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The dynamics of low-energy-induced fission is explored using a consistent microscopic framework that
combines the time-dependent generator coordinate method (TDGCM) and time-dependent nuclear density
functional theory (TDDFT). While the former presents a fully quantum mechanical approach that describes the
entire fission process as an adiabatic evolution of collective degrees of freedom, the latter models the dissipative
dynamics of the final stage of fission by propagating the nucleons independently toward scission and beyond.
The two methods, based on the same nuclear energy density functional and pairing interaction, are employed
in an illustrative study of the charge distribution of yields and total kinetic energy for induced fission of 240Pu.
For the saddle-to-scission phase a set of initial points for the TDDFT evolution is selected along an isoenergy
curve beyond the outer fission barrier on the deformation energy surface, and the TDGCM is used to calculate
the probability that the collective wave function reaches these points at different times. Fission observables are
computed using both methods and compared with available data.

DOI: 10.1103/PhysRevC.105.044313

I. INTRODUCTION

A unified microscopic framework for the description of the
entire process of nuclear fission is still not available [1–3].
This is due to the fact that fission presents an extremely
complicated quantum many-body problem but also because
the time evolution of the order of 20–50 zs (1 zs = 10−21 s) [4]
basically consists of two distinct intervals characterized by
very different dynamics. The slow evolution from the quasis-
tationary initial state to the outer fission barrier (saddle point)
can be described by a relatively small number of collective
degrees of freedom. Beyond the saddle point fission dynamics
becomes dissipative, and the nucleus quickly elongates toward
scission.

Two basic microscopic approaches to the description of
induced fission dynamics have been developed. The time-
dependent generator coordinate method (TDGCM) [3,5–7]
represents the nuclear wave function by a superposition of
generator states that are functions of collective coordinates,
and can be applied to an adiabatic description of the entire
fission process. Beyond the outer fission barrier, however,
collective dynamics cannot be decoupled from intrinsic nu-
cleon motion, and the dissipative dynamics is described by
models based on time-dependent density functional theory
(TDDFT) [8–16]. However, since TDDFT-based models deal
with the classical evolution of independent nucleons in mean-
field potentials, they cannot be applied in the classically
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forbidden region of the collective space nor do they take into
account quantum fluctuations.

Therefore, on the one hand, TDGCM presents a fully
quantum mechanical approach but only takes into account
collective degrees of freedom in the adiabatic approximation.
On the other hand, nuclear TDDFT automatically includes the
one-body dissipation mechanism, but can only simulate a sin-
gle fission event by propagating the nucleons independently.
The relative importance of these effects when calculating fis-
sion observables, such as fission yields or the kinetic energy
distribution, has been discussed in many studies but never
compared quantitatively in a consistent way. In fact, already
more than 40 years ago [17] it was suggested that a description
of the entire fission process could be realized by using an
adiabatic model for the time interval in which the fissioning
nucleus evolves from the quasistationary initial state to the
saddle point and a nonadiabatic method for the saddle-to-
scission and beyond-scission dynamics (see also Ref. [18]).
We note that, along these lines, a semiphenomenological ap-
proach was adopted in Ref. [19] to compute the distribution
of spontaneous fission yields of 240Pu. In the classically for-
bidden region WKB was used to calculate a family of fission
probabilities that correspond to the hypersurface of the outer
turning points. The potential energy surface and collective
inertia were obtained using nuclear DFT. Starting from the
outer turning points, the time dependent fission paths to scis-
sion were then computed by solving the dissipative Langevin
equations.

In the present study we combine the TDGCM and TDDFT
in a consistent microscopic framework to analyze the final
stage of the fission process in which, after the nucleus has
passed over the saddle point, it deforms toward scission. More
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precisely, a set of initial points for the TDDFT evolution is
selected along an isoenergy curve beyond the outer fission
barrier on the deformation energy surface, and the TDGCM
is used to calculate the probability that the collective wave
function reaches these points at different times. Both the
TDGCM and TDDFT are then used to calculate the fission
yields and kinetic energy distribution. The particular imple-
mentations of the TDGCM and TDDFT used in this work
can be found in Refs. [20–22] and [23,24], respectively. Both
models are based on the relativistic energy density functional
PC-PK1 [25] and a monopole pairing interaction with the
Bardeen-Cooper-Schrieffer (BCS) approximation [26,27].

