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Entropy considerations in improved 
circuits for a biologically‑inspired 
random pulse computer
Mario Stipčević1* & Mateja Batelić1,2

We present five novel or modified circuits intended for building a universal computer based on random 
pulse computing (RPC) paradigm, a biologically‑inspired way of computation in which variable is 
represented by a frequency of a random pulse train (RPT) rather than by a logic state. For the first time 
we investigate operation of RPC circuits from the point of entropy. In particular, we introduce entropy 
budget criterion (EBC) to reliably predict whether it is even possible to create a deterministic circuit 
for a given mathematical operation and show its relevance to numerical precision of calculations. 
Based on insights gained from the EBC, unlike in the previous art, where randomness is obtained 
from electronics noise or a pseudorandom shift register while processing circuitry is deterministic, 
in our approach both variable generation and signal processing rely on the random flip‑flop (RFF) 
whose randomness is derived from a fundamentally random quantum process. This approach offers an 
advantage in higher precision, better randomness of the output and conceptual simplicity of circuits.

Today, computing is almost exclusively done via the Digital Computation paradigm (DC), based on Turing 
machine theoretical model. Implemented in electronics logic circuitry, which executes Boolean logic opera-
tions, and realized in solid-state chips, this kind of model allows for a very fast computation with an arbitrary 
precision. Since DC is incapable of generating randomness, a version enriched by a (single) random number 
generator, the so-called "randomized Turing machine", offers execution and speedup of certain tasks by using 
randomized algorithms, for example testing the primality of (large) numbers by Soloway-Strassen  algorithm1,2.

A radically new, Quantum Computation (QC) paradigm has been proposed by Feynman in  19813. It makes 
use of strong correlations of quantum entanglement and superposition principle to reach an exponential speed-
up over DC of a small but evergrowing set of algorithms of a great practical  importance4. Input and output 
information to a QC is digital, however, internally it manages an analog construct: a multi-particle quantum 
state. The initial quantum state (the problem) is evolved by a set of operations to a final state (the solution), 
then measured to obtain a statistical output. A large effort is being put on building a universal programmable 
quantum computer of a precision that would have a practical significance, but thus far technological difficulties 
have kept that goal out of reach.

A Random Pulse Computing (RPC) paradigm, proposed in a seminal work of John von  Neumann5 in 1956, 
makes use of counting pulses that appear randomly in time, thus being similar to nerve pulses of living beings. 
RPC flashed in 1960s only to be run over by the digital computation that flourished in 1970s. Reborn in mid 
 2010s6, RPC can be thought of as a third computational paradigm, alongside to DC and QC paradigms. Variations 
of the initial RPC led to development of a large set of techniques known as stochastic computing7–9.

The main drive behind the recent revival of the RPC is a hope that it could efficiently (in terms of execution 
time, amount of hardware and energy consumption) solve problems that seem difficult and/or energy-consuming 
for the DC, but apparently easy for living beings, such as: deep learning that mimic human brain  operation10, digi-
tal signal processing  filters11, edge detection and noise reduction in visual images 12, fault-tolerant  computation13, 
hybrid neural network for sensor data processing, using near-sensor stochastic computation for data reduction, 
followed by precision binary  computation14, as well as for energy and space efficient, fault-immune neural 
networks for general  tasks15. However, unlike for DC circuits, a general theory of synthesis and analysis of RPC 
circuits is still missing. Even though attempts have been made towards general functional synthesis via approxi-
mate decomposition to Bernstein  polynomials16 or via a spectral transform  approach17, these approaches cannot 
be automated since they require guesswork and/or ad-hoc optimizations. As a thrilling complication, it has been 
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noted that the spectral transform approach may end up in two or more different Boolean circuits (which have 
different truth tables) that realize the exact same RPC  function17.

In the RPC, any input, output or intermittent numerical value is encoded in a random pulse train (RPT). In 
its original  appearance7,18, the RPT was a train of square electric pulses of a fixed height and width that appear 
randomly in time. In this work we use the so-called "unipolar" representation of the random pulse train whose 
pulse shape most closely resembles pulses found in synapses of mammalian nerve cells. Other representations 
known in literature are bipolar and stochastic single-line  representations7, as illustrated in Fig. 1a. Each pulse 
is generated upon a Poissonian random event. Such events can be obtained from pseudo-random  sources19, 
certain types of electronics  noise8, but for the best randomness they should preferably be derived from a discrete 
quantum-random process such as decay of a  nuclei20, single-photon  detection21 etc. The only parameter of such 
a pulse train (PT) is its pulse rate, which represents a number in the RPC computer.

The RPC computer performs calculation through a series of interconnected basic operation circuits which 
can be conveniently realized by Boolean logic circuits (OR, AND, NOT…). However, logic operations performed 
on digital pulses that can appear at any time, will generally result in pulses of variable duration or glitches which 
are unfit for further use, which represents a great technological inconvenience. The problem can be eliminated 
by discretizing the timeline into segments of duration �t , as shown in Fig. 1b, and assigning a pulse to each 
time segment through a binomial process with a constant probability p . This ensures that pulses from various 
pulse trains appear neatly aligned in time so that they can be reliably processed by logic circuits. Such pulses 
show striking resemblance to electrical nerve pulses shown in Fig. 1c. The "clock", of frequency fCLK = 1/�t , 
is now defining the time.

