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Nonlinear electromagnetic fields in strictly stationary spacetimes
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Rudjer Bošković Institute, Bijenička cesta 54, HR-10002 Zagreb, Croatia

(Received 3 December 2021; accepted 9 January 2022; published 25 January 2022)

We prove two theorems which imply that any stationary nonlinear electromagnetic field obeying a
dominant energy condition in a strictly stationary, everywhere regular, asymptotically flat spacetime must
be either trivial or a stealth field. The first theorem holds in static spacetimes and is independent of the
gravitational part of the action, as long as the coupling of the electromagnetic field to the gravitational field
is minimal. The second theorem assumes Einstein–Hilbert gravitational action and relies on the positive
energy theorem, but does not assume that the spacetime metric is static. In addition, we discuss possible
generalizations of these results, to theories with charged matter, as well as higher-dimensional nonlinear
electromagnetic fields.

DOI: 10.1103/PhysRevD.105.024067

I. INTRODUCTION

Interaction of the gravitational and the electromagnetic
fields, governed by the gravitational-gauge field equa-
tions, is highly nonlinear. It is quite optimistic to hope
that we might reach a complete classification of all
solutions, even under the constraints of some regularity and
boundary conditions. Indeed, a slightly less ambitious
goal, understanding of time-independent solutions, is
still a formidable task, but one worth taking as stationary
solutions serve as models of the equilibrium field
configurations.
For example, an important class of stationary black hole

spacetimes is heavily narrowed by the series of black hole
uniqueness and no-hair theorems [1,2], distilled and po-
lished over the past several decades. These solutions,
however, are not strictly stationary, as the Killing vector
field corresponding to stationary isometry, timelike on
some domain of the black hole exterior, may change its
causal character in the black hole interior and ergoregions
surrounding rotating black holes. Also, black holes may
harbor a singularity, in which case they are not globally
regular spacetimes.
This begs the question whether it is possible to have a

strictly stationary, everywhere regular, asymptotically flat
solution with a nonvanishing electromagnetic field. Such
a spacetime would represent an instance of Wheeler’s
gravitational-electromagnetic geon [3], at least up to a

nontrivial question of stability. A negative answer in the
case of Einstein–Maxwell theory is a canonical, well-
known result, sometimes referred to as the absence of self-
gravitating electromagnetic solitons [1]. Setting aside a
delicate historical question of primacy, the basic strategy
of proofs can be traced back to the seminal work of
Lichnerowicz [4]: construct a convenient non-negative
quantity, whose integral over the spacetime domain in the
problem is nonpositive, implying that this quantity has to
be identically zero. This was masterfully utilized in the
foundational uniqueness theorems obtained by Carter [5]
(cf. republished, corrected paper [6]) and, more recently,
by Heusler [2,7]. Several generalizations of the “no-
soliton theorem” for the Einstein–Maxwell theory in
the presence of various scalar fields was obtained by
Shiromizu, Ohashi and Suzuki [8], and Herdeiro and
Oliveira [9,10].
One step further is to ask what happens in the theories

where Maxwell’s classical electrodynamics is replaced by
its nonlinear modifications. Nonlinear electrodynamics
(NLE) has its roots at the dawn of quantum field theory,
back in the 1930s, sprouting over the following decades
with innumerable NLE Lagrangians. Born–Infeld theory
[11,12] was constructed with the specific aim to cure the
inconsistencies of Maxwell’s electrodynamics associated
with the infinite self-energy of the point charges and,
remarkably, reappeared much later in low energy limits of
the string theory [13]. Another prominent NLE theory is
defined by the Euler–Heisenberg one-loop QED correction
to Maxwell’s Lagrangian [14,15]. The repository of pro-
posed NLE theories has been growing ever since, with
Lagrangian densities constructed from logarithmic [16],
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hyperbolic tangent [17], power [18,19], exponential func-
tion [20], and so forth. Novel ModMax electrodynamics
[21,22] is a one-parameter class of NLE theories which is
both conformally invariant and invariant with respect to
electromagnetic duality rotations [23]. Nonlinearities in the
electromagnetic interaction are being tested by the ATLAS
Collaboration [24–27] and new generations of the ultra-
intense lasers at the Extreme Light Infrastructure [28].
An intriguing feature of NLE theories is that they may

