ ð2πÞδðkþ1 − kþg Þð2kþ1 Þ2dαβðkgÞ

×
Z
x⊥x0⊥

SAðx⊥; x0⊥Þeiðkg⊥−k1⊥Þ·ðx⊥−x
0⊥Þ; ð13Þ

where

dαβðkÞ ¼ −gαβ þ nαkβ þ nβkα

kþ
ð14Þ

is the gluon polarization tensor. Note that dαβðp1Þ ¼ −gαβ⊥ .
Uðx⊥Þ is the adjoint Wilson line, and

SAðx⊥; x0⊥Þ≡ 1

N2
c − 1

trhUðx⊥ÞU†ðx0⊥Þi ð15Þ

is the adjoint dipole distribution. The contribution from this
channel also vanishes at the LO simply due to the realness
of the adjoint Wilson line.

III. NLO INCLUSIVE HADRON PRODUCTION
IN p↑A → hX: THE q → qg CHANNEL

At the NLO, we have, in general, the q → qg, g → qq̄,
and g → gg channels. In this section, we compute the
q → qg channel (together with the accompanying virtual
contribution), while the g → qq̄ and the g → gg channels
are discussed separately in Secs. IV and V, respectively.

A. q → q: Real contribution

We consider the qðk1Þ → qðqÞgðkgÞ partonic channel,
where in the final state a real gluon with momentum kg
gets radiated in addition to the quark with momentum q.
Here, k2 is set by momentum conservation at NLO:
k1 þ k2 ¼ qþ kg. We will focus on the case where the
quark fragments into a final state hadron and we integrate
over the (untagged) gluon phase space to compute the
inclusive hadron cross section according to Eq. (6).
The main quantity to compute is Sð0Þðk1Þ, which takes
the following form:

Sð0Þðk1Þ ¼
1

2Pþ
p

Z
d3kg

ð2πÞ32Eg

1

Nc
hM̄μ0=qMμidμμ0 ðkgÞ

× ð2πÞδðkþ1 − qþ − kþg Þ

¼ qþ

Pþ
p

Z
kg⊥

1

Nc

1

4qþkþg
hM̄μ0=qMμidμμ0 ðkgÞ; ð16Þ

where
R
kg⊥ ≡

R d2kg⊥
ð2πÞ2 and similar for other transverse

momenta integrations. Using the quark and gluon propa-
gators in the CGC background [42–44], we can compute
the following amplitudes:
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Mμ
1 ¼ −igγμ

=qþ =kg
ðqþ kgÞ2 þ iϵ

γþ
Z
x⊥
eik2⊥·x⊥ta½Vðx⊥Þ − 1�;

Mμ
2 ¼ −igγþ

=k1 − =kg
ðk1 − kgÞ2 þ iϵ

γμ
Z
x⊥
eik2⊥·x⊥ ½Vðx⊥Þ − 1�ta;

Mμ
3 ¼ igð2kþg Þγν

dνμðk1 − qÞ
ðk1 − qÞ2 þ iϵ

Z
x⊥
eik2⊥·x⊥tb½Uabðx⊥Þ − δab�;

Mμ
4 ¼ −gð2kþg Þ

Z
k⊥

Z
∞

−∞

dk−

ð2πÞ γ
þ =q − =k
ðq − kÞ2 þ iϵ

γν
dνμðk1 þ k − qÞ

ðk1 þ k − qÞ2 þ iϵ

×
Z
x⊥y⊥

eik⊥·x⊥eiðk2⊥−k⊥Þ·y⊥ ½Vðx⊥Þ − 1�tb½Uabðy⊥Þ − δab�; ð17Þ

with the total amplitudeM given asMμ ¼ P
4
k¼1 M

μ
k. We

find that the result (17) agrees with Ref. [45] except for the
overall sign and the adjoint indices in the eikonal gluon
vertex that enters Mμ

3 and Mμ
4; see, for example, Eq. (3.2)

in Ref. [46]. In the special case when the final quark and
gluon are on shell,4 Mμ takes the following simple form:

Mμ ¼ −ig
Z
k⊥

Z
x⊥y⊥

eik⊥·x⊥eiðk2⊥−k⊥Þ·y⊥ ½Tμ
qtaVðx⊥Þ

þ Tμ
qgðk⊥ÞVðx⊥ÞtbUabðy⊥Þ�; ð18Þ

where

Tμ
q ¼ γμ

=qþ =kg
ðqþ kgÞ2

γþ ð19Þ

and

Tμ
qgðk⊥Þ ¼ −γþ

=q − =k
ðq − kÞ2 γνd

νμðk1 þ k − qÞ: ð20Þ

Here, we evaluated the k− integral in favor of ðk1 þ k −
qÞ2 þ iϵ ¼ 0 so that

ðq − kÞ2 ¼ −
1

kþ1 k
þ
g
½qþk1⊥ þ kþ1 ðk⊥ − q⊥Þ�2: ð21Þ

Inserting Eq. (17) into Eq. (16), we find

Sð0Þðk1Þ ¼
qþ

Pþ
p

g2CF

4qþkþg

Z
kg⊥k⊥k0⊥

Z
x⊥x0⊥y⊥y0⊥

eik⊥·x⊥eiðk2⊥−k⊥Þ·y⊥

× e−ik
0⊥·x0⊥e−iðk2⊥−k0⊥Þ·y0⊥dμμ0 ðkgÞ½Sðx⊥; x0⊥ÞT̄μ0

q =qT
μ
q þ Sqqgðx0⊥; x⊥; y0⊥ÞT̄μ0

qgðk0⊥Þ=qTμ
q

þ Sqqgðx0⊥; x⊥; y⊥ÞT̄μ0
q =qT

μ
qgðk⊥Þ þ Sqgqgðx0⊥; y0⊥; x⊥; y⊥ÞT̄μ0

qgðk0⊥Þ=qTμ
qgðk⊥Þ�; ð22Þ

where Sðx⊥; x0⊥Þ is the dipole defined in Eq. (11) and the additional distributions are given as

