
DC Transport and Magnetotransport Properties of the
2D Isotropic Metallic System with the Fermi Surface
Reconstructed by the Charge Density Wave

Keran, Barbara; Grozić, Petra; Kadigrobov, Anatoly M.; Rukelj, Zoran;
Radić, Danko

Source / Izvornik: Condensed Matter, 2022, 7

Journal article, Published version
Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

https://doi.org/10.3390/condmat7040073

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:911072

Rights / Prava: Attribution 4.0 International / Imenovanje 4.0 međunarodna

Download date / Datum preuzimanja: 2024-08-25

Repository / Repozitorij:

Repository of the Faculty of Science - University of 
Zagreb

https://doi.org/10.3390/condmat7040073
https://urn.nsk.hr/urn:nbn:hr:217:911072
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://repozitorij.pmf.unizg.hr
https://repozitorij.pmf.unizg.hr
https://repozitorij.unizg.hr/islandora/object/pmf:13278
https://dabar.srce.hr/islandora/object/pmf:13278


Citation: Keran, B.; Grozić, P.;
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DC Transport and Magnetotransport Properties of the 2D
Isotropic Metallic System with the Fermi Surface Reconstructed
by the Charge Density Wave
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2 Theoretische Physik III, Ruhr-Universität Bochum, Universitätsstraße 150, D-44801 Bochum, Germany
* Correspondence: dradic@phy.hr

Abstract: We report the ground state stabilization and corresponding electrical transport and mag-
netotransport properties of a 2D metallic system with an isotropic Fermi surface reconstructed by
a charge density wave. The onset of the charge density wave is a spontaneous process, stabilized
by the condensation energy gain due to the self-consistent mechanism of topological reconstruction
of the Fermi surface and opening of the pseudo-gap around it. We address the signature of the
uni-axial reconstruction in terms of the measurable quantities, such as the intra-band transport prop-
erties, including the one-particle density of states, the total and effective concentration of electrons,
and the Hall coefficient. Additionally, we analyze the magnetotransport properties of the system
reconstructed by the bi-axial, checkerboard-like charge density wave, under conditions of magnetic
breakdown. It manifests huge quantum oscillations in diagonal components of magnetoconductivity,
while the Hall conductivity changes sign, varying the external magnetic field with a finite region of
vanishing Hall coefficient in between.

Keywords: charge density wave; topological reconstruction of the Fermi surface; Drude conductivity;
effective concentration of carriers; magnetotransport; hall coefficient

1. Introduction

Charge density waves (CDWs) have been present in solid-state physics for quite
some time. Their era started in the mid-1980s, when theory and experiment perfectly
met in a rather special class of systems, the chain-like quasi-1D organic conductors
with very high anisotropy of the unit cell, known as the Bechgaard salts, Fabre salts,
blue bronze, etc. [1–3]. The reason for that success was the possibility to map the one-
dimensional physics from the 1950s, known as the Peierls instability [4], to these real
systems. It appeared possible due to the unique property of the Fermi surface, to have
one portion exactly mapped to another by a single wave vector, called ”nesting”. In turn,
the Hartree–Fock susceptibility diverges at the nesting vector, the Peierls mechanism
takes place and transforms the previously uniform distribution of electrons into the
periodic density wave [5]. However, the CDW saga does not end there. The CDWs were
later also observed in different classes of systems, the layered quasi-2D materials among
which are the most well-known the high-Tc superconducting cuprates (YBCO, LSCO,
etc.) [6–8]. The 2D Fermi surface in these materials consists of convex pockets, lacking
any nesting, thus requiring an entirely different mechanism than Peierls’ to explain the
CDW instability. The alternative mechanism, based on the topological reconstruction
of the Fermi surface, leading to the creation of a pseudo-gap and consequently to
the gain in the CDW condensation energy, was proposed [9,10] also predicting an
enhancement of the CDW ordering in the external magnetic field perpendicular to the
sample plane [11]. Considering that such reconstruction should leave a signature in
related observable quantities, such as DC electrical transport coefficients (total and
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effective concentration of carriers), optical conductivity, or magnetotransport (the Hall
coefficient), several analytical models addressing the corresponding signatures were
proposed [12]. A special focus was given to the magnetoconductivity of the 2D metallic
system reconstructed by the bi-axial CDW in the form of the checkerboard pattern
under conditions of the magnetic breakdown. The proposed model in [13] predicts
strong quantum oscillations and a change of sign of the Hall coefficient as the external
magnetic field is varied, as been observed in a number of high-Tc superconducting
cuprates in the CDW phase [14–16].

