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Constraints on singularity resolution by nonlinear electrodynamics
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One of the long-standing problems is a quest for regular black hole solutions, in which a resolution of the
spacetime singularity has been achieved by some physically reasonable, classical field, before one resorts to
the quantum gravity. The prospect of using nonlinear electromagnetic fields for this goal has been limited
by the Bronnikov’s no-go theorems, focused on Lagrangians depending on the electromagnetic invariant
FabFab only. We extend Bronnikov’s results by taking into account Lagrangians that depend on both
electromagnetic invariants, FabFab and Fab ⋆ Fab, and prove that the tension between the Lagrangian’s
Maxwellian weak field limit and boundedness of the curvature invariants persists in more general class of
theories.

DOI: 10.1103/PhysRevD.106.064020

I. INTRODUCTION

The electric field of a point charge, as well as its self-
energy, are manifestly divergent in Maxwell’s electrody-
namics. Family of theories based on nonlinear modifications
of Maxwell’s Lagrangian, collectively called nonlinear
electrodynamics (NLE), contains candidates that may
resolve those singularities. For instance, phenomenological
Born-Infeld Lagrangian [1,2] puts the upper limit on the
electric field strength, thus preventing it from diverging in
the limit of short distances. Consequently, it also regularizes
the energy of a point charge. Another prominent example
is the effective Euler-Heisenberg Lagrangian [3], emanating
from one-loop QED calculation of the process of γγ → γγ
scattering in the low energy limit. This theory removes the
singularity in the energy of a point charge, but not necessarily
in the electric field. Regularization of electrostatic quantities
of a point charge is not achieved in the novel ModMax
NLE theory [4], based on a unique one-parameter family of
Lagrangians that respect both the conformal and the electro-
magnetic SOð2Þ duality invariance, but can be achieved with
further modifications of such Lagrangians [5,6]. A broader
class of NLE Lagrangians, those that satisfy the dominant
energy condition and a number of technical assumptions, can
regularize the electrostatic energy, as shown in [7].
Singularities are also a ubiquitous feature of general

relativity, manifested as some kind of curvature divergence
or geodesic incompleteness. Since the first known exact

black hole solutions were stationary and at least axially
symmetric, it was unclear whether their singular behavior is
just an artefact of the artificially imposed symmetry. The
analysis of the spacetime singularities culminated with
the formulation of Hawking-Penrose singularity theorems
[8–10]. Assuming that certain energy conditions hold and
requiring additional conditions on the causal structure of
spacetime, the theorems imply the existence of incomplete
geodesics [11], thus proving that singularities are not just
“by-products” of the highly symmetric solutions. Geroch
[12] gave an example of geodesically complete spacetime,
but which contains an incomplete nongeodesic timelike
curve of bounded acceleration implying that even stricter
regularity criteria are needed.
It is generally expected that quantum extensions of a

classical theory should “cure” its singularities [13]. Before
one invokes any of the proposed candidates for the quantum
theory of gravitation (all of which have yet to be proven
consistent, complete, and experimentally verified), there are
some other, less ambitious but quite important options. One
is to replace the classical probe with the quantum one, and
prove that a geodesically incomplete spacetime is in fact
quantum complete [14,15], or use the semiclassical back-
reaction as amechanism to dress the singularity [16–19]. The
other is to inspect various generalizations of the Einstein-
Maxwell theory, which is the venue we shall investigate in
this paper.
Relying on the analogy with electromagnetism, it was

hoped that NLE Lagrangian coupled to the gravitational
sector could cure the spacetime singularities [20,21]. This
idea flourished after it was inferred that the ad hoc
proposed regular metric of Bardeen’s black hole [22]
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can be obtained from NLE Lagrangian [23]. Bronnikov
[24] later established a general criterion under which a
static, spherically symmetric solution of the Einstein-NLE
field equations, with the NLE Lagrangian depending only
on the invariant FabFab and obeying the Maxwellian weak
field limit, can have a regular center. The main conclusion
is that the presence of electric charge prevents construction
of a regular black hole solution (see, e.g., some examples in
[25]) and to this end one must rely only on magnetically
charged solution. Indeed, electrically charged regular black
holes constructed in [26–28] violate Maxwellian limit,
while magnetically charged regular black holes in [29–32]
do not. Dymnikova [33] showed that by relaxing
Bronnikov’s conditions (precisely, discarding Maxwellian
limit), it is possible to obtain regular electrically charged
black hole solution with so-called de Sitter core, de Sitter
behavior as r → 0 (see also [34,35]). Another evasion of
the Bronnikov’s no-go theorem was proposed in [36],
based on a specific construction with core simulating a
phase transition. Completely different approach, so-called
double copy procedure, has been recently employed [37]
for the construction of regular black holes via NLE fields.
As most of the NLE extensions of Maxwell’s electro-