Sqqgðx0⊥; x⊥; y0⊥Þ≡ 1

CFNc
htrðV†ðx0⊥ÞtbVðx⊥ÞtaÞUbaðy0⊥Þi;

Sqgqgðx0⊥; y0⊥; x⊥; y⊥Þ≡ 1

CFNc
htrðV†ðx0⊥ÞVðx⊥ÞtatbÞ½U†ðy0⊥ÞUðy⊥Þ�bai: ð23Þ

We now show that the first and the fourth terms in the
square brackets in Eq. (22) do not contribute to the
polarized cross section when integrated over the gluon

momenta. This is intuitively clear, as the SSA must
come from interferences of different amplitudes, that
are given by the second and the third terms (cf. Fig. 1),
while the first and the fourth term are squares of
amplitudes. The analogous structure can also be identi-
fied in the computation in Ref. [11]. Consider the
first term in Eq. (22), where in the context of Eq. (6)
we have

4Without loss of generality, the initial quark can be taken as on
shell even at finite k1⊥, that is, k21 ¼ 0. Equation (6) is not affected
due to the ∂=∂kλ1⊥ derivative.
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tr½γ5=k1T̄μ0
q =qT

μ
q�: ð24Þ

We now apply C-parity transformation, where C ¼ iγ0γ2,
and easily deduce that

dμμ0 ðkgÞtr½γ5=k1T̄μ0
q =qT

μ
q� ¼ dμμ0 ðkgÞtr½γ5=k1T̄μ0

q =qT
μ
q�T

¼ dμμ0 ðkgÞtr½Cðγ5=k1T̄μ0
q =qT

μ
qÞTC−1�

¼ −dμμ0 ðkgÞtr½γ5=k1T̄μ0
q =qT

μ
q�; ð25Þ

since dμμ0 ðkgÞ is symmetric. Therefore, the first term
vanishes under the trace by C parity. As for the fourth
term, we first note that it is, in fact, independent of kg⊥.
This seems almost trivial, as kg⊥ never enters Eq. (20).
However, there is a potential kg⊥ dependence in dμμ0 ðkgÞ
given through d−−ðkgÞ ¼ 2k−g =kþg ¼ k2g⊥=kþ2

g as well as
d−iðkgÞ ¼ kig=kþg . These two terms must couple to
T̄þ
qgðk0⊥Þ=qTþ

qgðk⊥Þ and T̄i
qgðk0⊥Þ=qTþ

qgðk⊥Þ, respectively.
But, Tþ

qgðk⊥Þ ∼ dνþðk1 þ k − qÞ ¼ 0, so there is no kg⊥
dependence in the fourth term after all. In order to be able
to integrate the fourth term with respect to kg⊥, we
consider the following observation. Defining first

z≡ kþg
qþ þ kþg

; z̄≡ 1 − z; ð26Þ

as the momentum fraction of the recoiling gluon, the
parton momentum fraction in the projectile is
xp ¼ qþ=ðz̄Pþ

p Þ. For the target, we have

xA ¼ q−

P−
A

�
1þ k−g

q−
−
k−1
q−

�

¼ q−

P−
A

�
1þ z̄

z
ðk1⊥ þ k2⊥ − q⊥Þ2

q2⊥
− z̄

k21⊥
q2⊥

�
: ð27Þ

Typically, in CGC computations, one ignores the depend-
ence of xA on k1⊥ and k2⊥ (see, e.g., [47]) and uses an
approximate formula xA ≃ q−=ðzP−

AÞ. The argument is
that large values of k2⊥ should be exponentially sup-
pressed in the cross section due to the nature of the CGC

distributions, and the derivative with respect to k1⊥ [see
Eq. (6)] should be αS suppressed via small-x evolutions
[48–51]. The former is implicit in Ref. [11], where the
computation is based on the initial condition model for
the target gluon distributions. With this approximation,
the only kg⊥ dependence is in the phases, and this leads to

Z
kg⊥

eikg⊥ðy⊥−y0⊥Þ ¼ δðy⊥ − y0⊥Þ; ð28Þ

in which case for y0⊥→y⊥ we have Sqgqgðx0⊥;y0⊥;x⊥;y⊥Þ→
Sðx⊥;x0⊥Þ, which is independent of y⊥. This allows us to
perform the y⊥ integration, yielding

Z
y⊥
eið−k⊥þk0⊥Þ·y⊥ ¼ ð2πÞ2δðk⊥ − k0⊥Þ: ð29Þ

The Dirac trace from the fourth term becomes

tr½γ5=k1T̄μ0
qgðk⊥Þ=qTμ

qgðk⊥Þ�, which vanishes by C parity.
Therefore, only the second and the third terms (corre-
sponding to the interference diagram from Fig. 1) in
Eq. (22) are left, and we have

tr½γ5=k1Sð0Þðk1Þ� ¼
qþ

Pþ
p
g2CF

Z
kg⊥k⊥k0⊥

Z
x⊥x0⊥y⊥y0⊥

eik⊥·x⊥eiðk2⊥−k⊥Þ·y⊥e−ik0⊥·x0⊥e−iðk2⊥−k0⊥Þ·y0⊥

× ½−Sqqgðx0⊥; x⊥; y0⊥ÞHðk0⊥; k1⊥Þ þ Sqqgðx0⊥; x⊥; y⊥ÞHðk⊥; k1⊥Þ�; ð30Þ

where

Hðk⊥; k1⊥Þ≡ 1

4qþkþg
dμμ0 ðkgÞTr½γ5=k1T̄μ

q=qT
μ0
qgðk⊥Þ�: ð31Þ

In Eq. (30), we have used H†ðk⊥; k1⊥Þ ¼ −Hðk⊥; k1⊥Þ,
which is due to the appearance of γ5. With the help of
the SUðNcÞ identityUabðx⊥Þ ¼ 2trðtaVðx⊥ÞtbV†ðx⊥ÞÞ and
taking the large Nc limit, we have