In this paper, we give an overview of our results related to the underlying mechanism
of uni-axial CDW instability in the quasi-2D metallic system with isotropic Fermi surface,
the basic intra-band transport features such as the electron density of states (DOS) and
the total vs. effective concentration of carriers, the calculation of the Hall coefficient, and,
finally, the features of the magnetoconductivity tensor of the system with the Fermi surface
reconstructed by the bi-axial CDW.

2. Methods and Results
2.1. Model

We assume a model to address the above-mentioned effects comprising the 2D
isotropic metallic electrons in the form of the effective free electron gas (2DEG) coupled to
the lattice phonons in terms of the well-known Fröhlich Hamiltonian [17,18]

H = ∑
k

ε(k)a†
kak + ∑

q
h̄ω(q)b†

qbq +
1√
A

∑
k,q

gqa†
k+qak

(
b†
−q + bq

)
, (1)

where ak and bq are electron and phonon field annihilation operators at the corresponding
wave vectors k and q, respectively. ε(k) = h̄2|k|2/2m is the initial electron dispersion,
with the effective mass m, while ω(q) is the dispersion of the corresponding acoustic
phonons coupled to the electronic system by the coupling strength gq, and A is the area
of the sample. Presumably, a spontaneously arising CDW forms a self-consistent periodic
potential with the wave vector Q and order parameter ∆ proportional to the non-vanishing
mean value of the phonon operator 〈bQ〉, i.e., to the ”frozen”, zero-frequency lattice defor-
mation. The minimal zero-temperature analytical model describing the system appears to
be given by the Hamiltonian (1) treated within the mean-field approximation [5], i.e.,

HMF = ∑
k

[
ε(k)a†

kak + ∆eiΦa†
k+Qak + ∆e−iΦa†

k−Qak

]
+

Ah̄ωQ

2g2
Q

∆2, (2)

where the second term ∼ ∆2 accounts for the elastic energy of the deformed lattice, while
the phase of the order parameter Φ appears to be irrelevant to the description of the ground
state. Diagonalization of the first term yields the electronic bands,

ε±(k) =
1
2

[
ε(k− Q

2 ) + ε(k + Q
2 )±

√(
ε(k− Q

2 )− ε(k + Q
2 )
)2

+ 4∆2

]
, (3)

with the origin of the new Brillouin zone chosen at the point at energy ε0 = h̄2Q2/(8m)
where the initial dispersions cross and the process of the FS reconstruction takes place due
to the finite order parameter ∆ (see Figure 1a,b). The coordinate system of the reciprocal
space is chosen so that the k̂x−component is parallel with Q. Two bands appear, with a
saddle point at energy εS = ε0 − ∆ in the lower band ε−(k), and an elliptic point at energy
εE = ε0 +∆ in the upper band ε+(k), at k = (0, 0). The most important boundary condition
during the FS reconstruction process is the conservation of the number of electrons before
and after the reconstruction, i.e., N0(εF0) = Nr(εF), where εF0 and εF are the Fermi energies
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of the system before and after the reconstruction, respectively. Taken per unit area (A = 1)
and assuming the spin degeneracy, N0(εF0) = mεF0/(πh̄2) and

Nr(εF) =
2

π2

∫ Q
2

0

[
ky−(kx; ε, Q, ∆) + ky+(kx; ε, Q, ∆)

]
ε=εF

dkx, (4)

where

ky±(kx; ε, Q, ∆) =

2mε

h̄2 −
(

Q
2

)2
− k2

x ∓

√
(Qpx)2 +

(
2m∆

h̄2

)2
1/2

(5)

was obtained from Equation (3). Optimization of the electron conservation condition with
respect to the new Fermi energy εF at given Q and ∆ (to be optimized later) gives εF = εF0,
i.e., the Fermi energy remains unchanged in the reconstruction process. The density of
states (DOS) of the reconstructed system is calculated from Equation (4), taken at energy ε,
as ν(ε) = ∂Nr(ε)/∂ε and is shown in Figure 1c. It exhibits a pseudo-gap between energies
εS and εU (saddle and elliptic points in the lower and upper bands, respectively), with the
logarithmic type of van Hove singularity at ε = εS. Formation of the pseudo-gap, due to the
reconstruction, vs. initially constant DOS, is the key to the stabilization of the spontaneous
CDW as we shall show later. Our analysis shows that only the contribution of the lower
band ε−(k) leads to the stabilization of the CDW, i.e., lowering the system energy due to
the reconstruction. Thus, for the clarity of presentation, only that band is shown in further
consideration regarding the ground state.