magnetism, emanating from some concrete quantum
theory, have Lagrangians which depend on both electro-
magnetic invariants, FabFab and Fab ⋆ Fab, our main
objective is to explore to which extent Bronnikov’s results
can be generalized. First of all we have to define what
exactly do we mean by the regular solution. Hereafter we
will follow the classification and nomenclature of singu-
larities as presented by Ellis and Schmidt in [38]. Our focus
will be on scalar singularities, which occur if the spacetime
is not further extendible and curvature scalars are not “well
behaved.” Namely, as curvature scalars are coordinate
independent, they must stay bounded in a regular space-
time. Conversely, bounded curvature scalars do not guar-
antee the regularity of spacetime, as there are geodesically
incomplete spacetimes with vanishing curvature scalars
[39]. Nevertheless, scalar singularities carry enough infor-
mation to formulate a no-go theorem since finding at least
one diverging curvature invariant labels the spacetime as
singular.
The paper is organised as follows. In Sec. II we briefly

summarize the basic aspects of NLE in the context of
gravitational theory. Cornerstone of the argument, relation
between the curvature and the electromagnetic invariants, is
established in Sec. III. In order to investigate all the
invariants that may be obtained by contractions of arbitrary
number of NLE energy momentum tensors, we express
them in a closed form via spinor formalism. The central
result, analysis of the regularity of spherically symmetric
spacetimes sourced by NLE Lagrangians obeying
Maxwellian limit, is elaborated in Sec. IV. In Sec. V we
discuss ramifications of our theorems and comment on the
remaining open questions.

Notation and conventions.—We use the “mostly plus”
metric signature and natural system of units in which
G ¼ c ¼ 4πϵ0 ¼ 1. For differential forms we use either
abstract index notation or boldface letters. Hodge dual of a
p-form ω is defined as

ð⋆ ωÞapþ1…a4 ≔
1

p!
ωa1…apϵ

a1…ap
apþ1…a4 : ð1Þ

Partial derivatives of the Lagrangian density LðF ;GÞ are
denoted by LF ≔ ∂FL, LG ≔ ∂GL, LFG ≔ ∂G∂FL, and so
on. For any rank-2 tensor Xa

b and n ∈ N we use shorthand
notation

ðXnÞab ≔ Xa
c1X

c1
c2 � � �Xcn−1

b: ð2Þ

II. AN OVERVIEW OF NLE

With the electromagnetic field tensor Fab at disposal, we
can construct two independent quadratic electromagnetic
invariants, F ≔ FabFab and G ≔ Fab ⋆ Fab. In Maxwell’s
electrodynamics, Lagrangian density is given as LðMaxÞ ¼
−F=4, while NLE Lagrangian density LðF ;GÞ can gen-
erally depend on both invariants. In order to categorize
NLE Lagrangians, we will use the following terminology:
F -class consists of Lagrangians depending on invariant
FabFab only, while FG-class Lagrangians depend on both
invariants. We do not consider terms which include
covariant derivatives of Fab or nonminimal coupling to
the gravitational sector. Thus, the total Lagrangian 4-form,

L ¼ 1

16π
ðR − 2Λþ 4LðF ;GÞÞ ⋆ 1; ð3Þ

consists of Einstein-Hilbert gravitational contribution, con-
taining Ricci scalar R and the cosmological constant Λ, and
the electromagnetic part. We say that a NLE Lagrangian
density L obeys the Maxwellian weak field (MWF) limit if
LF → −1=4 and LG → 0 as ðF ;GÞ → ð0; 0Þ.
A useful way of expressing the NLE energy-momentum

tensor is to separate it into Maxwell’s part and the trace part

Tab ¼ −4LF T̃ab þ
1

4
Tgab; ð4Þ

where the Maxwell’s tensor T̃ab and trace T ≔ gabTab are,
respectively, given by

T̃ab ¼
1

4π

�
FacFc

b −
1

4
gabF

�
; ð5Þ

T ¼ 1

π
ðL − LFF − LGGÞ: ð6Þ

Introducing the auxiliary 2-form Z
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Z ≔ −4ðLFFþ LG ⋆ FÞ; ð7Þ

generalized source-free NLE Maxwell’s equations can be
written as

dF ¼ 0 and d ⋆ Z ¼ 0: ð8Þ

Einstein’s gravitational field equation sourced by the NLE
energy-momentum tensor is

Rab −
1

2
Rgab þ Λgab ¼ 8πTab: ð9Þ

Formore comprehensive overview of NLE theories and their
properties we refer reader to classic lectures by Plebański
[40], as well as some more recent papers [41–43].