II. THEORETICAL FRAMEWORK

A. The time-dependent generator coordinate method plus
Gaussian overlap approximation

The time-dependent generator coordinate method plus
Gaussian overlap approximation (TDGCM+GOA) describes
induced fission as a slow adiabatic process determined by a
small number of collective degrees of freedom. Nonadiabatic
effects arising from the coupling between collective and in-
trinsic degrees of freedom are not taken into account. Fission
dynamics is governed by a local, time-dependent Schrödinger-
like equation in the space of collective coordinates q:

ih̄
∂g(q, t )

∂t
= Ĥcoll(q)g(q, t ), (1)

where g(q, t ) is the complex wave function of the collective
variables q and time t . Axial symmetry is assumed with
respect to the axis along which the two fission fragments even-
tually separate, and a two-dimensional (2D) collective space
of quadrupole β20 and octupole β30 deformation parameters is
considered. The collective Hamiltonian Ĥcoll(q) reads

Ĥcoll(β20, β30) = − h̄2

2

∑
i j=2,3

∂

∂βi
Bi j (β20, β30)

∂

∂β j

+ V (β20, β30), (2)

where Bi j (β20, β30) and V (β20, β30) denote the inertia tensor
and collective potential, respectively. The inertia tensor is the
inverse of the mass tensor, Bi j (β20, β30) = (M−1)i j . The mass
tensor is calculated in the perturbative cranking approxima-
tion [28]

MC p = h̄2M−1
(1)M(3)M

−1
(1) , (3)

where

[M(k)]i j =
∑
μν

〈0|Q̂i|μν〉〈μν|Q̂ j |0〉
(Eμ + Eν )k

. (4)

|μν〉 are two-quasiparticle states and Eμ, Eν denote the corre-
sponding quasiparticle energies.

The input for the calculation of the collective mass, that
is, the single-quasiparticle states, energies, and occupation
factors, are calculated in a self-consistent mean-field approach
based on nuclear energy density functionals. The map of the
energy surface as function of the quadrupole and octupole

deformations is obtained by imposing constraints on the cor-
responding mass moments:

Q̂20 = 2z2 − r2
⊥ and Q̂30 = 2z3 − 3zr2

⊥. (5)

The deformation parameters β20 and β30 are determined using
the following relations:

β20 =
√

5π

3AR2
0

〈Q̂20〉 and β30 =
√

7π

3AR3
0

〈Q̂30〉, (6)

with R0 = r0A1/3 and r0 = 1.2 fm. The collective potential
V (β20, β30) is obtained by subtracting the vibrational zero-
point energy (ZPE) from the total mean-field energy [29]

EZPE = 1
4 Tr

[
M−1

(3) M(2)
]
, (7)

where the M(k) are given by Eq. (4).
The collective space is divided into an inner region with

a single nuclear density distribution, and an external region
that contains two separated fission fragments. The set of con-
figurations that divides the inner and external regions defines
the scission hypersurface. The flux of the probability current
through this hypersurface provides a measure of the proba-
bility of observing a given pair of fragments at time t . Each
infinitesimal surface element is associated with a given pair
of fragments (ZL, ZH ), where ZL and ZH denote the charge of
the lighter and heavier fragments, respectively. The integrated
flux F (ξ, t ) for a given surface element ξ is defined as [30]

F (ξ, t ) =
∫ t

t0

dt ′
∫

{β20,β30}∈ξ

J(β20, β30, t ′)dS, (8)

where J(β20, β30, t ) is the current

Jk (β20, β30, t ) = h̄

2i
B−1(q)[g∗(q, t )∇g(q, t ) (9)

− g(q, t )∇g∗(q, t )]. (10)

The yield for the fission fragment with charge Z is defined by

Y (Z ) ∝
∑
ξ∈A

lim
t→∞ F (ξ, t ). (11)

The set A(ξ ) contains all elements belonging to the scission
hypersurface such that one of the fragments has charge num-
ber Z .