Figure 1. The Fermi surface reconstruction. (a) Initial Fermi pockets (free 2DEG) with the Fermi wave
vector kF0 are related by the CDW wave vector Q. (b) The Fermi surface is reconstructed from closed
pockets to the open sheets within the new Brillouin zone (dashed rectangle) with coordinates in the
reciprocal space (kx, ky) in which kx component is along the reconstruction vector Q. (c) The density of
states, initially being constant ν0 = m/(πh̄2) for the free 2DEG (dashed line), develops a pseudo-gap
between energies of peculiar points in electron bands, εS = ε0 − ∆ (saddle point) and εU = ε0 + ∆
(elliptic point), where ε0 = h̄2Q2/(8m) is the energy at which the initial electron bands cross during the
reconstruction. The Fermi energy εF0 is inside the pseudo-gap (see Equation (8)) [9,10].

2.2. The CDW Ground State

In order to find the zero-temperature condensation energy of the CDW, first we
calculate the electron band energy EB = (1/2π2)

∫
ε−(k)dk, where the integral goes from

the bottom of the band up to the Fermi surface ε−(k) = εF0. The CDW condensation
energy is the difference between the (band) energy of the initial, unreconstructed system
with undeformed lattice, E0 = mε2

F0/(2πh̄2), and the total energy of the reconstructed
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state, i.e., the sum of the band energy EB and elastic energy of the deformed lattice, finally
yielding the CDW condensation energy [9]

ECDW = E0

[
−1 +

16
3πk4

F0

∫ Q/2

0
k3

y−(kx; εF0, Q, ∆)dkx −
1
λ

∆2

ε2
F0

]
, (6)

where kF0 = 2mεF0/h̄2 is the initial Fermi wave vector and λ ≡ mg2
Q/(2πh̄3ωQ) is the

dimensionless electron-phonon coupling constant. Although ∆ and λ are in principle
dependent on Q, we consider that dependence smooth enough to be neglected in the
following optimization procedure. The maximization of ECDW with respect to Q yields the
optimal value of the CDW wave vector

QCDW = 2kF0

(
1− 1

2
∆

εF0
+

1
2
√

2π

(
∆

εF0

)3/2
+ · · ·

)
(7)

and position of the Fermi energy with respect to the energy ε0 (the initial band-crossing
energy, i.e., the middle of the pseudo-gap)

εF = εF0 = ε0 + ∆− 1√
2π

∆

√
∆
ε0

+ · · · , (8)

which is apparently inside the pseudo-gap [9]. The value Q = 2kF0 in expression (7)
would mean that the initial FSs exactly touch each other. However, the negative correction
∼ ∆/εF0 indicates a small but finite overlap of the initial FSs in the optimal position at
which the reconstruction takes place. Taking into account the optimal CDW wave vector (7),
we can express the CDW condensation energy (6) in the form of expansion in powers of the
small parameter ∆/εF0,

ECDW = E0

[(
1
λc
− 1

λ

)(
∆

εF0

)2
− 1

π

(
∆

εF0

)3
+ · · ·

]
, (9)

where

λc ≡
(

1 +
2
π

)−1
≈ 0.611. (10)

Maximization of the condensation energy with respect to the order parameter ∆/εF0
yields a stable solution with a finite value of the order parameter

∆CDW =
2π

3

(
1
λc
− 1

λ

)
εF0, (11)

for which ECDW is positive and maximal, provided λ > λc [9]. The CDW ground state
is, therefore, stable if the electron–phonon coupling is larger than the critical value λc
determined by the details of the system, given for this model by expression (10). It has been
predicted that such CDW would have even been enhanced by the external magnetic field
perpendicular to the sample [11]. It has also been shown that depending on the effective
dimensionality D of the system, the required critical coupling λc is continuously reduced
for D < 2, reaching zero for D = 1 (it coincides with the nesting case described by the
Peierls scenario), and is increased for D > 2 [10].

