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The production of � baryons and K0
S mesons (V0 particles) was measured in p–Pb collisions at √

sNN = 5.02 TeV and pp collisions at 
√

s = 7 TeV with ALICE at the LHC. The production of these 
strange particles is studied separately for particles associated with hard scatterings and the underlying 
event to shed light on the baryon-to-meson ratio enhancement observed at intermediate transverse 
momentum (pT) in high multiplicity pp and p–Pb collisions. Hard scatterings are selected on an event-
by-event basis with jets reconstructed with the anti-kT algorithm using charged particles. The production 
of strange particles associated with jets pch

T, jet > 10 and pch
T, jet > 20 GeV/c in p–Pb collisions, and with 

jet pch
T, jet > 10 GeV/c in pp collisions is reported as a function of pT. Its dependence on angular distance 

from the jet axis, R(V0, jet), for jets with pch
T, jet > 10 GeV/c in p–Pb collisions is reported as well. The pT-

differential production spectra of strange particles associated with jets are found to be harder compared 
to that in the underlying event and both differ from the inclusive measurements. In events containing a 
jet, the density of the V0 particles in the underlying event is found to be larger than the density in the 
minimum bias events. The �/K0

S ratio associated with jets in p–Pb collisions is consistent with the ratio 
in pp collisions and follows the expectation of jets fragmenting in vacuum. On the other hand, this ratio 
within jets is consistently lower than the one obtained in the underlying event and it does not show the 
characteristic enhancement of baryons at intermediate pT often referred to as “baryon anomaly” in the 
inclusive measurements.

© 2022 European Organization for Nuclear Research, ALICE. Published by Elsevier B.V. This is an open 
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

High-energy heavy-ion collisions provide a unique opportunity 
to study properties of the hot and dense medium composed of de-
confined partons, known as the quark–gluon plasma (QGP) [1–6]. 
A cross-over transition from hadronic matter to the QGP at zero 
baryochemical potential is expected to take place once the tem-
perature reaches values of about Tc = 156 MeV based on quan-
tum chromodynamics (QCD) calculations performed on a lattice 
[7–9]. The measurements indicate that collisions of lead ions at 
the Large Hadron Collider (LHC) at a centre-of-mass energy per 
nucleon–nucleon collision of 

√
sNN = 2.76 TeV create conditions 

well above Tc at approximately zero baryochemical potential [10].
The interpretation of nucleus–nucleus (AA) collision results re-

quires the understanding of results from smaller collision sys-
tems such as proton–proton (pp) or proton–nucleus (pA). To sep-
arate initial state effects, linked to the use of nuclear beams or 
targets, from final-state effects, associated with the presence of 
hot and dense matter, particle production is compared in pp, 

� E-mail address: alice -publications @cern .ch.

pA, and AA reactions. However, the measurements at the LHC 
in high-multiplicity pp and p–Pb collisions have revealed unex-
pectedly strong long-range correlations of produced particles typ-
ical of Pb–Pb collisions [11–21]. Measurements of identified light-
flavour hadrons [22–25], strange particles [26–29], and heavy-
flavour particles [30,31] in small systems have also shown qualita-
tively similar features as in AA collisions [22,32–36]. In particular, 
the baryon-to-meson yield ratio as a function of transverse mo-
mentum (pT) shows a pronounced maximum at intermediate pT
(2–5 GeV/c) [23,26,28]. The pT dependence of the ratio was dis-
cussed in terms of particle production within a common velocity 
field (collective flow) [37], soft–hard parton recombination [38]
and high-energy parton shower (jet) hadronization at high pT. On 
the other hand, the jet suppression ascribed to the parton energy 
loss in the QGP observed in central AA collisions is not observed in 
p–Pb collisions [39–50]. The measurements show that the impact 
of the initial-state nuclear effects such as shadowing and potential 
gluon saturation effects, e.g., Color Glass Condensate (CGC) [51,52], 
or multiple scatterings and hadronic re-interactions in the initial 
and final states [53,54] is small on the jet production in p–Pb
collisions. To understand particle production mechanisms in small 
systems, the separation of particles produced in hard processes 
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(jets) from those produced in the underlying event is important. It 
allows one to investigate similarities and expose differences in par-
ticle production mechanisms in high-multiplicity pp, p–Pb events, 
and heavy-ion collisions.

In this letter, measurements of K0
S and � (�), the V0 parti-

cles, in p–Pb collisions at 
√

sNN = 5.02 TeV and pp collisions at √
s = 7 TeV are reported. The production of V0 particles is studied 

separately within the region associated with a hard parton scatter-
ing and the underlying event. Hard scatterings are tagged by se-
lecting a reconstructed jet with transverse momentum pch

T, jet > 10
or 20 GeV/c using charged particles with the anti-kT algorithm 
[55] and the resolution parameter R = 0.4. The baryon-to-meson 
ratio of V0 particles associated with jets is reported as a function 
of particle transverse momentum and distance to the jet axis. To 
contrast the strangeness production associated with a hard scatter-
ing and subsequent jet fragmentation with the production in the 
underlying event we report the ratio for the case of particles not 
associated with jets. The pT-differential ratio is also compared with 
a Pythia 8 (version 8.2.43; Tune 4C) [56] simulation.