In this work we differ random pulse trains generated by the binomial process (RPT) and general pulse trains 
(PT) generated by any stationary process. The numerical information carried by a PT is its pulse probability 
p ∈ [0, 1] . If a different numerical range is required for an application, some sort of mapping must be applied.

Even though RPC computer uses digital pulses and randomness, just as probabilistic DC does, it radically 
differs from it. Firstly, with a difference that information is not in the form of a logic state of a register, but in 
the form of the RPT, the RPC fundamentally uses the time as a new dimension in calculation. Secondly, there 
is an enormous difference in amount of hardware required to perform mathematical operations. For example, 
simple ANDing of two time-discrete RPTs results in multiplication of two real numbers (as will be explained in 
“Relative KS entropy”), while multiplication of two floating-point numbers in DC would require a circuit made 
of hundreds of gates.

Thus far, precision of the basic RPC circuits has been analyzed assuming  RPTs7–9,18,22 or assuming specifi-
cally tailored strongly correlated  PTs16. In doing so, it has been noted that some RPC circuits generate correlated 
(non-random) output PTs and if such PTs are fed as input to further RPC circuits, a large computation error 
may  occur9,22,23. To tackle the problem of calculation accuracy, for the first time to the best of our knowledge, 
we investigate the operation of RPC circuits from a perspective of their input and output entropies, introducing 
notions of relative KS entropy and entropy budget, defined below. We also find a criterion for existence of a RPC 
circuit for a given mathematical operation.

Experimental setup and methods
The specific difference of our approach to the research of RPC circuits, with respect to the state of the art, is that 
we use quantum randomness for generation of RPTs. The source of randomness is a photoelectric  effect24 in 
which light of constant macroscopic intensity falls upon a single-photon avalanche photodiode (SPAD) caus-
ing a stationary detection process. While the average rate of a photon detection is proportional to the intensity 
of light, as explained in Ref.24, there is fundamentally no parameter of the system that could possibly give any 
information about when a photon is to be detected. Since the only parameter that describes the detection process 
is its rate, it is a Poissonian process, ideally suited for creation of an RPT described above.

The heart of the setup, shown in Fig. 2, is the DE0-Nano board (Terasic) containing the Intel-Altera Field 
Programmable Gate Array (FPGA) chip of the Cyclone IV family with 22, 320 macro cells and four Phase-locked 
loops (PLLs) each of which can generate up to 3 synchronized clock signals with arbitrary mutual phases. The 
RPC circuits are realized within this programmable chip.

Figure 1.  Random pulse train in which each pulse corresponds to a Poissonian random event with frequency 
1/〈ti〉 (a); time-discrete pulse train wherein appearance of a pulse in a given time segment of width �t is 
an independent binomial random event with probability p (b); one full cycle of a biologic nerve pulse in 
mammalians that lasts about 5 ms (c).
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The main system clock (CLK), that defines time discretization, has a duty cycle of 50% (pulse duration of 
500 ns). It is generated by a PLL, available within the FPGA. We have chosen the rate of fCLK = 1 MHz for the 
clock, thus time segments, shown in Fig. 1b, have duration of �t = 1µs.

To begin with, we use light-emitting diode (LED) for the light source from Hamamatsu (model L7868, peak 
wavelength �0 = 670 nm, FWHM spectral width �� = 30 nm), operated in continuous wave (CW) mode of 
constant intensity. For our purpose, the most important feature of the light source is that the photon emission 
times are not mutually correlated and therefore can be considered random. For the light source with a Gaussian 
emission spectrum, the coherence time is given  by25:

and for our source, it amounts about 50 fs. This means that detections should be uncorrelated as long as our 
photon detection rate is significantly lower than 1/τc ≈ 20 Tcps. In our setup, we use detection rates less or equal 
to 16 Mcps, thus being over 6 orders of magnitude below the rate at which temporal correlations may appear.

Secondly, in a SPAD, each incoming photon has a well-defined probability (aka. quantum efficiency) of gener-
ating one free carrier. The carrier is internally amplified, via the avalanche mechanism, to give a sizeable current 
signal, which is subsequently amplified and shaped into a digital pulse. We use a virtually afterpulse-free SPAD, 
model SUR500 from Laser Components, in a home-made single-photon detector (SPD) with active quench-
ing circuit similar to the one described in Ref.26. These SPDs provide a clean detection signal with afterpulsing 
probability < 0.02 %, a typical dark count rate of 16 kcps and dead time of 30 ns. In our setup, random pulses 
generated by an SPD are used either to generate time-discrete RPT or as an input to the so-called random flip-
flop (RFF)27, a stochastic logic circuit which we use in RPC circuits to add entropy or to make random decisions.

For generating RPTs, we use two SPDs (Det0 and Det1), which are illuminated by two independent LEDs 
(LED0 and LED1) operated in CW mode with adjustable intensity. Due to the randomness of photon emission 
from LEDs, detectors generate RPTs of high randomness. The average count frequency of each detector can be 
controlled by a personal computer (PC) via a frequency generator 33522A (Keysight), in the range from 20 kHz 
to 5 MHz, using the random-frequency-locked-loop (RFLL)  approach28. The output signal of each detector is 
fed into the FPGA and a pulse is generated within a time segment �ti if and only if one or more pulses have 
been received during the previous time segment �ti−1 . This allows us to generate two independent RPTs with 
probabilities p0 and p1 in the range of 0.02—0.98 , independently settable by the PC. We use those two RPTs as 
input variables to the tested RPC circuits.