2.3. DC Transport and Magnetotransport Coefficients

A rather easy way to experimentally detect changes on the FS, e.g., its topological re-
construction, is by measuring characteristic signatures in electrical DC transport coefficients,
such as the concentration of carriers. We distinguish three types of electron concentrations:
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total and effective concentration in the DC transport, and the Hall concentration in magne-
totransport. Within the present model, these concentrations are derived as functions of the
Fermi energy εF. Assuming the position of the Fermi energy inside the pseudo-gap (see
Equation (8)), only the lower band εk = ε−(k) contributes in the following calculations.
The total concentration of electrons is defined as

n =
2
A ∑

k
fk, (12)

where fk is the Fermi distribution, with the reconstructed dispersion εk entering as its
argument, and A is the aforementioned area of the sample.

Next, there is an effective concentration of electrons nαα, which depends on the direc-
tion α with respect to the reconstruction wave vector. That is the concentration found in the
Drude conductivity formula. It can be written in two equivalent forms

nαα = − 2
A ∑

k
mevαkvαk

∂ fk
∂εk

=
2
A ∑

k
Mααk fk, (13)

where vαk = (1/h̄)(∂εk/∂kα) is the electron group velocity and Mαβk is the dimensionless
reciprocal effective mass tensor

Mαβk =
me

h̄2
∂2εk

∂kα∂kβ
(14)

(me is the electron mass).
Finally, there is the so-called Hall concentration nH which defines the Hall coefficient

in a (vanishing) magnetic field perpendicular to the sample plane. It is defined as

nH =
nxxnyy

nxy
, (15)

where the diagonal components nαα are defined in Equation (13), and the mixed component
nxy is equal to

nxy = − 2
A ∑

k
me
(
vxkvyk Mxyk − vxkvxk Myyk

) ∂ fk
∂εk

. (16)

For this particular model, with bands given by the Equation (3), it is not difficult to
see that Mxyk = 0 and Myyk = 1. In this case, by comparing Equation (16) with (13), we
see that nxy = nxx and, correspondingly, we get nH = nyy = n, i.e., the Hall concentration
equals to the total one. Concentrations of carriers are shown in Figure 2.
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Figure 2. Concentration of carriers in units of n0 = mεF/(πh̄2) (concentration of the non-
reconstructed free 2DEG, red curve) vs. the Fermi energy of the system εF: the total concentration n,
effective concentrations nxx (blue) and nyy (green), and the Hall concentration nH (green). The shaded
area is the interval of the pseudo-gap. Dashed curves depict concentrations for εF above εE = ε0 + ∆
when the contribution of the upper band needs to be taken into account. The strong signature of the
reconstruction, when compared with the total concentration, is clearly visible in the nxx component
(parallel to the reconstruction vector Q).

2.4. Magnetotransport in the System Reconstructed by the Bi-Axial CDW under Magnetic
Breakdown Conditions

In order to construct a qualitative model addressing the underlying mechanism of
the magnetotransport properties observed in some real systems [14–16], in which the FS is
reconstructed by the checkerboard-like bi-axial CDW, we propose the 2D net of isotropic,
circular FSs related by the CDW potential in two perpendicular directions (see Figure 3)
analogously to the scenario from the first subsection. Magnetic field B = (0, 0, B) is applied
perpendicular to the sample plane. The Fermi surface ε(kx, ky) = εF, after reconstruction
by such CDW, consists of the diamond-shaped pockets. The magnetic field causes magnetic
breakdown (MB), the quantum tunneling of electrons between close trajectories at the same
energy due to the overlap of their wave functions, through the MB-regions where these
pockets are close to each other, i.e., in the reconstruction region. Magnetic breakdown in
the MB-region is characterized by a probability amplitude t(B) to pass through it, and a
probability amplitude r(B) to be scattered back on it, related by the unitarity constraint
|t|2 + |r|2 = 1. Depending on t and r, which depend on the magnetic field, the electron
can perform a semiclassical motion in three qualitatively different manners: (a) for |t| → 1,
electrons move along the hole-like diamond-shaped orbits; (b) for |r| → 1, electrons move
along the electron-like circular orbits; (c) for |t| ∼ |r|, electrons move freely in x− and
y−directions, randomly scattering on impurities as if there is effectively no magnetic field.
However, for all the three described cases, it is essential to emphasize that the magnetic field
should be strong enough to preserve the coherent magnetic breakdown picture, i.e., the
Larmor radius should be considerably larger than the electron mean free path due to
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the impurity scattering. The quantum-mechanical description within the reconstruction
region [19–22] gives the MB tunneling probability