admit a resolution of the black hole singularities, up to
delicate constraints [29–32]. An example of a regular black
hole spacetime, originally proposed ad hoc by Bardeen
[33], was later interpreted by Ayón-Beato and García
[34,35] as a solution of Einstein-NLE-Maxwell field
equations for a particular NLE theory (broader analyses
of spherically symmetric solutions may be found in
[36–39]; cf. also [40,41]). Recently found, an even less
trivial, regular black hole solution [42] is based on a NLE
theory with nonminimal coupling of the electromagnetic
field to the gravitation. Nevertheless, these examples still
leave the original question open: will a self-gravitating
electromagnetic field settle in a nontrivial, regular con-
figuration which is not a black hole? The first extension of
the “no-soliton” theorem (referred to by the authors as the
“Lichnerowicz-type theorem”) for theories with NLE was
given in [43] for the truncated Born–Infeld theory and the
power-Maxwell theory. Our aim is to provide a much
broader generalization of this result for NLE Lagrangians
which are general smooth functions of both electromag-
netic invariants, FabFab and Fab⋆Fab. Also, we shall
present the first steps in the generalization of these results
for theories with charged matter or theories in a different
number of spacetime dimensions.
The paper is organized as follows. In Sec. II we briefly

overview the fundamentals of gravitational theories with
nonlinear electromagnetic fields. The main results of the
paper, theorems 1 and 2, are stated in Sec. III and their
proofs are presented in Sec. IV. We discuss various
generalizations of these theorems in Sec. V and review
the remaining open questions in Sec. VI. Several basic
identities from differential geometry are stated in the
Appendix.
Conventions and notation. The interior of a set S is

denoted by S∘, the boundary of S by ∂S and the closure of S
by S̄. The difference between sets A and B is denoted by
A − B. We shall use the “mostly plus” metric signature
and the natural system of units with G ¼ c ¼ 4πϵ0 ¼ 1.
Differential forms are denoted by bolded indexless letters,
an abstract index notation or a combination of both. The
volume 4-form is denoted by ϵ. The contraction of a
symmetric tensor Sab with vector Xa is a 1-form denoted
by SðXÞ. Following reference [1], we write f ¼ Oðr−kÞ
when f is of order Oðr−kÞ as r → ∞ and f ¼ O∞ðr−kÞ
when ∂i1…∂ilf ¼ Oðr−k−lÞ for an arbitrary set of coor-
dinate indices fi1;…; ilg.

II. BRIEF OVERVIEW OF NLE

Let us, before stating the central theorems of the paper,
briefly introduce the nonlinear electrodynamics. The
ubiquitous elements are two electromagnetic invariants,

F ≔ FabFab and G ≔ Fab⋆Fab: ð1Þ

We follow the nomenclature from [44] by sorting NLE
theories into the F -class, with a Lagrangian density L
depending only on invariant F , and the FG-class, with
Lagrangian densityL depending on both invariants. In this
paper the main focus is on the broader, FG-class of NLE
theories, with the NLE Lagrangian densityL which is a C2

function on some neighborhood of the origin of the F − G
plane. We can always choose the Lagrangian density, by
adding an appropriate constant, such that L ð0; 0Þ ¼ 0.
Partial derivatives of the Lagrangian densityL are denoted
by abbreviations such as L F ≔ ∂FL , L G ≔ ∂GL ,
L FG ≔ ∂G∂FL , and so on. We say that a NLE
Lagrangian density L obeys Maxwell’s weak field limit
if L F ð0; 0Þ ¼ −1=4 and L Gð0; 0Þ ¼ 0.
The Lagrangian 4-form, defined with some (diffeomor-

phism covariant) gravitational Lagrangian density L ðgÞ, is

L ¼ 1

16π
ðL ðgÞ þ 4L Þϵ: ð2Þ

The corresponding gravitational field equation is of the
form

Eab ¼ 8πTab; ð3Þ

where the gravitational tensor Eab is divergence-free,
∇aEab ¼ 0, and the NLE energy-momentum tensor may
be conveniently written as