In the present study the mean-field deformation energy is
calculated with the multidimensionally constrained relativistic
mean-field (MDC-RMF) model [31–34], and calculations are
performed using the point-coupling relativistic energy density
functional PC-PK1 [25]. Pairing correlations are taken into
account in the BCS approximation [26] with a monopole
pairing interaction. The cutoff function for the pairing window
is the same as in Ref. [35]. The pairing strength parameters:
−0.135 MeV for neutrons, and −0.230 MeV for protons,
are determined by the empirical pairing gaps of 240Pu, using
the three-point odd-even mass formula [27]. The mean-field
equations are solved by expanding the nucleon Dirac spinors
in the axially deformed harmonic oscillator (ADHO) basis
with Nf = 20 oscillator shells. Reference [32] details the mul-
tidimensionally constrained relativistic mean-field model.

The fission process is described by the time evolution of
an initial wave packet g(q, t = 0) (q ≡ {β20, β30}), built as a
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Gaussian superposition of the quasibound states gk ,

g(q, t = 0) =
∑

k

exp

[
(Ek − Ē )2

2σ 2

]
gk (q), (12)

where the value of the parameter σ is set to 0.5 MeV. The
collective states {gk (q)} are solutions of the stationary eigen-
value equation in which the original collective potential V (q)
is replaced by a new potential V ′(q) that is obtained by ex-
trapolating the inner potential barrier with a quadratic form.
The mean energy Ē in Eq. (12) is then adjusted iteratively
in such a way that 〈g(t = 0)|Ĥcoll|g(t = 0)〉 = E∗

coll, and this
average energy E∗

coll is chosen ≈1 MeV above the fission
barrier. The TDGCM+GOA Hamiltonian of Eq. (2), with the
original collective potential V (q), propagates the initial wave
packet in time. The computer code employed for modeling
the time evolution of the fissioning nucleus is FELIX (version
2.0) [30]. The time step is δt = 5 × 10−4 zs (1 zs = 10−21 s),
and the charge distributions are calculated after 6 × 104 time
steps, which correspond to 30 zs. As in our recent calculations
of Refs. [20–22,36,37], the parameters of the additional imag-
inary absorption potential that takes into account the escape of
the collective wave packet in the domain outside the region of
calculation [30] are: the absorption rate r = 20 × 1022 s−1 and
the width of the absorption band w = 1.0. The scission con-
tour that divides the inner and external regions is determined
by the Gaussian neck operator Q̂N = exp[−(z − zN )2/a2

N ],
where aN = 1 fm and zN is the position of the neck [38]. In
this work we define the prescission domain by 〈Q̂N 〉 > 4, and
consider the frontier of this domain as the scission contour.

B. Time-dependent covariant density functional theory

The dissipative dynamics of the saddle-to-scission phase of
the fission process is modeled with the time-dependent covari-
ant DFT [23,24]. Pairing correlations are treated dynamically
with the time-dependent BCS approximation [35,39]. The
wave function of the system takes the general form of a
quasiparticle vacuum,

|	(t )〉 =
∏
k>0

[
uk (t ) + vk (t )c+

k (t )c+
k̄

(t )
]|0〉, (13)

where uk (t ) and vk (t ) are the parameters in the transformation
between the canonical and the quasiparticle states, and c+

k (t )
stands for the creation operator associated with the canonical
state ψk (r, t ). The evolution of ψk (r, t ) is determined by the
time-dependent Dirac equation

i
∂

∂t
ψk (r, t ) = [ĥ(r, t ) − εk (t )]ψk (r, t ), (14)

where the single-particle energy εk (t ) = 〈ψk|ĥ|ψk〉, and the
single-particle Hamiltonian ĥ(r, t ) reads