|t|2 ≈ 1− exp
[
− ∆2

h̄ωcεF

3

√
εF

h̄ωc

]
, (17)

where ωc ≡ eB/m is the cyclotron frequency (h̄ωc is then ”magnetic energy”), e is the
(absolute) electron charge. One immediately notices that for the given ”nearly touching”
FSs configuration, the exponent has an additional large factor, i.e., the third root of the ratio
of the Fermi energy and magnetic energy, compared with the standard Blount’s result [23]
obtained for the significant crossing of the FSs. It is the result of the peculiar band topology
in the reconstruction region.

Figure 3. The Fermi surface (extended zone scheme in (kx, ky) reciprocal space), initially circular,
reconstructed (in the sense shown in Figure 1a,b) by the bi-axial CDW with wave vectors Qx and Qy,
where a∗x and a∗y are new reciprocal lattice constants. Reconstruction yields diamond-shaped Fermi
pockets. In the perpendicular magnetic field, these are semiclassical orbits. Magnetic breakdown
causes quantum tunneling with probability amplitudes t for the electron to pass through the recon-
struction region, staying on the diamond-shaped orbit, and r to be reflected on it, moving along the
circular orbit.

The semiclassical motion of electrons between the MB-regions is described by the
Lifshitz–Onsager Hamiltonian [24,25] which, choosing the Landau gauge of the vector
potential A = (−By, 0, 0), leads to the Schrödinger equation in the reciprocal space

εα

(
Kx + i

b2
B
h̄

d
dky

, ky

)
Gα(Kx, ky) = εGα(Kx, ky), (18)

where εα(kx, ky) is the initial electron dispersion which is shifted to the position corre-
sponding to the trajectory α between the bounding MB-regions, bB = eh̄B is the ”magnetic
length”, (h̄Kx, h̄Ky) is the conserved generalized momentum of the semiclassical motion of
the electron, ε is the eigenvalue of energy. The semiclassical eigenfunctions are

Gα(Kx, ky) =
Aα√
v(α)x

exp

[
i
h̄2

b2
B

(
Kxky +

∫ ky

0
k(α)x (k′y; εF)dk′y

)]
, (19)

where Aα is the corresponding amplitude, v(α)x is the semiclassical velocity component,
while the integral in the exponent is the semiclassical phase (area enclosed by the
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trajectory in the reciprocal space, i.e., the ”action”). Wave functions Gα along each
trajectory α are connected by the 2× 2 unitary scattering matrix, the so-called MB matrix
consisting of t and r amplitudes, that relate incoming and outgoing waves in the MB-
region. They obey the periodicity conditions imposed by the translation operators T̂x,y
in x− and y−direction in the reciprocal space by the reciprocal lattice constants a∗x and
a∗y respectively, i.e.,

T̂xGα(k) = ei(h̄2Kya∗x/b2
B)Gα(k),

T̂yGα(k) = ei(h̄2Kxa∗y/b2
B)Gα(k). (20)

Solving the system of equations coupling the Aα amplitudes within MB-nodes, one
obtains the determinant of the system

D(ε, K) = sin

[
h̄2S�(ε)

2b2
B

+ 2χ

]
+ |tr|

{
sin

[
h̄2a∗yKx

b2
B

+ µ− η

]
+ sin

[
h̄2a∗xKy

b2
B
− µ− η

]}
, (21)

where S�(ε) = a∗xa∗y − 2πmε/h̄2 is the area of the diamond-shaped orbit in reciprocal
space at energy ε, while µ, η, and χ are phases of the probability amplitudes t, r, and
the MB-matrix, respectively [13]. The system is consistent under the particular condition
h̄2a∗xa∗y/(2b2

B) = 2πn, n ∈ Z , which appears to be analog of the well-known Zak–Hofstdater
condition of magnetic flux quantization through the unit cell [26,27], here appearing in the
reciprocal space. The dispersion law of the system under the coherent MB regime is then
D(ε, K) = 0. Electronic spectrum