2. Data analysis

2.1. The ALICE detector and data sample

The ALICE apparatus consists of central barrel detectors cov-
ering the pseudorapidity interval |ηlab| < 0.9, a forward muon 
spectrometer covering −4.0 < ηlab < −2.5, and a set of detectors 
at forward and backward rapidities used for triggering and event 
characterization. Further information can be found in Ref. [57]. 
Tracking and particle identification in the context of this analysis 
are performed using the information provided by the Inner Track-
ing System (ITS) [58] and the Time Projection Chamber (TPC) [59], 
which have full azimuthal coverage in the pseudorapidity interval 
|ηlab| < 0.9. These central barrel detectors are located inside a large 
solenoidal magnet, which provides a magnetic field of 0.5 T along 
the beam direction (z-axis in the ALICE reference frame). The ITS 
is composed of six cylindrical layers of silicon detectors, with ra-
dial distances from the beam axis ranging from 3.9 cm to 43.0 cm. 
The two innermost layers are equipped with Silicon Pixel Detec-
tors (SPD) covering the pseudorapidity ranges of |ηlab| < 2.0 and 
|ηlab| < 1.4, respectively. The two intermediate layers are made of 
Silicon Drift Detectors (SDD), while Silicon Strip Detectors (SSD) 
equip the two outermost layers. The high spatial resolution of the 
silicon sensors, together with the low material budget (on average 
7.7% of a radiation length for tracks crossing the ITS perpendicu-
larly to the detector surfaces, i.e., ηlab = 0) and the small distance 
of the innermost layer from the beam pipe, allow for the measure-
ment of the track impact parameter dDCA in the transverse plane. 
The dDCA is defined by the distance of closest approach (DCA) of 
the track to the primary vertex in the plane transverse to the beam 
direction, and is measured with a resolution better than 75 μm 
for transverse momenta pT > 1 GeV/c, including the contribution 
from the primary vertex position resolution [58]. At larger radii 
(85 < r < 247 cm), the 500 cm long cylindrical TPC provides track 
reconstruction with up to 159 three-dimensional space points per 
track, as well as particle identification via the measurement of the 
specific energy deposit dE/dx in the gas. The overall pT resolu-
tion given by combining ITS and TPC information is typically 1%
for momenta of 1 GeV/c and 7% for momenta of 10 GeV/c [60].

The data sample used in this analysis was recorded by the AL-
ICE detector [57] during the LHC p–Pb run at 

√
sNN = 5.02 TeV 

and pp run at 
√

s = 7 TeV in 2013 and 2010, respectively. Be-
cause of the 2-in-1 magnet design of the LHC [61], the energies of 
the two beams are not independent and their ratio is fixed to be 
equal to the ratio of the charge-to-mass ratios of each beam. Con-
sequently, for p–Pb collisions, the nucleon–nucleon centre-of-mass 

system is shifted in rapidity by �yNN = 0.465 in the direction of 
the proton beam. In the analyzed data sample the Pb beam circu-
lated in the “counter-clockwise” direction travelling from negative 
to positive rapidity in the laboratory reference frame. The setup of 
the detector, trigger, and the analysis strategy is identical in both 
collision systems unless explicitly stated otherwise.

The data samples presented in this letter were recorded us-
ing the minimum bias trigger implemented by the VZERO detector 
[62]. The VZERO system consists of two arrays of 32 scintilla-
tor tiles each, placed around the beam vacuum pipe on either 
side of the interaction region covering the pseudorapidity intervals 
2.8 < ηlab < 5.1 (VZERO-A) and −3.7 < ηlab < −1.7 (VZERO-C). In 
addition, in p–Pb collisions, two neutron Zero Degree Calorimeters 
(ZDCs), located at +112.5 m (ZNA) and −112.5 m (ZNC) from the 
interaction point, are used in the offline event selection for reject-
ing of beam-background events, exploiting the correlation between 
the arrival times measured in ZNA and ZNC. In pp collisions, a log-
ical OR between the requirement of at least one hit in the SPD 
and a hit in one of the two VZERO scintillator arrays is used for 
event selection. In p–Pb collisions, a coincidence of signals in both 
VZERO-A and VZERO-C is required to remove contamination from 
single-diffractive and electromagnetic events [63]. The events are 
further selected to require a reconstructed vertex within 10 cm 
(|vz| < 10 cm) of the nominal centre of the detector along the 
beam axis and vertices built from the SPD tracklets, which are 
the short track segments measured with SPD, and from the tracks 
measured with combined information from ITS and TPC are com-
patible. The fraction of events with the vertex selection criteria 
is about 98.2% of all triggered events. In total, about 96 × 106

(177 × 106) events, corresponding to an integrated luminosity of 
L ≈ 46 μb−1 (2.9 nb−1), are used in the analysis of the p–Pb (pp) 
data sample.

2.2. Charged-particle and jet reconstruction

The charged-particle reconstruction and jet reconstruction in 
this letter follow the approach described in detail in Refs. [44,64]. 
Here only a brief review of the most relevant points is given. 
Charged-particle tracks, reconstructed in the ITS and the TPC with 
pT > 0.15 GeV/c and within the TPC acceptance |ηlab| < 0.9 that 
satisfy a DCA requirement dDCA < 2.4 cm, are used as input to 
the jet reconstruction. The azimuthal distribution of these tracks 
is not completely uniform due to inefficient regions in the SPD. 
This is compensated by considering in addition tracks with less 
than three reconstructed track points in the ITS or no points in the 
SPD. To improve the momentum resolution for those tracks, the 
primary vertex is used as an additional constraint in the track fit-
ting. This approach yields a uniform tracking efficiency within the 
acceptance. These complementary tracks constitute approximately 
4.3% and 5% of the overall used track sample in p–Pb and pp col-
lisions, respectively. The efficiency for charged-particle detection, 
including the effect of tracking efficiency as well as the geometri-
cal acceptance, is 70% (60%) at pT = 0.15 GeV/c and increases to 
85% (87%) at pT = 1 GeV/c and above for p–Pb (pp) collisions.