FIG. 1. An interference diagram that determines Sð0Þðk1Þ in the
q → qg channel. The vertical gluons denote Wilson lines arising
from multiple scattering on the dense nucleus (represented by a
blue blob).
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Sqqgðx0⊥; x⊥; y0⊥Þ ≃
1

2CFNc
ðN2

cSðy0⊥; x0⊥ÞSðx⊥; y0⊥Þ

− Sðx⊥; x0⊥ÞÞ: ð32Þ

The second (dipole) term in Eq. (32) drops out when
combined with the hard factors in Eq. (30). To see this,
note that the y⊥ and the y0⊥ integrations in Eq. (30)
result in δ functions that yield k0⊥ ¼ k⊥ ¼ k2⊥. This gives
−Hðk2⊥; k1⊥Þ þHðk2⊥; k1⊥Þ ¼ 0.
Now we split the dipole into its real and imaginary

parts [21]:

Sðx⊥; y⊥Þ ¼ Pðx⊥; y⊥Þ þ iOðx⊥; y⊥Þ; ð33Þ

where

Pðx⊥; y⊥Þ≡ 1

2
ðSðx⊥; y⊥Þ þ Sðy⊥; x⊥ÞÞ;

Oðx⊥; y⊥Þ≡ 1

2i
ðSðx⊥; y⊥Þ − Sðy⊥; x⊥ÞÞ ð34Þ

are the pomeron and the odderon distributions, respectively.
We also replace the primed and unprimed transverse
coordinate and momenta labels in the first term in
Eq. (30), namely, k0⊥ ↔ k⊥, x0⊥ ↔ x⊥, and y0⊥ ↔ y⊥. By
compensating for the reversed sign in the exponentials with
x⊥ → −x⊥, and using overall invariance under reflections
for the distributions in the unpolarized target, we obtain

tr½γ5=k1Sð0Þðk1Þ�

¼ ig2Nc
qþ

Pþ
p

Z
k2⊥k⊥

Z
x⊥x0⊥y⊥

eik⊥·ðx⊥−y⊥Þe−ik2⊥·ðx0⊥−y⊥Þ

× ½Pðx⊥;y⊥ÞOðx0⊥;y⊥Þ−Oðx⊥;y⊥ÞPðx0⊥;y⊥Þ�Hðk⊥;k1⊥Þ:
ð35Þ

Here, we have used the following symmetry properties:
Pðy⊥; x⊥Þ ¼ Pðx⊥; y⊥Þ and Oðy⊥; x⊥Þ ¼ −Oðx⊥; y⊥Þ,
which follow from Eq. (34). We have also passed from
kg⊥ to k2⊥ integration. This result clearly demonstrates that
the polarized cross section is proportional to the odderon
operator.
The Dirac trace is easy to calculate, and we find

Hðk⊥; k1⊥Þ ¼ 4iðz̄þ 1Þ v1⊥ × v2⊥
v21⊥v22⊥

; ð36Þ

where v1⊥ × v2⊥ ≡ ϵ−þv1⊥v2⊥ ¼ v1⊥v2⊥ sinðϕ1 − ϕ2Þ and

v1⊥ ≡ zq⊥ − z̄kg⊥ ¼ q⊥ − z̄k1⊥ − z̄k2⊥;
v2⊥ ≡ q⊥ − z̄k1⊥ − k⊥: ð37Þ

Equations (35) and (36) represent the main results of this
section. The vectors v1⊥ and v2⊥ reflect the collinear gluon

radiations so that when v1⊥ → 0 (v2⊥ → 0) the radiated
gluon would be collinear to the final (initial) state quark.
Note, however, that in Eq. (36) both of these limits are
completely finite, meaning that the usual collinear diver-
gences one encounters in the NLO computations of an
unpolarized cross section for inclusive hadron production
(see, for example, [47]) are absent in this particular
computation of the polarized cross section. In addition,
when z → 0 (z̄ → 1), i.e., when the radiated gluon is
collinear to the nucleus (kþg → 0 and so k−g → ∞ effec-
tively), the hard factor is also finite. In fact, a close
inspection reveals that the resulting cross section is zero
in this limit. Namely, when z → 1 there is a symmetry in
the hard factor such that, by interchanging k⊥ ↔ k2⊥ so
that v1⊥ ↔ v2⊥, the hard factor picks up a sign H → −H.
On the other hand, the soft part in Eq. (35) is even under
such a transformation, and so the overall cross section is
zero in this limit. In the case of the NLO unpolarized cross
section, the z → 0 divergence recovers a part of the small-x
evolution of the nuclear wave function [47].
We reflect here also on the computation in Ref. [11] that

takes into account only the gTðxpÞ contribution (on the
parton level) in Eq. (6). The resulting hard factor associated
with gTðxÞ is found to be

HðgT Þðk⊥Þ ¼
1

4qþkþg
dμμ0 ðkgÞtr½γ5=S⊥T̄μ

q=qT
μ0
qgðk⊥Þ�k1⊥¼0

¼ 4iz̄2
v̂1⊥ × S⊥
v̂21⊥v̂22⊥

; ð38Þ

with v̂1⊥ and v̂2⊥ obtained from v1⊥ and v2⊥ by setting
k1⊥ ¼ 0; see Eq. (37). It is important to observe that, while
the final state collinear divergence (v̂1⊥ → 0) is absent, the
hard factor has a divergence when the radiated gluon is
collinear to the initial state proton (v̂2⊥ → 0). This diver-
gence is also present in Ref. [11], as can be seen from their
Eq. (15) by setting the quark mass m → 0.5 In hindsight,
this means that the result in Ref. [11] must be incomplete in
the sense that the lowest-order computation should be free
from any divergences. That is, by taking into account also

the gð1Þ1T ðxÞ part of the full cross section (3), as per the WW
approximation (6), we indeed find that the initial state
collinear divergence is canceled between the gTðxÞ and the

gð1Þ1T ðxÞ parts, resulting in a finite hard factor (36). A similar
conclusion was also reached in a collinear framework in
SIDIS; see [30,37] where the gTðxÞ contribution to the
cross section contained an initial state collinear divergence
that gets exactly canceled with the collinear divergence in

the gð1Þ1T ðxÞ part.

