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First measurements of balance functions (BFs) of all combinations of identified charged hadron (π, K, p)

pairs in Pb–Pb collisions at √
sNN = 2.76 TeV recorded by the ALICE detector are presented. The BF 

measurements are carried out as two-dimensional differential correlators versus the relative rapidity 
(�y) and azimuthal angle (�ϕ) of hadron pairs, and studied as a function of collision centrality. The �ϕ
dependence of BFs is expected to be sensitive to the light quark diffusivity in the quark–gluon plasma. 
While the BF azimuthal widths of all pairs substantially decrease from peripheral to central collisions, the 
longitudinal widths exhibit mixed behaviors: BFs of ππ and cross-species pairs narrow significantly in 
more central collisions, whereas those of KK and pp are found to be independent of collision centrality. 
This dichotomy is qualitatively consistent with the presence of strong radial flow effects and the existence 
of two stages of quark production in relativistic heavy-ion collisions. Finally, the first measurements of 
the collision centrality evolution of BF integrals are presented, with the observation that charge balancing 
fractions are nearly independent of collision centrality in Pb–Pb collisions. Overall, the results presented 
provide new and challenging constraints for theoretical models of hadron production and transport in 
relativistic heavy-ion collisions.

© 2022 European Organization for Nuclear Research, ALICE. Published by Elsevier B.V. This is an open 
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

Convincing evidence for the production of strongly interacting 
quark–gluon plasma (QGP) in heavy-ion (AA) collisions has been 
reported from a variety of measurements at the Relativistic Heavy 
Ion Collider (RHIC) and the Large Hadron Collider (LHC) [1–4], in-
cluding observations of strong elliptic flow [5–7], suppression of 
high transverse momentum (pT) hadron production [8–13], sup-
pression of quarkonium states [14–19], as well as dihadron corre-
lation functions [20,21]. Many of these findings are quantitatively 
explained by hydrodynamic calculations in which the QGP mat-
ter undergoes radial and azimuthally anisotropic collective motion. 
The existence of the latter is well established based on measure-
ments of flow coefficients with finite pseudorapidity (η) gap and 
multi-particle cumulants, whereas the presence of the former is 
inferred in part from the increase of average transverse momenta 
with the mass of hadrons [22], the centrality dependence of event-
by-event pT fluctuations [23,24], as well as the observed narrowing 
of the near-side peak of balance functions (BFs) in central col-
lisions relative to that observed in peripheral collisions [25–30]. 
Balance functions essentially amount to differences of correlation 
functions of like-sign and unlike-sign charges. They are measured, 
typically, as functions of particle pair separation in azimuth an-
gle and rapidity. They indicate the degree to which the production 
of a positive charge is accompanied by the production of a neg-
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ative charge somewhere in phase space. As such, BFs probe the 
balancing of charge distributions in momentum space and theoret-
ical studies show they are sensitive to the details of the time (i.e., 
whether particles are produced early or late), production mecha-
nisms, and transport of balancing charges.

Measurements of BFs were originally proposed as a tool to in-
vestigate the delayed hadronization and two stages of quark pro-
duction in the QGP formed in AA collisions [31]. These terms refer 
to the notion that quark production occurs in two distinct stages, 
the first at the onset, and the second at the very end (just be-
fore hadronization and freeze-out) of AA collisions. The two stages 
are posited to be separated by a period of isentropic expansion 
whose duration depends on the multiplicity of produced quarks 
and gluons and thus the collision impact parameter. Hadron pairs 
produced at the onset of collisions feature large longitudinal sep-
aration (i.e., rapidity differences �y) whereas pairs produced after 
the expansion have smaller �y separations determined by the 
smaller temperature of the system at that time. AA collisions with 
smaller impact parameters are expected to produce larger systems 
with a longer isentropic stage in which late particle production 
dominates. The longitudinal and azimuthal widths of BFs are thus 
expected to progressively decrease from peripheral to central col-
lisions as the fraction of late particle production increases. BFs 
could also provide a precise probe of balancing particle produc-
tion [32–35], the hadrochemistry of particle production [34,36], as 
well as the collision dynamics [37,38]. Recent studies also indicate 
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that the BF dependence on pair separation in azimuth is sensitive
to the diffusivity of light quarks, a measure of the diffusion and 
scattering of quarks within the QGP, which has thus far received 
only limited attention [36,39]. Finally, BFs also provide a tool to 
calibrate measurements of the Chiral Magnetic Effect [40,41] and 
net charge/baryon fluctuations deemed essential for the determi-
nation of QGP susceptibilities [42,43].