The jets are reconstructed using the anti-kT algorithm [55] from 
the FastJet package [65,66] with resolution parameter R = 0.4. 
Only those jets for which the jet-axis is found within the accep-
tance window |ηlab| < 0.35 are used in this analysis. This condi-
tion ensures the jet cone is fully overlapping with the acceptances 
of both charged-particle tracks (|ηlab| < 0.9) and the V0 particles 
(|ηlab| < 0.75, as explained in detail in section 2.3). The jet trans-
verse momentum is calculated with FastJet using the pT recombi-
nation scheme.

In general, the transverse-momentum density of the back-
ground (ρch), originating from the underlying event and/or pile-up, 
contributes to the jet energy reconstructed by the jet finder. The 
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correction of the jet-energy scale accounting for the background 
contribution can be estimated on an event-by-event basis using 
the median of the transverse momentum density of all the clus-
ters reconstructed with the kT algorithm [67]. In pp and p–Pb
collisions, an estimate adequate for the more sparse environment 
than Pb–Pb collisions is employed by scaling ρch with an addi-
tional factor to account for event regions without particles [44]. 
The resulting mean of the background pT density in p–Pb colli-
sions is 

〈
ρch

〉 = 1.02 GeV/c rad−1 (with negligible statistical un-
certainty) for unbiased events and 

〈
ρch

〉 = 2.2 ± 0.01 GeV/c rad−1

for events containing a jet with uncorrected transverse momentum 
pch, raw

T, jet > 20 GeV/c [44]. In pp collisions, the background density is 
around 1 GeV/c rad−1 and not subtracted on a jet-by-jet basis but 
the related uncertainty on the jet pT scale is absorbed into the 
systematic uncertainty.

The jet finding efficiency, which encodes the effects of single-
particle momentum resolution and reconstruction efficiency on the 
jet reconstruction, is estimated using a Pythia 6 [68] + GEANT 3 
[69] simulation by comparing the generated jets to reconstructed 
ones and found to be larger than 96% in the considered momen-
tum range (pch

T, jet > 10 GeV/c).

2.3. Reconstruction of V0 particles

The V0 particles, K0
S and � (�), are identified by taking ad-

vantage of the characteristics of their weak decay topologies in 
the channels K0

S → π+π− and �(�) → pπ−(pπ+), which have 
branching ratios of 69.2% and 63.9%, respectively [70]. The recon-
struction and the selection criteria of the V0 particles follow the 
analysis in Ref. [23] with the exception of the rapidity selection of 
the particles and their decay products. The decay products of the 
V0 particles, π± and p (p), are identified in the central barrel with 
the TPC using the specific energy loss dE/dx in the gas by mea-
suring up to 159 samples per track with a resolution of about 6%
[71]. Since the V0 daughter tracks are displaced from the primary 
vertex and tracks in the jet are selected by criteria optimized for 
particles produced at the primary vertex, only about 0.1% of the V0

daughter tracks contribute to the charged-particle jet reconstruc-
tion. The V0 decay daughter tracks are selected in the acceptance 
window |ηlab| < 0.8 following the criteria used in the inclusive 
analysis [23,72]. To avoid the fiducial effect, only the V0 candi-
dates found in |ηlab| < 0.75 are retained. This ensured that the 
reconstruction efficiency is approximately constant throughout the 
selected pseudorapidity range. The topological selection of V0 can-
didates within the kinematic range of this analysis yields almost 
background-free invariant mass spectra with the lowest signal-to-
background ratio among all of the V0 particles still exceeding 10. 
The pT-differential yields of the V0 particles are extracted using 
the invariant-mass method, described in Ref. [23], where the com-
binatorial background is interpolated from the side bands defined 
in terms of the mass peak width σ in intervals [−12σ , −6σ ] and 
[6σ , 12σ ] with respect to the mean of the peak.

2.4. Matching of V0 particles to jets and underlying event

To obtain the yield of V0 particles within a jet cone, the V0

particles are selected based on their distance from the jet centroid 
in the pseudorapidity (ηlab) and azimuthal angle (ϕ) plane

R(V0, jet) =
√(

η
jet
lab − ηV0

lab

)2 + (
ϕjet − ϕV0)2

. (1)

A V0 particle with a radial distance from a given jet R(V0, jet) <
Rmatch is considered matched to the jet and referred to as the “V0

inside the jet cone” (JC V0). In p–Pb collisions the probability for a 

particle with pT > 0.5 GeV/c to lie in the overlapping region of two 
different jets with pch

T, jet > 10 GeV/c is less than 1% and in these 
cases the higher-energy jet is preferred. Moreover, removal of the 
events with the same particle matching to two or more jets did not 
alter the result of the analysis. The procedure for extracting the 
yield of V0 particles, associated with a jet within a cone defined 
by Rmatch, can be summarized as follows. For each pT interval the 
JC V0 yield is extracted using the invariant mass technique, where 
the combinatorial background is interpolated from the side bands. 
Then the raw JC V0 yield is corrected for the contribution of parti-
cles from the underlying event (the UE V0).

