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correlation with the production of particles with large transverse momenta at midrapidity
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are usually interpreted in the framework of models implementing centrality-dependent
multiple parton interactions.
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performed in pp collisions are compared with the expectations of three hadronic interac-
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1 Introduction

During the last decade, the study of bulk properties of proton-proton (pp) and proton-
nucleus (pA) collisions at LHC energies has attracted increasing interest. Effects expected to
occur only in heavy-ion collisions, such as collective fluid-like behaviour [1, 2] and strangeness
enhancement [3], are already seen in pp collisions. In particular, strangeness enhancement
already occurs at small multiplicity values. The strength of these effects increases steadily
with the final state multiplicity going from pp to p-Pb up to peripheral Pb-Pb collisions. As
a consequence, minimum-bias (MB) pp collisions are currently being studied, focusing on
the dependence of experimental observables on the charged-particle multiplicity measured
at midrapidity. In phenomenological models inspired by quantum chromodynamics (QCD),
high-multiplicity pp and pA events are generated in collisions with smaller than average
impact parameter, b (the distance between the centres of the two colliding hadrons). In
these central collisions, the number of partonic interactions and, hence, the probability
for partonic scatterings with large momentum transfer, is enhanced. On the other hand,
by requesting the production of a particle with large transverse momentum, events with
larger than average multiplicity are selected [4]. In order to constrain the initial state of
pp and p-Pb collisions, the correlation between observables measured in rapidity regions
that are causally disconnected in the evolution of the system following the collision are
studied. In particular, this is the case for the very forward (“zero degree”) energy and
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central rapidity particle production. The study of these correlations also addresses the
fundamental question of how the energy of the colliding protons is transferred from beam
to central rapidities. In models where the initial state is described by the impact parameter
or initial matter overlap, an increased energy transfer results naturally from the increased
number of parton-parton scatterings.

The processes involved in forward hadron production at high energies are crucial for
simulations of high-energy cosmic-ray interactions [5]. Predictions from different models
describing hadronic interactions suffer from large uncertainties. Experimental results on
the production of forward baryons have therefore a key role in the simulation of cosmic-ray
showers. Measurements at colliders can provide unique information for the tuning of the
models. In particular, baryon production and remnant break-up have been addressed as
possible mechanism to explain the observed muon production at ground level [6, 7].

At LHC energies, forward neutron production has been measured by the LHCf collabo-
ration [8–10]. In ALICE, the zero degree calorimeters (ZDCs) measure the energy emitted
at rapidities close to that of the beam, covering the beam fragmentation regions. The
very forward energy measured by the ZDCs can be correlated with the charged-particle
multiplicity and the probability of producing a particle with a large transverse momentum,
pT, at midrapidity. Measurements of very forward energy as a function of the pT of the
leading particle (the charged particle with the highest transverse momentum) at midrapidity
complement the studies of the underlying event (UE). In the first case, particle production is
related to an observable separated in pseudorapidity, while in the UE measurement particle
production is measured in a region separated in azimuthal angle (“transverse region”).

This article presents the first measurements of the dependence of the very forward energy
on midrapidity particle production in pp collisions at a centre-of-mass energy

√
s = 13TeV

and in p-Pb collisions at a centre-of-mass-energy per nucleon pair √sNN = 8.16TeV. The
article is organised as follows: in section 2 the main ALICE subsystems used for this
analysis are concisely described. The data sample, the event and track selection criteria are
discussed in section 3. Section 4 presents results about the production of energy at forward
and backward rapidities in pp collisions. In section 5 results on the correlation between
very forward energy and particle production at midrapidity in pp and in p-Pb collisions are
presented and discussed, together with results on the forward leading-baryon production in
connection with the UE measurements in pp collisions.

2 ALICE detectors

A detailed description of the ALICE detector and its performance can be found in
refs. [11, 12]. The sub-detectors used for the present analysis are the inner tracking
system (ITS), the time projection chamber (TPC) and the V0 detectors, all located inside
a 0.5 T uniform magnetic field, and the ZDCs.