III. A DISTILLATE OF USEFUL INVARIANTS

In order to examine the regularity of the spacetime, we
will inspect the behavior of curvature invariants that may be
translated, via Einstein’s gravitational field equation, into
electromagnetic invariants. As on the gravitational side we
have contractions of the Ricci tensor Rab on our disposal,
the question is how many different invariants may be
constructed by contractions of the energy-momentum
tensor Tab.
The evaluation of these contractions is most easily

performed using spinor calculus [44,45]. Spinor space is
endowed with the sympletic structure, antisymmetric non-
degenerate spinor ϵAB, and the electromagnetic field is
represented with the symmetric spinor ϕAB. Respecting the
antisymmetry of the electromagnetic field tensor and its
Hodge dual, their spinor counterparts can be written as

FABA0B0 ¼ ϵABϕ̄A0B0 þ ϕABϵA0B0 ; ð10Þ

⋆FABA0B0 ¼ iðϵABϕ̄A0B0 − ϕABϵA0B0 Þ: ð11Þ

Using this decomposition, it is straightforward to express
the electromagnetic invariants

F ¼ 2ðϕABϕAB þ ϕ̄A0B0
ϕ̄A0B0 Þ; ð12Þ

G ¼ −2iðϕABϕAB − ϕ̄A0B0
ϕ̄A0B0 Þ: ð13Þ

Maxwell’s energy momentum tensor (5) in spinor form is
given by

T̃ABA0B0 ¼ 1

2π
ϕABϕ̄A0B0 ; ð14Þ

where we have used

ϕACϕB
C ¼ 1

2
ðϕCDϕ

CDÞϵAB: ð15Þ

The trace of the odd number of Maxwell’s energy-
momentum tensors vanishes as it is proportional to the
contraction of the symmetric spinor ϕAB with the anti-
symmetric spinor ϵAB,

ðT̃2nþ1Þaa ¼ 0: ð16Þ

The trace of the even number of Maxwell’s energy-
momentum tensors reduces to

ð4πÞ2nðT̃2nÞaa ¼
1

42n−1
ðF 2 þ G2Þn: ð17Þ

Taking into account the expression above, we can easily
evaluate the trace of two NLE energy-momentum tensors (4)

4π2Ta
bTb

a ¼ π2T2 þ L2
F ðF 2 þ G2Þ: ð18Þ

In fact, using the binomial formula and Eq. (4), it is not
difficult to generalize Eq. (18) for an arbitrary number of
contracted energy-momentum tensors,

ðTnÞaa ¼ 4ðT=4Þn þ
Xn
k¼1

�
n
k

�
42k−nð−LF ÞkTn−kðT̃kÞaa:

ð19Þ

The Tn term above is, just for clarity, written separately.
As can be seen, all these contractions are always reduced
to combinations of the two basic ones, the trace T and
L2
F ðF 2 þ G2Þ, upon which we shall base our further

discussion.
To summarize, Einstein’s field equation (9) provides us

with the relation between the curvature and electromagnetic
invariants,

R − 4Λ ¼ −8πT; ð20Þ

RabRab þ 2Λð2Λ − RÞ ¼ ð8πÞ2TabTab; ð21Þ

so that the boundedness of Ricci scalar R and Ricci squared
RabRab translates to the boundedness of the energy-
momentum invariants TabTab and trace T. Cosmological
constant Λ is included for the sake of generality, but its role
in the following arguments is mostly passive, as we do not
rely on the asymptotic properties of the spacetime.

IV. CONSTRAINTS

Our main analysis will be, for simplicity, focused on the
static, spherically symmetric spacetimes. Namely, we
demand from a candidate theory to achieve regularization
of an arbitrary black hole solution, without aid of, for
example, additional angular momentum. Static, spherically
symmetric metric can be put in the form [39]
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ds2 ¼ −αðrÞdt2 þ βðrÞdr2 þ r2ðdθ2 þ sin2 θdφ2Þ; ð22Þ

given that ∇ar ≠ 0. We assume that the radial coordinate r
attains its minimum r ¼ 0 at a point referred to as a center,
which will be assumed to be regular in a sense defined
below. Specific cases not covered by this geometric setting,
such as a wormhole solutions (in which r attains some
minimal value r� > 0) or solutions with a “horn” (infinitely
long tube of finite radius), can be set aside due to
Bronnikov’s theorem 2 [24], whose assumption Tt

t ¼
Tr

r is satisfied in our context. Furthermore, we introduce,
for convenience, the abbreviation wðrÞ ≔ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αðrÞβðrÞp
and

assume that on some punctured neighborhood of the center
r ¼ 0, e.g., points with 0 < r < rw for some rw > 0, wðrÞ
has no zeros. In other words, we assume that at least in
some neighborhood of the center there are no horizons.
We note in passing that the condition Tt

t ¼ Tr
r is also

sufficient [46], at least with the Einstein field equation, to
simply take wðrÞ ¼ 1 without loss of generality, but
we shall leave the function w undetermined for the sake
of possible generalizations beyond the Einstein-Hilbert
theory.
When we say that some scalar ψðrÞ is bounded as r → 0,

we assume that there is a real constant M > 0 and a radius
r0 > 0, such that jψðrÞj ≤ M for all 0 < r < r0. One must
bear in mind that such criterion of boundedness of a scalar
is quite mild: We do not assume a priori that the limit
limr→0 ψðrÞ necessarily exists [e.g., ψ could widely oscil-
late, something like ψðrÞ ∼ sinð1=rÞ, as we approach the
center]. Thus, even if a certain spacetime passes this low-
bar test for a number of invariants, any of them may still be
rather ill-behaved in a neighborhood of the center.
We shall introduce two auxiliary 1-forms, electric Ea ≔