Conceptually, the UE V0 particles represent the particles that 
are not associated with the hard scatterings tagged by the charged 
jets considered in this analysis. To extract the UE V0 yield sev-
eral estimators were investigated: i) an outside cone (OC) selec-
tion, composed of the V0 particles that satisfy the condition of 
R(V0, jet) > Rcut (e.g. Rcut = 0.6) within events containing a jet; ii) 
the perpendicular cone (PC) selection, composed of the V0 particles 
found in a range with radius R = 0.4 in η and ϕ space perpen-
dicular to the jet axis at the same η; and iii) the non-jet event (NJ) 
selection, composed of the V0 particles found in events that do not 
contain a jet with pch

T, jet > 5 GeV/c.
In practice, a useful quantity for performing the subtraction of 

the non-jet contribution of the V0 particles is their density per unit 
area

ρV0
(pT) = NV0

(pT)/AV0
, (2)

where NV0
is the number of V0 particles and AV0

is the acceptance 
in pseudorapidity and azimuthal angle. Consequently, the number 
of the UE V0 particles within a jet cone can be calculated as N =
ρV0

Ajet for each estimator separately. The jet area Ajet = π R2
match

is considered in this analysis. In general the density of V0 particles 
within jets can be defined as

ρV0

JC − ρV0

UE, (3)

where UE can be any of the OC, PC, or NJ background estimators. 
In this analysis, PC is chosen as the default background estimator, 
while OC and NJ are used to quantify the systematic uncertainty.

2.5. Corrections for finite V0 reconstruction efficiency and feed-down

The reconstruction efficiencies of V0 particles are estimated us-
ing the DPMJET [73] and Pythia 6 [68] Monte Carlo generators in 
p–Pb and pp collisions, respectively, with the same selection crite-
ria as in the data except the daughter track particle identification 
with dE/dx in the TPC (see more details in [23]). These simulations 
are based on the GEANT 3 transport code [69] for the detector de-
scription and response.

Due to differences in the experimental acceptance for V0 par-
ticles associated with jets and those extracted through the various 
estimators of the underlying event, the efficiencies of V0 particles 
are estimated separately for every case. Fig. 1 shows the recon-
struction efficiencies for inclusive V0s and those for JC V0s with 
R(V0, jet) < 0.4 and UE V0s. The UE V0s are estimated with the 
OC estimator with R(V0, jet) > 0.6 in p–Pb collisions and with the 
PC estimator in pp collisions. In particular, for R(V0, jet) < 0.4 the 
efficiency at pT < 2 GeV/c is about 20% larger than in the inclu-
sive case while it approaches the inclusive case at higher pT. This 
is due to the fact that the η-differential reconstruction efficiency 
of V0 particles decreases with |ηlab| and the pseudorapidity distri-
bution of V0 particles matched with jets is narrower than that of 
inclusive ones. This results in a higher η-integrated efficiency of JC 
V0s than inclusive V0s. This effect is more pronounced at low pT.

3
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Fig. 1. Reconstruction efficiency of V0 particles in p–Pb collisions at √sNN = 5.02 TeV (left panel) and in pp collisions at √s = 7 TeV (right panel) for three selection 
criteria: inclusive, within R(V0, jet) < 0.4 and V0s in UE (upper panels) and the ratio relative to inclusive selection (lower panels). UE V0s are estimated with the OC 
estimator (R(V0, jet) > 0.6) in p–Pb collisions and with the PC estimator in pp collisions.

Table 1
Relative systematic uncertainties in percent for K0

S , �, and � in p–Pb collisions at √sNN = 5.02 TeV. 
The right three columns in the last two rows represent the uncertainties of � + �. For each particle, the 
reported values correspond to the uncertainties at pT = 0.6, 2, and 10 GeV/c. See text for details.

K0
S � �

Particle identification < 1 negl. negl. 3.2 negl. negl. 2.7
Track selection negl. negl. 1.5 negl. 1 1.7 negl. 1 2
Topological selection 0.3 1.1 0.7 0.7 1.6 0.7 0.6 1.6 0.5
Proper lifetime negl. 2.9 3.7 negl. 2.6 3.5 negl.
Competing V0 selection < 1 negl. negl. 3.4 negl. negl. 1.3
Signal extraction 1.8 4.2 2.4 2.1 1.8 1.3 1.3 1.8 1.3

Jet pT scale 1.4 5.4 37.1 3.2 4.2 41.1
UE subtraction 21 9.6 1.2 40 24 0.6

The pT-differential yields of � and � reconstructed for JC and 
UE selections are also corrected for the feed-down from the de-
cays of 
0 and 
− particles and their respective anti-particles. 
The 
 production in jets is estimated based on measurements of 
the multi-strange baryons and their decays at high pT performed 
in pp collisions [74] and extrapolated to low pT using the Pythia 8
event generator. The applied correction amounts to 15% and is in-
dependent of the � and � momenta. Conversely, the � yields are 
not corrected for the feed-down from �− baryons as this contri-
bution is negligible compared to the systematic uncertainties of 
the present measurement. Since � from non-weak decays of the 
�0 and �∗(1385) family cannot be distinguished from the direct 
ones, the identified � yield includes these contributions [72].