5One should be careful here in first factoring out one power of
m in Eq. (15) in Ref. [11], as per the definition of gTðxÞ.
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B. Proof that the real contribution in the q → q
channel vanishes

We now argue that, in fact, Eq. (35) is exactly zero. Before
performing an explicit computation, we can appreciate it in
an intuitiveway as follows. In general, for the polarized cross
section to be nonzero, we need two vectors: the transverse
momentum of the final state and the spin so that we can form
the familiar cross product q⊥ × S⊥. In the case of Eq. (35),
we have q⊥, while we can think of k1⊥ as a proxy for the
spin, thanks to the derivative Sλ⊥∂=∂kλ1⊥. However, owing to
the particular form of the hard factor (36), the two vectors q⊥
and k1⊥ enter the cross section only through the linear
combination q1⊥ ≡ q⊥ − z̄k1⊥ (the soft part of the cross
section is independent of k1⊥). Thus, the final result depends
only on a single vector, q1⊥, and therefore must be zero.
To see the above statement explicitly, we start by

switching to the coordinates

r⊥ ¼ x⊥ − y⊥; b⊥ ¼ x⊥ þ y⊥
2

;

r0⊥ ¼ y⊥ − x0⊥; b0⊥ ¼ y⊥ þ x0⊥
2

; ð39Þ

to obtain

tr½γ5=k1Sð0Þðk1Þ�

¼ ig2Nc
qþ

Pþ
p

Z
k2⊥k⊥

Z
r⊥b⊥r0⊥

eik⊥·r⊥eik2⊥·r
0⊥

× ½Pðr⊥;b⊥ÞOðr0⊥;b0⊥Þ−Oðr⊥;b⊥ÞPðr0⊥;b0⊥Þ�Hðk⊥;k1⊥Þ:
ð40Þ

Note that not all transverse coordinates in Eq. (40) are
independent—we have the following relation for b0⊥:

b0⊥ ¼ b⊥ −
1

2
ðr⊥ þ r0⊥Þ: ð41Þ

This is an important point, because Oðr⊥;−b⊥Þ ¼
−Oðr⊥; b⊥Þ and so an integral over b⊥ would superficially
vanish simply via b⊥ → −b⊥. Next, in order to deconvolve
the transverse integrals in Eq. (40), we Fourier transform
the distributions as

Pðr⊥; b⊥Þ ¼
Z
κ⊥Δ⊥

e−iκ⊥·r⊥e−iΔ⊥·b⊥Pðκ⊥;Δ⊥Þ; ð42Þ

and similarly for Oðr⊥; b⊥Þ. In terms of the Fourier-
transformed distributions, Eq. (40) becomes

tr½γ5=k1Sð0Þðk1Þ� ¼ ig2Nc
qþ

Pþ
p

Z
κ⊥κ0⊥Δ⊥

½Pðκ⊥;Δ⊥ÞOðκ0⊥;Δ0⊥Þ

−Oðκ⊥;Δ⊥ÞPðκ0⊥;Δ0⊥Þ�Hðk⊥; k1⊥Þ;
ð43Þ

where k⊥¼κ⊥þ 1
2
Δ⊥, k2⊥ ¼ κ0⊥ þ 1

2
Δ⊥, and Δ0⊥ ¼ −Δ⊥.

The key quantity to consider in Eq. (43) is the integral
over the angular variables. While the pomeron carries no
angular dependence, the odderon has the following modu-
lation Oðκ⊥;Δ⊥Þ ∝ ðκ⊥ · Δ⊥Þ [this is simply the momen-
tum space counterpart of the more familiar Oðr⊥; b⊥Þ∼
ðr⊥ · b⊥Þ modulation]; see, e.g., [52–54]. Focusing on
the first part in Eq. (43), we start from the following
expression:

Z
2π

0

dϕΔ

2π

Z
2π

0

dϕκ

2π

Z
2π

0

dϕκ0

2π
ðκ0⊥ · Δ0⊥Þ

ðv1⊥ × v2⊥Þ
v21⊥v22⊥

: ð44Þ

Introducing δ1⊥ ≡ q1⊥ − z̄Δ⊥=2 and δ2⊥ ≡ q1⊥ − Δ⊥=2,
we have

v1⊥ × v2⊥ ¼ δ1⊥ × δ2⊥ − δ1⊥ × κ⊥ − z̄κ0⊥ × δ2⊥ þ z̄κ⊥ × κ0⊥
ð45Þ

and

v21⊥ ¼ δ21⊥ þ z̄2κ02⊥ − 2z̄κ0⊥δ1⊥ cosðϕκ0 − ϕδ1Þ;
v22⊥ ¼ δ22⊥ þ κ2⊥ − 2κ⊥δ2⊥ cosðϕκ − ϕδ2Þ: ð46Þ

Now we compute the integrals over ϕκ and ϕκ0 . From the
first term in Eq. (45), we obtain

Z
2π

0

dϕκ

2π

Z
2π

0

dϕκ0

2π
ðκ0⊥ ·Δ0⊥Þ

ðδ1⊥×δ2⊥Þ
v21⊥v22⊥

¼−
1

4

z
z̄
ðδ1⊥ ·Δ⊥Þ

ðq1⊥×Δ⊥Þ
jδ22⊥−κ2⊥j

�
1−

δ21⊥þ z̄2κ02⊥
jδ21⊥− z̄2κ02⊥j

�
; ð47Þ

where we used δ1⊥ × δ2⊥ ¼ −zðq1⊥ × Δ⊥Þ=2. Inserting
now the definition of δ1⊥, we will, in general, have an
expression of the type