Few measurements of BFs of identified hadrons have been 
reported to date. At RHIC, these include BF measurements of 
charged hadrons, pion pairs, kaon pairs, as well as proton/antipro-
ton pairs [25–27], whereas at the LHC, only charged hadron BFs 
have been reported [28,29]. Of these, only the results published 
by ALICE were fully corrected for detector acceptance and particle 
losses (efficiency). Integrals of measured BFs have not been con-
sidered and no cross-species BFs have been published. Theoretical 
analyses of measured BFs have consequently focused mainly on the 
interpretation of the narrowing with collision centrality of charged 
hadron BFs. The full potential of BFs as a probe of the evolution 
dynamics and chemistry of the QGP has thus so far been un-
derexploited. In this paper, general balance functions of identified 
charged hadron species (π, K, p) are reported for the first time. 
These general BFs are corrected for efficiency and non uniform ac-
ceptance effects and it becomes possible to study the effects of 
two-stage quark production, light quark diffusivity, and relative 
balancing fractions using BFs of nine distinct identified pairs of 
charged hadron species.

The BF of a species of interest, α, and an associated species, β , 
was originally defined in terms of conditional densities [31] but it 
is convenient to compute BFs in terms of normalized cumulants 
R2 according to

Bαβ(�pα, �pβ)

= 1

2

{
ρ

β−
1 (�pβ−)

[
Rα+β−

2 (�pα+ , �pβ−) − Rα−β−
2 (�pα− , �pβ−)

]

+ρ
β+
1 (�pβ+)

[
Rα−β+

2 (�pα− , �pβ+) − Rα+β+
2 (�pα+ , �pβ+)

]}
, (1)

with

Rαβ

2 (�pα, �pβ) ≡ ρ
αβ

2 (�pα, �pβ)

ρα
1 (�pα)ρ

β
1 (�pβ)

− 1 (2)

where ρα
1 (�pα) ≡ dN/d�pα and ραβ

2 (�pα, �pβ) ≡ dNpair/d�pαd�pβ are 
single- and particle-pair densities of species α and β measured at 
momenta �pα and �pβ , respectively, while labels + and − stand for 
positive and negative charges. Normalized cumulants R2 are ro-
bust observables, i.e., independent to first order of measurement 
efficiencies. They are sensitive to the strength of correlation be-
tween species α and β . Their properties were described in several 
publications [44–47]. The combination of R2 correlation functions, 
normalized by single particle densities, as per Eq. (1), is strictly 
equivalent to the balance function introduced in Ref. [31,32] and 
measures the correlation between positive and negative particles 
of species α and β constrained by charge conservation. Integrals 
of inclusive charge balance functions, I+−

B (
) ≡ ∫



B+−d�η, are 
expected to lie within the range 0 < I+−

B (
) ≤ 1 for limited ac-
ceptances 
. However, they converge to unity for full acceptance 
coverage. Furthermore, fractions Iαβ

B (
)/IαB (
) are determined by 
the hadrochemistry of the QGP and transport properties of the 
medium. In the full acceptance coverage limit, the denominator of 
this fraction must satisfy IαB (
) ≡ ∑

β Iαβ
B (
) → 1 [43].

In this paper, the identified particle BFs of nine pairs of charged 
hadrons (π± , K± and p/p) ⊗ (π± , K± , and p/p) are reported as 
joint functions of the relative rapidity (�y) and azimuthal angle 
(�ϕ) and studied as a function of collision centrality. Measure-
ments of Rαβ

2 (�pα, �pβ) are carried out in terms of the rapidity and 

azimuthal angle yα , ϕα , yβ , and ϕβ for fixed pT ranges, and av-
eraged across the pair acceptance to yield correlation functions 
Rαβ

2 (�y, �ϕ) with �y = yα − yβ and �ϕ = ϕα − ϕβ following 
the procedure used in Ref. [44]. The densities of associated parti-
cles, ρβ

1 , used in Eq. (1), are integrated from pT-dependent den-
sities reported in prior ALICE measurements [22] to match the pT
ranges used in measurements of the normalized cumulants R2. The 
correlators Rαβ

2 and densities ρβ
1 are corrected for pT-dependent 

particle losses and non uniform acceptance. Densities ρ
β
1 were 

additionally corrected for minor contamination effects as per the 
procedure described in [22]. The measured BFs thus feature ab-
solute normalization which enables meaningful determination of 
their integrals and collision centrality dependence.