ĥ(r, t ) = α · ( p̂ − V ) + V 0 + β(mN + S). (15)

The scalar S(r, t ) and four-vector V (r, t ) potentials are consis-
tently determined at each step in time by the time-dependent

densities and currents in the isoscalar-scalar, isoscalar-vector,
and isovector-vector channels,

ρs(r, t ) =
∑

k

nkψ̄kψk, (16a)

jμ(r, t ) =
∑

k

nkψ̄kγ
μψk, (16b)

jμTV (r, t ) =
∑

k

nkψ̄kγ
μτ3ψk, (16c)

respectively. τ3 is the isospin Pauli matrix (for details, see
Ref. [24]). The time evolution of the occupation probability
nk (t ) = |vk (t )|2, and pairing tensor κk (t ) = u∗

k (t )vk (t ), is gov-
erned by the following equations:

i
d

dt
nk (t ) = nk (t )�∗

k (t ) − n∗
k (t )�k (t ), (17a)

i
d

dt
κk (t ) = [εk (t ) + εk̄ (t )]κk (t ) + �k (t )[2nk (t ) − 1]. (17b)

In time-dependent calculations, a monopole pairing interac-
tion is employed, and the gap parameter �k (t ) is determined
by the single-particle energy and pairing tensor,

�k (t ) =
[

G
∑
k′>0

f (εk′ )κk′

]
f (εk ), (18)

where f (εk ) is the cutoff function for the pairing window.
In calculations with time-dependent covariant DFT, the

mesh spacing of the lattice is 1.0 fm for all directions, and the
box size is taken as Lx × Ly × Lz = 20 × 20 × 60 fm3. The
time-dependent Dirac Eq. (14) is solved with the predictor-
corrector method, and the time-dependent Eqs. (17) using the
Euler algorithm. The step for the time evolution is 6.67 ×
10−4 zs. The density functional, pairing strength parameters
G, and the cutoff function f (εk ) for the pairing window are the
same as in the corresponding TDGCM calculation. The initial
states for the time evolution are obtained by self-consistent
deformation-constrained relativistic DFT calculations in a
three-dimensional lattice space, using the inverse Hamiltonian
and Fourier spectral methods [40–42], with the box size:
Lx × Ly × Lz = 20 × 20 × 50 fm3.

III. INDUCED FISSION DYNAMICS OF 240Pu

In Fig. 1 we display the two-dimensional microscopic self-
consistent mean-field deformation energy surface of 240Pu,
as a function of the axial quadrupole (β20) and octupole
(β30) deformation parameters, calculated with the multidi-
mensionally constrained relativistic mean-field (MDC-RMF)
model [31–34]. The range for the collective variable β20 is
0 � β20 � 7 with a step �β20 = 0.04, while the collective
variable β30 is considered in the interval 0 � β30 � 3.5 with
a step �β30 = 0.05. The equilibrium minimum is calculated
at β20 ≈ 0.3 and β30 = 0, and the isomeric minimum at β20 ≈
0.9 and β30 = 0, in agreement with empirical values. One also
notes the two fission barriers, and the fission valley at large
deformations.

The open dots on the energy surface in Fig. 1 corre-
spond to the isoenergy curve 1 MeV below the energy of
the equilibrium minimum, located beyond the outer fission
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FIG. 1. Self-consistent deformation energy surface of 240Pu in
the plane of quadrupole-octupole axially symmetric deformation pa-
rameters, calculated with the relativistic density functional PC-PK1
and a monopole pairing interaction. Contours join points on the
surface with the same energy, and the contour interval is 1 MeV.
The open dots correspond to points on the isoenergy curve 1 MeV
below the energy of the equilibrium minimum. The color code of the
dots and the corresponding panel on the right, denote the normalized
probability that the initial TDGCM wave packet reaches the partic-
ular point after 10 zs (top), 20 zs (middle), and 30 zs (bottom). The
dashed curve denotes the scission contour, defined by the expectation
value of the Gaussian neck operator 〈Q̂N 〉 = 4.