−kbFba and magnetic Ba ≔ kb⋆ Fba, defined with respect
to the Killing vector field k ¼ ∂=∂t. The electromagnetic
2-form,which inherits the spacetime symmetries,1 is given by

F ¼ −ErðrÞdt ∧ dr − BrðrÞ⋆ ðdt ∧ drÞ; ð23Þ

¼ −ErðrÞdt ∧ drþ BrðrÞ
wðrÞ r

2 sin θdθ ∧ dφ; ð24Þ

and its corresponding Hodge dual by

⋆F ¼ ErðrÞ
wðrÞ r

2 sin θdθ ∧ dφþ BrðrÞdt ∧ dr: ð25Þ

Furthermore, just for convenience, we shall introduce
rescaled electric and magnetic 1-forms

Ẽa ≔
Ea

w
; B̃a ≔

Ba

w
: ð26Þ

Two corresponding electromagnetic invariants are then
given by

F ¼ 2ðB̃2
r − Ẽ2

rÞ and G ¼ 4ẼrB̃r: ð27Þ

Now, NLE Maxwell’s equations (8) immediately imply that
B̃rr2 and ðLF Ẽr − LGB̃rÞr2 are constants, which can be fixed
using definitions of the electric charge Q and the magnetic
charge P given by the Komar integrals, evaluated over a
sphere S,

Q ≔
1

4π

I
S
⋆ Z and P ≔

1

4π

I
S
F: ð28Þ

Choice of the sphereS is essentially irrelevant (up to technical
obstacles, such as a question of proper coordinate system at
the event horizon), aswe are looking at source-freeMaxwell’s
equations. This gives us finally

B̃r ¼
P
r2
; ð29Þ

LF Ẽr − LGB̃r ¼ −
Q
4r2

: ð30Þ

Now we turn to the analysis of the constraints on singularity
resolution by nonlinear modifications of the Maxwell’s
electromagnetism.
Basic strategy for the main results is to assume that

both R and RabRab are bounded as r → 0, implying via
Einstein’s gravitational field equation, as shown in
Eqs. (20) and (21), that the same has to hold for T and
TabTab, which in turn implies, via Eq. (18), the bounded-
ness of both LFF and LFG as r → 0. As we shall show
below, this assumption in many important cases cannot be
consistent with WMF limit of a NLE Lagrangian. Again, it
is important to stress that we impose only a mild regularity
condition, namely boundedness of just two curvature
scalars, R and RabRab, which by itself does not prevent
any other independent curvature scalar, such as the
Kretschmann scalar RabcdRabcd, to diverge. However, even
such seemingly benign assumption will be enough to
produce strong constraints.

A. Electric case

Given that magnetic monopoles have not yet been
discovered,2 the most important case is the one in which
a black hole bears only electric charge. Here we have a
strong generalization of the Bronnikov’s result [24].
Theorem 1. Suppose that the spacetime is a static,

spherically symmetric solution of the Einstein-NLE field
equations with FG-class NLE Lagrangian obeying

1General problem of symmetry inheritance for NLE fields is
discussed in [47].

2Quite intriguingly, magnetic charge on black holes may be
bounded via its shadow [48].
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Maxwellian weak field limit. Then, in the electrically
charged case, that is P ¼ 0 and Q ≠ 0, Ricci scalar R
and Ricci squared RabRab cannot both remain bounded as
r → 0.
Note that the Theorem 1 automatically applies to all

F -class NLE Lagrangians.
Proof of Theorem 1.—Absence of the magnetic charge,

P ¼ 0, immediately implies B̃r ¼ 0, allowing us to rewrite
Maxwell’s equation (30), after squaring and multiplication
by F, as

F
r3

¼ −
8

Q2
ðFLF Þ2r: ð31Þ

If both R and RabRab are bounded as r → 0, then the same
holds for FLF , which implies that F ¼ oðr3Þ as r → 0.
Also, as B̃r ¼ 0, the other electromagnetic invariant G is
identically zero. Finally, as L2

F ¼ −Q2=ð8Fr4Þ, we can
deduce that LF is unbounded as r → 0, in direct contra-
diction with the assumed MWF limit. Note that the
contradiction with MWF limit is manifest due to a fortunate
occurrence: the r → 0 limit coincides with the weak field
limit in which both F and G approach zero. ▪
The obtained result comes as no surprise, as we know

that electrically charged Born-Infeld [49–52] and Euler-
Heisenberg [53,54] black holes are not regular (cf. [55] for
an in-depth analysis).