As already mentioned, the shape of the BFs vs. �y and �ϕ is 
sensitive to the timescales at which particles are produced dur-
ing the system evolution. Early emission occurs at large effective 
collisional energy 

√
s and is thus expected to yield broad BFs in 

�y and �ϕ , whereas late emission, at collisional energy com-
mensurate with the system temperature, is expected to produce 
much narrower near side peak correlations vs. �y and �ϕ [31]. 
Additionally, the integral of the BFs shall also provide increased 
sensitivity to the hadrochemistry of the collisions. Indeed whereas 
contributions to single-particle spectra from hadronic resonance 
decays must be inferred from models, integrals of the BFs are 
directly sensitive to the magnitude of (hadronic) feeddown con-
tributions. For instance, by comparing the integrals of π+π− and 
π±K∓ BFs, sensitivity to the relative strengths of processes that 
lead to such correlated pairs of particles is acquired. It becomes 
possible to better probe the role of hadronic resonance decay con-
tributions and increased sensitivity to the hadrochemistry of the 
QGP and its susceptibilities is gained [36].

The BFs presented are based on 1 × 107 minimum bias (MB) 
Pb–Pb collisions at 

√
sNN = 2.76 TeV collected in 2010 by the 

ALICE collaboration. Descriptions of the ALICE detector and its per-
formance have been reported elsewhere [48,49]. The minimum 
bias trigger required a combination of hits in the V0 detectors 
and layers of the SPD detector. The V0 detectors, which cover the 
full azimuth and the pseudorapidity ranges −3.7 < η < −1.7 and 
2.8 < η < 5.1, also provided a measurement of the charged par-
ticle multiplicity used to classify collisions into centrality classes 
corresponding to 0–5% (most central) to 80–90% (most peripheral) 
of the Pb–Pb hadronic cross section [50]. Some centrality classes 
have been combined to optimize the statistical accuracy of the 
BFs reported. Particle momenta were determined based on Kalman 
fits of charged particle tracks reconstructed in the Time Projection 
Chamber (TPC). The particle identification (PID) of charged hadrons 
was performed based on specific energy loss (dE/dx) measured in 
the TPC and particle velocities measured in the Time-of-Flight de-
tector (TOF). Track quality criteria based on the number of space 
points, the distance of closest approach to the collision primary 
vertex, and the χ2 of the Kalman fits were used to restrict the 
measurements to primary particles produced by the Pb–Pb colli-
sions and suppress contamination from tracks resulting from weak 
decays and interactions of particles with the apparatus. Addition-
ally, PID selection criteria based on deviations of dE/dx and TOF 
from their respective expectation values, at a given momentum, 
and for each species of interest, were used to optimize the species 
purity. These and other selection criteria are reported in detail be-
low in the context of a discussion of systematic uncertainties. The 
analysis focused on the low pT range, commonly known as the 
“bulk” physics regime. Slightly different pT ranges were used for 
each species to optimize yields and species purity. Charged pi-
ons and kaons were selected in the range 0.2 ≤ pT ≤ 2.0 GeV/c, 
whereas (anti-)protons are within 0.5 ≤ pT ≤ 2.5 GeV/c. The se-
lected rapidity range, largely determined by the TOF coverage, was 
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Fig. 1. Balance functions Bαβ(�y,�ϕ) of pairs αβ = ππ (left), KK (center), and pp (right) measured in semicentral Pb–Pb collisions at
√

sNN = 2.76 TeV.

set to |yπ | ≤ 0.8 and |yp| ≤ 0.6 for measurements of Bππ and Bpp, 
respectively, and set to |y| ≤ 0.7 for all other BFs reported.