A further eight SPDs, which add to total of ten SPDs included in the setup, are used to realize eight independ-
ent T-type random flip flop (TRFF) circuits whose schematic is shown in Fig. 3. Each SPD is illuminated by its 

(1)τc =
1

c

�
2
0

��

Figure 2.  Setup for experimental implementation and testing of RPC circuits.

Figure 3.  Realization of the T-type random flip-flop (TRFF): T and CP are its inputs, Q and Q are its outputs, 
while PD is an "internal" input (not shown in the symbol) that receives about 16 Mcps random pulses from 
a photon detector, situated outside of the FPGA and illuminated by a constant intensity light from an LED. 
Symbol of a T-type RFF is shown on the right end.
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own LED in the constant-intensity mode, so that it detects photons at a fixed rate fPD ≈ 16 Mcps. The photon 
detection rate fPD , being much higher than fCLK , ensures random operation of  TRFFs29.

Finally, outputs from the FPGA are being fed to a home-made 15-channel frequency meter connected to the 
PC, thus up to 15 different RPC circuits can be simultaneously measured and their output probabilities recorded. 
The multi-channel operation enables to cut down acquisition times, thus making possible to record detailed 
transfer functions. Since this system is not sensitive to distribution of pulses on a timeline, an additional time-
tagger ID900 from IdQuantique (not shown in the setup) was used to reconstruct times at which individual 
pulses arrive in a pulse train and store this information to the PC. This information is used for estimation of 
output entropies of various RPC circuits, as detailed in the next section.

We also wrote from scratch a computer program for simulation of RPC circuits using Monte Carlo method. 
i.e. method of repeated random sampling. It enabled us to evaluate and debug a large ensemble of circuit candi-
dates before embarking on a time-consuming practical realization and experimental testing of those that have 
shown satisfying performance.

Entropy considerations
A time-discrete PT generated has a well-defined pulse probability. Over time an N-dimensional vector of pulses/
bits x = (x0, x1, . . . , xN−1) is created which fully represents the PT in the following manner: xi = 1 signifies a 
pulse in the i-th time bin, while xi = 0 signifies no pulse. Shannon entropy of such a bitstream, seen as a sequence 
of 1-bit symbols is given by:

where the pulse probability is

This definition of entropy, which considers words of a length equal to 1 bit, is satisfactory, namely a good 
measure of randomness of the bitstream, in case when bits are generated in a statistically independent manner, 
such as in an RPT. In that case, entropy of 1 means maximally random binary sequence x (achieved for p = 1/2 ), 
a lesser value of entropy means a lesser randomness, and zero entropy means complete absence of randomness, 
i.e., a deterministic sequence (achieved for p = 0 or p = 1 ). However, in a general case of a pulse train, entropy 
of a binary string can only be properly grasped by considering longer words. For example, infinite-length tog-
gling train 0101010101…, following Eq. (2), suggests entropy of 1. However, when looked like a sequence of 
2-bit words, it is just a repetition of word "01" thus making it apparent that this sequence contains no entropy, 
and therefore for a general case we need a different definition of entropy. Shannon entropy of n-bit words, in 
literature, also known as " n-grams", is defined as

where pi is a probability of finding i-th of the possible 2n n-grams starting at any position in x. Following Ref.30, 
we introduce conditional entropies as the average information necessary to predict the next n-gram given the 
whole bitstream x

for n ≥ 2 and h1(x) ≡ H1(x) , where it is also assumed that the length of x goes to infinity. This definition implies 
that conditional entropies form a monotonic non-increasing  sequence30

Of particular interest is the entropy of the source, also known as Kolmogorov-Sinai entropy (henceforth KS 
entropy, or just entropy where not ambiguous), defined as

The interpretation of h is the average information necessary to predict the next bit, given all information about 
the dynamical system that generates the sequence of number x30,31. Because of monotonicity in Eq. (6), most of hn 
are very close or equal to h for large enough n. Therefore, h can be expressed as average hn in the limit of n → ∞

The last term, obtained by evaluation of the sum through iterative application of Eq. (5), tells us that the KS 
entropy is equal to the normalized Shannon entropy in the limit of infinitely large n-grams. In order to determine 
KS entropy of PTs obtained experimentally or by simulations, we wrote a computer program that calculates 
entropy according to Eq. (8).

It is important to note that for a system which contains a finite quantity of information, say M bits, condi-
tional entropies hn eventually fall to zero, thus h = 0 . All deterministic systems fall into this category, including 

(2)H1(x) = H
(

p(x)
)

:= −p(x)log2p(x)−
(

1− p(x)
)

log2
(

1− p(x)
)

,

(3)p(x) =
1

N

N−1
∑

i=0

xi .

(4)Hn(x) = −

2n−1
∑

i=0

pilog2pi ,

(5)hn(x) = Hn(x)−Hn−1(x),

(6)hn+1(x) ≤ hn(x).