B. Dyonic case

In the dyonic case, we cannot directly utilize the same
procedure, since the weak field limit is not necessarily
captured as we approach the center. Namely, using
Maxwell’s equation (29), electromagnetic invariant F
may be related to the other invariant G via

F ¼ 2

�
P2

r4
−

r4

16P2
G2

�
: ð32Þ

Here it is manifest that the origin of the F − G plane is
unattainable as r → 0, which essentially takes away the
opportunity to directly test the MWF limit. However, this
very relation may be used for slightly different approach:
Given that one proves that both F and G should, under
some assumptions, remain bounded as r → 0, we immedi-
ately have a contradiction.
Furthermore, using the definition of the invariant G and

Maxwell’s equations (29)–(30), we obtain

LF Ẽr ¼ LFG
r2

4P
;

¼ LGB̃r −
Q
4r2

¼ 1

r2

�
LGP −

Q
4

�
; ð33Þ

that is

1

r3

�
LGP −

Q
4

�
¼ LFG

4P
r: ð34Þ

From here, given that LFG remains bounded, it follows that

LG ¼ Q
4P

þ oðr3Þ as r → 0: ð35Þ

This is another bounded invariant, particularly useful for
the dyonic case. First we revisit Bronnikov’s result [24]
with a slightly different proof.
Theorem 2. Suppose that the spacetime is a static,

spherically symmetric solution of the Einstein-NLE field
equations with the F -class NLE Lagrangian. Then, in the
dyonic case, that is P ≠ 0 and Q ≠ 0, Ricci scalar R and
Ricci squaredRabRab cannot both remain bounded as r → 0.
Proof of Theorem 2.—Let us assume that both R and

RabRab are bounded as r → 0, so that the same holds for
LFF and LFG. In the F -class case Maxwell’s equations
may be written as

LFG
r2

4P
¼ LF Ẽr ¼ −

Q
4r2

; ð36Þ

which, given that by assumption LFG should remain
bounded, immediately leads to a contradiction as r → 0. ▪
Note that the Theorem 2 relies only partly on MWF

limit: We have identically LG ¼ 0, while we do not need to
invoke that LF → −1=4 as ðF ;GÞ → ð0; 0Þ.
We do not see how to generalize this result to all NLE

theories with FG-class NLE Lagrangians, so in order to
make progress we shall focus on some special classes of
NLE theories. First, without loss of generality, any FG-
class NLE Lagrangian may be conveniently written as

L ¼ −
1

4
F þ hðF ;GÞ; ð37Þ

with someC1-class function h. Two particular subclasses of
NLE theories admit an easy generalization of constraints,
first of which holds both for solutions with Q ≠ 0 and
Q ¼ 0.
Theorem 3. Suppose that the spacetime is a static,

spherically symmetric solution of the Einstein-NLE field
equations with the NLE Lagrangian (37), such that
h ¼ hðGÞ. Then, given that P ≠ 0, Ricci scalar R and
Ricci squaredRabRab cannot both remain bounded as r → 0.
Proof of Theorem 3.—As LF ¼ −1=4 identically,

boundedness of LFF and LFG immediately implies
boundedness of F and G as r → 0, which in turn leads
to a contradiction. Note that this part of the theorem, just as
the Theorem 2, relies only partly on MWF limit: we have
identicallyLF ¼ −1=4, while we do not need to invoke that
LG → 0 as ðF ;GÞ → ð0; 0Þ. ▪
Theorem 4. Suppose that the spacetime is a static,

spherically symmetric solution of the Einstein-NLE field
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equations with the NLE Lagrangian (37), such that
hðF ;GÞ ¼ aF sGu, with a real constant a ≠ 0 and integers
s, u ≥ 1. Then, in the dyonic case, that is P ≠ 0 andQ ≠ 0,
Ricci scalar R and Ricci squared RabRab cannot both
remain bounded as r → 0.
Proof of Theorem 4.—As for this theory

πT ¼ ð1 − s − uÞh; ð38Þ

LFF ¼ −
1

4
F þ sh; ð39Þ

it follows that boundedness of T and FLF imply bounded-
ness of h and F as r → 0. Furthermore, using

LGG ¼ uh; ð40Þ

and (35), it follows that G is bounded as r → 0, which
immediately leads to a contradiction. ▪
Furthermore, a prominent family of theories are those

with h which is simply a quadratic polynomial, appearing
in low field limits of quantum corrections to classical
Maxwell’s electromagnetism.
Theorem 5. Suppose that the spacetime is a static,

spherically symmetric solution of the Einstein-NLE field
equations with the NLE Lagrangian (37), such that
hðF ;GÞ ¼ aF 2 þ bFGþ cG2, where a, b, and c are real
constants. Then, in the dyonic case, that is P ≠ 0 and
Q ≠ 0, Ricci scalar R and Ricci squared RabRab cannot
both remain bounded as r → 0.
Proof of Theorem 5.—Due to the simplicity of the

Lagrangian, evaluation of the derivatives LF and LG
translates into a linear system for F and G,