Track reconstruction efficiencies and PID purity were studied 
with Monte Carlo simulations of Pb–Pb collisions produced with 
the HIJING generator [51] and propagated through a model of the 
ALICE detector with GEANT3 [52]. Selected track quality and PID 
criteria yield purities of 97%, 95%, and 94% for π± , K± , and p/p, 
respectively, thereby minimizing species contamination and its im-
pact on correlation functions. Corrections for track losses were 
carried out using a weighting technique [46]. Weights are calcu-
lated independently for positive and negative tracks of each species 
considered, for each centrality range, both magnetic field polari-
ties used in the measurements, versus y, ϕ , pT, as well as the 
longitudinal position of the primary vertex (PV) of each event, 
zvtx. Various selection criteria were applied to minimize residual 
instrumental effects while optimizing particle yields. The PV is 
required to be in the range |zvtx| ≤ 6 cm of the nominal inter-
action point. Tracks are required to have a minimum of 70 recon-
structed TPC space points (hits), out of a maximum of 159, and 
a track fit with χ2 value per degree of freedom smaller than 2.0
to ensure good track quality. Contamination of BFs by secondary 
particles (i.e., weak decays or particles scattered within the detec-
tor) is suppressed by requiring distances of closest approach (DCA) 
to PV chosen as DCAz ≤ 2.0 cm in the longitudinal direction and 
DCAxy ≤ 0.04, 0.04, 2.0 cm in the transverse plane for π± , p/p, 
and K± , respectively. Contamination by e+e− pairs from photon 
conversion is suppressed by removing tracks closer than 1σdE/dx
to the TPC Bethe-Bloch median, at a given momentum, for elec-
trons.

Systematic uncertainties on the amplitudes of Bα,β and their 
integrals were calculated as quadratic sums of systematic uncer-
tainties of the correlation function Rα,β

2 and the systematic uncer-
tainties on the published single particle densities [22] used in the 
computation of the BFs. Uncertainties on Rα,β

2 were assessed based 
on variations of conditions and selection parameters employed in 
the analysis. A statistical test [53] was used to identify potential bi-
ases introduced by those variations and determine their statistical 
significance. Systematic uncertainties, corresponding to a relative 
deviation at the maximum of Bα,β associated with operation with 
two solenoidal magnetic field polarities, are smaller than 4%. Po-
tential biases associated with track selection criteria are up to 3%, 
whereas the presence of misidentified and secondary particles con-
tribute up to 4%, while kinematic dependencies of the detection 
efficiency are estimated to be 1%. Systematic uncertainties on the 
single particle densities [22] are species and collision centrality de-
pendent and typically range from 5 to 10%.

In order to obtain BF for all nine combinations of π± , K± , and 
p/p species pairs, Rαβ

2 (�y, �ϕ) correlators were first measured, 
in each centrality class, for all 36 αβ permutations of positive and 

negative π , K, and p. These correlators were then combined ac-
cording to Eq. (1) and multiplied by the single particle densities ρβ

1
in the |y| ≤ 0.5 rapidity range [22]. Fig. 1 shows the Bαβ(�y, �ϕ)

of ππ , KK, and pp pairs in semicentral collisions for illustrative 
purposes. The nine measured BFs exhibit common features, in-
cluding prominent near-side peaks centered at (�y, �ϕ) = (0, 0)

and relatively flat and featureless away-sides. The flat away-side 
arises from the fact that positive and negative particles of a given 
species feature essentially equal azimuthal anisotropy relative to 
the collision symmetry plane. It is also an indicator of the fast 
radial flow profile of the emitting sources, which manifests as 
strong focusing on the near-side peak [37], although the various 
species pairs demonstrate different centrality-dependent near-side 
peak shapes, widths, and magnitudes that indicate that they are 
subject to different charge balancing pair production and trans-
port mechanisms, as well as final state effects. For instance, Bππ

exhibits a deep and narrow dip at (�y, �ϕ) = (0, 0), within the 
near-side correlation peak, resulting in part from the Hanbury 
Brown–Twiss (HBT) effect, with a depth and width that vary with 
the source size and thus the centrality [32]. BKK exhibits much 
weaker HBT effects, whereas Bpp also features a narrow dip cen-
tered at (�y, �ϕ) = (0, 0) within a somewhat elongated near-side 
peak that may reflect the annihilation of pp pairs. Pairs of protons 
and antiprotons emitted at small relative �η and �ϕ (as well as 
small relative pT) are more likely to interact, and thus annihilate, 
than pairs produced at large separation, thereby leading to a de-
pletion of pairs near �y = 0 and �ϕ = 0.