εs(Kx, Ky) = h̄ωB

{
s + 2χ

π + (−1)s

π arcsin
[
|tr|
(

sin
(

h̄2a∗yKx

b2
B

+ µ− η

)
+ sin

(
h̄2a∗xKy

b2
B
− µ− η

))]}
(22)

is obtained directly from the dispersion law, where s = 0, 1, 2, ... is the new ”magnetic band”
index. The width of magnetic bands,

W(B) =
2
π

arcsin[2|t(B)r(B)|] h̄ωc, (23)

and gaps between them, h̄ωc −W(B), depend on magnetic field. They are crucially deter-
mined by the |t(B)r(B)| product which vanishes in the limit of very low and very high
fields while attaining the maximal value of 1/2 in the regime of moderate field (these
regimes depend on the details of the particular system, such as ∆, εF, and FS shape).

The magnetoconductivity operates in two essentially different regimes depending on
the relation between the magnetic bandwidth W(B) and level broadening due to the impu-
rity scattering h̄ω0 (ω0 ∼ τ−1

0 is the scattering rate, τ0 is the impurity scattering relaxation
time): (1) for W(B) � h̄ω0, the spectrum is effectively a set of Landau levels, leading to
the semiclassical motion around diamond-shaped or circular orbits, depending on t and r;
(2) for W(B)� h̄ω0, the group velocity in both directions v = (1/h̄)OKεs(K) is large, par-
ticles move along ”diamonds” and ”circles”, tunneling between them. The Hall coefficient
is calculated in the standard way, in terms of the components of the magnetoconductivity
tensor σ̂, i.e.,

RH =
σxy

(σxxσyy + σ2
xy)B

. (24)

The case (1), W(B) � h̄ω0, is rather well-known from the theory of metals [28],
yielding the following result [13]:
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(a) In a relatively weak field with small MB effect, |t(B)| → 1 (|r(B)| � ω0/ωc � 1) carri-
ers move along the hole-like diamond-shaped trajectories, the magnetoconductivity is

σ
(h)
xx = σ

(h)
yy =

σ
(h)
0

(τ0ωc)2 ∼
1

B2 ,

σ
(h)
xy = −σ

(h)
yx =

n(h)e
B
∼ 1

B
,

RH =
1

en(h)
. (25)

(b) In a relatively strong field with a large MB effect, |t(B)| → 0 (|t(B)| � ω0/ωc � 1)
carriers move along the electron-like circular trajectories, the magnetoconductivity is

σ
(e)
xx = σ

(e)
yy =

σ
(e)
0

(τ0ωc)2 ∼
1

B2 ,

σ
(e)
xy = −σ

(e)
yx = −n(e)e

B
∼ 1

B
,

RH = − 1
en(e)

. (26)

Here, σ
(e,h)
0 = n(e,h)e2τ0/m is the conductivity of electrons (e), or holes (h), in the

absence of magnetic field, while n(e) = πk2
F0/(2π)2 is the concentration of electrons,

and n(h) = [(a∗)2 − πk2
F0]/(2π)2 the concentration of holes (kF0 is the Fermi wave vector).

We consider a∗x = a∗y ≡ a∗ and equal effective masses m for electrons and holes for the sake
of simplicity.

In the case (2), W(B) � h̄ω0, the magnetoconductivity tensor is calculated using
the density matrix in the linear approximation, i.e., ρ̂ = f0(Ĥ0) + ρ̂(1), for electrons un-
der electric field E, f0 is the Fermi distribution function. The equation to determine the
nonequilibrium correction ρ̂(1) reads

1
ih̄

[
Ĥ0, ρ̂(1)

]
+

ρ̂(1)

τ0
= − eE

ih̄
[
r̂, f0(Ĥ0)

]
, (27)

where τ0 is the impurity scattering relaxation time and Ĥ0 is the one-particle effective
Hamiltonian satisfying the Schr’́odinger equation Ĥ0|n, K〉 = εn(K)|n, K〉, with Bloch
eigen-functions |n, K〉 and eigen-energy εn(K) defined by the dispersion law D(ε, K) = 0.