Z
2π

0

dϕΔ

2π
sinðϕq1 − ϕΔÞfðcosðϕq1 − ϕΔÞÞ

¼ −
Z

ϕq1
−2π

ϕq1

dϕ
2π

sinϕfðcosϕÞ; ð48Þ

but this is simply zero, as

Z
ϕ1−2π

ϕ1

dϕ sinϕfðcosϕÞ ¼ −
Z

ϕ1−2π

ϕ1

dðcosϕÞfðcosϕÞ

¼ FðcosϕÞjϕ1−2π
ϕ1

¼ 0; ð49Þ

where FðcosϕÞ is a primitive function of fðcosϕÞ. By a
completely analogous computation, we can show that each
of the remaining three pieces in Eq. (45) is also zero and,
thus, conclude that the complete real contribution in the
q → q channel vanishes.
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C. q → q: Virtual contribution

For the virtual correction to the q → q channel, we have
the following amplitude:

M ¼ g2
Z

∞

−∞

dkþg
ð2πÞ

Z
kg⊥k⊥

Z
x⊥y⊥

eik⊥·x⊥eiðq⊥−k1⊥−k⊥Þ·y⊥

× ½tataVðx⊥ÞT q;1 þ Vðx⊥ÞtataT q;2

þ taVðx⊥ÞtbUabðy⊥ÞT qg�; ð50Þ
where

T q;1 ¼ i
Z

∞

−∞

dk−g
ð2πÞ γ

μ
=q − =kg

ðq − kgÞ2 þ iϵ
γν

=q
q2 þ iϵ

γþ
dμνðkgÞ
k2g þ iϵ

;

T q;2 ¼ i
Z

∞

−∞

dk−g
ð2πÞ γ

þ =k1
k21 þ iϵ

γμ
=k1 − =kg

ðk1 − kgÞ2 þ iϵ
γν
dμνðkgÞ
k2g þ iϵ

;

T qg ¼ i
Z

∞

−∞

dk−g
ð2πÞ γ

μ
=q − =kg

ðq − kgÞ2 þ iϵ
γþ

=q − =k − =kg
ðq − k − kgÞ2 þ iϵ

× γρdρνðkþ k1 þ kg − qÞ dμνðkgÞ
k2g þ iϵ

: ð51Þ

Above, in the first line of T qg we have evaluated the k−

integration in favor of the singularity at ðk1 þ kþ kg −
qÞ2 þ iϵ ¼ 0 so that

ðq − k − kgÞ2 ¼ −
1

kþ1 k
þ
g
½kþ1 ðk⊥ þ k1⊥ þ kg⊥ − q⊥Þ

− kþg k1⊥�2: ð52Þ

To get the NLO virtual contribution to Sð0Þðk1Þ, we
combine the virtual amplitude (50) with the LO amplitude
(9) and find

Sð0Þðk1Þ¼ð2πÞδðkþ1 −qþÞCFg2
1

2Pþ
p

Z
∞

−∞

dkþg
ð2πÞ

Z
kg⊥k⊥k0⊥

Z
x⊥x0⊥y⊥y0⊥

eik⊥·x⊥eiðk2⊥−k⊥Þ·y⊥e−ik0⊥·x0⊥e−iðk2⊥−k0⊥Þ·y0⊥

× ½Sqðx0⊥;x⊥Þγþ=qT qþSqðx0⊥;x⊥ÞT̄ q=qγþþSqqgðx0⊥;x⊥;y⊥Þγþ=qT qgðk⊥ÞþSqqgðx0⊥;x⊥;y0⊥ÞT̄ qgðk0⊥Þ=qγþ�; ð53Þ

where now k2⊥ ≡ q⊥ − k1⊥ and T q ≡ T q;1 þ T q;2. Analo-
gous to the case of real production, the terms in Eq. (53)
that are proportional to the dipole operator will not
contribute as a consequence of C parity. This includes
the first two terms of the second line and the dipole pieces
in the last two terms of the second line according to
Eq. (32). Repeating further the steps of the calculation used
for real production, we find

tr½γ5=k1Sð0Þðk1Þ� ¼ ið2πÞδðkþ1 −qþÞNcg2
qþ

Pþ
p

Z
∞

−∞

dkþg
ð2πÞ

×
Z
kg⊥k⊥

Z
x⊥x0⊥y⊥

eik⊥·ðx⊥−y⊥Þe−ik2⊥·ðx0⊥−y⊥Þ

× ½Pðx⊥;y⊥ÞOðx0⊥;y⊥Þ−Oðx⊥;y⊥Þ
×Pðx0⊥;y⊥Þ�Hðk⊥;k1⊥Þ: ð54Þ

See Fig. 2 for the diagram corresponding to this remaining
contribution. Here, now Hðk⊥; k1⊥Þ is

Hðk⊥; k1⊥Þ≡ 1

2qþ
tr½γ5=k1γþ=qT qgðk⊥Þ�

¼ −4iðȳþ 1Þ v1⊥ × v2⊥
v21⊥v22⊥

; ð55Þ

where we have introduced y≡ kþg =kþ1 ¼ kþg =qþ ¼ z=z̄ and
v1⊥ (v2⊥) are associated with final (initial) state collinear
configurations explicitly given as v1⊥ ≡ yq⊥ − kg⊥ and
v2⊥ ≡ k⊥ þ ȳk1⊥ þ kg⊥ − q⊥. To compute Eq. (55), we
have evaluated the k−g integral in T qgðk⊥Þ in favor of the
singularity k2g þ iϵ ¼ 0. Proceeding with the kg⊥ loop
integral, we pass from the variable kg⊥ to v2⊥ and write

Z
kg⊥

v1⊥ × v2⊥
v21⊥v22⊥

¼ −
Z
v2⊥

v⊥ × v2⊥
ðv⊥ þ v2⊥Þ2v22⊥

; ð56Þ

where v⊥ ≡ ȳq⊥ − yk1⊥ − k⊥. But this contains an angular
integral that is precisely of the form (49) and, therefore,
vanishes.

