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Is it possible to readily distinguish a system made by an Avogadro’s number of identical elements and
one with a single additional one? Usually, the answer to this question is negative but, in this work, we show
that in antiferromagnetic quantum spin rings a simple out-of-equilibrium experiment can do so, yielding two
qualitatively and quantitatively different outcomes depending on whether the system includes an even or an
odd number of elements. We consider a local quantum-quench setup and calculate a generating function of the
work done, namely, the Loschmidt echo, showing that it displays different features depending on the presence
or absence of topological frustration, which is triggered by the even/oddness in the number of the chain sites.
We employ the prototypical quantum Ising chain to illustrate this phenomenology, which we argue being generic
for antiferromagnetic spin chains, as it stems primarily from the different low energy spectra of frustrated and
nonfrustrated chains. Our results thus prove that these well-known spectral differences lead indeed to distinct
observable characteristics and open the way to harvest them in quantum thermodynamics protocols.

DOI: 10.1103/PhysRevB.105.184424

I. INTRODUCTION

Quantum dynamics has been a very active field of
research in the new century since sufficiently weak system-
environment couplings have been achieved with ultra-cold
atoms on optical lattices [1–3], enabling us to perform reli-
able experiments on the unitary dynamics of closed quantum
systems. Stimulated by the experimental progress, theoretical
questions about relaxation and the presence or absence of
thermalization [4–7] have been studied intensively. Perhaps
the most widely studied, and simplest, way of bringing a
system out of equilibrium is the quantum quench protocol
[5,8–10]. Here, the system is prepared in the ground state of an
initial Hamiltonian and it is suddenly let to evolve unitarily by
a different Hamiltonian, obtained, for example, by changing
one of the system parameters.

Developments in quantum dynamics have led to concep-
tual advancements in the foundations of statistical mechanics
[11–14]. Furthermore, even well-established concepts, such
as quantum phase transitions [15], have received their char-
acterizations in terms of dynamic quantities. Quantum phase
transitions (QPTs) are points of non-analyticity of the ground
state energy, that are accompanied by gapless energy spectra
and changes in the macroscopical behavior of systems [15].
In a dynamical setting, there is, for instance, evidence [16]
that order parameters are best enhanced for quenches in the
vicinity of quantum critical points. However, even a more
basic quantity, the Loschmidt echo (LE) [17,18] has been
proposed to be used as a witness of quantum criticality [19].

This last quantity, i.e., the Loschmidt echo L(t ), is defined
as the squared absolute value of the overlap between the initial
and the evolved state at time t . If the system is prepared in

the ground state |g〉 of the initial Hamiltonian H0, and then,
suddenly, at t = 0, an unitary evolution is induced by the
Hamiltonian H1, then the LE can be defined as

L(t ) = |〈g|e−ıH1t g〉|2. (1)

Following the initial work [19], substantial evidence [20–28]
has been collected that the LE of quenches to quantum crit-
icality is characterized by an enhanced decay and periodic
revivals, although there are known exceptions [29]. Impor-
tantly, LE can be experimentally measured, for instance by
coupling the system of interest to an auxiliary two-level sys-
tem, where the LE is the measure of the decoherence of the
auxiliary system [17,19,22,30]. It has been also stressed that
the LE is readily related to the work probability distribution
[31] and thus characterizes the performance of quantum sys-
tems with various thermodynamic protocols [32].

In this work, we show that the LE can be used to distinguish
an antiferromagnetic spin-1/2 ring consisting of N elements
(sites) from the one consisting of a single additional element,
i.e., of total N + 1 elements, for arbitrarily large N . It is known
that in such systems, depending on whether we follow the
even or odd system sizes towards the thermodynamic limit,
the energy spectrum is gapped or gapless, respectively [33],
due to the presence of topological frustration for odd N .
Thus, similarly to bringing the system to criticality, topolog-
ical frustration closes its spectral gap, although the gapless
excitations in frustrated chains are not relativistic. While the
spectral differences for even and odd N have been traditionally
deemed inconsequential, we exploit them to construct a (local)
quantum quench protocol in which the LE displays different
features, qualitatively and quantitatively, for the two cases.
Consequently, measuring the LE in an experiment enables
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distinguishing systems made of N and N + 1 spins, for ar-
bitrarily large N .

Indeed, this is not the first time that the even/oddness in
the number of elements of a system turns out to have physical
consequences. For instance, in Ref. [34] a dependence in the
current/voltage curve of a superconducting transistor on the
parity of the number of electrons in the dot was observed and
discussed. We remark, however, that the latter is a mesoscopic
effect, while the phenomenon we discuss persists in systems
several orders of magnitude bigger.