Tab ¼ −4L FT
ðMaxÞ
ab þ 1

4
Tgab ð4Þ

with Maxwell’s electromagnetic energy-momentum tensor

TðMaxÞ
ab ≔

1

4π

�
FacFb

c −
1

4
gabF

�
ð5Þ

and the trace

T ≔ gabTab ¼
1

π
ðL −L FF −L GGÞ: ð6Þ

For an Einstein–Hilbert Lagrangian density L ðgÞ ¼ R we
have Eab ¼ Gab, the Einstein tensor.
Using an auxiliary 2-form

Z ≔ −4ðL FFþL G⋆FÞ; ð7Þ

the NLE Maxwell’s equations may be written in the form
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dF ¼ 0; d⋆Z ¼ 0: ð8Þ

We shall invoke two energy conditions, the null energy
condition (NEC) and the dominant energy condition
(DEC). It can be shown [44,45] that the NEC holds if
and only if L F ≤ 0, while the DEC holds if and only if
L F ≤ 0 and T ≤ 0.

III. TWO THEOREMS

We shall present two “no-soliton” theorems, each of
which has its strengths and limitations. Both theorems
assume that the spacetime is strictly stationary, so that we
do not consider spacetimes with either black hole or
cosmological horizons. The first result rests upon a stronger
assumption, that spacetime is static, which admits a simpler
proof that does not depend on details of the gravitational
Lagrangian of the theory, as long as the coupling of the
electromagnetic field to gravitation is minimal. The second
result does not rely on this assumption, so that it may be
applied to “rotating” solutions. However, this comes at a
price: proof rests upon a highly nontrivial, celebrated
positive energy theorem [46–52] and, correspondingly,
works only in those gravitational theories for which this
theorem has been proven.
Let us, before the statement of the main results, list the

technical assumptions necessary for the theorems.
(1) The spacetime consists of a four-dimensional,

smooth, simply connected manifold M , with a
smooth Lorentzian metric gab and a smooth electro-
magnetic 2-form Fab, which are solutions of the
gravitational-NLE field equations (3) and (8), with
the NLE Lagrangian density L obeying Maxwell’s
weak field limit.

(2) The spacetime admits a strictly timelike Killing
vector field ka (namely, kaka < 0 on the whole M )
and the electromagnetic field inherits the symmetry
£kFab ¼ 0 [53–55].

(3) Through each point p ∈ M passes at least one
complete oriented spacelike hypersurface Σ with
induced metric hij and the associated second fun-
damental form (extrinsic curvature) Kij, Euclidean
at infinity1 and asymptotically flat in the sense
[1,51,52] that on each of its “ends” the following
fall-off conditions, written in Cartesian coordinates,
are met: 1þ kαkα ¼ O∞ðr−1Þ, kαgαi ¼ O∞ðr−1Þ,
γij ¼ O∞ðr−1Þ and Kij ¼ O∞ðr−2Þ, while the
electromagnetic 2-form Fab satisfies kαFαi ¼
O∞ðr−2Þ and kα⋆Fαi ¼ O∞ðr−2Þ, and the associated
potentials (defined below) are of order O∞ðr−1Þ.

We shall refer to assumptions (1)–(3) as the basic
assumptions. It is quite possible that some of the assump-
tions above may be slightly relaxed without any significant
effect on the further conclusions, but we shall not pursue
such nuances here. Furthermore, we introduce the follow-
ing notion.
Definition. We say that an electromagnetic field is

stealth at a point p ∈ M if at that point the corresponding
energy-momentum tensor Tab is zero, but the electromag-
netic 2-form Fab is nonzero.
In other words, stealth fields do not affect the spacetime

metric, as their contribution to the energy-momentum
tensor is vanishing. Such configurations are absent in
Maxwell’s classical electrodynamics, but appear in NLE
theories if and only if Fab ≠ 0,L F ¼ 0 and T ¼ 0 hold at
a given point [56]. Note that in this paper, for clarity, we
keep the trivial fields, Fab ¼ 0, apart from the stealth fields.
A prominent class of stealth solution examples [56] may be
found among the null electromagnetic fields in power-
Maxwell theory [18,19], which also belong to a family of
so-called universal electromagnetic fields [57–59].
The two central results of the paper are as follows.
Theorem 1. Suppose that a spacetime with an electro-