D. q → g

In this case, we have only the real diagram with gluon
fragmenting into a final state hadron. The expression for
Sð0Þðk1Þ takes the same form as Eq. (22), with the only
difference being that now we are integrating over q⊥ (the
momenta of the untagged quark) instead of over kg⊥:

FIG. 2. An interference diagram that determines Sð0Þðk1Þ in the
virtual correction to the q → q channel. The vertical gluons
denote Wilson lines arising from multiple scattering on the dense
nucleus.
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Sð0Þðk1Þ ¼
kþg
Pþ
p

g2CF

ð2qþÞð2kþg Þ
Z
q⊥k⊥k0⊥

Z
x⊥x0⊥y⊥;y0⊥

eik⊥·x⊥eiðk2⊥−k⊥Þ·y⊥e−ik0⊥·x0⊥e−iðk2⊥−k0⊥Þ·y0⊥dμμ0 ðkgÞ½Sðx⊥; x0⊥ÞT̄μ0
q =qT

μ
q

þ Sqqgðx0⊥; x⊥; y0⊥ÞT̄μ0
qgðk0⊥Þ=qTμ

q þ Sqqgðx0⊥; x⊥; y⊥ÞT̄μ0
q =qT

μ
qgðk⊥Þ þ Sqgqgðx0⊥; y0⊥; x⊥; y⊥ÞT̄μ0

qgðk0⊥Þ=qTμ
qgðk⊥Þ�:

ð57Þ

The first term again vanishes due to C parity. To show that
the last term vanishes, we first need to make the following
replacements: k⊥ − q⊥ → k⊥ and k0⊥ − q⊥ → k0⊥ for the k⊥
and k0⊥ integrals, which makes Tgqðk⊥Þ independent of q⊥.
Additionally, since =q is sandwiched between two γþ
matrices, it does not give a q⊥ contribution. Therefore,
the respective hard factor does not depend on q⊥, and the
only q⊥ dependence in the last term appears in the
exponential. From here, we take the analogous steps as
in the q → q channel. First performing the q⊥ integration

Z
q⊥
eiq⊥ðx⊥−x0⊥Þ ¼ δð2Þðx⊥ − x0⊥Þ; ð58Þ

Sqgqgðx0⊥; y0⊥; x⊥; y⊥Þ collapses to an adjoint dipole [see
Eq. (23)] when x0⊥ ¼ x⊥, which is, in addition, independent
of x⊥. This allows us to perform the x⊥ integral to conclude
that k0⊥ ¼ k⊥. With this, we can utilize C parity to find the
hard factor from the last term vanishes. For the remaining
interference terms, the trace is given in Eq. (36). With the
vectors v1⊥ and v2⊥ suitably rewritten in the form v1⊥ ¼
ðzk1⊥ − kg⊥Þ þ k2⊥ and v2⊥ ¼ ðzk1⊥ − kg⊥Þ þ k2⊥ − k⊥,
we see that a unique combination zk1⊥ − kg⊥ appears.
Thus, the steps to show that the cross section also vanishes
in the q → g channel are from this point completely
analogous to those for the q → q channel; see Sec. III B.
Together with the result from Secs. III B and III C, this
completes the statement that in the q → qg channel the

odderon mechanism in the WW approximation does not
contribute to SSA at NLO.

IV. THE g → qq̄ CHANNEL

In this channel, we label the momenta as
gðk1Þ → qðqÞq̄ðpÞ. The NLO amplitude can be written as

Mα ¼ ðþgÞ
Z
k⊥

Z
x⊥y⊥

eik⊥·x⊥eiðk2⊥−k⊥Þ·y⊥ ½Tα
g tbUbaðx⊥Þ

þ Tα
qq̄ðk⊥ÞVðx⊥ÞtaV†ðy⊥Þ�; ð59Þ

where

Tα
g ≡ 2kþ1 γρ

dραðqþ pÞ
ðqþ pÞ2 ð60Þ

and

Tα
qq̄ðk⊥Þ≡ 1

2pþ γþ
=q − =k

ðq − kÞ2 γ
αð=q − =k − =k1Þγþ: ð61Þ

In the above expressions, similar to the discussion in
Sec. III A, k− is obtained by picking up the pole from
the condition ðq − k − k1Þ2 þ iϵ ¼ 0. The above results can
be shown to agree with the corresponding amplitude in
Eq. (38) in Ref. [55] used for unpolarized pA collisions
after taking the collinear limit for the gluon from the proton.

Using Eq. (59), we calculate Sð0Þαβ ðk1Þ as

Sð0Þαβ ðk1Þ ¼
1

2Pþ
p

Z
d3p

ð2πÞ32Ep

1

N2
c − 1

TrhM̄α=qMβ=pi

¼ qþ

Pþ
p

g2TR

ð2qþÞð2pþÞ
Z
p⊥k⊥k0⊥

Z
x⊥x0⊥y⊥y0⊥

eik⊥·x⊥eiðk2⊥−k⊥Þ·y⊥e−ik0⊥·x0⊥e−iðk2⊥−k0⊥Þ·y0⊥

× fSAðx⊥; x0⊥Þtr½T̄ 0
g;α=qTg;β=p� þ Sqqgðx0⊥; y0⊥; x⊥Þtr½T̄ 0

qq̄;αðk0⊥Þ=qTg;β=p�
þ Sqqgðy⊥; x⊥; x0⊥Þtr½T̄ 0

g;α=qTqq̄;βðk⊥Þ=p� þ Sqqqqðx0⊥; x⊥; y0⊥; y⊥Þtr½T̄ 0
qq̄;αðk0⊥Þ=qTqq̄;βðk⊥Þ=p�g; ð62Þ

where TR ¼ 1=2. Here, SA and Sqqg are defined in Eq. (15)
and the first line of Eq. (23), respectively, while