II. GENERAL SCHEME

Our result follows a series of works that have shown strik-
ing differences in spin chains with an even or odd number
of sites in a static setting, in a seeming violation of the usual
assumption that boundary conditions are irrelevant in the ther-
modynamic limit for systems with a finite correlation length
(for critical systems the role of boundary conditions has been
understood long ago, see, for instance, Refs. [35,36]). For
instance, it was shown that the usual finite order parameter
that exists for even N can turn to zero for odd N [37] or
acquire an incommensurate modulation over the chain [38],
with a first-order boundary phase transition separating the two
behaviors. Moreover, as the order parameter can vanish on
both sides of a phase transition, and be substituted by a string
order, the nature of a second-order QPT can change with the
addition of a single site [39]. While these results are recent
and related to a static setting, they spring from the established
spectral difference of frustrated systems which directly lends
itself to a dynamical analysis.

In fact, a deeper insight in the time behavior of the LE
can be obtained by expanding the initial state in terms of the
eigenstates |n〉 of the perturbed Hamiltonian H1:

L(t ) =
∣∣∣∣∣
∑

n

e−ıEnt |cn|2
∣∣∣∣∣
2

, cn = 〈n〉 g. (2)

In the general (nontrivial) case, the state |g〉 is not an eigen-
state of the Hamiltonian H1 and thus several coefficients cn

assume a nonvanishing value, and the time evolution of the
LE depends on their relative weights. Roughly speaking, we
can arrange the possible behaviors into two large families. The
first is made of the cases in which one of the coefficients is
much greater, in absolute value than the sum of all the others.
Denoting by |0〉 the eigenstate of H1 for which cn reaches
the maximum, from Eq. (2) we recover that the LE will be
characterized by oscillations with an average value close to
the identity and oscillation amplitudes bounded from above by
(1 − |c0|2)|c0|2. On the other hand, if none of the cn dominates
over the others, we can obtain an evolution characterized by a
more complex pattern with larger oscillation amplitudes.

These two prototypical behaviors for the LE are generally
associated with different properties of the physical systems
[40,41]. For example, the first trend type characterizes sys-
tems in which H0 shows an energy gap that separates the
ground state from the set of the excited states [21,22,31].
Let us consider a quench with H1 = H0 + λHp, where λ is
the parameter whose nonzero value brings the system out
of equilibrium and the eigenvalues of Hp are of the order

of unity [18,42,43]. In this case, assuming that λ is much
smaller than the energy gap, the coefficient 〈g1〉 g, where |g1〉
is the ground state of H1, is expected to be much larger than
all the others. Consequently, LE is expected to display the
dynamics of the first kind. On the other side, for systems in
which the ground state of H0 is a part of a narrow band that,
in the thermodynamic limit, tends to a continuous spectrum,
as at quantum criticality, the perturbation λHp may induce a
non-negligible population in several low-energy excited states
[44], resulting in the time evolution of the second kind.

Typically, these different spectrum properties do not turn
into one another by changing the number of elements that
make up the system. Indeed, the presence or the absence of the
gap in the energy spectrum is related to the different symme-
tries of the Hamiltonian, which are, usually, size independent.
Hence, keeping all other parameters fixed and increasing the
number of elements, we expect the same kind of time evolu-
tion, with finite-size effects that reduce with the system size
up to some point at which the dependence of the LE on the
number of constituents is almost undetectable. To have a LE
evolution that changes as the number of elements turns from
even to odd and vice versa, we need a system in which also
the shape of the energy spectrum is strongly dependent on it.

Such models can be found among the one-dimensional
spin-1/2 models with topological frustration [45–51].
Namely, these are short-range antiferromagnetic systems with
periodic boundary conditions in which frustration is induced
when the number of elements making up the system is
odd, so realizing the so-called frustrated boundary conditions
[33,37,52,53]. Hence the presence/absence of frustration in
the ring geometry (therefore also the term topological frus-
tration) is a direct consequence of the fact that the number of
spins is odd/even. This particular dependence of the spectrum
on the length of the ring is not found in all frustrated mod-
els. For example, models with a higher degree of frustration,
such as the one-dimensional spin-1/2 quantum ANNNI model
[54–56], display a phase in which the gap closes as a function
of the number of spins regardless of whether this number is
even or odd.

To better understand how the topological frustration works,
let us take a step back. In classical antiferromagnetic systems,
when the number of the elements is an integer multiple of
two, even in the presence of periodic boundary conditions,
there are no problems in minimizing the contribution of every
single term to the total energy. Therefore, the system will
show a ground state manifold made of the two Néel states,
well separated from the excited states by an energy gap that
does not vanish in the thermodynamic limit. This picture is
very resilient and also the introduction of quantum effects
does not change it significantly [57,58]. On the contrary, when
the number of elements is odd, the presence of the periodic
boundary conditions makes it impossible to satisfy simulta-
neously all the local constraints [45,46]. This impossibility
induces frustration, which gives rise to the creation of a set
of states that are Néel states with a pair of parallelly oriented
spins, the so-called domain wall. If the system is invariant
under spatial translation since the defect can be placed equiv-
alently on every lattice site, the ground state manifold of the
system becomes highly degenerate, consisting of 2N states
for a chain made of N sites, and it is separated from the
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other states by an energy gap that stays finite in the thermo-
dynamic limit. When quantum effects are taken into account,
the macroscopic ground-state degeneracy is typically lifted,
generating a narrow band of states (which can be interpreted
as containing a single excitation with a definite momentum)
and thus yielding an energy gap that vanishes in the ther-
modynamic limit. Also this picture is extremely general and
characterizes both integrable and non-integrable models [37].
Hence, as a result, the energy spectrum of such models de-
pends dramatically on whether the number of elements is even
or odd.