The silicon pixel detector (SPD) [11] makes up the two cylindrical innermost layers of
the ITS and consists of hybrid silicon pixel assemblies covering the pseudorapidity range
|η| < 2 for the inner layer and |η| < 1.4 for the outer layer for collisions occurring at
the nominal interaction point (IP). The SPD is used to measure the charged-particle
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multiplicity at midrapidity using tracklets, short track segments formed using information
on the position of the primary vertex and two hits, one on each of the SPD layers. To
exploit the full particle tracking, the four external layers of the ITS, composed by two
layers of silicon drift detectors (SDD) and two layers of double-sided silicon micro-strip
detectors (SSD), were also used. The TPC [13] is the main tracking detector and it covers
a pseudorapidity range of about |η| < 0.9. In order to avoid border effects, in this analysis
the fiducial pseudorapidity region has been restricted to |η| < 0.8. Charged-particle tracks
are formed by combining the hits in the ITS and the reconstructed clusters in the TPC.
The trigger signal is provided by the V0 [14] counters, two arrays of 32 scintillator tiles
each, covering the full azimuth within −3.7 < η < −1.7 for V0C, located on the same side
as for the ALICE dimuon arm (C-side), and 2.8 < η < 5.1 for V0A, placed on the opposite
side (A-side). An alternative trigger condition can be provided by the ALICE diffractive
(AD) detector [15], a hodoscope of plastic scintillators covering the pseudorapidity ranges
−7.0 < η < −4.9 and 4.8 < η < 6.3.

The main detectors used in this analysis are the ZDCs. Two identical systems, each
comprising a neutron (ZN) and a proton (ZP) calorimeter of the “spaghetti” type, are
placed at ±112.5 m from the ALICE IP, on both sides. In nucleus-nucleus collisions, the
ZDCs detect the energy carried by the non-interacting (spectator) nucleons and they are
used to estimate the centrality of the collision [16]. In proton-nucleus collisions the ZDCs
provide an unbiased centrality selection [17]. In proton-proton collisions, the ZDCs are
usually switched off, not only to prevent their aging but also because the typical beam
conditions in pp data taking are characterised by large crossing angles that drastically affect
the ZDC acceptance. However, the acceptance of ZN is not affected provided that the
vertical half-crossing angle is smaller than +60 µrad for a nominal vertex vertical position
on the LHC axis (yvtx = 0 mm).

In pp collisions, the energy detected by ZN is mainly due to neutrons with a contribution
from photons at low energies, while the ZP signal is essentially due to protons with a smaller
contribution due to positive pions. The ZN calorimeters cover the pseudorapidity range
|η| > 8.8 and within this range they have a flat efficiency. For the ZP calorimeters the
purely geometric coverage, 6.5 < |η| < 7.4, is not significant since the actual pseudorapidity
interval covered by ZP depends strongly on the LHC beam optics settings. The covered
pseudorapidity range has been studied through fast Monte Carlo (MC) simulations taking
into account the magnetic field settings and the geometrical apertures of the LHC beam
pipe element for pp collisions at

√
s = 13TeV and found to be 7.8 < |η| < 12.9. In Pb-Pb

collisions and in p-Pb collisions in the Pb-fragmentation region, the energy calibrations
of ZN and ZP spectra are performed using the narrow peaks from the detection of single
nucleons. Contrarily, in pp collisions and in p-Pb collisions in the p-fragmentation region,
there are no peaks in the spectra and there is no reliable way to calibrate the spectra in
energy units without introducing model dependencies and large uncertainties. The use of
self-normalised quantities, namely signals normalised to their average minimum-bias value,
allows one to overcome this issue, since they coincide with the self-normalised energy ratios
and are therefore directly comparable to model predictions.
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pp
√
s = 13TeV p-Pb √sNN = 8.16TeV

ZN 61% 96% (Pb) 43% (p)
ZP 23% 82% (Pb) 15% (p)

Table 1. ZN and ZP event selection fractions (see text for details) in pp and p-Pb collisions.
For the p-Pb colliding system, both the Pb-fragmentation (Pb) and the p-fragmentation (p) sides
are reported.

The ZDCs are equipped with time-to-digital converters (TDCs) that register the arrival
time of particles depositing energy in the detectors, allowing the rejection of events without
signal in the calorimeters (noise). The event selection fractions for both ZN and ZP are
defined as the ratios between the number of events with a signal in the corresponding TDC
and the number of MB events triggered by ALICE. The event selection fractions values
calculated for the two colliding systems are given in table 1.