The evolution with collision centrality of Bαβ , for all nine com-
binations α, β = π, K, p, is examined by considering their projec-
tions onto the �y and �ϕ axes in Figs. 2 and 3, respectively. 
The shape and amplitude of Bππ projections onto �y exhibit the 
strongest centrality dependence, whereas those of BπK, Bπp, BKπ

and Bpπ display significantly smaller dependence on centrality. 
Uncertainties on the rest of the �y projections do not make it 
possible to claim any centrality dependence albeit some hints are 
visible in the cases of BKK and Bpp. The evolution with collision 
centrality of the measured BFs is further characterized in terms 
of their longitudinal and azimuthal standard deviation (σ ) widths, 
noted σ�y and σ�ϕ , respectively, as well as their integral, Iαβ

B , as 
shown in Fig. 4. In the longitudinal direction, the widths σ�y of all 
species pairs, except those of KK and pp pairs, exhibit a significant 
narrowing from peripheral to central collisions. In contrast, BKK is 
essentially independent in both shape and width σ�y with chang-
ing collision centrality, whereas the width σ�y of Bpp features 
little centrality dependence even though this balance function ex-
hibits some shape dependence on centrality.

Differences in the evolution of the longitudinal σ of pions and 
kaons BFs were already observed in Au–Au collisions at RHIC [26]
and were then interpreted as resulting in part from strong radial 
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Fig. 2. Balance function of species pairs (π, K, p) ⊗ (π, K, p) projected onto the �y axis for particle pairs within the full range |�ϕ| ≤ π . Vertical bars and open boxes 
represent statistical and systematic uncertainties, respectively.

Fig. 3. Balance function projections of species pairs (π, K, p) ⊗ (π, K, p) onto the �ϕ axis for the different particle pairs. Vertical bars and open boxes represent statistical 
and systematic uncertainties, respectively.
4
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Fig. 4. Longitudinal (�y) σ widths (left), azimuthal (�ϕ) σ widths (center), and integrals (right) of balance functions of the full species matrix of π±, K± , and p/p with 
centrality. For �y and �ϕ widths, Kπ , pπ , and pK have the same values with πK, πp, and Kp, respectively. For the longitudinal widths, the relative azimuthal angle range 
for all the species pairs is the full azimuth range |�ϕ| ≤ π . For the azimuthal widths, the relative rapidity range used for all species pairs is |�y| ≤ 1.2, with the exception 
of |�y| ≤ 1.4 for ππ and |�y| ≤ 1.0 for pp. Vertical bars represent statistical uncertainties while systematic uncertainties are displayed as dash line bands.

flow profiles and two-stage emission [31,32]. The independence of 
the width σ�y of the BKK relative to the narrowing BFs of all 
other pairs observed in this work suggests two-stage quark pro-
duction might also be at play at the TeV collision scale. Indeed, 
pions might be predominantly formed from the light u, ū, d, and d̄
quarks most abundantly produced in the second quark production 
stage, whereas kaon production would largely result from ss̄ pairs 
predominantly created during the early stages of collisions [31,32].

Several distinct models have had success in describing the yield 
of produced hadrons, and more specifically baryons. Such mod-
els invoke a range of production mechanisms including parton 
fragmentation, effective mostly at high-pT, as well as parton co-
alescence and recombination, playing a predominant role at low 
and intermediate pT [54–56]. Statistical thermal models and pro-
duction models involving color transparency [57] and baryon junc-
tions [58] have also had a good measure of success. Single particle 
spectra of baryons thus do not provide sufficiently discriminating 
constraints to fully identify baryon production mechanisms. The 
added information provided by cross-species BFs shall thus con-
tribute by adding new constraints for models of particle production 
and transport. In particular, given that neutrons, protons, and their 
excited states are composed of light u and d quarks, believed to be 
copiously produced in late stage emission (within the context of 
the two-stage quark production model), it is conceivable that these 
baryons are predominantly produced by coalescence (recombina-
tion) of light quarks in the late stage of the collisions. However, 
baryons (B) and antibaryons (B) have a relatively large mass and 
carry a conserved baryonic charge. The question then arises as to 
whether BB correlated pairs might originate before the formation 
of thermalized QGP, during the early stages of AA collisions. Late 
BB production is expected to be characterized by narrow longitu-
dinal BFs while early stage emissions would produce pairs with 
a much wider �y range [31,32]. It is clear from Fig. 2 that Bpp