(7)h(x) := lim
n→∞

hn(x).

(8)h(x) = lim
n→∞

1

n

n
∑

j=1

hj(x) = lim
n→∞

Hn(x)

n
.



5

Vol.:(0123456789)

Scientific Reports |          (2022) 12:115  | https://doi.org/10.1038/s41598-021-04177-9

www.nature.com/scientificreports/

pseudo-random ones. Only a system that contains an inexhaustible source of information can have h > 0 . An 
example of such a system is the TRFF circuit, shown in Fig. 3, which employs quantum randomness.

Relative KS entropy. From all discrete pulse trains x with pulse probability p(x) , binomial RPT defined 
as in Fig. 1b, has the maximal KS entropy. In practice, RPC circuits may produce PTs whose KS entropy is not 
maximal. For purpose of evaluating and comparing performance of a RPC circuits, we define relative KS entropy 
of an arbitrary PT x as

By virtue of Eq. (6), one finds that hrel lies within interval [0, 1]. It gives us a measure of how high entropy 
of a pulse train is with respect to the maximum entropy it could have with a given pulse probability. The 
maximum value of h0(x) = 1 is achieved when pulses in x are generated by a binomial process in which case 
h(x) = h1(x) = H1(x) = H(p(x)) , while value of 0 indicates deterministic generation process.

Entropy budget criterion. Central to this study of RPC circuits, we introduce a concept of entropy budget. 
Firstly, let us consider an n-input RPC circuit with input RPTs x0, . . . , xn−1 and an internal RPT xcirc , as shown 
in Fig. 4. For simplicity, but without loss of generalization, we consider only one internal RPT.

The Independence entropy bound theorem or IEBT (see e.g. Equation (2.96)  in32) states that the total available 
entropy is less than or equal to the sum of input entropies:

with equality sign holding true in the case when all entropy sources are statistically independent of each other. 
We note that even though IEBT  in22 is proven for Shannon entropy, it holds for KS entropy as well, because of 
the second equality in Eq. (8). Therefore, entropy of output xz is less than or equal to the total available entropy:

Equation (10) holds true for any RPC circuit. Secondly, let us now consider an arbitrary multivariable func-
tion pz(p) , where p = (p0, . . . , pn−1) is an n-dimensional vector of pulse probabilities associated with input RPTs 
x0, . . . , xn−1 , and ask whether a circuit that would output an RPT xz having a pulse probability p(xz) can exist. 
According to Eq. (10) and noting that for an RPT h(x) = H1(x) = H(p(xz)) , for any such circuit it must hold:

Finally, we name Eq. (11) the entropy budget criterion (EBC): if it is not fulfilled, no circuit may exist that 
would perform function pz(p) . Note that for a deterministic RPC circuit, by definition, the internal entropy 
h(xcirc) = 0.

Computation errors: systemic and statistical. There are two mutually independent sources of compu-
tation errors in an RPC circuit. The statistical error comes from the fact that the output RPT is a binomial variate 
measured or available over a finite time, say N clock intervals, and thus the variance of the output probability pz 
is given by σ 2

(

pz
)

= Npz(1− pz) . The systemic error is caused if circuit calculates the desired function in an 
approximate way. In this work, we are solely interested in the systemic error: the one that is intrinsic to the circuit 
and persists even when N tends to infinity.

Dynamic optimality. We say that a mathematical operation pz(p) is dynamically optimal if for the whole set 
of allowed input values p(the domain), the set of possible output values (the image) satisfies two conditions: (a) 
it is a subset of interval [0, 1] ; (b) it includes 0 and 1. For example, multiplication of n numbers pi ∈ [0, 1] , where 

(8a)hrel(x) =
h(x)

h1(x)
.

(9)h(x0, . . . , xn−1, xcirc) ≤ h(xcirc)+

n−1
∑

i=0

h(xi),

(10)h(xz) ≤ h(xcirc)+

n−1
∑

i=0

h(xi).

(11)H(p(xz)) ≤ h(xcirc)+

n−1
∑

i=0

h(xi).

Figure 4.  Possible entropy sources in an RPC circuit, available for generation of the output RPT xz , are the 
input RPTs x0, . . . , xn−1 , and an internal entropy source(s) xcirc.
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i = 0, . . . n− 1 , is dynamically optimal: it reaches minimum of 0 if at least one number is 0, while it reaches 
maximum of 1 when all numbers are equal to 1. Dynamic optimality is an important consideration in circuit 
design, whose purpose is to minimize computation errors.

Results
Basic arithmetic RPC circuits perform elementary binary operations: addition, subtraction, multiplication and 
division, and are a necessity towards building a universal RPC-based computer. While addition and multiplica-
tion can be performed without approximation and with relatively simple circuits, division and subtraction use 
approximate approaches, which result in erroneous calculation. The question is whether the precision can be 
improved, and at which cost. To preserve advantages of the RPC, in the design of novel circuits, one should take 
care of the following requirements:

1. Minimize computation error over the whole state space of input parameters;
2. Minimize deviation from the Binomial process at the output;
3. Minimize quantity of hardware required to build the circuit.