3 Data samples, event selection and models

During the 2015 pp data taking at
√
s = 13TeV, the ZDCs were switched on when a limited

half-crossing angle of +45 µrad in the vertical plane was applied. As discussed in the previous
section, this configuration guaranteed that all the neutrons emitted at very forward rapidities
were within the ZN geometric acceptance. Data from p-Pb collisions, collected in 2016 at
centre-of-mass energy √sNN = 8.16TeV, were used to study the forward energy on the p-
fragmentation side in pA collisions. The proton beam energy was the same as in pp collisions,
therefore comparing the very forward energy in the p-fragmentation side in p-Pb collision
to the one detected in pp collisions provides useful information on the proton breakup.

In both collision systems, a MB trigger condition, requiring at least one hit in both
V0 detectors, was applied. The V0 timing information was used offline to reject beam-gas
interactions. Events with more than one reconstructed primary interaction vertex (pile-up)
were rejected. The selected events were required to have a reconstructed collision vertex
with a position along the beam axis |zvtx| < 10 cm to ensure a uniform performance for
midrapidity detectors. After applying these selections, about 4×107 MB events in pp
collisions and 8.3×107 MB events in p-Pb collisions were retained.

In the analysis of pp collisions, to study the transverse momentum of the leading particle,
tracks were reconstucted in |η| < 0.8 (to guarantee that all tracks have the maximal length)
and more stringent selection criteria were applied. In order to ensure good track momentum
resolution, the reconstructed tracks were required to have at least 70 reconstructed points
(out of a maximum of 159) in the TPC, and two hits in the ITS, with at least one in the
SPD. Finally, the χ2 per TPC reconstructed point was required to be less than 4, and
tracks originating from kink topologies of weak decays were rejected. These conditions
selected tracks with a transverse momentum pT > 0.15GeV/c.

The very forward energy was studied as a function of the charged-particle multiplicity
measured at midrapidity in two units of pseudorapidity. A primary particle is a particle
with a mean proper lifetime τ larger than 1 cm/c, which is either produced directly in the
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Multiplicity pp 13TeV
class 〈dNch/dη〉|η|<1

0–1% 33.29+0.57
−0.51

1–5% 23.44+0.37
−0.33

5–10% 18.25+0.28
−0.25

10–15% 15.13+0.22
−0.20

15–20% 12.88+0.19
−0.17

20–30% 10.50+0.16
−0.14

30–40% 8.18+0.12
−0.11

40–50% 6.30+0.10
−0.09

50–70% 4.13 ± 0.06

70–100% 1.87 ± 0.04
MB values 7.47 ± 0.11

Multiplicity p-Pb 8.16TeV
class 〈dNch/dη〉−1.465<η<0.535

0–1% 73.40 ± 1.95

1–5% 56.00 ± 1.46

5–10% 45.99 ± 1.20

10–15% 39.93 ± 1.03

15–20% 35.50 ± 0.93

20–30% 30.35 ± 0.79

30–40% 24.84 ± 0.65

40–50% 20.13 ± 0.53

50–60% 15.89 ± 0.31

60–70% 11.81 ± 0.41

70–100% 4.82 ± 0.15
MB values 20.79 ± 0.61

Table 2. Charged-particle multiplicity classes based on the SPD tracklet estimator and corresponding
〈dNch/dη〉 values in 2 units of pseudorapidity around midrapidity, |η| < 1 in pp collisions at
13TeV [19] and −1.465 < η < 0.535 in p-Pb collisions at 8.16TeV [20]). The MB values for the two
colliding systems are given in the bottom rows.

interaction, or from decays of particles with τ smaller than 1 cm/c, excluding particles
produced in interactions with material [18]. In pp collisions the interval |η| < 1, centered
around midrapidity, was considered. In p-Pb collisions, the nucleon-nucleon centre-of-mass
system moves with respect to the ALICE laboratory system with a rapidity of −0.465 in the
direction of the proton beam. Therefore the pseudorapidity interval −1.465 < η < 0.535,
covering two units of pseudorapidity around midrapidity in the centre-of-mass system,
is used. The multiplicity selection is based on the number of tracklets measured in the
SPD in both collision systems, as described in refs. [19, 20]. The average charged-particle
multiplicity values, 〈dNch/dη〉, are listed in table 2 for each selected multiplicity interval.
In addition, for p-Pb collisions a centrality selection based on ZN energy, that is the
most unbiased selection available [17], was used to compare data at the two available
centre-of-mass energies, √sNN = 5.02 and 8.16TeV.