However, this property alone is not sufficient to ensure a
dependence of the dynamics of the LE on the size of the
system like the one we are looking for. The perturbation that
acts on the initial Hamiltonian must also be chosen carefully.
On the one hand, as the states in the lowest energy band of the
frustrated system are identified by different quantum numbers
(namely, their momenta), the perturbation should break the
symmetry these numbers reflect, to ensure that the eigenstates
of the perturbed Hamiltonian can have a finite overlap in
the whole band (otherwise, the initial state would overlap
only with states carrying the same quantum number). On the
other hand, if the unfrustrated system is in a symmetry-broken
phase with an (asymptotically) degenerate ground-state man-
ifold, we want the perturbation to preserve the ground state
choice so that in the evolution the overlap between other
ground state vectors remain suppressed.

III. A PARADIGMATIC EXAMPLE

To clarify these arguments and to provide a specific
example, let us discuss a paradigmatic model, i.e., the anti-
ferromagnetic Ising chain in a transverse magnetic field with
periodic boundary conditions [15,59,60]:

H0 =
N∑

j=1

(
σ x

j σ
x
j+1 + hσ z

j

)
. (3)

This model, like other more complex ones, shows the prop-
erties of the spectrum we have just identified [52] but, thanks
to its simplicity, it admits an analytical solution based on a
mapping to a model of free fermions. In (3) σα

j with α =
x, y, z stands for the Pauli operators defined on the jth lattice
site, h is the relative weight of the local transverse field, N
is the length of the ring and periodic boundary conditions
imply that σα

N+ j = σα
j . As we can see from Eq. (3), the system

has the parity symmetry with respect to the z-spin direction,
i.e., [H0,�

z] = 0, where �z = ⊗N
i=1 σ z

i . This means that the
eigenstates of H0 can be arranged in two sectors, correspond-
ing to two different eigenvalues of �z. Moreover, the model in
Eq. (3) is also invariant under spatial translation which implies
that there exists a complete set of eigenstates of H0 made of
states with definite lattice momentum [38].

In the range 0 < h < 1, for N = 2M the system, shows two
nearly degenerate lowest energy states with opposite parity
and an energy difference closing exponentially with the sys-
tem size [60,61] while all the other states remain separated by
a finite energy gap. When N = 2M+1, topological frustration
sets in, and the unique ground state is part of a band in which
states of different parities alternate. In this case, the gaps

between the lowest energy states close algebraically as 1/N2

[52,53,62–66].
A simple perturbation that satisfies the criteria we dis-

cussed above is Hp = σ z
N , breaking the translational invari-

ance which classifies the eigenstates of H0 while preserving
the parity symmetry. Thus, we have

H1 = H0 + λ σ z
N , (4)

and we assume that the amplitude λ is much smaller than
the energy gap above the two quasidegenerate ground states
in the unfrustrated case, i.e. λ � 1, and size-independent.
Obviously other quenches, including global ones, where H1

preserves the parity and breaks the translational invariance,
for example, through a modulated or a random transverse
field, could also be considered. However, the perturbation
must not be large enough to complicate the evolution of the
LE in the unfrustrated case, which we want to be of the first
kind. Furthermore, we are looking for a simple, unambiguous,
system-size independent protocol, for which the local quench
is suitable.

Since H1 is not invariant under spatial translations, we
cannot diagonalize it analytically as is possible for H0, by
exploiting the usual approach based on the Jordan-Wigner
transformation followed by a Bogoliouv rotation [60]. Nev-
ertheless, we can resort to the diagonalization procedure
reported in [57], which allows us to diagonalize numerically
the Hamiltonians (3) and (4) in an efficient way [67], and thus
to calculate the LE (see the Methods section for the details).
The results obtained are summarized in Fig. 1, where several
behaviors of the LE for even N and odd N + 1 sizes are
compared.

The results fit well in the qualitative picture we have
discussed in the first part. When N is even and hence the sys-
tem is not frustrated the LE presents small noisy oscillations
around a value close to unity, see Fig. 1. The average value
is almost independent of the parameters, while oscillations
reduce as the system size increases. This behavior reflects the
fact that λ being small, the initial state shares a significant
overlap only with one of the lowest eigenstates of H1, and the
contributions from all other states above the gap produce fast
oscillations that average out in the long time limit.