Of course, these three requirements are generally pairwise exclusive, thus generating a Mexican standoff situ-
ation. Therefore, generating new and/or improved circuits for the RPC is not trivial. Here, we present circuits 
for mathematical operations as well as their entropy budgets starting from multiplication and addition, whose 
circuits are already well known, to division and subtraction, where we introduce novel circuits, along with the 
magnitude comparator.

Additionally, the simplest unary operation is negation: in an RPT with pulse probability p, it replaces each 
pulse with no-pulse and each no-pulse with a pulse, effectively calculating operation 1− p . It is performed by 
the NOT logic circuit, as will be shown in Sect. 3.4.

Multiplication circuits. Multiplication is the simplest operation in the RPC. It is well known that it can be 
performed with an AND gate, as shown in Fig. 5a 18. If pulses with probabilities p0 and p1 from RPTs are inde-
pendent, a probability to have two such pulses in the same time segment is just p0 · p1 . Therefore, this circuit 
gives an exact result, and its output is an RPT. Moreover, this circuit can be upgraded to multiply more numbers 
simultaneously (not in a cascade) by adding the required number of inputs to the AND gate, as shown in Fig. 5b. 
This circuit is dynamically optimal: it reaches 0 if any input is equal to 0, while it reaches 1 only if all inputs are 
equal to 1.

Multiplication circuits of Fig. 5 satisfy the EBC. This is proven in the Appendix I for multiplication of two 
variables. By cascading that result, it is easy to see that the EBC holds for any number of variables, that is

where we denote bitwise AND operation with symbol & and pz = p0 · p1 · · · · · pn−1.

Addition circuits. The second operation presented in this article is addition. Sum of two probabilities spans 
the whole interval [0, 2] , while output of an RPC circuit, being itself a probability, cannot surpass 1. Therefore, 
plain addition is not realizable. Here we discuss two approaches.

The first approach is approximate addition, shown in Fig. 6a. First of all, the OR gate conveys pulses from 
either input to the output and thus "sums" the two RPTs. But, whenever two pulses from the inputs coincide in 
time, only one pulse will be formed at the output instead of two. The basic probability calculus yields the expres-
sion for the output pulse probability pz:

While this particular binary operation may be useful in its own right, it can also be used to perform an approx-
imate addition since, for sufficiently small p0 and/or p1 , the multiplicative term becomes negligible. Furthermore, 
this circuit is dynamically optimal, namely pz ∈ [0, 1] , which can be concluded from the following equality:

Due to the statistical independence of the input RPTs, output is also an RPT. Therefore, the output has a 
maximal relative KS entropy, from which we conclude that the EBC is satisfied.

(12)hp(x0&x1& . . .&xn−1) ≤

n−1
∑

i=0

h
(

pi
)

,

(13)pz = p0 + p1 − p0p1.

(14)pz = 1−
(

1− p0
)(

1− p1
)

.

Figure 5.  Circuits for exact multiplication of two numbers (a); and three numbers (b).
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Lastly, this circuit can be generalized to perform a simultaneous operation on three or more numbers by just 
adding physical inputs to the OR gate. For example, for three RPTs with probabilities p0, p1, p2 a 3-input OR 
gate would calculate:

which is again dynamically optimal, generates an RPT and calculates approximate summation in the limit of 
vanishing input probabilities.

The second approach is fractional summation based on a multiplexer circuit (MUX), as shown in Figure 6b. 
MUX circuit is well known in the art: it permits to select one of its inputs and forward it to the single output. 
The selection is done according to the numerical code at the "select" input(s). In our case, we use MUX with two 
inputs wherein selection is controlled by a random bit. Upon each clock, MUX selects randomly, and with equal 
probability, the input from which it conveys signal to the output, resulting in the following operation:

Apart from implementation imperfections, this circuit performs half-sum exactly. It is also dynamically 
optimal. Randomness of the selection process is crucial for the output to be an RPT. The extra factor 1/2 can 
be, in principle, counted in a calculation and this should not present a problem. However, a caution needs to be 
exercised because this kind of binary (2-input) addition is not associative:

According to the EBC, a deterministic circuit that would perform operation in Eq. (16) is impossible. This 
is illustrated by theoretical calculation shown in Fig. 7. The orange-red tongues indicate areas of input vari-
ables for which the total entropy of inputs is less than the entropy of output. In particular, input combinations 
p0 = 0, p1 = 1 and p0 = 1, p1 = 0 have a zero total entropy, while the output entropy should be 1 (per time 
segment). From that, one concludes that a feasible circuit must contain an internal entropy source capable of 
generating at least entropy of 1.

On the other hand, if input probabilities are halved, as effectively done by the RFF in the circuit shown in 
Fig. 6b, the entropy budget inequality becomes satisfied, that is

(15)pz = p0 + p1 + p1 − p0p1 − p1p2 − p2p0 + p0p1p2 = 1−
(

1− p0
)(

1− p1
)(

1− p2
)

,

(16)pz =
p0 + p1

2
.

(17)
1

2

(

1

2

(

p0 + p1
)

+ p2

)

�=
1

2

(

p0 +
1

2

(

p1 + p2
)

)

.

(18)H

(
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2

)
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(p0
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+H

(p1

2

)

.

Figure 6.  Addition circuits: approximate one with OR gate (a); exact one with a multiplexer (MUX) circuit (b).