magnetic field satisfies basic assumptions, with the electro-
magnetic energy-momentum tensor obeying the null
energy condition, and where the Killing vector field ka

is hypersurface orthogonal. Then the electromagnetic field
is at each point of the spacetime either trivial, Fab ¼ 0, or
stealth.
Theorem 2. Suppose that a spacetime with an electro-

magnetic field satisfies basic assumptions and the gravita-
tional part of the action is the Einstein–Hilbert’s with the
electromagnetic energy-momentum tensor obeying the
dominant energy condition. Then the spacetime is isometric
to the Minkowski spacetime ðR4; ηabÞ and the electromag-
netic field is at each point of the spacetime either trivial,
Fab ¼ 0, or stealth.
We stress that theorem 1 relies on a weaker, null energy

condition.

IV. PROOFS OF THEOREMS

In both theorems we are looking at a spacetime admitting
a strictly timelike Killing vector field ka. It is convenient to
introduce the function V ≔ −kaka > 0 and the associated
twist 1-form

ω ≔ −⋆ðk ∧ dkÞ: ð9Þ

One should, however, beware of variations in the definition
of the twist 1-form throughout the literature (e.g., Heusler
[2] introduces a twist 1-form ω̃, such that ω ¼ −2ω̃). Our
choice is mainly motivated by the fact that, in the abstract
index notation, it corresponds simply toωa ¼ ϵa

bcdkb∇ckd,
without additional factors.

1We say that a smooth n-manifold S is Euclidean at infinity if
there is a compact set C ⊆ S, such that S − C is a disjoint union of
a finite number of sets (“ends”), each of which is diffeomorphic to
the complement of a contractible compact set in Rn.
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The vector field ka allows us to define two electric
1-forms,

E ≔ −ikF; D ≔ −ikZ; ð10Þ

and two magnetic 1-forms,

B ≔ ik⋆F; H ≔ ik⋆Z: ð11Þ

As a consequence of the symmetry inheritance and gen-
eralized Maxwell’s equations we know that E and H are
closed forms,

dE ¼ −dikF ¼ ð−£k þ ikdÞF ¼ 0; ð12Þ

dH ¼ dik⋆Z ¼ ð£k − ikdÞ⋆Z ¼ 0: ð13Þ

As manifold M is, by assumption, simply connected,
we can globally define scalar potentials, electric Φ and
magnetic Ψ, such that E ¼ −dΦ and H ¼ −dΨ. Also,
directly from the definition we know that £kΦ ¼ −ikE ¼ 0
and £kΨ ¼ −ikH ¼ 0.
The backbone of the proofs are divergence identities

which have to be carefully chosen. First, using

d

�
k
V

�
¼ 1

V2
ðVdk − dV ∧ kÞ ¼ 1

V2
⋆ðω ∧ kÞ ð14Þ

and

−⋆ikZ ¼ ⋆ik⋆⋆Z ¼ k ∧ ⋆Z; ð15Þ

we have

∇a

�
Da

V

�
¼ −⋆d⋆

�
−
1

V
ikZ

�

¼ −⋆d
�
1

V
k ∧ ⋆Z

�

¼ −⋆
�

1

V2
⋆ðω ∧ kÞ ∧ ⋆Z

�

¼ 1

2V2
ðω ∧ kÞab⋆Zab: ð16Þ

Therefore,

∇a

�
Da

V

�
¼ −

ωaHa

V2
ð17Þ

and, analogously,

∇a

�
Ba

V

�
¼ ωaEa

V2
: ð18Þ

Proof of theorem 1.—Let us introduce an auxiliary
open set

O ≔ fx ∈ M jL F ðxÞ ≠ 0g: ð19Þ

In other words, due to the assumed NEC, L F ðxÞ < 0 for
all x ∈ O and L F ðyÞ ¼ 0 for all y ∈ M −O. As the
electromagnetic field decays along each “end” and the
Lagrangian density obeys the Maxwellian weak field limit,
we know that O is nonempty.
At each point of the complement M −O, the gravita-

tional field equation is reduced to Eab ¼ 2πTgab. Thus, the
divergence ∇aEab ¼ 0 implies that the trace T is constant
on each connected component of the interior ðM −OÞ∘.
Furthermore, by the assumption of the theorem, ω ¼ 0, so
that ka is a hypersurface orthogonal vector field. Let Σ be
an arbitrary spacelike hypersurface from the basic
assumption (3). Inserting, respectfully, α ¼ D=V and α ¼
B=V in Eq. (A7), both of which satisfy £kα ¼ 0, we get