For the frustrated case N = 2M + 1 instead, the picture
is completely different. The LE exhibits decays and periodic
revivals, similarly to its behavior in quenches to critical points
[19–28]. Here, because of the closing of the gap, the same
perturbation hybridizes several states, which thus contributes
to the evolution of the LE. Finite-size effects become im-
portant, since by increasing the chain length the density of
states changes and thus also the number of states which get
hybridized. These considerations imply a strong sensibility of
the LE oscillation frequency and amplitude to all the parame-
ters in the setting.

The results presented in Fig. 1 make it clear that the behav-
iors of the LE for even and odd N are completely different.
To go beyond this qualitative assessment, we can make a
quantitative comparison of the difference between these two
behaviors, by considering the time-averaged value of the LE
L̄ over a long period, ideally infinite. This analysis, whose
results can be found in the left panel of Fig. 2, clearly shows
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FIG. 1. Loschmidt echo comparison between frustrated and unfrustrated chains of similar length N , fixing the magnetic field and the
perturbation parameter, respectively, to h = 0.4, λ = 0.2 (left plot) and h = 0.8, λ = 0.1 (right plot). The time is rescaled for a better
comparison. For even N (unfrustrated systems), due to the negligible hybridization with the first excited states, the LE presents small
oscillations around a value near one (left columns). For odd N instead the higher number of hybridized states results in a strong sensitivity of
the LE oscillations to the system parameters.

that for the unfrustrated case (blue circles) the time average
is almost independent of the size of the ring, while for the
frustrated one (red squares) there is a significant dependence
on the ring size, with an asymptotic value in the thermody-
namic limit which differs from the even chain length case.
The similarity between the frustrated and unfrustrated val-
ues for small systems can be easily understood by taking
into account that in the frustrated model, for small N , the
gap between the ground state and the other states in the
lowest energy band can be bigger than the perturbation am-
plitude, hence giving life to an unfrustrated-like behavior for
the LE.

As we wrote above, since Hp breaks the spatial invariance,
it is impossible to obtain an exact expression for the LE. For
the unfrustrated case, it is possible to develop a cumulant
expansion [31] which provides the correct evolution of the

LE, but its reliability hinges on a clear separation of scales
between the strength of the perturbation and the energy gap.
When N is odd, the gap closes, and for sufficiently large
system size, this approach fails. Nonetheless, to gain some
insight into the LE when the system is frustrated, we can
resort to a perturbation theory around the classical point (h =
0) [38,39,68] and derive an analytic expression that can be
compared to our numerical results. Within this approach, we
first compute the initial (ground) state of H1 considering, in
the beginning, λσ z

N as the perturbation to the Hamiltonian at
the classical point (h = 0), and then bringing back the term
h

∑
j σ

z
j as a second-order perturbation term. By construction,

this approach is justified for 0 < h � λ � 1. The effect of
the local term λσ z

N is to split the initial 2N degenerate states
into three groups. In particular, the ground space becomes
twofold degenerate, separated by an energy gap of order λ

FIG. 2. Comparison between the result for frustrated (red squares) and unfrustrated (blue circles) chains of the time-average (left panel)
and of the standard deviations (right panel) of the LE for several sets of parameters as a function of the inverse system length. Differently from
the frustrated case, the unfrustrated time average is mostly size independent. The standard deviation deviation for the frustrated case is always
larger, even a few orders of magnitude, than the one of the unfrustrated case.
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from 2N − 4 degenerate states, on top of which, separated
by a gap of the same value, there are two other degenerate
states. The second perturbation term h

∑
j σ

z
j does not act sig-

nificantly on the two two-dimensional manifolds but removes

the macroscopic degeneracy, creating an intermediate band of
2N − 4 states.

Exploiting this perturbative analysis (see the Method sec-
tion for details), we obtain for the LE

L(t ) =
∣∣∣∣∣ 2

N (N − 1)

(N−1)/2∑
k=1

tan2

[
(2k − 1)π

2(N − 1)

]
exp

{
−ı2ht cos

[
(2k − 1)π

N − 1

]}
+ 2

N
exp[ıt (λ + h)]

∣∣∣∣∣
2

. (5)

In Fig. 3 we compare the analytical results in Eq. (5) with the
numerical data and we find a substantial agreement between
the two in the region h � λ (see the upper panel). It is also
worth noting that the two methods give similar results even
when h and λ are comparable (middle panel of Fig. 3). The
main difference between the two behaviors is, apparently,
only a rescaling of the oscillation frequency that seems to be
underestimated in the perturbative approach.