Taking into account the fact that both projections of velocity are finite, vx 6= 0 and
vy 6= 0, one finds the density matrix nonequilibrium correction

ρ
(1)
κκ′ = eE

ih̄vκκ′

εκ − εκ′ + ih̄ω0

f0(εκ)− f0(εκ′)

εκ − εκ′
, (28)

where κ ≡ (K, n) and vκκ′ = (∂εκ/h̄∂K)δ(K− K′)δn,n′ are the velocity matrix elements.
The magnetoconductivity tensor σ̂ is obtained by expressing the velocity components in its
definition in terms of D(ε, K), using the method developed by Slutskin for complicated
spectra under the MB conditions [29], i.e.,

σij = −2e2τ0

∫
dε

∂ f0

∂ε

∫ dK
(2πh̄)2

∂D
∂Ki

∂D
∂Kj

| ∂D
∂ε |

δ[D(ε, K)]. (29)

Using Equation (21) and the periodicity of the fast-oscillating integrand, in the sense
that we kept only the constant term in its double-Fourier expansion, we obtain components
of the magnetoconductivity tensor and the Hall coefficient [13]
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σxx = −e2τ0
(a∗y)2

π4mh̄2

[
1

2π

(
a∗xa∗y
2b2

B

)] ∫
dε

∂ f0/∂ε

| cos Φ�|

∫ +π

−π
dϕ

√
|tr|2 −

(
|tr| cos ϕ− sin Φ�(ε)

)2

× Θ
[
|tr|2 −

(
|tr| cos ϕ− sin Φ�(ε)

)2
]

,

σxy = 0,

RH = 0, (30)

where Φ�(ε) ≡ h̄2S�(ε)/(2b2
B) + χ and Θ is the Heaviside unit-step function. The other

two components, σyy and σyx, are simply obtained from the above expression by changing
the indices x ↔ y. Apparently, in this regime, the diagonal components of the conduc-
tivity tensor, σxx and σyy, are fast-oscillating functions of the magnetic field, with period
determined by the size of the carrier pocket at the Fermi surface S�(ε) (see Figure 4), while
the Hall conductivity σxy vanishes. The peculiar absence of the Hall effect, in spite of the
rather large magnetic field, is exact within the applied approximations, it is a property of
the symmetry of the integral.

Figure 4. An upper envelope of the longitudinal magnetoconductivity σxx (30) vs. inverse magnetic
field B−1 (in units εF/h̄ωc), depending on temperature T, i.e., T/εF = 0, 10−4, 10−2 for curves (1), (2),
and (3), respectively. Magnetoconductivity is a fast-oscillating function, periodic in B−1 (see insets for
each envelope) with a period proportional to the area of pocket S� on the Fermi surface. σxx is plotted
in units equal to the prefactor of the integral in Equation (30) (also proportional to B−1 through b−2

B ).
This result is valid in the regime of wide magnetic bands, i.e., W(B)� h̄ω0 (case 2).

The Hall coefficient is essentially determined by the value of t(B)r(B) product, cov-
ering the above-elaborated cases (1) a, b, and (2) (see Figure 5). In the regime of the
predominant magnetic breakdown, carriers move along the (parts of) circular trajectories,
thus the carrier concentrations n(e) and n(h) are close to their free-electron values.
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Figure 5. (a) Function |t(ξ)r(ξ)| = exp [−ξ/2]
√

1− exp [−ξ], where the argument
ξ ≡ ∆2(h̄ωc)−4/3ε−2/3

F depends on magnetic field through ωc. Considering the fact that ampli-
tudes t and r satisfy the unitarity condition, |t|2 + |r|2 = 1, it is plausible that, for fields low enough
and high enough, the function tends to zero, and it has a smooth maximum around which the
amplitudes are comparable to each other. (b) Schematic presentation of characteristic intervals of
magnetic field B in which the Hall coefficient attains the hole-like behavior (RH > 0 for low fields,
|t| → 1), electron-like behavior (RH < 0 for high enough fields, |r| → 1), and vanishing of the Hall
coefficient (RH = 0 for moderate fields, |r| ∼ |t|) between them. Regions between the three counted
intervals are the crossover regions. Here B0 is the lower limit of the field for which we have the
coherent magnetic breakdown, i.e., τ0ωc � 1.