barrier. These points will be used as initial locations for the
TDDFT calculation. The color code of these dots, as well as
the corresponding panel on the right, denote the probability
that the initial TDGCM wave packet reaches the particular
point after a specific time. This is, of course, just the square
modulus of the collective wave function, and we display these
probabilities after 10 zs (top), 20 zs (middle), and 30 zs (bot-
tom). The probability (normalized to 1 at each time) appears
concentrated in the region β20 ≈ 2.2 and β30 ≈ 1–1.5.

In Fig. 2 we plot the charge yields obtained with the
TDGCM, normalized to

∑
Z Y (Z ) = 200, in comparison to

the experimental fragment charge distribution [43]. The cal-
culated fission yields are obtained by convoluting the raw flux
with a Gaussian function of the number of particles, and the
width is 1.6 units. The TDGCM calculation reproduces the
trend of the data except, of course, the odd-even staggering.
The predicted asymmetric peaks are located at Z = 41 and
Z = 53, one mass unit away from the experimental peaks,
and we note that the model does not quantitatively reproduce
the asymmetric tails of the empirical distribution. However,
considering that no additional adjustment has been made for
the parameters of the model, the agreement with experiment
is very good.

FIG. 2. Charge yields for induced fission of 240Pu. The calculated
fission yields (solid red curve) are obtained by convoluting the raw
flux (blue bars) with a Gaussian function of the number of particles,
using a width of 1.6 units. The data are from Ref. [43] and correspond
to an average excitation energy of 10.7 MeV.

To calculate charge yields with the TDDFT approach, we
employ the time-dependent relativistic (covariant) DFT in
a three-dimensional lattice space, with pairing correlations
treated dynamically in the time-dependent BCS approxima-
tion [35,39]. The evolution of single-particle wave functions,
and pairing factors nk (t ) and κk (t ), is governed by Eqs. (14)
and (17).

Given the initial single-nucleon wave functions and occu-
pation probabilities, determined in a mean-field approach with
constraints on the collective coordinates in three-dimensional
lattice space [40–42], TD(C)DFT propagates the nucleons
independently toward scission. This method cannot be used
to model the slow evolution from the equilibrium deformation
to the saddle point and, therefore, the starting point is usually
taken below the outer barrier. However, if this point is too
close to the barrier, the trajectory can get confined in a region
of a local minimum. The set of initial points that we choose
in the first example (open dots in Fig. 1), corresponds to a
deformation energy of 1 MeV below the energy of the equi-
librium minimum. In Fig. 3(a) we plot the TD(C)DFT fission
trajectories from the initial points (denoted by open dots) on
the self-consistent deformation energy surface of 240Pu. It
can be seen that most trajectories simply follow the path of
steepest descent.

In the upper left panel of Fig. 4, we plot the resulting
TD(C)DFT charge fragments, as well as the experimental
charge yields. The vertical bars do not represent the charge
yields but rather denote the light and heavy fragments that
are obtained for a particular trajectory. While the TDGCM
collective wave function sweeps the entire energy surface and
the flux through any element of the scission hypersurface can
be calculated, in TD(C)DFT a single fission event is obtained
following a trajectory that starts from a given initial point.
However, not all the TD(C)DFT trajectories that start from
the points shown in Fig. 1 lead to scission [cf. Fig. 3(a)].
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FIG. 3. TD(C)DFT fission trajectories from the initial points
(denoted by open dots) on the self-consistent deformation energy sur-
face of 240Pu. The initial points in the upper (lower) panel correspond
to the isoenergy contours at −1 MeV (−4 MeV) below the energy
of the equilibrium minimum. Only those trajectories that end up in
scission of the fissioning nucleus are shown. Trajectories that start
from very asymmetric shapes (large β30 values in the upper panel),
or from almost symmetric shapes (small β30 values in both panels),
do not lead to scission but get trapped in local minima. The total
number of trajectories included in the figure is 133 (62 for the initial
energy E = −1 MeV, and 71 for E = −4 MeV).