In the thermodynamic limit the term proportional to 2/N
in Eq. (5) can be neglected and the expression of the LE can
be approximated as L(t ) � F ( 2ht

N2 ) where the function F (x) is
given by

F (x) = lim
M→∞

∣∣∣∣∣ 1

2M2

M∑
k=1

tan2

[
(2k − 1)π

4M

]

× exp

{
−ıx(2M + 1)2 cos

[
(2k − 1)π

2M

]}∣∣∣∣∣
2

. (6)

The function in Eq. (6) is somewhat reminiscent of the Weier-
strass function [69] and indeed it displays a continuous, but

FIG. 3. Loschmidt echo’s comparison between the numerics
(dotted red line) and the analytic expression Eq. (5) (blue line)
for a spin chain of length N = 201 and for λ = 0.1. The time is
rescaled for a better comparison. The results are in agreement for
h = 0.01, that corresponds to the limit 0 < h � λ � 1 (upper panel,
the curves are mostly superimposed). We also find similar results
when h and λ are comparable, as shown in the middle panel for
the case λ = h = 0.1. Finally, in the lower panel the failure of the
approximation for h = 0.5 is shown, where the value of the magnetic
field is beyond the assumed range of validity.

nowhere differentiable behavior. While its emergence in such
a simple context is remarkable, we remark that such fractal
curves [70,71] were already observed in LE evolution [72].
Furthermore, similar curves were also observed in quenches
to multicritical points [24,28], where, as in our case, the LE
displays the period of revivals proportional to N2. Presum-
ably, an important reason behind this similarity is that both
at studied multicritical points and in the studied topologically
frustrated spin chain the spectral gap closes quadratically with
the system size.

IV. METHODS

a. Loschmidt echo. Let us provide a detailed description of
the method exploited to obtain the data on the Ising model
plotted in the paper. Our starting point is to observe that, for
spin systems that can be mapped to free-fermionic models,
Eq. (1) can be rewritten in the following form [21,22]:

L(t ) = | det(1 − r + re−ıCt )|. (7)

Here

�† = (c†
1, . . . , c†

N , c1, . . . , cN ), (8)

describes the fermionic operators, C is the matrix coefficient
of the Hamiltonian H1 in the fermionic language, i.e.,

H1 = 1
2�†C�, (9)

and r = 〈g|�†
i � j |g〉 is the two-point fermionic correlation

matrix in the initial state. The hermiticity requirement for the
Hamiltonian fixes the matrix C to be of the block-form

C =
(

S T
−T −S

)
, (10)

where S is a symmetric and T an antisymmetric matrix.
It is useful to rewrite the r matrix in terms of the correla-

tion functions of the Majorana operators. Following [57] we
define:

Ai = c†
i + ci, (11)

Bi = ı(c†
i − ci ). (12)

Exploiting Eqs. (11) and (12) and the fact that, since |g〉
is the ground state of H0, 〈g|AiAj |g〉 = 〈g|BiBj |g〉 = δi j it is
straightforward to obtain

r = 1

4

(
2I + G + Gᵀ G − Gᵀ

−G + Gᵀ 2I − G − Gᵀ

)
(13)

with Gi j = −ı〈g|BiAjg〉.

184424-5



GIANPAOLO TORRE et al. PHYSICAL REVIEW B 105, 184424 (2022)

Therefore, to calculate the LE it remains to evaluate the
correlation matrix G on the ground state of the unperturbed
Hamiltonian H0 and the matrix C linked to H1. Both can
be determined following the same approach. Exploiting the
Jordan-Wigner transformation

c j =
(

j−1⊗
l=1

σ z
l

)
σ x

j + ıσ
y
j

2
, c†

j =
(

j−1⊗
l=1

σ z
l

)
σ x

j − ıσ
y
j

2
, (14)

we map the spin system to a quadratic fermionic one. In fact,
due to the nonlocality of the Jordan-Wigner transformation,
the Hamiltonians Eqs. (3) and (4) cannot be written as a
quadratic form Eq. (9). However, they commute with the
parity operator �z = ⊗N

i=1 σ z
k and it is possible to separate

them into two parity sectors, corresponding to the eigenval-
ues �z = ±1, so that in each sector they are a quadratic
fermionic form. In the following, we can restrict ourselves to
the Hamiltonians H0 and H1 only in the odd sector (�z = −1)
since the ground state of the quantum Ising model Eq. (3)
with frustrated boundary conditions and h > 0 belongs to it
[53,62]. There, they can be written in the form of Eq. (9), up
to an additive constant. In particular, the matrix C for H1 in
the odd sector, present in Eq. (7), can be obtained easily by
inspection.