2.6. Systematic uncertainties

The main sources of systematic uncertainty in the V0 particle 
reconstruction are uncertainties on the material budget (4%), the 
track selection (up to 4%), feed-down correction for the � (5% for 
pT < 3.7 GeV/c and 7% for pT > 3.7 GeV/c), proper lifetime selec-
tion criteria (up to ∼ 4%), and topological selections depending on 
transverse momentum and particle species (up to 1.6%). The sys-
tematic uncertainties on the extracted yields for K0

S mesons and �
and � baryons in p–Pb and pp collisions are reported as point-to-
point uncertainties in Table 1 and Table 2. The “negl.” in the table 
denotes an uncertainty of less than 0.1%. The total uncertainty 
on the yields is calculated by adding the individual uncertainties 
on track selection, material budget, feed-down corrections and the 
listed V0 selections in quadrature.

Particle identification (PID). The uncertainty due to the parti-
cle identification is estimated by varying the selection criteria of 
the dE/dx in the TPC from a default 5σ to 4, 6 and 7 standard de-
viations from the nominal dE/dx for pions and protons normalized
to the detector resolution.

Track selection. The uncertainty originating from the track se-
lection is estimated by repeating the analysis with an increased 
number of required TPC space points per track by about 7% and 
15% from the nominal requirement of 70 points.

Topological selection. The uncertainty associated with the 
topological selection of the V0 candidates (the two-dimensional 
decay radius, daughter track DCA to primary vertex, DCA of V0

daughters, and cosine of the pointing angle) is obtained by vary-
ing the parameters of the selections for each of the V0 species 
separately as described in detail in Ref. [23].

Proper lifetime selection. The uncertainty due to the selection 
on the proper lifetime of V0 candidates, defined as the product 
of the mass m0, decay length L, and the inverse of the particle 
momentum p (m0Lc/p < 20 cm for K0

S and m0Lc/p < 30 cm for �
and �), is obtained by redoing the analysis with different selection 
criteria (12 and 40 cm for K0

S and 20 and 40 cm for � and �).
Competing V0 selection. The invariant mass of each candidate 

can be calculated either under the K0
S or the � (�) mass hy-

pothesis. A K0
S candidate is rejected if its invariant mass under 

the hypothesis of a � or � lies in the window of ±10 MeV/c2

around the mass of the � or �, and a � (�) candidate is rejected 
if its invariant mass under the K0

S hypothesis lies in the window of 
±5 MeV/c2 around the K0

S mass. To assess the uncertainty related 
to this selection the analysis is repeated varying the invariant mass 
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Table 2
Relative systematic uncertainties in percent for K0

S , �, and � in pp collisions at √s = 7 TeV. The right 
three columns in the last two rows represent the uncertainties of � + �. For each particle, the reported 
values correspond to the uncertainties at pT = 0.6, 2 and, 10 GeV/c. See text for details.

K0
S � �

Particle identification negl. negl. 2.3 negl. negl. 5 negl. negl. 2.5
Track selection 1.8 3.6 2.8 1.7 4 3.6 1.5 4.3 2.5
Topological selection 2.4 negl. negl. 3.5 0.7 5.1 3.7 1.5 2.5
Proper lifetime negl. 2.6 3 negl. 2.7 2.5 negl.
Competing V0 selection < 1 negl. negl. 9.5 negl. negl. 10.6
Signal extraction negl. negl. 1.4 < 1 negl. negl. 1.3

Jet pT scale 0.5 1 9.9 5.3 2 10
UE subtraction 4.8 3.6 negl. 8.9 11.2 negl.

Table 3
Relative systematic uncertainties in percent for the (� + �)/2K0

S ratio of the spectrum of K0
S

and � (�) for pch
T, jet > 10 and 20 GeV/c in p–Pb collisions at √sNN = 5.02 TeV, and for 

pch
T, jet > 10 GeV/c in pp collisions at √s = 7 TeV. For each case, the reported values correspond 

to the uncertainties at pT = 0.6, 2, and 10 GeV/c.

p–Pb pp

pT > 10 GeV/c pT > 20 GeV/c pT > 10 GeV/c

V0 reconstruction 8.3 8.9 9.2 8.8 8.1 9.2 4.3 4.8 11.9
Jet pT scale 1.5 4.2 3.3 9.2 2.4 7.4 1.6 2 0.7
UE subtraction 26.3 10.3 negl. 21.1 7.1 negl. 7.5 8.2 negl.

window of 3 and 6 MeV/c2 for K0
S and with no rejection for � (�) 

baryons.
Underlying event subtraction. Two main sources of uncertain-

ties originating from the mis-association of V0 particles with the 
UE are considered: i) the V0 particle is found outside the selected 
jet and is classified as an UE particle; however, it may have orig-
inated from a physical jet outside the fiducial acceptance of jets 
considered in the analysis and/or from a true low-pT jet, below 
the considered thresholds; and ii) the V0 particle originates from a 
true high-pT jet; however, due to the finite detector efficiency the 
jet has not been reconstructed above the considered pT threshold.