Z
∂Σ

1

V
⋆ðk ∧ DÞ ¼ 0;

Z
∂Σ

1

V
⋆ðk ∧ BÞ ¼ 0: ð20Þ

Formally, the integral over ∂Σ may denote the limit for the
integral over the “sphere at infinity.” Furthermore, for
α ¼ ΦD=V and α ¼ ΨB=V we get, respectfully,

∇a

�
Φ
V
Da

�
¼ 4

V
ðL FEaEa −L GEaBaÞ ð21Þ

and

∇a

�
Ψ
V
Ba

�
¼ 4

V
ðL FBaBa þL GEaBaÞ: ð22Þ

The sum of these two equations,

∇a

�
Φ
V
Da þ

Ψ
V
Ba

�
¼ 4

V
ðL FEaEa þL FBaBaÞ; ð23Þ

integrated over Σ, with the help of (20) and the fall-off
conditions on potentials Φ and Ψ, leads to

Z
Σ

L F

V
ðEaEa þ BaBaÞϵ̂ ¼ 0; ð24Þ

with the induced volume 3-form ϵ̂. Now, as k is strictly
timelike, V > 0, neither Ea nor Ba can be causal (as
kaEa ¼ 0 and kaBa ¼ 0), and the integrand above is
nonpositive on O ∩ Σ and zero on ðM −OÞ ∩ Σ. As the
total integral is zero, it follows that Ea ¼ 0 ¼ Ba and, as
L ð0; 0Þ ¼ 0, consequently T ¼ 0 onO ∩ Σ. By continuity
this implies that T ¼ 0 on Ō ∩ Σ, and thus T ¼ 0 on the
whole Σ. In conclusion, on each point of the set O ∩ Σ we
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have Fab ¼ 0, while on each point of the set ðM −OÞ ∩ Σ
the electromagnetic field Fab is either zero or stealth.
We stress that the argument works irrespectively of the

gravitational part of the equations of motion, as long as the
coupling is minimal and tensor Eab is divergence-free. If
L F ¼ 0 we can find simple counterexamples, such as the
stealth field on a static background [56].
Proof of theorem 2.—Here we turn to the Einstein–

Hilbert case, Eab ¼ Gab. The exterior derivative of the
twist 1-form, with the help of the Killing lemma
d⋆dk ¼ 2⋆RðkÞ, may be written as

dω ¼ −2⋆ðk ∧ RðkÞÞ
¼ 64πL F⋆ðk ∧ TðMaxÞðkÞÞ
¼ 4E ∧ H: ð25Þ

Using electromagnetic scalar potentials,

dω ¼ −4ðdΦ ∧ HÞ ¼ −4ðE ∧ dΨÞ; ð26Þ
we see that both ωþ 4ΦH and ω − 4ΨE are closed
1-forms. Thus, as M is, by assumption, simply connected,
we can globally define the new scalar potentialsUE andUH
such that

ω ¼ −4ΦHþ dUH ð27Þ

¼ 4ΨEþ dUE: ð28Þ

As with the electromagnetic potentials Φ and Ψ, we see
directly from the definition that £kUE ¼ 0 and £kUH ¼ 0.
Note that