The matrix G can be found easily from the exact solution of
the quantum Ising chain with frustrated boundary conditions
[53,62]. However, for a more efficient numerical implemen-
tation, we follow the approach from Ref. [22,57], where we
write H0 in the odd sector in the form of Eq. (9) and where

Gi j = −(�ᵀ�)i j, (15)

with the matrices � and � being formed by the corresponding
vectors given by the solution of the following coupled equa-
tions:

	k (S − T) = 
k�k, (16)

�k (S + T) = 
k	k . (17)

This problem can be easily solved considering the following
eigenvalue problems:

	k (S − T)(S + T) = 
2
k	k, (18)

�k (S + T)(S − T) = 
2
k�k. (19)

Here the eigenvalues give us the free-fermionic energies 
k .
The sign of particular energy is a matter of choice. Transform-
ing 
k to −
k corresponds simply to switching the creation
and the annihilation operator, and to transforming 	k (�k)
into −	k (−�k) in Eqs. (16) and (17). It is important to note
that the parity requirements do not allow for the ground state
of H0 to be the vacuum state for free fermions with positive
energy [53,62]. Thus, assuming the eigenvalues of the matrix
appearing on the l.h.s. of Eqs. (18) and (19) are labeled in
ascending order, the ground state corresponds to the vacuum
state of fermions with 
1 < 0 and the remaining energies 
k

positive.
b. Perturbation theory near the classical point Let us now

turn to provide some more details on the perturbative ap-
proach to the LE near the classical point in the presence of
topological frustration. The first step consists of finding the

ground state of the Hamiltonian H0 in Eq. (3), treating the term
h

∑
j σ

z
j as a perturbation. It is known that, at the classical

point, in the presence of an odd number of spins the interplay
between periodic boundary conditions and antiferromagnetic
interactions gives rise to a 2N-fold degenerate ground-state
manifold. Such a space is spanned by the kink states | j〉 and
�z | j〉, j = 1, 2, . . . N with energy −(N − 2), that have one
ferromagnetic bond σ x

j = σ x
j+1 = ±1 respectively, the others

being antiferromagnetic (σ x
k = −σ x

k+1 for k �= j). The excited
states outside this manifold are separated from the ground
space by an energy gap of order unity so that we can neglect
them in a perturbative approach. By considering the magnetic
field the 2N-fold degeneracy is removed and a narrow band of
states is created, with a gap that separates the ground state
from the other elements of the band closing as 1/N2 (see
Ref. [37,38]). To the lowest order in perturbation theory in
h we found for the initial state appearing in Eq. (1), that is for
the ground state of the unperturbed system, the expression:

|g〉 = 1√
N

N∑
j=1

1 − �z

√
2

| j〉 . (20)

The next step is to find the lowest energy states of the
Hamiltonian H1 in Eq. (4) through a perturbation theory both
for h > 0 and λ > 0. Since we first apply the perturbation the-
ory in λ while we consider h as a second-order perturbation,
we are assuming that h � λ � 1. Also in this case we start
again from the 2N degenerate ground space formed by the
kink states and we treat the term λσ z

N as a perturbation. Again
we find that the degeneracy is removed and, at this point, the
system shows twofold degenerate ground states:

|ψ±〉 = 1 ± �z

2
(|N − 1〉 ∓ |N〉), (21)

separated by an energy gap equal to λ from 2N − 4 degenerate
kink states. Above this macroscopically degenerate manifold,
separated by a gap λ there are other two states:

|φ±〉 = 1 ± �z

2
(|N − 1〉 ± |N〉). (22)

We now consider the second-order perturbation h
∑

j σ
z
j . Its

effect on the |ψ±〉 and |φ±〉 states is only a shift in the energy,
respectively, of ∓h. Furthermore, it creates a band of states
from the kink ones given by

|ξ±, m〉 = 1 ± �z

√
N − 1

N−2∑
j=1

(−1) j sin

(
mπ

N − 1
j

)
| j〉 , (23)

with m = 1, 2, . . . , N − 2. The energies of the discussed
eigenstates are given by

E (ψ±) = −(N − 2) − (λ + h), (24)

E (φ±) = −(N − 2) + λ + h, (25)

E (ξ±, m) = −(N − 2) ∓ 2h cos

(
mπ

N − 1

)
. (26)

The calculation of the Loschmidt echo is now straightfor-
ward. From the definition Eq. (1), expressing the initial state
Eq. (20) in terms of the eigenstates of the perturbed model
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Eqs. (21), (22), and (23) and applying the evolution operator
e−ıH1t we finally obtain the expression in Eq. (5).

V. CONCLUSION

We have analyzed the behavior of the LE in short-range an-
tiferromagnetic one-dimensional spin systems with periodic
boundary conditions in the presence of a perturbation that vi-
olates translational invariance but leaves unaffected the parity,
namely a local magnetic field. Under these conditions, the LE
shows an anomalous dependence on the number of elements
in the system. When this number is even, LE shows small
random oscillations around a value very close to unity that
is almost independent of the system size, and the amplitude of
these oscillations tends to decrease as the system grows until it
disappears in the thermodynamic limit. On the contrary, in the
presence of a ring made out of an odd number of sites, the os-
cillations are large and do not disappear in the thermodynamic
limit while the average value is strongly dependent on the
system size. The presence of two different behaviors can be
traced back to the different energy spectra for even and odd N .
Namely, for an odd number of elements topological frustration
is induced and it leads to a closure of the energy gap, which is
instead finite in these systems when N is even. These general
results have been tested in a paradigmatic model, the Ising
model in the transverse field, using both exact diagonalization
methods and perturbation theory.