One notices that most scission events are obtained in the
intervals Z = 40–42 and Z = 52–54, in agreement with ex-
periment [43]. To calculate the charge yields, we multiply
each scission event by the probability that the collective wave
packet has reached the corresponding point after a specific
time (panels on the right of Fig. 1) and, as in the TDGCM
calculation, normalize the yields to 200. When compared to
the data, it appears that the TD(C)DFT yields qualitatively
reproduce the position of the peaks but not the tails of the
experimental distribution. As shown in the panels (b), (c), and
(d), this result basically does not depend on the instant (10,
20, or 30 zs) when the TD(C)DFT calculation was initiated.

Similarly, Fig. 5 displays the results of the same
TD(C)DFT calculation, but now starting from a set of ini-
tial points on the isoenergy curve that is 4 MeV below the
energy of the equilibrium minimum. The TD(C)DFT fission
trajectories are shown in Fig. 3(b), where the disconnected
region without open dots in the lower panel correspond to
points on the deformation energy surface that, in the TDGCM
calculation, are located already beyond the scission contour
defined by the number of particles in the neck. In this case
the TD(C)DFT evolution starts closer to scission, and we
note that more fission events are obtained in the tails of the
distribution. The corresponding yields [panels (b) to (d)] also
exhibit a somewhat richer structure and, as in the previous
case, essentially do not depend on the initial time of the

FIG. 4. (a) The 240Pu fission charge fragments calculated with
the TD(C)DFT, starting from the initial points on the isoenergy curve
beyond the outer barrier, 1 MeV bellow the equilibrium minimum
(cf. Fig. 1). (b–d) The corresponding charge yields, for the three
cases when the TD(C)DFT calculation is initiated 10, 20, and 30 zs,
respectively, after the initial TDGCM wave packet starts propagating
from the equlibrium minimum. The data are from Ref. [43] and
correspond to an average excitation energy of 10.7 MeV.

TD(C)DFT evolution. An interesting result is obtained when
the TD(C)DFT charge yields shown in Figs. 4 and 5, are
compared with those obtained using the TDGCM (cf. Fig. 2),
and with the data. Obviously, the TDGCM does a better job
in reproducing the empirical charge yields. This means that
the fragment distribution is already determined before the
final stage of the fission process in which the dissipation
mechanism becomes important [44]. The TD(C)DFT repro-
duces the peaks of the experimental charge yields but not the
width. Only when the set of initial points on the deformation
energy surface is located much closer to the fission valley,
the calculated fission yields exhibit a structure that qualita-
tively resembles the empirical charge yields. This emphasizes
the importance of quantum fluctuations that are included in
the TDGCM evolution of the collective nuclear function,
but not in the TD(C)DFT trajectories that correspond to the
propagation of individual nucleons in mean-field potentials. A
different result is obtained for the total kinetic energy (TKE)

FIG. 5. Same as in the caption to Fig. 4 but for the initial isoen-
ergy curve 4 MeV bellow the energy of the equilibrium minimum.
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FIG. 6. The calculated total kinetic energies of the nascent frag-
ments for induced fission of 240Pu, as functions of the fragment
charge. The TDGCM and TD(C)DFT results are shown in compari-
son to the data [45].

of the fragments. In Fig. 6 we show the TKEs of the nascent
fission fragments for 240Pu, as functions of the fragment
charge. The theoretical values are compared to data [45]. In
the TDGCM, the total kinetic energy for a particular pair of
fragments can be evaluated from

ETKE = e2ZH ZL

dch
, (19)

where e is the proton charge, ZH (ZL ) the charge of the heavy
(light) fragment, and dch is the distance between centers of
charge at the point of scission. For TD(C)DFT, the TKE at
a finite distance between the fission fragments (≈25 fm, at
which shape relaxation brings the fragments to their equilib-
rium shapes) is calculated using the expression [15]

ETKE = 1
2 mAHv2

H + 1
2 mALv2

L + ECoul, (20)

where the velocity of the fragment f = H, L reads

�v f = 1

mA f

∫
Vf

dr j(r), (21)

and j(r) is the total current density. The integration is over the
half-volume corresponding to the fragment f , and ECoul is the
Coulomb energy.