Data from pp collisions are compared with MC simulations using PYTHIA 6 (Perugia
2011 tune) [21], PYTHIA 8 (Monash 2013 tune) [22] and EPOS LHC [23] as event generators.
The GEANT 3 [24] particle transport code was used to track particles through the ALICE
experimental set-up. PYTHIA 6.4 Perugia 2011 has a particular tune of the initial, final
state showers and UE modelling. In particular, the tuning of the beam remnant is done
using MB observables such as charged-particle multiplicity and transverse momentum
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Figure 1. A- vs. C-side signal in ZN (left) and ZP (right). The maximum at (0,0) is normalised to
unity, while the minimum is limited to 10−4.

spectra measured by CDF. In this tune, some early LHC data were used for the tuning of
beam remnants. PYTHIA 8 Monash is the default tune of PYTHIA 8.1 which uses UE
data from the LHC, SPS and Tevatron to tune the parameters relevant for multi-partonic
interactions (MPI). No particular tune of the beam remnant is implemented. EPOS LHC
uses early LHC data for tuning. The particle production has two main components: the
strings composed of pomerons at midrapidity, while the remnants carry the remaining
energy covering mostly the fragmentation region.

4 Forward-backward energy asymmetry in pp collisions

The emission of very forward energy can be investigated over a pseudorapidity gap of
more than 18 units using both ZDC systems, placed on the two sides relative to the IP.
The correlation between the energy emitted at forward and backward rapidities in MB
collisions is shown in figure 1, separately for ZN and ZP. For both detectors the signals
increase linearly with the detected energy, without showing saturation or non-linear effects
for large deposited energies. In both cases, the detected energies show asymmetric features,
namely a high energy deposit on one side corresponds to a very low energy deposition on
the opposite side. In addition, a subset of the event sample is correlated, in particular
for neutron emission. The origin of the observed asymmetry in energy at forward and
backward rapidities was further investigated in MC generators, without considering any
tracking through the experimental set-up, but selecting solely on particle kinematics. It was
found that the energy emitted at large rapidities becomes asymmetric once the phase space
is restricted to the pseudorapidity ranges covered by ZN and ZP detectors. In conclusion,
the observed asymmetry is an effect due to the limited and not overlapping pseudorapidity
ranges covered by the neutron and the proton detectors.
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Figure 2. Average A-side ZN (left) and ZP (right) signals as a function of the C-side signals in
pp collisions at

√
s = 13TeV. Data (red full circles) are compared with model predictions from

PYTHIA 6 (azure line), PYTHIA 8 (dashed blue line) and EPOS (dotted green line).

Another way to gain insight into the correlation between energy emitted at backward
and forward rapidities is to study the average signal on one side as a function of the signal
on the other side. Results are shown in figure 2, together with comparisons to model
calculations. The energies carried by leading protons in the two sides are not correlated, as
was already observed at lower energies at the ISR [25]. In contrast to this, the data indicate
the presence of a correlation between the energies carried by leading neutrons on opposite
sides, in particular at high energies. According to all the models used for comparison, the
background contribution from photons is relevant only at very low energies (up to 1TeV),
while for higher energies the signal is only due to leading neutrons. Models predict a flat
behaviour for leading protons in good agreement with data, while for neutrons, even though
they show some degree of correlation between the neutron energies, none of them is able to
reproduce quantitatively the measured dependence over the whole range.

5 Forward energy as a function of charged-particle production at
midrapidity

From phenomenological models, one expects that selecting events characterised by a larger
than average multiplicity, or by the emission of a large transverse momentum particle,
corresponds to selecting collisions with a smaller than average impact parameter [26, 27],
and a larger than average number of MPI [28]. The forward energy detected by the ZDCs
was studied as a function of the charged-particle multiplicity produced at midrapidity (in
|η| < 1 for pp collisions at

√
s = 13TeV and −1.465 < η < 0.535 for p-Pb collisions at

√
sNN = 8.16TeV), and as a function of the leading particle transverse momentum, pleading

T ,
in |η| < 0.8 in pp collisions. To study the interaction of a proton either with another
proton or with a Pb nucleus, the dependence of the very forward energy on charged particle
production at midrapidity was studied in both pp and p-Pb collisions.
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Figure 3. ZN energy normalised to the average MB value in the Pb-fragmentation (left) and in the
p-fragmentation (right) regions as a function of centrality estimated from ZN [17] in p-Pb collisions
at √sNN = 5.02TeV (pink circles) and 8.16TeV (blue squares). The boxes represent the systematic
uncertainty.