The LE can thus be used to distinguish the spin chains with
N and N + 1 sites, for arbitrarily large N . While this is not the
first time the even/oddness in the number of elements of a sys-
tem becomes important [34], our result is especially relevant
taking into account that LE is an experimentally accessible
quantity, by looking at the decoherence of a two-level sys-
tem interacting with the spin system [17,19,22,30]. Moreover,
since the LE plays a fundamental role in several problems of

current interest in quantum thermodynamics such as quantum
work statistics [31,32] and information scrambling [32,73], its
different behavior signals a different response of systems with
or without topological frustration in various quantum energet-
ics protocols. In particular, the larger fluctuations of the LE
with frustration indicate that these systems can outperform
their nonfrustrated equivalent. Indeed, a detailed analysis of
the implication of this work in these applications and addi-
tional quantitative characterizations of the frustrated LE will
be the subject of future works.

On the other hand, this particular LE pattern can be seen
as a further interesting property of one-dimensional sys-
tems with topological frustration. Despite their simplicity,
they present several peculiar aspects such as incommen-
surate magnetic patterns [38,68], the appearance of phase
transitions not present with boundary conditions that do not
force the presence of frustration [38,39], etc. Until now, the
analysis had focused on the static aspects induced by topo-
logical frustration. However, our work emphasizes that the
gapless nature of such systems can greatly influence their
dynamics, which can possibly open the door for their appli-
cations in quantum computing [33] as well as in quantum
thermodynamics.
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[38] V. Marić, S. M. Giampaolo, and F. Franchini, Quantum phase
transition induced by topological frustration, Commun. Phys. 3,
220 (2020).

[39] V. Marić, G. Torre, F. Franchini, and S. M. Giampaolo, Topo-
logical frustration can modify the nature of a quantum phase
transition, SciPost Phys. 12, 075 (2022).

[40] M. Diez, N. Chancellor, S. Haas, L. C. Venuti, and P. Zanardi,
Local quenches in frustrated quantum spin chains: Global ver-
sus subsystem equilibration, Phys. Rev. A 82, 032113 (2010).

[41] E. J. Torres-Herrera and L. F. Santos, Local quenches with
global effects in interacting quantum systems, Phys. Rev. E 89,
062110 (2014).

[42] A. Peres, Stability of quantum motion in chaotic and regular
systems, Phys. Rev. A 30, 1610 (1984).

[43] E. G. Altmann, J. S. E. Portela, and T. Tél, Leaking chaotic
systems, Rev. Mod. Phys. 85, 869 (2013).

[44] P. P. Mazza, J.-M. Stéphan, E. Canovi, V. Alba, M. Brockmann,
and M. Haque, Overlap distributions for quantum quenches in
the anisotropic Heisenberg chain, J. Stat. Mech. (2016) 013104.

[45] G. Toulouse, Theory of the frustration effect in spin glasses: I,
Spin Glass Theory and Beyond: An Introduction to the Replica
Method and its Applications, edited by M. Mezard et al. (World
Scientific Press, 1987), pp. 99–103.

[46] J. Vannimenus and G. Toulouse, Theory of the frustration effect.
II. Ising spins on a square lattice, J. Phys. C 10, L537 (1977).

[47] M. M. Wolf, F. Verstraete, and J. I. Cirac, Entanglement and
frustration in ordered systems, Int. J. Quantum Inform. 01, 465
(2003).

[48] J.-F. Sadoc and R. Mosseri, Geometrical Frustration, Collec-
tion Alea-Saclay: Monographs and Texts in Statistical Physics
(Cambridge University Press, Cambridge, 1999).

[49] H. T. Diep, Frustrated Spin Systems, 2nd ed. (World Scientific,
Singapore, 2013), https://www.worldscientific.com/doi/pdf/10.
1142/8676.

[50] S. M. Giampaolo, G. Gualdi, A. Monras, and F. Illuminati,
Characterizing and Quantifying Frustration in Quantum Many-
Body Systems, Phys. Rev. Lett. 107, 260602 (2011).

[51] U. Marzolino, S. M. Giampaolo, and F. Illuminati, Frustration,
entanglement, and correlations in quantum many-body systems,
Phys. Rev. A 88, 020301(R) (2013).

[52] J.-J. Dong, P. Li, and Q.-H. Chen, The a-cycle problem for
transverse ising ring, J. Stat. Mech. (2016) 113102.