ωaω
a ¼ −4ΦωaHa þ ωa∇aUH ð29Þ

¼ 4ΨωaEa þ ωa∇aUE: ð30Þ

Now, using a basic formula

∇a

�
ωa

V2

�
¼ 0 ð31Þ

and the relations above, we have four divergence identities,

∇a

�
UE

ωa

V2

�
¼ ωa∇aUE

V2
; ð32Þ

∇a

�
UH

ωa

V2

�
¼ ωa∇aUH

V2
; ð33Þ

∇a

�
Φ
V
Da

�
¼ 4

V
ðL FEaEa −L GEaBaÞ−Φ

ωaHa

V2
; ð34Þ

∇a

�
Ψ
V
Ba

�
¼ 4

V
ðL FBaBa þL GEaBaÞ þΨ

ωaEa

V2
: ð35Þ

A brief inspection reveals that an auxiliary 1-form

W ≔
UE þUH

V2
ωþ 4

V
ðΦDþ ΨBÞ ð36Þ

has a rather simple covariant divergence,

∇aWa ¼ 16

V
L F ðEaEa þ BaBaÞ þ 2

ωaω
a

V2
: ð37Þ

Taking into account Einstein’s field equation,

Rab ¼ 8π

�
Tab −

1

2
Tgab

�
; ð38Þ

and

8πTðMaxÞ
ab kakb ¼ EaEa þ BaBa; ð39Þ

we get

4

V
Rabkakb −

2

V2
ωaω

a ¼ −∇aWa þ 8πT: ð40Þ

Now we turn to Heusler’s mass formula [7]. If we contract

⋆dω ¼ 2k ∧ RðkÞ ð41Þ

with ka and take the Hodge dual, we obtain

−⋆RðkÞ ¼ Rabkakb

V
⋆kþ 1

2V
k ∧ dω: ð42Þ

Also, using

−d
�
1

V
k ∧ ω

�
¼ ωaω

a

V2
⋆kþ 1

V
k ∧ dω ð43Þ

we have

−⋆RðkÞ¼
�
Rabkakb

V
−
ωaω

a

2V2

�
⋆k−d

�
1

2V
k∧ω

�
: ð44Þ

Thus, relying on the fall-off properties of the twist 1-formω
inferred from the basic assumptions, Komar’s mass

M ¼ −
1

4π

Z
Σ
⋆RðkÞ ð45Þ

may be written in the form

M ¼ 1

4π

Z
Σ

�
Rabkakb

V
−
ωaω

a

2V2

�
⋆k; ð46Þ

which, in combination with (40), becomes
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M ¼ −
1

16π

Z
Σ
∇aWa⋆kþ 1

2

Z
Σ
T⋆k: ð47Þ

We note in passing that the formula obtained here is
consistent with the generalized Smarr formula
[44,60,61]. The W-term vanishes at infinity, while the
T-term is nonpositive, given that the DEC holds. Finally,
the positive energy theorem implies thatM ≥ 0 andM ¼ 0
if and only if the spacetime is Minkowski. As we have
proven that M ≤ 0, it follows that M ¼ 0. Therefore
Tab ¼ 0, implying that any nontrivial electromagnetic field
must be zero or stealth.

V. FURTHER GENERALIZATIONS

We now turn to possible generalizations of the main
results, which we shall sort into two directions.
Theories with charged matter. As the simplest model of

matter we may choose a complex scalar field ϕ, with the
total Lagrangian

L ðtotÞ ¼ L ðF ;GÞ þ ðDaϕÞ�ðDaϕÞ −U ðϕ�ϕÞ; ð48Þ

constructed with the covariant gauge derivative Da ¼∇a þ iqAa, the gauge 1-form A which defines the electro-
magnetic 2-form F ¼ dA, and the scalar (self-interaction)
potential U . In this theory generalized Maxwell’s equa-
tions have the form

d⋆Z ¼ 4π⋆J ð49Þ

with the current 1-form

Ja ¼
iq
4π

ðϕ�Daϕ − ϕðDaϕÞ�Þ: ð50Þ

The electric 1-form E is again closed and we have the
associated electric scalar potential Φ. Let us, for simplicity,
focus on the strictly static case, ω ¼ 0. Then,

∇a

�
1

V
Da

�
¼ −

4π

V
kaJa; ∇a

�
1

V
Ba

�
¼ 0 ð51Þ

and

∇a

�
Φ
V
Da

�
¼ 4

V
ðL FEaEa−L GEaBaÞ−4πΦ

V
kaJa: ð52Þ

The first technical obstacle is a treatment of the termΦkaJa
which, without additional assumptions, is in general neither
positive nor negative definite. Setting aside spacetimes with
symmetry noninheriting scalar fields [62–64], let us for
simplicity assume that £kϕ ¼ 0. Also, taking into account
remarks from [44,54], we assume that the gauge choice is
made such that £kA ¼ 0. Now, as

dðΦþ ikAÞ ¼ −Eþ ð£k − ikdÞA ¼ 0; ð53Þ

given that both Φ and kaAa vanish at infinity, we may set
Φ ¼ −kaAa. This leads us to the simplification