Sqqqqðx0⊥; x⊥; y0⊥; y⊥Þ

≡ 1

CFNc
trhV†ðx⊥ÞVðx⊥ÞtaV†ðy⊥ÞVðy0⊥Þtai ð63Þ

is an additional gluon distribution of the target. Similar to
the findings in Sec. III A, the first and the fourth terms in
Eq. (62) vanish. For the first term, this can be argued from
C parity on the Dirac trace [another way is simply from
the fact that the adjoint dipole SAðx⊥; x0⊥Þ is real]. For the
fourth term, the key point is that the hard factor does not
depend on p⊥ (=p is sandwiched between γþ, and so the p⊥
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dependence drops out). Then, the fourth term does not
contribute by the same steps used in Sec. III A. This leaves
the interference term in Eq. (62) that is represented
graphically in Fig. 3. According to the WW truncation
in Eq. (7), these require the evaluation of the following hard
factors:

HðG3T Þðk⊥Þ≡ 1

4qþpþ
1

pþ
1

ϵþαβS⊥ωα0αωβ0β

× tr½T̄α0
g =qT

β0
qq̄ðk⊥Þ=p�;

Hðg̃Þ;λðk⊥; k1⊥Þ≡ 1

4qþpþ ðgβλ⊥ ϵα−þS⊥ − gαλ⊥ ϵβ−þS⊥Þ

× tr½T̄g;α=qTqq̄;βðk⊥Þ=p�: ð64Þ

We find

HðG3TÞðk⊥Þ ¼ 4zz̄ðz − z̄Þ v̂1⊥ × S⊥
v̂21⊥v̂22⊥

; ð65Þ

Hðg̃Þ;λðk⊥; k1⊥Þ ¼
4

v21⊥v22⊥
f−½ðz2 þ z̄2Þðv2⊥ × S⊥Þ

þ zz̄ðz − z̄Þðk1⊥ × S⊥Þ�vλ1⊥
þ ðz2 þ z̄2Þðv1⊥ × S⊥Þvλ2⊥
þ zz̄ðz − z̄Þðv1⊥ × S⊥Þkλ1⊥g; ð66Þ

where now v1⊥ ≡ zq⊥ − z̄p⊥ ¼ q⊥ − z̄k1⊥ − z̄k2⊥ and
v2⊥ ≡ q⊥ − z̄k1⊥ − k⊥, with z≡ pþ=kþ1 the momentum
fraction of the recoiling antiquark. By v̂1⊥ (v̂2⊥) in Eq. (65),
we again denote v1⊥ (v2⊥) at k1⊥ ¼ 0. According to the
WW truncation of the polarized cross section, we also need
to take a derivative of Hðg̃Þ;λðk⊥; k1⊥Þ with respect to k1λ
(and sum over λ); cf. second line in Eq. (7). After this, we
could proceed with the angular integrals as in Sec. III B, but
this time the expressions would involve S⊥. A simpler way
to proceed is to first combine the first and the second line in
Eq. (7), leading to

HðG3TÞðk⊥Þ −
�
∂

∂kλ1
Hðg̃Þ;λðk⊥; k1⊥Þ

�
k1¼p1

¼ −
4z̄ðz2 þ z̄2Þ
v̂41⊥v̂42⊥

½ðv̂21⊥v̂22⊥ þ 2ðv̂1⊥ · v̂2⊥Þv22⊥Þðv̂1⊥ × S⊥Þ

− ðv̂21⊥v̂22⊥ þ 2ðv̂1⊥ · v̂2⊥Þv̂21⊥Þðv̂2⊥ × S⊥Þ�: ð67Þ

After some inspection, this can be also rewritten in a more
convenient form as

HðG3TÞðk⊥Þ −
�
∂

∂kλ1
Hðg̃Þ;λðk⊥; k1⊥Þ

�
k1¼p1

¼
�
Sλ⊥

∂

∂kλ1⊥

�
4ðz2 þ z̄2Þ v1⊥ × v2⊥

v21⊥v22⊥

��
k1¼p1

; ð68Þ

where Sλ⊥ is now factored out and the effective hard factor
inside the brackets in Eq. (68) now has finite k1⊥ through
v1⊥ and v2⊥. To prove the equivalence of Eqs. (67) and (68),
we have used the Schouten identity v̂1⊥ðv̂2⊥ × S⊥Þþ
v̂2⊥ðS⊥ × v̂1⊥Þ þ S⊥ðv̂1⊥ × v̂2⊥Þ ¼ 0. Equation (68) re-
veals that the general structure of the g → q hard factor
is the same as in the q → q channel; see Eq. (36). There-
fore, by following the same logic as in Sec. III B, we
conclude that the corresponding polarized cross section in
the g → qq̄ channel also vanishes.

V. THE g → gg CHANNEL

In the case of the g → gg channel, there is a great
simplification due to the fact that the purely gluonic
contributions involve only adjoint Wilson lines, which
are real, and, therefore, the odderon mechanism is absent.
The only exception is the quark loop correction to the tree-
level gðk1Þ → gðkgÞ amplitude (see Fig. 4), which we
compute below. Discarding immediately the dipole pieces,

Sð0Þαβ ðk1Þ takes the following form:

FIG. 3. An interference diagram that determines Sð0Þαβ ðk1Þ in the
g → qq̄ channel. The vertical gluons denote Wilson lines arising
from multiple scattering on the dense nucleus.