5.1 Very forward energy in p-Pb collisions

In p-Pb collisions, the p-fragmentation and the Pb-fragmentation sides show a complemen-
tary behaviour as a function of centrality, as already described for √sNN = 5.02TeV p-Pb
collisions [17]. In figure 3, the self-normalised ZN signals as a function of centrality, estimated
through the energy measured by the neutron calorimeter in the Pb-fragmentation region
as described in ref. [17], are shown for the Pb-fragmentation and for the p-fragmentation
sides. Events characterised by a large multiplicity (corresponding to central events) have
a large forward energy deposit in the Pb-fragmentation side and a small energy deposit
in the p-fragmentation side. This behaviour does not show a strong dependence on the
collision energy.

In figure 4, the normalised energies in the two fragmentation regions are shown as a
function of the number of binary nucleon-nucleon collisions, Ncoll, calculated as described
in ref. [17]. The Ncoll values are included in ref. [29] for both p-Pb colliding energies. It is
interesting to notice how the very forward energy in the p-fragmentation region is, not only
inversely dependent on centrality, but also decreases linearly with the number of binary
collisions over a wide range of centralities.

5.2 Forward energy dependence on charged-particle multiplicity at
midrapidity

The normalised ZN and ZP signals are compared, as a function of the self-normalised
charged-particle multiplicity measured at midrapidity in pp and in the p-fragmentation
region in p-Pb collisions, in figure 5. In pp collisions the ZDC self-normalised values are
averaged between the two p-fragmentation sides, while for p-Pb collisions two different data
taking periods with inverted beam directions were averaged.
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Figure 5. ZN (left) and ZP (right) self-normalised signals as a function of the normalised multiplicity
measured in 2 units of η around the centre-of-mass midrapidity in pp (red circles) collisions and
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For pp collisions, two sources of systematic uncertainty were considered: the trigger
selection and the difference between the measurements performed on both sides. The first
contribution was estimated using a different trigger selection based on the AD detector,
which removed some residual contribution from single-diffractive events (estimated to be
below 3‰ at 8TeV [30]). This uncertainty ranges from 2% to 5% for ZN and from 2% to
6% for ZP. The uncertainty coming from considering the energy measured in two sides
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Figure 6. Self-normalised ZN (left) and ZP (right) signals as a function of the normalised charged-
particle multiplicity produced in |η| < 1 in pp collisions. Data (red markers) are compared with
PYTHIA 6 (blue solid line), PYTHIA 8 (blue dashed line) and EPOS LHC (green dotted line).

ranges from 0.3% to 1% for ZN and from 0.1% to 1% for ZP. The total uncertainty is
calculated as the sum in quadrature of the two contributions, and ranges from 2% to 5%
for ZN and from 2% to 6% for ZP. In p-Pb collisions, the difference between the two beam
configurations was considered as a source of systematic uncertainty, and it ranges from 0.4%
to 4% for ZN and 0.1% to 28% for ZP. The higher uncertainty values correspond to higher
multiplicity bins, where the ZP signal is small, and this leads to a small absolute uncertainty
value. The dependence of the detected forward energy on midrapidity multiplicity shows
similar features in pp and in the p-fragmentation region in p-Pb collisions: the higher is the
activity measured at midrapidity, the smaller is the forward energy.

The self-normalised forward energy as a function of the average multiplicity in a certain
interval, normalised to the MB average, 〈dN/dη〉/〈dN/dη〉MB, was compared with MC
simulations for pp collisions. All models are able to describe the overall decreasing trend,
and PYTHIA 6 (Perugia 2011) is the one showing the best degree of agreement, as shown
in figure 6. However, none of the models is able to reproduce the experimental results
quantitatively. Moreover, they are not able to satisfactorily describe the measured forward
energy spectra in multiplicity bins.