ΦkaJa ¼
ðqΦÞ2
2π

ϕ�ϕ ≥ 0: ð54Þ

Furthermore, the magnetic 1-form H is no longer neces-
sarily a closed form as

dH ¼ 4π⋆ðk ∧ JÞ: ð55Þ

This is a familiar obstacle to the introduction of magnetic
scalar potential on domains which contain nonvanishing
electric currents. There are several subcases in which we
can proceed with a similar strategy of proof as above:
(a) if k ∧ J ¼ 0, which allows us to introduce the

magnetic scalar potential Ψ and deduce

∇a

�
Ψ
V
Ba

�
¼ 4

V
ðL FBaBa þL GEaBaÞ; ð56Þ

(b) if we have a strictly electric system, in the sense that
B ¼ 0, so that Eq. (52) may suffice for the proof.

Given that any of the two conditions above, (a) or (b), are
met, repetition of the argument from the previous section
leads to the conclusion that the electromagnetic field is
trivial on the set O whereL F ≠ 0. We note in passing that
Eq. (52) may be also used if we have an F -class theory,
but only to deduce that E ¼ 0 on the set O, without any
control of the magnetic field B [unless, again, we invoke
condition (a) or (b)].
Furthermore, the divergence of the gravitational field

equation on the interior ðM −OÞ∘ leads to∇aT ¼ 4JbFba.
If, in addition, we assume either (a) or (b) from above, the
decomposition VF ¼ k ∧ Eþ ⋆ðk ∧ BÞ and ka∇aT ¼ 0

allow us to deduce V∇aT ¼ 4ðkbJbÞEa. In particular,
B ¼ 0 on the set ðM −OÞ∘ also implies D ¼ 0 and, via
divergence identities, kaJa ¼ 0, leading to the conclusion
that the trace T is constant on each connected component of
the domain ðM −OÞ∘ (it is not clear if this necessarily
holds in the (a) subcase).
In conclusion, at least under some additional assump-

tions, the initial problem can be reduced to the question of
existence of self-gravitating scalar solitons [2,65]. It is
important to stress that spacetimes with charged boson stars
evade the partial no-go result from above due to the
symmetry noninheriting scalar field. Namely, a typical
ansatz for such solutions features a scalar field of the form
ϕðt; rÞ ¼ fðrÞeiωt, so that £kϕ ¼ iωϕ and the definiteness
of the term ΦkaJa is in general lost.
Higher-dimensional theories. Let us look at spacetimes

of dimension m ≥ 5. As the G invariant is a scalar only in
four spacetime dimensions, where F and its Hodge dual ⋆F
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are both 2-forms, here we treat only F -class theories. We
may define a twist (m − 3)-form as ω≔ð−1Þmþ1⋆ðk∧dkÞ,
in order to preserve its form in abstract indices,

ωa1…am−3
¼ ϵa1…am−3

bcdkb∇ckd; ð57Þ

and the 1-form D ≔ −ikZ as above. Taking into account
that

ikZ ¼ ð−1Þmþ1⋆ðk ∧ ⋆ZÞ; ð58Þ

we have

∇a

�
Da

V

�
¼ 1

ðm − 2Þ!V2
ðω ∧ kÞa1…am−2

⋆Za1…am−2 : ð59Þ

The basic divergence identity for a strictly static spacetime,
with ω ¼ 0, is

∇a

�
Φ
V
Da

�
¼ 4

V
L FEaEa: ð60Þ

Assuming the appropriate fall-off conditions, namely
Φ ¼ Oðr−ðm−3ÞÞ and D ¼ Oðr−ðm−2ÞÞ (cf. also [66]), we
may repeat the previous argument to conclude that E ¼ 0
on the set O. A further technical obstacle is that in an m-
dimensional spacetime magnetic fields B ¼ ik⋆F and
H ¼ ik⋆Z are (m − 3)-forms, so that we have less control
of the sign of their squares, such as Ba1…am−3

Ba1…am−3 .