LF þ 1

4
¼ 2aF þ bG; ð41Þ

LG ¼ bF þ 2cG: ð42Þ

Furthermore, from (35) we have

ðbF þ 2cGÞLF ¼
�
Q
4P

þ oðr3Þ
�
LF : ð43Þ

Thus, given that FLF and GLF remain bounded as r → 0,
this has to hold also for LF itself.
Now we have to distinguish two subcases, according to

the determinant of the linear system above, Δ ¼ 4ac − b2.
In the nondegenerate case, that is Δ ≠ 0, boundedness of
LF and LG implies that invariants F and G are bounded as
r → 0, which leads to contradiction. In the degenerate case
Δ ¼ 0, we need to carefully examine further subcases. If
c ¼ 0, then b ¼ 0, and we are back at the F -class
Lagrangian, covered by the Theorem 2. If a ¼ 0, then
b ¼ 0, and we are back at the Theorem 3. Thus, let us
assume that a ≠ 0 ≠ c. If we multiply both sides of

LF ¼ −
1

4
þ 2a

b
LG ð44Þ

by F and use Eq. (35), we get

FLF ¼
�
−
1

4
þ aQ
2bP

þ oðr3Þ
�
F as r → 0: ð45Þ

Here we have another two subcases. If 2aQ ≠ bP, then we
may deduce that F is bounded as r → 0. Consequently,
from Eq. (42) we also see that G is bounded as r → 0,
leading to a contradiction. In the remaining subcase when
2aQ ¼ bP, Eqs. (41) and (42) imply

PLG −QLF ¼ Q
4
; ð46Þ

so that, via Eq. (34),

G ¼ 4P
LF r4

�
PLG −

Q
4

�
¼ 4QP

r4
ð47Þ

and, using Eq. (32),

F ¼ 2

r4
ðP2 −Q2Þ; ð48Þ

which, inserted into Eq. (42), gives us

LG ¼ 2b
r4

ðQ2 þ P2Þ: ð49Þ

This, again, leads to a contradiction, as the right-hand side
is manifestly unbounded as r → 0, whereas the left-hand
side should be bounded according to Eq. (35). ▪
Finally, we turn to two distinguished NLE theories not

covered by the Theorems 2–5. Born-Infeld theory [2] is
defined with the 1-parameter FG-class Lagrangian

LðBIÞ ¼ b2 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F

2b2
−

G2

16b4

s !
; ð50Þ

where the real parameter b > 0 is physically related to
the upper bound of the point charge electric field. It is
straightforward to check that Born-Infeld Lagrangian
respects MWF limit. ModMax NLE Lagrangian [4]

LðMMÞ ¼ 1

4

�
−F cosh γ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2 þ G2

p
sinh γ

�
; ð51Þ

is defined with the real parameter γ, but does not have

well-defined partial derivatives LðMMÞ
F and LðMMÞ

G in the
ðF ;GÞ → ð0; 0Þ limit (thus, strictly speaking, ModMax
Lagrangian does not respect the MWF limit, as defined
in this paper). We note in passing that the ModMax theory
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also appears in recent investigations of so-called TT̄
deformations [56–58].
Theorem 6. Suppose that the spacetime is a static,

spherically symmetric solution of the Einstein-NLE field
equations with the Born-Infeld (50) or ModMax (51) NLE
Lagrangian. Then, given that P ≠ 0, Ricci scalar R and
Ricci squared RabRab cannot both remain bounded as
r → 0.
Proof of Theorem 6.—(1) Born-Infeld theory. Let us first

assume thatQ ≠ 0. By looking at FLF and LG as a system
for F and G we get3

G ¼ −16LG
FLF �W
1þ 16L2

G

ð52Þ

with

W ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFLF Þ2 þ b4ð1þ 16L2

GÞ
q

: ð53Þ

Again, if we assume that RabRab and R are bounded, then
we immediately conclude that G is bounded as r → 0.
Then, using

4b2LGF ¼ −ðLFF ÞG; ð54Þ

it follows that F is also bounded as r → 0, leading to a
contradiction. If Q ¼ 0, then we can use a slightly different
strategy: Maxwell’s equation (30) leads to

�
1þ P2

b2r4

�
LF Ẽr ¼ 0; ð55Þ

which implies LF Ẽr ¼ 0 for all points r > 0. Now, as

LG ¼ −
P

ðbrÞ2 LF Ẽr; ð56Þ

it follows that LG ¼ 0 and, given that both the trace T and
FLF should remain bounded, the same should hold for the
Lagrangian itself. Thus, LF has no zeros for r > 0 and we
may infer that Ẽr ¼ 0, so that G ¼ 0, F ¼ 2P2=r4 and

FLF ¼ −
bP2

2r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ b2r4

p ; ð57Þ

which is manifestly not bounded as r → 0.
(2) ModMax theory. In the dyonic case we have

(cf. also [59])

Ẽr ¼
Qe−γ

r2
; B̃r ¼

P
r2
; ð58Þ

and, by direct evaluation,

FLF ¼ Q2 þ P2

2eγr4
Q2 − P2e2γ

Q2 þ P2e2γ
; ð59Þ

GLF ¼ −
PQ
r4

Q2 þ P2

Q2 þ P2e2γ
; ð60Þ

which cannot both remain bounded as r → 0, unless
Q ¼ 0 ¼ P. ▪
In other words, both Born-Infeld and ModMax gener-

alizations of the dyonic Reissner-Nordström solution still
have unbounded curvature invariants at their center and in
this sense cannot be considered as regularized black holes.