Figure 7.  Entropy budget of a summation circuit with inputs  p0 and p1 that would output pz = (p0 + p1)/2 . 
Plot shows the function H

(

p0, p1
)

= H(pz)−
(

H
(

p0
)

+H
(

p1
))

.
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Inequality Eq. (18) is strictly proven as Theorem 2 in Appendix II. We note that the clocked RFF circuit acts 
as an entropy source of exactly 1, so the equality in Eq. (11) may be achieved even in the red parts. This is an 
example of a circuit that uses internal source of entropy in order to meet the EBC.

One could ask here whether injecting entropy of 1 with each clock is an optimal use of resources. Namely, a 
deterministic circuit which operates correctly, for the region of input parameters under the green and blue parts 
of the surface in Fig. 7, is allowed by the EBC. For example, the input parameter point p0 = 0.45 , p1 = 0.3 is 
well within the green–blue area. The total input entropy is H(0.45)+H(0.3) ≈ 0.993+ 0.881 = 1.874 , while 
the output entropy is H(0.375) = 0.954. Thus, for calculation at this point, no additional entropy is needed. The 
problem is that, unlike in Boolean logic, where a circuit performing any function can be systematically synthe-
sized and  minimized33, there is no such theory for the randomized Boolean logic yet. Thus, construction of RPC 
circuits is left to intuition and guesswork.

Finally, in principle, the fractional summation circuit can be generalized to sum more than 2 inputs. Par-
ticularly, a binary tree of n MUX circuits can be used to realize a 2n-input summation circuit, so the sum would 
appear divided by 2n.

Division circuits. Probably the most important and at the same time most difficult RPC circuit for realiza-
tion is that of division. Candidate circuits have been extensively studied in the  past22,34, offering various tradeoffs. 
For example, one circuit in Ref.16 makes use of the law of total probability in order to achieve a high precision, but 
relies on specially prepared, strongly correlated inputs. Here we present three different circuits for division oper-
ation which accept uncorrelated RPTs. To begin with, the usual way to realize (approximate) division is through 
a negative feedback loop, which functions as follows. One starts with a guessed value of pz (say 0.5), multiply it 
with p1 (we do know how to multiply exactly!) and compare the result to p0 . If the result is smaller than p0, pz is 
enlarged by a small increment, but if it is larger, it is decreased, and the process repeats. This iterative process will 
lead to an equilibrium around the right solution. A circuit that does that, published in Refs.7  and22, is shown in 
Fig. 8a. It consists of three types of complex circuits, well known in standard Boolean logic: an N-bit counter, a 
comparator of two N-bit integer numbers (also known as "magnitude comparator") and a Linear Feedback Shift 
Register (LFSR) that generates a pseudo-random N-bit integer number. This particular circuit generates pulses 
of width �t (instead of �t/2 ), because of which consecutive pulses are "glued" into one long pulse, thus lower-
ing the apparent number of pulses for downstream RPC circuits that use a counter (such as this one). To avoid 
this pitfall and to keep uniform format of pulses throughout the setup, we use a slightly modified version shown 
in Fig. 8b., named DIV1, which generates standard pulses of width �t/2. The two versions perform the same.

We emphasize that it is assumed, throughout this work, that an N-bit counter can neither count over its maxi-
mum of ( 2N − 1 ) nor below zero. This can be achieved by a simple control circuitry not shown in the schematics.

Moreover, the transfer function and systemic errors of the divider DIV1, obtained experimentally for a 
certain space of input parameters p0 , p1 and counter bit of length N , are shown in Fig. 9. Here, and in the rest of 
the presentation, colored curves are obtained by connecting 72 experimentally measured points by a piece-wise 
straight line. Probability of the output PT is evaluated according to Eq. (3) with statistics of N = 8 · 107 bits (time 
intervals) inf order to reach the statistical error of only 1.1 · 10−4.

The black dots, shown exclusively in Fig. 9a, represent a Monte Carlo simulation. Measurements and simula-
tion coincide within the statistical error. We made the same check for all subsequent circuits to make sure that 
both our simulations and practical circuits work correctly.

Ideally, the transfer function should consist of two lines that meet at a sharp knee: pz = p0/p1 for p0≤ p1 and 
pz = 1 for p0> p1 . Circuit DIV1 does that only approximately and approximation improves with a usage of a 
counter with a larger number of bits N . But even with a large enough counter to ensure good precision, DIV1 
exhibits several setbacks, some of which are discussed  in35, such as the following. Firstly, the LFSR shifts by one 
bit with each CLK pulse so consecutive numbers, to which comparators compare to, are not independent. This 
tends to correlate output bits and lower the output entropy. One way to improve this could be to shift the LFSR 
by N  bits on each CLK pulse (which is technologically cumbersome and requires a longer LFSR) or to use N 
independent LFSRs (which is resource-expensive). Secondly, one cannot use the same LFSR for multiple circuits 
because their outputs would become cross-correlated. Finally, a LFSR must be seeded with a non-zero random 

Figure 8.  Feedback based division circuit: full-width-pulse version (a); half-width-pulse version (DIV1) (b).
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number to operate. In order to avoid cross-correlations, seeds should be different for each LFSR or LFSRs should 
all be different, which would greatly complicate the RPC computer.