The PYTHIA event generator includes MPI modelling, which is needed to reproduce
the energy flow measurements at LHC energies at smaller rapidities [31, 32]. The correlation
between the very forward energy and the number of MPIs was studied using PYTHIA.
Figure 7 shows the simulated ZN and ZP self-normalised responses as a function of the
number of MPIs, normalised to their MB average value (〈NMPI〉 = 4.0 for PYTHIA 6
Perugia 2011 and 〈NMPI〉 = 5.0 for PYTHIA 8 Monash). Both models predict a clear
relationship between the very forward energy and NMPI, showing a decrease in the average
very forward energy for an increasing number of MPIs, albeit with different slopes due
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Figure 7. Self-normalised ZN (left) and ZP (right) signal as a function of the number of self-
normalised MPI extracted from PYTHIA 6 Perugia 2011 (solid line) and PYTHIA 8 Monash (dashed
line) tunes.

to the different treatment of MPIs in the two generators. This pattern resembles the
observed dependence on charged-particle multiplicity (see figure 6), as can be expected in
an impact-parameter dependent MPI picture [33].

The shape of the ZN spectrum also showed a dependence on the charged-particle
multiplicity at midrapidity. To characterise these modifications, three narrow multiplicity
intervals were selected, corresponding to high (0–2%), intermediate (20–30%) and low
(50–80%) multiplicities, and the ZN spectrum was compared to the MB distribution in
these intervals. Figure 8 shows the spectrum modifications in the considered multiplicity
intervals. In particular, as predicted in refs. [27, 34], the forward leading neutron energy is
suppressed when a higher activity is measured at midrapidity.

5.3 Correlation between forward energy and leading particle transverse
momentum

The forward energy was studied as a function of the leading particle transverse momentum,
pleading

T , defined event by event as the track with the largest transverse momentum in
|η| < 0.8. Events with large forward energies are characterised by smaller values of the
leading particle pT, as already observed in measurements at smaller pseudorapidities at
the LHC [35]. The self-normalised ZN and ZP signals as a function of the leading particle
pT are shown in figure 9. The total systematic uncertainty was estimated as the sum in
quadrature of three contributions: the first one comes from the trigger selection, the second
is due to the differences between the measurements performed on the two sides, and the
third contribution takes into account the misidentification of the leading particle, which
is corrected using a data-driven procedure, as detailed in ref. [36]. The total uncertainty
ranges from 0.8% to 4.4% for ZN and from 0.8% to 5.5% for ZP, the dominant contribution
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Figure 8. Left: ZN spectrum in pp collisions at
√
s =13TeV for the MB sample (blue circles) and

in three multiplicity intervals: high (magenta squares), intermediate (orange squares) and low (azure
squares) multiplicity. Right: ratio of the spectra, normalised to the number of events in each bin, in
the three multiplicity intervals to the MB spectrum.

coming from the difference between the two sides. A large forward energy is measured for
very low values of the leading particle pT (pT

leading < 1GeV/c). For larger leading particle
pT values, ZN and ZP energies rapidly decrease and saturate for pT

leading & 5GeV/c. The
same trend was reported by the CMS collaboration when measuring the energy at smaller
rapidities (−6.6 < η < −5.2) [31].

The self-normalised ZN and ZP signals as a function of the leading particle pT are
also compared to the three models under consideration, as shown in figure 9. The trend
predicted by PYTHIA 6 is qualitatively in agreement with data, even if, for a leading
particle pT larger than 2GeV/c, PYTHIA 6 overestimates the forward energy by almost
20%. In contrast, the leading particle pT dependence predicted by PYTHIA 8 is different
for intermediate pT values (2–8GeV/c). This seems to indicate that the treatment of colour
reconnections and beam remnants in the Perugia tunes of PYTHIA 6 is more realistic
than the one in the default Monash tune of PYTHIA 8. The core-corona EPOS LHC
event generator also predicts a quite different pattern, in particular it shows a depletion for
intermediate pT values (2–8GeV/c), where collective expansion (flow) included in the core
part of the model might play a major role.

5.4 Very forward energy and event properties in pp collisions

The energy carried forward by leading baryons has been proposed as a tool to select events
with smaller than average impact parameter. In ref. [37] a double veto on leading baryon
production is suggested as an effective way to select events characterised by a narrower
impact-parameter distribution and harder particle spectra. To test this hypothesis, the
energy detected by the ZDCs was used as a veto, requesting that neither ZN nor ZP have a
signal on one or on both sides, thus defining a single-side and a double-side veto condition on
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Figure 9. Self-normalised ZN (left) and ZP (right) signals as a function of the leading particle
pT measured in |η| < 0.8 in pp collisions at