[53] S. M. Giampaolo, F. B. Ramos, and F. Franchini, The Frus-
tration of being Odd: Universal Area Law violation in local
systems, J. Phys. Commun. 3, 081001 (2019).

[54] A. D. B. K. Chakrabarti and P. Sen, Quantum Ising Phases and
Transitions in Transverse Ising Models (Springer, Berlin, 1996).

[55] P. A. D. Allen and P. Lecheminant, A two-leg quantum ising
ladder: A bosonization study of the annni model, J. Phys. A 34,
L305 (2001).

[56] T. Shirahata and T. Nakamura, Infinitesimal incommensurate
stripe phase in an axial next-nearest-neighbor ising model in
two dimensions, Phys. Rev. B 65, 024402 (2001).

184424-8

https://doi.org/10.1103/PhysRevLett.86.2490
https://doi.org/10.1016/j.physrep.2006.09.003
https://doi.org/10.1103/PhysRevLett.96.140604
https://doi.org/10.1103/PhysRevA.75.012102
https://doi.org/10.1088/1751-8113/40/28/S12
https://doi.org/10.1103/PhysRevA.75.032333
https://doi.org/10.1103/PhysRevA.84.052105
https://doi.org/10.1140/epjb/e2012-21022-7
https://doi.org/10.1103/PhysRevE.86.021101
https://doi.org/10.1103/PhysRevLett.112.220401
https://doi.org/10.1088/1742-5468/2011/08/p08019
https://doi.org/10.1088/1742-5468/2014/04/P04023
https://doi.org/10.1103/PhysRevLett.118.015701
https://doi.org/10.1103/PhysRevLett.89.170405
https://doi.org/10.1103/PhysRevLett.101.120603
https://doi.org/10.22331/q-2019-03-04-127
https://doi.org/10.1103/PhysRevLett.109.030502
https://doi.org/10.1103/PhysRevLett.69.1997
https://doi.org/10.1103/PhysRevE.67.056129
https://doi.org/10.1088/1367-2630/aba064
https://doi.org/10.1038/s42005-020-00486-z
https://doi.org/10.21468/SciPostPhys.12.2.075
https://doi.org/10.1103/PhysRevA.82.032113
https://doi.org/10.1103/PhysRevE.89.062110
https://doi.org/10.1103/PhysRevA.30.1610
https://doi.org/10.1103/RevModPhys.85.869
https://doi.org/10.1088/1742-5468/2016/01/013104
https://doi.org/10.1088/0022-3719/10/18/008
https://doi.org/10.1142/S021974990300036X
https://www.worldscientific.com/doi/pdf/10.1142/8676
https://doi.org/10.1103/PhysRevLett.107.260602
https://doi.org/10.1103/PhysRevA.88.020301
https://doi.org/10.1088/1742-5468/2016/11/113102
https://doi.org/10.1088/2399-6528/ab3ab3
https://doi.org/10.1088/0305-4470/34/21/101
https://doi.org/10.1103/PhysRevB.65.024402


ODD THERMODYNAMIC LIMIT FOR THE LOSCHMIDT … PHYSICAL REVIEW B 105, 184424 (2022)

[57] E. Lieb, T. Schultz, and D. Mattis, Two soluble models of an
antiferromagnetic chain, Ann. Phys. 16, 407 (1961).

[58] E. Barouch and B. M. McCoy, Statistical mechanics of the
xy model. II. Spin-correlation functions, Phys. Rev. A 3, 786
(1971).

[59] P. Pfeuty, The one-dimensional Ising model with a transverse
field, Ann. Phys. 57, 79 (1970).

[60] F. Franchini, An Introduction to Integrable Techniques for
One-Dimensional Quantum Systems, Vol. 940 (Springer Inter-
national Publishing, Cham, 2017).

[61] B. Damski and M. M. Rams, Exact results for fidelity suscepti-
bility of the quantum ising model: The interplay between parity,
system size, and magnetic field, J. Phys. A 47, 025303 (2014).

[62] J.-J. Dong and P. Li, The a-cycle problem in xy model with ring
frustration, Mod. Phys. Lett. B 31, 1750061 (2017).

[63] G. G. Cabrera and R. Jullien, Universality of Finite-Size Scal-
ing: Role of the Boundary Conditions, Phys. Rev. Lett. 57, 393
(1986).

[64] G. G. Cabrera and R. Jullien, Role of boundary conditions in
the finite-size Ising model, Phys. Rev. B 35, 7062 (1987).

[65] M. N. Barber and M. E. Cates, Effect of boundary conditions
on the finite-size transverse Ising model, Phys. Rev. B 36, 2024
(1987).

[66] M. Campostrini, A. Pelissetto, and E. Vicari, Quantum transi-
tions driven by one-bond defects in quantum Ising rings, Phys.
Rev. E 91, 042123 (2015).
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