The uncertainty on the UE V0 density is estimated using the OC 
and NJ selections as alternatives for the density calculation, since 
the former is sensitive to particles outside the jet cone but origi-
nating from a physical jet and the latter is sensitive to those signals 
contributing to the UE due to the finite detector efficiency. The 
standard deviation of the difference of the reconstructed V0 yields 
in OC and NJ is included as an additional systematic uncertainty 
on the density of particles within the jets. In p–Pb collisions the 
uncertainty is largest for low-momentum particles (pT < 2 GeV/c) 
reaching up to 20% (40%) for K0

S (�) but drops rapidly with pT to 
negligible values for pT > 6 GeV/c. For pp collisions the trend of 
the uncertainty is similar to the trend seen in p–Pb, however the 
magnitude is smaller, reaching values up to 5% (9%) for K0

S (�).
Jets pT scale. The systematic uncertainty originating from the 

selection of the jet pT is estimated by varying the jet pT around 
the chosen thresholds of 10 and 20 GeV/c by 2 GeV/c. This vari-
ation accounts for jet resolution effects due to detector effects 
and the fluctuations of the event background density as reported 
in Ref. [44]. For jets with pch

T, jet > 10 GeV/c at low momenta 
(pT, V0 < 2 GeV/c) it reaches up to 10%, while it is about 20% for 
jets of pch

T, jet > 20 GeV/c. It remains almost constant at about 3%

for pT, V0 > 2 GeV/c for jets pch
T, jet > 10 GeV/c and about 5% for jets 

pch
T, jet > 20 GeV/c.

Uncertainty of the (� + �)/2K0
S ratio. The uncertainties on V0

yields, material budget and feed-down correction are propagated 
to the ratio quadratically. The uncertainties related to the jet pT
and UE estimation are obtained by calculating the deviation of 
ratios between the default analysis and various selection criteria. 
Table 3 shows the point-to-point relative systematic uncertain-

ties on the (� + �)/2K0
S ratio reconstructed within R = 0.4 jets 

with pch
T, jet > 10 GeV/c (left column) and pch

T, jet > 20 GeV/c (middle 
column) in p–Pb collisions. For pch

T, jet > 20 GeV/c, the total uncer-
tainty is about 16% and is largely independent of particle pT with 
the largest contribution of 8–9% originating from the uncertainty 
on the V0 reconstruction. The relative systematic uncertainties on 
the (� + �)/2K0

S ratio for pp collisions are shown in the right col-
umn in Table 3.

3. Results

In the following, results for V0 particles with four different se-
lections are discussed. Their labels in the figures are defined as 
follows: i) V0s obtained from the unbiased events without any jet 
veto are labelled as “Inclusive” particles; ii) V0s matched to jets 
in a cone with a radius of 0.4 are labelled as particles within 
“R(V0, jet) < 0.4”, the remaining underlying event background is 
not subtracted from this sample; iii) the label “V0s in jets” refers to 
V0s produced in jets obtained by subtracting the underlying event 
background from the previous sample; iv) V0s from the underlying 
event estimated in cones perpendicular to the jet axis are labelled
as “Perp. cone” particles.

The fully corrected densities of K0
S and the sum of � and �

particles associated with a hard scattering, tagged by a jet, are 
shown in Figs. 2 and 3 for p–Pb and pp collisions, respectively. 
The per-jet density of V0 particles within jets is compared with 
that of inclusive particles (irrespective of their association with 
a hard scattering) and with underlying event V0s obtained using 
the PC selection. In the case of inclusive particles the distribution 
is normalized to the product of the total number of events and 
the acceptance of the V0 particles in a single event (full azimuth 
and |ηlab| < 0.75). As expected, the pT dependence of the den-
sity of both K0

S and � particles within jets, as defined by Eq. (3), 
is considerably less steep than in the case of inclusive particles. 
The density distribution of inclusive V0s is lower than that of the 
PC selection since the latter are obtained from events contain jets 
with pch

T, jet > 10 GeV/c. But the density distribution of the PC se-
lection shows a strong, steeply falling pT dependence with respect 
to the inclusive one. Both the inclusive and the PC distributions 
show a rapid decrease with pT, reaching values more than an order 
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Fig. 2. The pT-differential density of particles dρV0
/dpT (see Eq. (2)) in p–Pb colli-

sions at √sNN = 5.02 TeV for K0
S (upper panel) and the sum of � and � (lower 

panel). The density is shown for three selection criteria: inclusive particles from 
minimum bias events (black full circle), particles associated with the underlying 
event production estimated with PC selection (blue open circle, labelled as “Perp. 
cone” in the figure), JC V0s with R(V0, jet) < 0.4 (green full square). The density 
distribution of V0s in jets with UE background subtracted (defined by Eq. (3)) is 
shown as the red full triangle. Statistical uncertainties and systematic uncertainties 
are shown as vertical bars and open boxes, respectively.

of magnitude lower than the JC density for particle pT exceeding 
4 GeV/c. This is consistent with the expectation that the high-pT
particles originate from jet fragmentation.

Ratios of � and K0
S yields can be obtained by dividing the 

normalized density distributions. Here, the sum of the � and �
densities is divided by twice the density of K0

S . Fig. 4 shows the 
ratio for the JC selection (without the UE background subtrac-
tion) as a function of the distance from the jet axis R(V0, jet)
in p–Pb collisions. The ratio is shown for three pT intervals: low 
pT (0.6 < pT < 1.8 GeV/c), intermediate pT (2.2 < pT < 3.7 GeV/c), 
and high pT (4.2 < pT < 12 GeV/c). The sources of the systematic 
uncertainties (open boxes) are summarized in Table 3. The un-
certainty on V0 yields extraction is uncorrelated with V0 pT but 
correlated with R(V0, jet); the uncertainties on jet pT scale and 
on UE subtraction are uncorrelated on both V0 pT and R(V0, jet). 
The ratio as a function of R(V0, jet) at low pT, dominated by the 
UE contribution, is approximately constant at about 0.2. It is inde-
pendent of the distance to the jet axis even at large distances of 
R(V0, jet) > 1.2. This value is consistent with the inclusive mea-
surements in p–Pb collisions, but also in pp and peripheral Pb–Pb
collisions where effects related to the collective expansion of the 
system are either not present or small [24].