FIG. 4. An interference diagram that determines Sð0Þαβ ðk1Þ in the
virtual correction to the g → g channel. The vertical gluons
denote Wilson lines arising from multiple scattering on the dense
nucleus.
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Sð0Þαβ ðk1Þ

¼ 1

2Pþ
p
ð2πÞδðkþ1 − kþg Þð−ig2ÞNfNcTR

Z
∞

−∞

dqþ

ð2πÞ
Z
q⊥k⊥k0⊥

×
Z
x⊥x0⊥y⊥y0⊥

eik⊥·x⊥eiðk2⊥−k⊥Þ·y⊥e−ik⊥·x0⊥e−iðk2⊥−k0⊥Þ·y0⊥

× ½Sqqgðx⊥; y⊥; x0⊥Þð−2kþ1 ÞdαμðkgÞT μ
qq̄;βðk⊥Þ

þ Sqqgðy0⊥; x0⊥; x⊥Þð−2kþ1 ÞdαμðkgÞT μ†
qq̄;βðk0⊥Þ�; ð69Þ

where q is the quark loop momentum and

T μβ
qq̄ðk⊥Þ≡ 1

2qþ

Z
∞

−∞

dq−

ð2πÞ tr
�

=q − =kg
ðq − kgÞ2 þ iϵ

γμ
=q

q2 þ iϵ

× γþð=q − =kg þ =k1 þ =kÞγβ =q − =kg þ =k

ðq − kg þ kÞ2 γ
þ
�
:

ð70Þ

Similar to the computation in Sec. IV, and according to
Eq. (7), we are to evaluate the following combination:

HðG3T Þðk⊥Þ −
�
∂

∂kλ1
Hðg̃Þ;λðk⊥; k1⊥Þ

�
k1¼p1

; ð71Þ

where we define

HðG3T Þðk⊥Þ≡ 1

ð2qþÞ2
1

pþ
1

ϵnαβS⊥ωα0αωβ0β

× ð−2kþ1 Þdα0μðkgÞT μ
qq̄;βðk⊥Þ;

Hðg̃Þ;λðk⊥; k1⊥Þ≡ 1

ð2qþÞ2 ðg
βλ
⊥ ϵαn̄nS⊥ − gαλ⊥ ϵβn̄nS⊥Þ

× ð−2kþ1 ÞdαμðkgÞT μ
qq̄;βðk⊥Þ: ð72Þ

A direct computation leads to

HðG3T Þðk⊥Þ −
�
∂

∂kλ1
Hðg̃Þ;λðk⊥; k1⊥Þ

�
k1¼p1

¼
�
Sλ⊥

∂

∂kλ1⊥

�
4ðy2 þ ȳ2Þ v1⊥ × v2⊥

v21⊥v22⊥

��
k1¼p1

; ð73Þ

where now v1⊥ ≡ −q⊥ þ kg⊥ − ȳk1⊥ − k⊥ and v2⊥ ≡
q⊥ − ykg⊥. But this is completely analogous to the result

for the loop correction in Sec. III C, and so Sð0Þαβ ðk1Þ
vanishes after the q⊥ integral.

VI. DISCUSSION AND CONCLUSIONS

We have revisited the odderon mechanism for SSA in
p↑A originally suggested in Ref. [11] at the quark level.

At the hadron level, this mechanism would involve the
gTðxÞ distribution. We have considered the WW truncation
of the full twist-3 polarized cross section and argued that, in
addition to gTðxÞ, we also need to take into account the

gð1Þ1T ðxÞ for a consistent computation. Our main finding is
that under this truncation the polarized cross section
vanishes exactly up to NLO for all possible partonic
channels.
It is natural to consider whether any of the above

assumptions can be relaxed so that a nonzero contribution
to SSA from the odderon mechanism may be found after
all. One option is to go beyond the WW approximation,
namely, including the ETQS pieces in Eq. (6). Already at
the LO, this could potentially yield a new contribution
where the phase is obtained from the odderon. Note the
difference from the more conventional pole calculus—here,
one needs to pick up the principal value of internal
propagators so that the general functional forms of the
ETQS functions would be required. Going beyond the WW
approximation at the NLO is more challenging. In practice,
restricting merely to Sð0Þðk1Þ and its k1⊥ derivative is not
enough, as one needs to take into account also the full

three-body kernel Sð1Þλ ðxpPp; x0pPpÞ that includes pole and
nonpole pieces. Already the collinear divergence found in
the hard factor associated with gTðxÞ [see Eq. (38)] remains
beyond the WW approximation, underlying the need to

compute Sð1Þλ ðxpPp; x0pPpÞ in order to get a finite cross
section.6 One can also consider the twist-3 FF mechanism,
where wewould pick up the real part of the twist-3 FFs with
the phase provided by the odderon. Once again, this in
contrast to the conventional computations where the phase
is supplied by the imaginary part of twist-3 FFs. Given that
the current global fits constrain only the imaginary part of
the twist-3 FFs [57,58], the phenomenological implications
of this alternative would be worth exploring.
Another possibility would be to retain the WW approxi-

mation but compute the hard factor up to NNLO. While, of
course, only an explicit computation can reveal whether the
odderon appears at NNLO, we mention here a competing
mechanism that is already known to appear at NNLO. The
basic premise is very simple: At higher orders, it is an
imaginary part of the loop amplitude that can supply the
phase. A specific NNLO contribution illustrating this is
given in Fig. 5, where the crosses denote cut propagators.
Physically, the initial q → qg splitting occurs inside the
target nucleus in the amplitude. The qg system sub-
sequently rescatters with a t-channel quark into the final
state, providing a phase with respect to the amplitude on the
opposite side of the final state cut. Such final state
rescattering is sometimes referred to as the lensing

6It is worth mentioning here the computation of target SSA in
deep inelastic scatering, where it was found that the divergent
pieces cancel among the two-body and three-body kernels [56].
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mechanism and was considered in Ref. [19]. In fact, this
idea [59] is closely related to the very first estimate of SSA
in perturbative QCD [60]. The computation in Ref. [19]
was in the quark-diquark model. As a future work, it would
be important to consider this in the hybrid approach.
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