TDGCM by definition describes nondissipative dynamics
and, in the adiabatic approximation, all the potential energy
is converted into collective kinetic energy during the saddle-
to-scission evolution. The nascent fragments are cold, and
the calculated TKEs are systematically too large. However,
one-body dissipation is automatically included in TD(C)DFT
and, in the short time interval it takes from the initial point to
scission, the collective flow energy is converted into intrinsic
degrees of freedom and the nucleus heats up [15]. This results
in a lower TKE, as show in Fig. 6. In addition, because of
shape relaxation after scission, the deformation energy of the
fragments is also converted into internal heat. It is interesting
to note that the calculated TKEs essentially do not depend on

whether we chose the initial points at 1 or 4 MeV below the
energy of the equilibrium minimum.

It appears that TD(C)DFT slightly underestimates the TKE
for the fragments close to the peaks of the charge yields
distribution but predicts TKEs considerably below the exper-
imental values for the tails of the distribution. Similar results
for the TKE of 240Pu fragments were also obtained in the
TDDFT study of Ref. [14]. We note that the values calculated
using Eq. (20) present a lower bound for the total kinetic
energy, due to the fact that this expression does not include
the contribution of prescission energy. Namely, while for the
TDGCM the average energy of the initial wave packet E∗

coll is
chosen 1 MeV above the fission barrier (≈8 MeV for 240Pu),
all the initial points for the TDDFT calculation are on the de-
formation energy surface, 1 or 4 MeV below the energy of the
equilibrium minimum. Thus, the starting points for TDDFT
trajectories are more than 10 MeV below the “physical” value.
However, one cannot simply add this difference to the TKE,
because part of the prescission energy will be converted into
excitation energy of the nascent fragments. It is not possible to
give a quantitative estimate for the portion of the prescission
energy that will be converted into TKE but, in any case, this
contribution will increase the values shown in Fig. 6.

IV. SUMMARY

In summary, a consistent microscopic framework, based on
TDGCM and TDDFT, has been applied to model the entire
process of induced fission. Given a nuclear energy density
functional and pairing interaction, the TDGCM is used to
evolve adiabatically a set of collective degrees of freedom of
the fissioning system from the quasistationary initial state to
the outer barrier and beyond. Starting from a isoenergy con-
tour below the outer barrier, for which the TDGCM provides
the probabilities that the collective wave functions reaches
these points at any given time, the TDDFT is used to model the
dissipative fission dynamics in the saddle-to-scission phase.
By combining the two methods, an illustrative study has been
performed of the charge distribution of yields for low-energy-
induced fission of 240Pu.

Even though this type of approach to fission dynamics
was suggested more than forty years ago, it has only been
quantitatively tested for the first time in the present study. The
results obtained for 240Pu, indicate that the TDGCM+TDDFT
method is, in fact, less than optimal. Quantum fluctuations,
included in TDGCM but not in TDDFT, are essential for
a quantitative estimate of fission yields. Dissipative effects,
taken into account in TDDFT but not in TDGCM, are crucial
for the total kinetic energy distribution. Even when the two
methods are combined, the weak points of each approach
cannot be removed completely.

This work indicates a direction in which microscopic
modeling of fission based on TDDFT can be expanded fur-
ther. A number of open questions will be investigated in
forthcoming studies, that will involve a larger set of nuclei,
different functionals, different methods for the calculation of
collective inertia [36], and dynamical treatment of pairing
correlations [37]. The TDGCM+TDDFT approach will com-
plement recent efforts to develop a unified microscopic
framework for fission dynamics [46–48].
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