Conversely, the intermediate-pT selection shows an increase of 
the ratio from about 0.3 when evaluated close to the jet axis to 
values of about 0.6 at R(V0, jet) distances of about 0.5. For dis-
tances R(V0, jet) > 0.5 the ratio remains constant. The ratio of 0.6
is consistent with the inclusive measurement in p–Pb collisions 

Fig. 3. The pT-differential density of particles dρV0
/dpT (see Eq. (2)) in pp collisions 

at √s = 7 TeV for K0
S (upper), and the sum of � and � (lower). The density is 

shown for four selection criteria with the same definitions as Fig. 2.

Fig. 4. The (� + �)/2K0
S ratio in p–Pb collisions at √sNN = 5.02 TeV as a function 

of R(V0, jet) for three different V0-particle pT intervals associated with charged jets 
with pch

T, jet > 10 GeV/c. The data points of the ratios in 0.6 < pT, V0 < 1.8 GeV/c and 
in 4.2 < pT, V0 < 12 GeV/c are shifted to the left and right sides from the centre, 
along the R(V0, jet)-axis for better visibility. Statistical uncertainties (vertical bars) 
and systematic uncertainties (open boxes) are shown. The sources of the systematic 
uncertainty are summarized in Table 3. The uncertainty on V0 yields extraction is 
uncorrelated with V0 pT but correlated with R(V0, jet), the uncertainties on jet pT

scale and on UE subtraction are uncorrelated on both V0 pT and R(V0, jet).

[23] and this pT region is where the enhanced (� + �)/2K0
S ra-

tio in the inclusive measurements is found to be the largest. It is 
worthwhile to stress that for the results shown in Fig. 4, the UE 
backgrounds are not subtracted. Therefore, the evolution of the ra-
tio as a function of the distance from the jet axis demonstrates 
how the two sources, UE and jet, compete. The lack of enhance-
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Fig. 5. The (� + �)/2K0
S ratio in p–Pb collisions at √sNN = 5.02 TeV (upper panel) 

and pp collisions at √s = 7 TeV (lower panel) as a function of V0-particle pT, 
associated with charged jets with pch

T, jet > 10 GeV/c (for both pp and p–Pb colli-
sions) and 20 GeV/c (for p–Pb collisions only) together with that in inclusive and 
PC selection, and JC selection in case of pp collisions. The systematic uncertainties 
(open boxes) are fully uncorrelated with pT. In both upper and lower panels, the 
black dashed curves are the results for inclusive V0s from Pythia 8 simulations. The 
jet selection within Pythia 8 is made using the generator level information with 
pch

T, jet > 10 GeV/c shown as the red curves.

ment close to the jet axis indicates that the enhanced (� +�)/2K0
S

ratio is not associated with jets.
In each pT interval the ratio is dominated by the lower side of 

the selection window due to the steeply falling particle pT spec-
trum. This is especially the case for 4.2 < pT < 12 GeV/c where 
the dominating component originates from pT of about 4.5 GeV/c
and the R(V0, jet) dependence at high pT is similar to that for 
2.2 < pT < 3.7 GeV/c. The ratio at high pT associated with jets is 
discussed below.

Fig. 5 shows the ratio of � to K0
S as a function of particle pT in 

both pp and p–Pb collisions for the different selection criteria. The 
systematic uncertainties (open boxes) are fully uncorrelated with 
pT. In the case of p–Pb collisions, the ratio of the inclusive parti-
cles, the particles from the PC selection, and for those within jet 
with resolution parameter R = 0.4 and pch

T, jet > 10 and > 20 GeV/c
are shown. Prior to forming the ratio, the UE density contribu-
tion obtained with the PC selection is subtracted for each particle 
species separately. Additionally, the p–Pb results are shown for the 
case where every V0 particle is required to be close to the jet axis 
with its distance R(V0, jet) < 0.4. The inclusive and the PC dis-
tributions show the enhancement at a pT of about 3 GeV/c. The 
measurement of the inclusive case differs from that in Ref. [23] as 
the region |ηlab| < 0.75 is used here instead of the rapidity region 
in centre-of-mass frame 0 < yCMS < 0.5. The two measurements 
are otherwise consistent with each other. The PC distribution above 
2 GeV/c reaches systematically higher values than the inclusive. 

The ratio within jets is consistently lower than the inclusive one 
and approximately independent of pT beyond 2 GeV/c. In par-
ticular, for particles associated with the jet it does not show a 
maximum at intermediate pT. Clearly the enhancement of the ratio 
seen in the inclusive measurement is not present within jets. This 
conclusion holds not only for jets with pT > 10 GeV/c but also for 
higher pT (> 20 GeV/c) jets.

The results for pp collisions shown in Fig. 5 are obtained with 
jets reconstructed with R = 0.4 and for the same value of the 
matching radius R(V0, jet) < 0.4. Apart from the inclusive particle 
selection and UE selection, the figure shows the ratio for particles 
within jets for the UE subtracted in the JC and UE unsubtracted 
case, demonstrating the small magnitude of background effects. 
Qualitatively similar features of the ratio are seen in both collision 
systems.