√
s =13TeV. Data (red markers) are compared to

PYTHIA 6 (blue solid line), PYTHIA 8 (blue dashed line) and EPOS LHC (green dotted line).

leading baryon production, respectively. The charged-particle multiplicity in |η| < 1 and the
total transverse momentum in |η| < 0.8, pT

TOT, were compared applying these conditions.
The charged particle distributions are corrected using MC simulations with different gener-
ators, and the systematic uncertainty is estimated using EPOS LHC and PYTHIA 8. The
correction factors for the total pT distributions, to account for tracking efficiency and sec-
ondary contamination, were extracted from [38], and the systematic uncertainty is estimated
varying the pT within the obtained boundaries. The distributions are corrected only for inef-
ficiencies and not for effects related to resolution. However, they provide a clear indication of
the effect due to the different applied conditions. In figure 10, Nch and pT

TOT distributions
for the MB and for the two vetoed samples are shown. The average values of Nch are a
factor ∼1.2 and ∼1.5 higher than in the MB sample for the single and double veto selection,
respectively. The analysis of the simulated samples provided similar results, yielding to
similar increases for the average values of Nch, namely a factor (1.1) 1.3 for PYTHIA 6, (1.2)
1.6 for to PYTHIA 8 and (1.2) 1.4 using EPOS LHC, applying the (single) double veto con-
dition. In conclusion, a double-side veto condition selects a larger than average multiplicity
and a harder pT distribution at midrapidity. This measurement supports the prediction that
a double-side veto on baryon production leads to a narrower impact-parameter distribution.

The measurement of the forward energy as a function of the leading particle pT
measured at midrapidity is complementary to the UE, defined through the charged-particle
multiplicity produced in the azimuthal region transverse to the emitted leading particle
(60◦ < |∆ϕ| < 120◦) [36]. The charged-particle multiplicity in the transverse region rapidly
reaches its maximum value and then remains constant for increasing pT (pedestal effect),
while the forward energy (both for neutrons and protons) reaches its minimum value and
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then remains constant for increasing particle pT at midrapidity. These two saturation
effects occur at the same leading particle pT scale, around pT ∼ 5GeV/c, as can be seen
in figure 11, where UE published results [38] and ZN normalised energy are compared for
pp collisions at

√
s = 13TeV. In the MPI approach, collisions producing high-pT particles
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have a lower than average impact parameter and consequently a larger underlying event
activity [28]. Above a leading particle pT of about 5GeV/c the impact parameter bias
reaches its maximum value. The strong anti-correlation between the leading particle pT and
the forward energy seen at low pleading

T can only be built in the initial stages of the collisions,
since the two observables are causally disconnected in the following evolution stages.

6 Conclusions

First results on the very forward energy measured by the ALICE ZDCs in pp collisions at√
s = 13TeV and in p-Pb collisions at √sNN = 8.16TeV have been presented.

In pp collisions, the energy carried by leading protons at large forward and backward
rapidities is found to be uncorrelated, confirming results from hadronic collisions at lower
energies, while for neutrons a weak correlation between the energy released at forward and
backward rapidities is observed.

The very forward energy was studied as a function of the charged-particle production
at midrapidity to gain insight in the particle production mechanisms. The self-normalised
forward energy decreases with increasing charged-particle multiplicity at midrapidity, both
in pp and in p-Pb collisions with the same proton beam energy, as expected from energy
conservation.

The very forward energy decreases with increasing leading particle pT at midrapidity
until about 5GeV/c where it saturates. Similarly, the charged-particle multiplicity in the
transverse region (UE) as a function of the leading particle pT first rises and then saturates
at about the same pT value. In the case of the UE this is commonly interpreted as a
bias to an on average smaller pp impact parameter with consequently larger number of
MPIs leading to higher multiplicity at midrapidity. The results of this paper corroborate
this interpretation since the correlation between central and forward rapidity can only be
attributed to the initial stage of the collisions.

The hadronic interaction models used for comparison, PYTHIA 6 Perugia 2011,
PYTHIA 8 Monash, and EPOS-LHC, are not able to reproduce quantitatively the mea-
surements at large rapidities as a function of particle production at midrapidity. These
measurements provide constraints to improve the model description of beam remnants and
very forward energy.

Finally, it was shown that the very forward energy can be effectively used in pp collisions
as a veto to select events characterised by higher than total average multiplicity and total
transverse momentum, in agreement with expectations from models including centrality
dependent particle production.
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