C. Magnetic case

Previous discussion still leaves open question if in the
absence of the electric charge one can find larger variety of
NLE theories admitting the regularized black hole solu-
tions. A well-known example is Bardeen’s metric [22],
interpreted as a magnetically charged black hole solution of
Einstein-NLE equations [23] with a “reverse-engineered”
F -class NLE Lagrangian, which unfortunately does not
respect the MWF limit. Bronnikov [24] has noticed that a
F -class NLE Lagrangian, such that the limit limF→∞ LðF Þ
exists and is finite, might admit magnetically charged
solutions, regular in some sense.
Some of the constraints proven in the previous section,

Theorems 3 and 6, apply to strictly magnetically charged
solutions. Before we proceed with the discussion, note that
one of the NLE Maxwell’s equations (30), with Q ¼ 0,
may be multiplied by Ẽr, leading to

�
P2

r4
−
1

2
F
�
LF ¼ 1

4
LGG ð61Þ

or multiplied by B̃r, leading to

1

4
LFG ¼ P2

r4
LG: ð62Þ

Now we turn to the family of quadratic NLE Lagrangians.
Theorem 7. Suppose that the spacetime is a static,

spherically symmetric solution of the Einstein-NLE field
equations with the NLE Lagrangian (37), such that
hðF ;GÞ ¼ aF 2 þ bFGþ cG2, where a, b, and c are real
constants, such that the ordered pair ðb; cÞ ≠ ð0; 0Þ. Then,
in the magnetically charged case, that is P ≠ 0 and Q ¼ 0,
Ricci scalar R and Ricci squared RabRab cannot both
remain bounded as r → 0.
Proof of Theorem 7.—We shall divide the proof into two

subcases.

3Sign ambiguity at the W term appears as we cannot uniquely
determine invariant G from F , LF , and LG alone, but is not
relevant for our result.
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(1) Suppose that b ¼ 0. The a ¼ 0 subcase is already
covered by the Theorem 3, so let us assume that a ≠ 0.
Using Eq. (62) we have

�
LF −

8cP2

r4

�
G ¼ 0: ð63Þ

At each point where G ¼ 0 we have Ẽr ¼ 0, F ¼ 2P2=r4

and

LFF ¼
�
−
1

4
þ 4aP2

r4

�
2P2

r4
; ð64Þ

while at each point where G ≠ 0 we have LF ¼ 8cP2=r4,

F ¼ 1

2a

�
1

4
þ 8cP2

r4

�
ð65Þ

and

LFF ¼
�
1

4
þ 8cP2

r4

�
4cP2

ar4
: ð66Þ

Thus, LFF is a function, defined by Eq. (64) at points
where G ¼ 0 and by Eq. (66) at points where G ≠ 0, which
is unbounded as r → 0, in contradiction with our basic
assumptions.
(2) Suppose that b ≠ 0. First, from (62) we have

F ¼ r4

4bP2
LFG −

2c
b
G ð67Þ

that, inserted in (61), leads to

ð4P2ðb2 − 4acÞ − br4LGÞG
¼ bP2 þ 2r4ðbLFF − aLFGÞ: ð68Þ

If b2 ≠ 4ac, then it follows that G is bounded as r → 0 and,
via Eq. (67), the same holds for F , leading to a contra-
diction. On the other hand, if b2 ¼ 4ac (which immediately
excludes c ¼ 0), then we have a special relation

LF ¼ −
1

4
þ b
2c

LG: ð69Þ

This implies that LF is bounded as r → 0 and, as

LFG ¼
�
−
1

4
þ b
2c

LG

�
G; ð70Þ

the same holds for G. Furthermore, the relation bF ¼
LG − 2cG implies that F is bounded as r → 0, leading
again to a contradiction. ▪
The case not covered by the Theorem 7 above is a

quadratic F -class NLE Lagrangian with hðF Þ ¼ aF 2.

Looking at Eq. (62), we see that one basic option is to
take G ¼ 0 (which again leads to a contradiction as in the
proof above), while the other is to demand LF ¼ 0, that is
F ¼ 1=ð8aÞ. In the latter case the NLE Maxwell’s equa-
tions are automatically satisfied, with

Ẽ2
r ¼

P2

r4
−

1

16a
; B̃r ¼

P
r2
; ð71Þ

while Einstein’s field equation is reduced to

Rab −
1

2
Rgab þ λgab ¼ 0; ð72Þ

with the “effective” cosmological constant

λ ≔ Λþ 1

32a
: ð73Þ

For each solution of this equation we have R ¼ 4λ and
RabRab ¼ 4λ2, both of which are constant, thus trivially
bounded. Nevertheless, the static, spherically symmetric
black hole solution of the Eq. (72) is just Schwarzschild–
(anti–)de Sitter black hole (see, e.g., [60,61] and references
therein), with unbounded Kretschmann scalar RabcdRabcd.
A curious feature of this solution is that the electromagnetic
field is just disguised as a (part of) cosmological constant,
with its imprint in a form of a nonvanishing magnetic
charge P. In principle, one could try to glue G ¼ 0 solution
to the LF ¼ 0 solution along the r4 ¼ 16aP2 hypersurface,
but such “chimera” will again suffer from the same
irregularities as the elementary solutions.