must extend beyond the acceptance of the measurement reported 
in this paper. This suggests that pp pairs have rather wide balance 
functions that might result from early BB pair separation. Detailed 
models of BB production and transport that account for (strong) 
decays from resonant states are required, evidently, to firmly es-
tablish this conclusion.

Fig. 4 shows that the σ�ϕ widths of the nine BFs exhibit nar-
rowing trends from peripheral to central collisions. The widths 
σ�ϕ feature a wide spread of values at a given collision central-
ity, with those of KK pairs being the largest and those of πK
the smallest. The widths also exhibit similar reductions with in-
creasing collision centrality. These observations are in agreement 
with azimuthal BFs already reported from observations at RHIC for 
unidentified charged particle and identified ππ , KK pairs [25,26], 
as well as unidentified charged particle BFs in collisions at the 
LHC [28,29]. This narrowing can be qualitatively understood as 

resulting from the larger estimated transverse expansion velocity 
present in more central AA collisions [59]. It competes with an op-
posing trend associated with light quark diffusivity, expected to 
broaden and smear out the long range tails of the �ϕ BFs for 
systems featuring increasingly large lifespans [39]. Given the ra-
dial boost profile and contributions from resonance decays can be 
largely calibrated based on the shape of single particle pT spec-
tra, the BF projections presented in Fig. 2, 3 and the evolution 
of their widths σ�y and σ�ϕ , shown in Fig. 4, then provide the 
first comprehensive set of azimuthal BFs to estimate the diffusivity 
of light quarks at the LHC [36,39]. The above discussion neglects 
possible contributions from the fragmentation of jets but these 
are anticipated to be small in the pT range of this measurement. 
Quantitative estimates of such contributions would need to be ac-
counted for in theoretical modeling of balance functions reported 
in this work for the purpose of determining the diffusivity of light 
quarks.

Contributions of φ → K+ + K− decays to BKK were studied us-
ing simulated events from the HIJING generator [51]. The ampli-
tude of the near-side peak of BKK is reduced by about 30% when 
contributions from φ-meson decays are explicitly excluded, while 
the correlator �y and �ϕ widths increase by about 7–8%. Effects 
associated with radial flow, not present in HIJING, could reduce 
this broadening effect and possibly induce a narrowing of the �y
width of BKK in more central collisions. However, no such narrow-
ing is observed thereby signaling a more intricate production and 
transport evolution with competing contributions from φ produced 
at hadronization of the QGP and by coalescence of kaons within a 
hadron phase.

The evolution with the collision centrality of the integrals Iαβ
B

of the nine species-pairs Bαβ(�y, �ϕ) shown in the right panel 
of Fig. 4 is also of considerable interest. By definition, a balance 
function Bαβ(�y, �ϕ, �pT) measures the “likelihood” of finding 
a charge balancing particle of a type β , e.g., π+ , with a pair 
separation �y, �ϕ , �pT away from a reference particle of type 
α, e.g., π− . But charge balancing can be accomplished, on av-
erage, by distinct species, e.g., p, K+, and more rarely produced 
heavier particles, in additions to π+ . The integral, Iαβ

B (4π), of 
Bαβ(�y, �ϕ, �pT) over the full phase space is thus proportional 
to the average fraction (and probability in the full phase space 
limit) of balancing partners of species β . Indeed, neglecting con-
tributions from species other than pions, kaons, and protons, one 
expects the sum, IαB (4π) ≡ Iαπ

B (4π) + IαK
B (4π) + Iαp

B (4π) to con-
verge to unity, IαB (4π) ≈ 1, in the full acceptance limit [43]. In-

tegrals Iαβ
B (4π) thus amount to probabilities Iαβ

B (4π)/IαB (4π) of 
having charge balancing of a species α by a species of type β and 
are indicators of the hadronization chemistry of the QGP, that is, 
what fraction of species α are accompanied (balanced), on aver-
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age, by a species β [43]. However, when measured in a limited 
acceptance, integrals Iαβ