3. Discussion

We present the review of our results related to the novel mechanism of charge density
wave (CDW) stabilization in a two-dimensional metallic system with isotropic pockets
constituting the initial Fermi surface, where electrons are coupled to phonons via standard
Fröhlich coupling. The presented results cover the mechanism of the ground state stabiliza-
tion, the DC transport coefficients (total and effective concentration of carriers as well as the
Hall coefficient) in the system reconstructed by a uni-axial CDW, and the magnetotransport
properties (magnetoconductivity tensor and Hall coefficient) of the system reconstructed
by a bi-axial CDW.

Due to the isotropy of the Fermi pockets, the paradigmatic mechanism of the CDW
ground state stabilization based on “nesting” is not applicable. Here, the CDW ground state
stabilization is based on the condensation energy gain due to the topological reconstruction
of the Fermi surface, which opens the pseudo-gap in the one-electron density of states,
with the Fermi energy inside it. It leads to redistribution of the occupied initial electron
states to lower energies due to the presence of the van Hove singularity at the lower
“boundary” of the pseudo-gap. This mechanism is self-consistent in the sense that electron
density gets modulated exactly in the way to maximize the CDW condensation energy.
The wave vector of the self-consistent CDW potential relates the initial electron pockets at
the Fermi surface, i.e., electron states get scattered by the potential, exactly to perform the
above-described reconstruction of the Fermi surface. The optimal wave vector is such to
bring the pockets into a very small overlap, of the order of size of the pocket multiplied by
the ratio of the CDW order parameter and the Fermi energy of the system. The mechanism
yields a finite order parameter of the CDW ground state if the electron–phonon coupling
is larger than the critical value, for the considered system it is roughly equal to 0.6 (in the
standard dimensionless form).

The reconstruction process by the uni-axial CDW leaves the “signature” in the DC
transport coefficients. That signature is clearly visible in the considerable reduction of
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the longitudinal component (with respect to the reconstruction vector) of the carrier effec-
tive concentration, the one entering the Drude DC conductivity, within the pseudo-gap.
The perpendicular component and the Hall concentration are equal to the total concentra-
tion of carriers.

The magnetoconductivity tensor is calculated for the system, with initially circular
pockets at the Fermi surface, reconstructed by the bi-axial, checkerboard-like CDW, forming
a 2D net of diamond-shaped pockets. In the regime of the coherent magnetic breakdown
(the Larmor radius is considerably larger than the electron mean free path) due to the per-
pendicular magnetic field B, three qualitatively different regimes of magnetoconductivity
behavior appear depending on its strength:

(1) In the low-field regime with rather weak magnetic breakdown, electrons move along
the hole-like semiclassical orbits around the diamond-shaped pockets, with a positive
Hall coefficient.

(2) In the high-field regime with very strong magnetic breakdown, electrons move along
the electron-like semiclassical orbits consisting of parts of the diamond-shaped pockets
recreating the initial, pre-reconstruction circular orbits, with a negative Hall coefficient.
Both (1) and (2) are valid in the limit of very narrow magnetic bands with respect to
the broadening of the level due to the impurity scattering, essentially reducing to the
Landau level physics with standard diagonal magnetoconductivity proportional to
1/B2, and Hall conductivity to 1/B.

(3) In the regime of the moderate magnetic field so that magnetic bands (due to magnetic
breakdown) are considerably wider compared to the level broadening due to the
impurity scattering, the diagonal components of magnetoconductivity exhibit strong
quantum oscillations, periodic in the inverse magnetic field, with period determined
by the size of pockets forming the Fermi surface. The Hall conductivity (and conse-
quently the Hall coefficient) vanishes. Electrons move freely in this regime (up to the
scattering on impurities) over the 2D net, along the arcs forming the diamond-shaped
orbits and, in turn, the circular ones, as if there is effectively no magnetic field. Taken
together, varying the magnetic field, regimes (1)–(3) exhibit a change of sign of the Hall
coefficient, with a finite interval of its vanishing between the two with opposite signs.
The presented results are based on the simplified analytical model revealing the
background mechanisms and their expected signatures in experiments. It is not
material-specific; therefore, it proves the existence of the effect being accurate to
the order of magnitude, but presents a solid foundation for the more accurate ap-
proaches, such as the ab initio studies which are material-specific, sometimes of high
accuracy, but can hardly reveal novel mechanisms. Combined together, the quantita-
tive studies of specific materials, in which the above-counted effects were observed
(e.g., high-Tc superconducting cuprates, transition metal dichalcogenides, etc.), may
have a great perspective.
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