In order to avoid these pitfalls all in one stroke, here we propose to use true randomness implemented via 
RFFs, as shown in Fig. 10. According  to27, a T-type RFF (TRFF) acts as an ordinary TFF with a difference that 
its clock input (Cp) acts with probability of 0.5, randomly. Thus, if T input is held HIGH, a TRFF generates an 
independent, truly random bit upon each clock pulse. For the simplicity of drawing, throughout this paper, we 
will always assume that input T is held HIGH.

Indeed, we find that this circuit, named DIV2, performs better in terms of output randomness than circuit 
DIV1, but their precision is virtually the same (to within 0.1%) and shown in Fig. 9. To further improve the 
precision of division and reduce the hardware cost, we propose a new circuit DIV3, shown in Fig. 11.

This circuit achieves better precision with a given counter capacity ( N ), while at the same time it does not 
require sources of randomness nor a resource-expensive digital comparator. Its transfer function and errors are 
shown in Fig. 12.

Transfer function is significantly improved compared to DIV1 and DIV2 for the same counter capacity N 
(Fig. 12a). The error, shown in Fig. 12b, is reduced by 1–2 orders of magnitude, peaking only around the "knee", 
where the circuit counter enters saturation. DIV3 is a deterministic division circuit.

After presenting division circuits, it is important to examine the fulfillment of the EBC. As already mentioned, 
division is a difficult operation in RPC and only approximate methods to realize it are known. It is so for a couple 
of reasons. Firstly, division can result in a value larger than 1. Because of that, we will consider a "clipped" divi-
sion: pz

(

p0, p1
)

= Min
(

p0/p1, 1
)

 . Secondly, division of two small numbers may yield the output entropy larger 
than the sum of entropies of the two input numbers, leading to the EBC not being fulfilled. For example, in case 

Figure 9.  Transfer functions (a); and errors from the ideal division calculation (b), for the circuit DIV1, shown 
in Fig. 8b. N is the counter capacity in bits.

Figure 10.  The improved division circuit DIV2 uses of T-type random flip-flops as internal source of entropy.

Figure 11.  A simple and precise deterministic division circuit DIV3.
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p0 = 0.02, p1 = 0.04 ⇒ pz = p0/p1 = 0.5, we have total input entropy H
(

p0
)

+H
(

p1
)

= 0.384, while output 
entropy H

(

pz
)

= 1 . The EBC for the division is not fulfilled in a sizeable area around point (0, 0) , as shown in 
Fig. 13, which tells us that a deterministic circuit for division is not possible.

In this entropy budget analysis, illustrated in Fig. 13, we have proven that a circuit such as DIV3 cannot work 
correctly. Indeed, since it either passes high frequency pulses from CLK or blocks them, DIV3 tends to generate 
long bursts of consecutive pulses followed by lengthy periods of absence of pulses, as shown in the oscillogram 
in Fig. 14a, for the division p0/p1 = 0.3/0.5 . This type of output has a low relative KS entropy. Significantly better 
randomness is achieved by the circuit DIV2 for the same input variables, as illustrated in Fig. 14b.

To evaluate output randomness from different circuits numerically, we calculate relative KS entropy on long 
series of RPTs, obtained experimentally from the three division circuits. Results are shown in Fig. 15. For a short 
counter ( N = 4 bits), we see that DIV2 is by far the best one for virtually any combination of p0 and p1, with 

Figure 12.  The transfer function (a); and errors from the ideal division calculation (b) for the circuit DIV3.N is 
the counter capacity in bits.

Figure 13.  Entropy budget of a division circuit with inputs  p0 and p1 that would output clipped division 
pz = Min

(

p0/p1, 1
)

 . Plot shows the function H
(

p0, p1
)

= H(pz)−
(

H
(

p0
)

+H
(

p1
))

.

Figure 14.  Oscillograms of output RPTs from division circuits DIV3 (a) and DIV2 (b), for input values p0 = 
0.3 and p1 = 0.5.
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respect to the output entropy. We note that replacing LFSR in DIV1 with RFFs in DIV2 significantly improves 
the entropy, and thus randomness, of the circuit. Thus, DIV2 is a clear winner for a general-purpose division. 
Nevertheless, due to its low hardware cost and high precision, DIV3 is still a valuable circuit. Namely, even though 
DIV3 generally performs miserably in terms of entropy, it becomes quite good for p1 ≤ 0.1 , where it is roughly 
equal to DIV1 for a short counter ( N = 4 ) and even better than DIV1 and close to DIV2 for a long counter 
( N = 8 ). Therefore, if in a complex calculation, input p1 is limited to about 0.1 for any reason, then DIV3 is an 
appropriate choice for a divider that saves resources.

Subtraction circuits. Subtraction seems to be the most complicated of all basic arithmetic functions in the 
RPC paradigm because the only known way to perform subtraction is by using the following identity:

which includes division. It is important to note that subtraction can result in a value less than zero. Because 
of that, we will use a "floored" subtraction: pz = Max

(

p1 − p0, 0
)

 . Here we describe three different circuits for 
subtraction. To begin with, circuit that executes Eq. (19) exactly is shown in Fig. 16a. By inserting the practical 
division circuit DIV1 shown in Fig. 8b, one arrives to an approximate subtraction circuit shown in Fig. 16b, that 
we name SUB1.