B (
 < 4π) cannot, strictly speaking, be 
considered charge balancing probabilities. They nonetheless pro-
vide useful indicators of the hadrochemistry as well as the flavor
and baryon number transport in AA collisions. As such, integrals 
Iαβ

B shown in Fig. 4 as a function of collision centrality are surpris-
ing on two accounts. First, they show that the balance fractions 
are all, but one, approximately independent of collision central-
ity. The notable exception is the ππ integral which increases by 
about 20% from peripheral to central collisions. Second, close ex-
amination of these pairing fractions shows they are rather dif-
ferent than inclusive probabilities of observing π , K, and p/p in 
Pb–Pb collisions. For instance, IKπ

B is not larger than IKK
B by the 

π/K ∼ 6.7 ratio of inclusive single particle yields and Ipp
B is larger 

than IpK
B also in contrast to observed K/p ∼ 3 yield ratios [22]. 

Hadron species charge balancing pairing fractions are thus indeed 
very different than the relative probabilities of single hadrons, and 
as such, provide new and useful information to further probe the 
hadronization of the QGP. This difference arises because the set 
of processes P2 that lead to a specific balancing pair αβ (e.g., 
P2 :→ α± + β∓ + X) is, by construction, far smaller than the set 
of processes P1 leading to a given particle species α or β (e.g., 
P1 :→ α± + X or P1 :→ β∓ + Y ). It is remarkable, nonetheless, 
that the pairing fractions Iαβ

B exhibit essentially no collision cen-
trality dependence while single particle yield ratios are known to 
exhibit a weak dependence on collision centrality [9,60]. Note that 
the observed rise of Iππ

B in more central collisions may artificially 
result from increased kinematic focusing of pions with centrality in 
the pT and �y acceptance of this measurement. The higher veloc-
ity flow fields encountered in more central Pb–Pb collisions could 
indeed shift and focus the yield of associated pions. Why such a 
shift is not as important for other charge balancing pairs remains 
to be elucidated with a comprehensive model accounting for the 
flow velocity profile and appropriate sets of charge conserving pro-
cesses yielding balancing charges in the final state of collisions. 
Recent deployments of hydrodynamic models feature the former 
but lack the latter [61–63]. Further theoretical work is thus re-
quired to interpret the observed collision centrality dependence of 
the pairing probabilities displayed in Fig. 4. As such calculations 
become available, the data reported in this work, and specifically 
the integral Iαβ

B shown in Fig. 4, shall provide increased sensitivity 
to the hadrochemistry of the QGP and its susceptibilities.

In summary, this paper presents the first measurements of the 
collision centrality evolution of same and cross-species balance 
functions of identified π± , K± and p/p at the LHC. Measured 
as functions of particle pair separation in rapidity (�y) and az-
imuth (�ϕ), the BFs exhibit prominent near-side peaks centered at 
(�y, �ϕ) = (0, 0) which feature different shapes, amplitudes, and 
widths, and varied dependencies on collision centrality. The BFs of 
species-pairs measured in this work feature narrowing �ϕ widths 
in more central collisions, owing to the strong radial flow field 
present in central Pb–Pb collisions. Theoretical studies beyond the 
scope of this work shall use this data to put upper limits on the 
diffusivity coefficients of light quarks. In the longitudinal direction, 
the σ widths of BFs of all species pairs decrease with centrality 
except for those of KK and pp pairs. The shape and width of KK
BFs are independent of collision centrality, while the pp BFs peak 
shapes depend only minimally on centrality. The observed central-
ity independence of the KK and narrowing σ of other species in 
the longitudinal direction are qualitatively consistent with effects 
associated with radial flow and the two-stage quark production 
scenario, which posits that quark production occurs predominantly 
in early and late stages separated by a period of isentropic expan-
sion. Integrals Iαβ

B constitute an important finding of this study as 
they indicate that pairing fractions Iαβ

B are nearly independent of 

collision centrality, and provide a valuable quantitative characteri-
zation of the hadronization of the QGP.
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