Selecting hard scatterings according to the jet energy carried 
exclusively by the primary charged particles induces biases and 
inefficiencies in the selection of the parton showers. The bias is re-
lated to the probabilistic process of fragmentation and hadroniza-
tion. The analysis presented here tags only parton showers frag-
menting into a configuration of hadrons that produce a charged 
particle jet with pch

T, jet > 10 GeV/c with a given R with a finite 
efficiency. Therefore, there can be cases of V0 particles that origi-
nated from a parton shower but are rejected in the analysis based 
on the energy carried only by the primary charged particles. The 
same analysis performed using the Pythia 8 event generator shows 
that the most probable pT of the full jet with R = 0.4 is larger by 
about 40% as compared to the pch

T, jet. Moreover, since the daughters 
of the V0 particles are not included in the jet energy calculation 
there are cases of jets containing V0 particles but not included in 
the JC selection. On the other hand, Fig. 5 shows that the inclu-
sive (� + �)/2K0

S ratio at high pT is fully consistent with the ratio 
from particles associated with jets in this analysis. This suggests 
that the conclusion on the absence of the baryon-to-meson en-
hancement in jets made with the charged jets alone holds for all 
energetic parton showers and hadron configurations within jets.

Fig. 5 shows also the results compared with those obtained 
with the Pythia 8 [56] event generator with tune 4C (the dashed 
curves) run for pp collisions at 

√
s = 5.02 TeV (top panel) and √

s = 7 TeV (bottom panel). The comparison shows that the char-
acteristic maximum at intermediate pT in the inclusive ratio is 
not reproduced by the generator. However, for both collision sys-
tems the ratio within jets after the subtraction of the underlying 
event is consistent with the data points within uncertainties for 
pT > 6 GeV/c. Note that Pythia 8 was chosen here merely as an ex-
ample and the aim is not for a thorough review of the strangeness 
production in the Monte Carlo generators. The comparison with 
experimental data is found to be sufficient to demonstrate the 
clear similarities of the baryon-to-meson ratio within jets.

Fig. 6 shows the comparison of the ratio obtained in jets in pp 
and p–Pb collisions for the same selection of the matching radius 
R(V0, jet) < 0.4 in both systems. The ratio obtained in p–Pb colli-
sions is systematically higher for 2 < pT < 8 GeV/c with respect to 
that in pp collisions. However, the difference between the two col-
lision systems is less than 2σ . The deviation between pp and p–Pb 
collisions has to be studied with higher precision in the future.

4. Summary

The production of V0 particles (� baryons and K0
S mesons) is 

measured separately for particles associated with hard scatterings, 
tagged by reconstructed charged-particle jets, and the underlying 
event in p–Pb collisions at 

√
sNN = 5.02 TeV and pp collisions 

at 
√

s = 7 TeV for the first time at the LHC. The pT-differential 
density distributions of V0 particles associated within jets are com-
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Fig. 6. The (� +�)/2K0
S ratio in pp collisions at √s = 7 TeV and in p–Pb collisions 

at √sNN = 5.02 TeV as a function of V0-particle pT associated with charged parti-
cle jets with pch

T, jet > 10 GeV/c reconstructed using the anti-kT jet finder with reso-
lution parameter R = 0.4. The ratio is shown for the same selection of the matching 
radius R(V0, jet) < 0.4 in both systems. The systematic uncertainties (open boxes) 
are uncorrelated between the systems.

pared with those obtained from inclusive analysis and the under-
lying event. In both collision systems, the distribution of particles 
associated within jets is harder than that obtained in the underly-
ing event since the high-pT particles originate from jet fragmen-
tation. The density of particles in the UE is larger than in the 
inclusive case as the former is obtained from events requiring a 
presence of a jet with pch

T, jet > 10 GeV/c. The (� + �)/2K0
S ratio 

(without the UE subtracted) is studied as a function of R(V0, jet), 
defined as the distance between the jet axis and the V0 parti-
cle, in p–Pb collisions at 

√
sNN = 5.02 TeV. At intermediate pT, 

the ratio increases with R(V0, jet) from a value about 0.3 to 
0.6 up to R(V0, jet) = 0.5 reaching a constant value of about 
0.6 for R(V0, jet) > 0.5. This demonstrates that the enhanced 
(� + �)/2K0

S ratio at intermediate-pT observed in the inclusive 
analysis is not associated with jets since the underlying event con-
tribution is more significant at larger R(V0, jet). The (� + �)/2K0

S
ratio associated with jets (with the UE subtracted) is consistent 
with the inclusive case within uncertainties for pT > 6 GeV/c. The 
results in p–Pb collisions for R(V0, jet) < 0.4 are consistent with 
the ratio measured in pp collisions. Finally, the enhancement in 
the (� + �)/2K0

S ratio at intermediate pT found in the inclusive 
measurements in p–Pb and Pb–Pb collisions is not present for par-
ticles associated with hard scatterings tagged by jets reconstructed 
from charged particles for pch

T, jet > 10 GeV/c in p–Pb and pp col-
lisions. As the baryon-to-meson enhancement (“baryon anomaly”) 
found in the inclusive measurements has been linked to the inter-
play of radial flow and parton recombination at intermediate pT, 
its absence within the jet cone demonstrates that these effects are 
indeed limited to the soft particle production processes.
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