VI. DISCUSSION

We have proved that, up to exotic stealth solutions, NLE
theories on simply connected four-dimensional spacetimes
do not admit globally regular, stationary solitonic solutions.
These results admit only partial generalizations in the
presence of the charged matter and in higher-dimensional
theories. Limitations in both directions do not come as a
surprise, due to known solutions with charged bosonic stars
and an increased number of electromagnetic degrees of
freedom with the number of spacetime dimensions.
The remaining open questions may be grouped as

follows:
(1) Are conclusions altered if the spacetime manifold

M is not simply connected?
(2) How do we treat a NLE theory which does not obey

the Maxwellian weak field limit?
(3) Can constraints on four-dimensional theories with

complex scalar fields and higher-dimensional theo-
ries be strengthened?

Simple connectedness of the manifold M was invoked
in order to guarantee the existence of scalar potentialsΦ,Ψ,
UE and UH. This assumption is not necessary, but on a
nonsimply connected manifold one needs to either
(a) impose some boundary conditions which imply the
existence of scalar potentials, or (b) construct divergence

identities which do not involve scalar potentials and which
allow one to prove theorems analogous to the ones treated
in this paper.
The Maxwellian weak field limit or a, slightly weaker,

mere assumption that partial derivatives L F and L G are
well-defined and finite at the origin of the F − G plane
plays a role in the elimination of the boundary terms at
asymptotic ends. However, there are NLE theories, such
as the power-Maxwell theory [18,19] (for powers less
than 1) and the ModMax theory [21–23,67], which
do not behave well in this sense. Here one must first
find a proper way to incorporate some notion of
asymptotic flatness, with the appropriate fall-off con-
ditions for the fields.
We feel that conditions under which a NLE theory with a

complex scalar field (or some other form of the charged
matter) does not admit strictly stationary solitonic solutions
should be mapped more carefully. Also, it is not clear how
to sensibly choose additional assumptions which might
lead to generalizations in higher-dimensional theories.
Finally, we remark that in (1þ 2)-dimensional spacetimes
one might again rely on the divergence relation (60), as well
as the lower-dimensional positive energy theorem [68], but
the problem is that the natural fall-off condition for the
scalar potential Φ ¼ Oðln rÞ does not seem to be sufficient
to get rid of the boundary terms.
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APPENDIX: MENAGERIE OF IDENTITIES

Let us first, for generality, assume that ðM ; gabÞ is a
smooth m-dimensional Lorentzian manifold. The Hodge
dual of a p-form α, defined as

ð⋆αÞapþ1…am ≔
1

p!
αa1…apϵ

a1…ap
apþ1…am; ðA1Þ

twice applied produces a sign according to

⋆⋆α ¼ ð−1Þpðm−pÞþ1α: ðA2Þ

A simple useful rule, so-called “flipping over the Hodge,”
reads

iX⋆α ¼ ⋆ðα ∧ XÞ; ðA3Þ

where X is the associated 1-form, Xa ¼ gabXb.
We shall introduce an auxiliary coderivative operator,

acting on p-form α as

δα ≔ ð−1Þmðpþ1Þþ1⋆d⋆α; ðA4Þ
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which in the abstract index notation is simply

δαa1…ap−1 ¼ ∇bαba1…ap−1 : ðA5Þ

Note that for even m we have δα ¼ −⋆d⋆α. If Ka is a
Killing vector field and Ka ¼ gabKb the associated 1-form,
then the following identity holds:

£Kα ¼ δðK ∧ αÞ þK ∧ δα: ðA6Þ

We are mostly interested in the case where α is a 1-form
such that £Kα ¼ 0. Whence, Eq. (A6) integrated over a
smooth hypersurface Σ, with application of the generalized
Stokes’ theorem, leads to

Z
Σ
ðδαÞ⋆K ¼

Z
∂Σ

⋆ðK ∧ αÞ; ðA7Þ

where we have, for simplicity, suppressed the pullback
symbol.
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