D. Neutral case

In order to complete our survey, we turn finally to the
neutral case, in whichQ ¼ 0 ¼ P. Maxwell’s equation (29)
immediately implies B̃r ¼ 0, while (30) is reduced to
LF Ẽr ¼ 0. Thus, at each point we have either Ẽr ¼ 0, a
trivial field, or LF ¼ 0. In the latter case the NLE energy-
momentum tensor attains a form of the cosmological
constant term Tab ¼ ðT=4Þgab and we are again led to
the special case discussed at the end of the previous
subsection. It is worth taking a notice that for most of
the NLE Lagrangians discussed in the literature, function
LF does not have zeros [62], power Maxwell being one of
the exceptions.

V. FINAL REMARKS

Our results reveal severe obstructions to the prospect of
black hole regularization with NLE fields and are, in some
sense, complemented by the recent no-go results [43] for
stationary, asymptotically flat, everywhere regular solutions
of Einstein-NLE field equations. A fundamental obstacle is
given alreadywith the Theorem 1: Electrically charged black
holes in a theorywith aMWF limit obeyingNLELagrangian
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cannot be regular, not even in a mild sense used in this paper.
In a pursue of a NLE-regularizing theory one might include
magnetic charges, with a caveat that magnetic monopoles
have not been observed so far. Still, even from a theoretical
side, this pursuit will be limited by several constraints proven
in Theorems 2–7. For example, arguably the simplest type of
NLE Lagrangians are quadratic ones, appearing in a weak
field limit of quantum gauge theories (most important
example being Euler-Heisenberg Lagrangian). However,
Theorems 1, 5, and 7 completely eliminate this subclass
of NLE Lagrangians as candidates for regularization of the
black hole singularities, in any combination of electric and
magnetic charges. Born-Infeld and ModMax theories have
been treated separately in Theorem 6, leading to the same
conclusions.
Some regular, magnetically charged, static black hole

solutions have been found with ad hoc proposed F -class
NLE Lagrangians which, unfortunately, lack any clear
physical motivation. The other strategy used in construction
of regular black holes consists of evaluation of the energy-
momentum tensor for a chosen metric and reconstruction
of an associated NLE Lagrangian, albeit written in a
coordinate form (see, e.g., [63]), rather than as functional
of the electromagnetic invariants. On the other hand,
recently proposed regular back hole spacetimes [64,65]
admit an interpretation [66] as a solution in theory with an
explicit Lagrangian containing NLE and scalar fields.
Here we may emphasize several directions of further

inquiry, motivated by the following questions. First of all, it
is not clear to what extent can the constraints obtained in
Theorems 2–6, dealing with the dyonic case, be generalized
for larger family of FG-class Lagrangians. One step further
is to generalize the theorems from the paper when the
Einstein-Hilbert action is replaced by some modified
gravitational action. For example, given that one shifts
to fðRÞ class of gravitational theories [67–69], we need to
add regularity assumptions on higher derivative curvature
invariants. Even more broadly, we need to investigate
generalizations for the theories with the electromagnetic
field nonminimally coupled to the gravitation and/or the

electromagnetic Lagrangian depending on derivatives of
invariants.
An important aspect of the proposed regular black hole

solutions, which may be used to assess their physical
viability, is validity of the energy conditions. In the case
of NLE fields, they are controlled by the signs of the
derivative LF and the trace T [40,42]; for example, the null
energy condition holds if and only if LF ≤ 0, while the
dominant energy condition holds if and only if bothLF ≤ 0
and T ≤ 0 hold. Unfortunately, at the level of generality
considered in this paper, with a mere assumption about the
boundedness of curvature scalars, it is not clear how to infer
something conclusive about the sign of the aforementioned
functions. Relation between LF , trace T and derivatives of
the metric function f, provided by the Einstein’s field
equation, could be utilized given that one imposes, for
example, additional assumptions about convexity of the
function f, but we are then confronted with a delicate
dilemma which choice of such assumption would be
“appropriate” in this context. Thus, the question which
classes of NLE theories admit solutions with bounded
curvature scalars and satisfied (some or all) energy con-
ditions remains open.
Another type of spacetime singularities are those appear-

ing at the initial or the final region of the Universe. Again, it
is possible to obtain singularity-free Friedmann-Robertson-
Walker cosmological solution, coupled to the NLE theory,
as shown in [70,71] with F -class Lagrangians or in [72,73]
with Lagrangians similar to Euler-Heisenberg’s. Besides
FRW cosmology, it was shown that anisotropic Bianchi
spaces sourced by Born-Infeld Lagrangian do not contain
any singularities [74]. It seems that at least in the cosmo-
logical context NLE-induced regularizations have more
perspective, but it is not quite clear what are the general
constraints delimiting such proposals.
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