Again, improvement in randomness and hardware reduction, without a gain in precision, can be obtained 
by substituting LFSR with TRFF, as shown in Fig. 17, and we name that circuit SUB2.

Transfer function and errors of circuit SUB1, virtually equal to those of SUB2, are shown in Fig. 18.
Following the fact that deterministic circuit for division is not possible and that a subtraction circuit can be 

obtained from division and a few deterministic circuits, one might be tempted to conclude that deterministic 
subtraction circuit is not possible. Surprisingly, numerical analysis of the entropy budget, shown in Fig. 19, reveals 
that the EBC holds for subtraction, which is proven as Theorem 3 in Appendix III, and therefore a deterministic 
subtraction circuit should be possible. However, this notion does not give us any clue on how to build one, how 
complex it may be, or what precision it can reach with a bounded complexity. Indeed, Liu and Parhi proposed a 
deterministic circuit for subtraction using one NOR gate 22 which yields very imprecise calculation unless  p1 ≈ 1 
and p0 ≈ 0 , but can be improved by adding a series of "enhancement" circuits such that each additional circuit 
improves the precision. However, enhancement circuits are not "cheap": each involves two gates and one more 

(19)p1 − p0 =

(

1−
p0

p1

)

p1,

Figure 15.  Relative KS entropy of the output of the three division circuits that approximately calculate p0/p1 , 
for p1 = 0.1, 0.5 and 0.9, for a counter of N = 4 bits (a) and N = 8 bits (b).

Figure 16.  Subtraction via division principle (a); a subtraction circuit SUB1 that uses DIV1 (b).
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flip-flop than the previous one, while precision is not much improved, even when so many enhancement circuits 
are used that the complexity exceeds one of the counter-based circuits. In particular, the subtraction becomes 
very imprecise as p0 → 1 . This is an example of a circuit whose error approaches zero (quite slowly) in the limit 
of infinite number of constituent gates.

Towards finding a more economical and more precise solution, we, finally, propose a deterministic circuit 
SUB3 shown in Fig. 20, which exhibits significantly improved precision and a lower complexity than SUB2. 
Unfortunately, this circuit suffers a low relative KS entropy at the output.

It operates as follows. The counter memorizes how many pulses has arrived from p0 and inhibits exactly that 
many pulses from p1 . Therefore, in principle, it should perform an exact subtraction. However, an error occurs if 
counter does not have enough capacity to count all pulses from p0 before a pulse from p1 arrives. The chance of 
this happening is highest when p0 ≈ p1 and can be lowered by using a bigger counter. Even though this subtractor 

Figure 17.  Subtraction circuit SUB2 with an improved output randomness.

Figure 18.  Measured transfer function (a); and errors (difference from the ideal division) (b) for the circuit 
SUB1, for a fixed value of p1 = 0.3 and counter capacities of N = 2, 4, 6 and 8 bits. The results are equal for the 
improved circuit SUB2.

Figure 19.  A budget of a circuit with inputs  p0 and p1 that would output clipped subtraction 
pz = Max

(

p1 − p0, 0
)

 . Plot shows the function H
(

p0, p1
)

= H(pz)−
(

H
(

p0
)

+H
(

p1
))

.
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is not derived from a divider, the transfer function and errors, shown in Fig. 21, resemble patterns seen in the 
division circuit DIV3 in Fig. 11, probably because both use counters in the feedback loop.

A sharp edge between linear parts for N ≥ 4 indicates small computation errors. In fact, explanation of the 
transfer function and errors is quite similar to that of the division circuit DIV3 in Fig. 11. The output RPT of 
SUB3 will consist of alternating parts of high and low frequency, a behavior similar to and of the same origin as 
explained for the division circuit DIV3. This leads to an entropy lower than maximal for a given output prob-
ability of pulses pz . In addition, Fig. 22 shows relative KS entropy of measured outputs of the three presented 
subtraction circuits.

To conclude, we see that SUB2 has by far the best entropy for virtually any combination of p0 and p1 , which 
is expected since it has been derived from DIV2. Interestingly, the deterministic circuit SUB3 performs better 
in terms of entropy than SUB2 for large values of p1 , as well as being far more precise. Contrarily, for smaller 
values of p1 , its entropy performance is much worse than that of the other two circuits for reasons explained 
above. As argued for DIV3, SUB3 can be used in favorable input conditions ( p1 > 0.9 ) and is a circuit of choice 
for the last circuit in a calculation chain.

A flow control circuit: the magnitude comparator. To complete the full set of circuits needed to build 
a universal computing machine, except having calculation circuits, a universal computing machine must have a 

Figure 20.  A simple and precise subtraction circuit SUB3 with counter of N = 4 bits.

Figure 21.  Measured transfer function (a); and errors (difference from the ideal division) (b) for the circuit 
SUB3, for a fixed value of p1 = 0.3 and counter capacities of N = 2, 4 and 6 bits.

Figure 22.  Relative KS entropy of the output of the three subtraction circuits that calculate p1 − p0 , for p1 = 
0.1, 0.5 and 0.9, for a counter of N = 4 bits (a) and N = 8 bits (b).
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flow control that allows for decision tree branching loops etc. This is usually done through a function that com-
pares two numbers, such as p0 > p1 , which returns TRUE or FALSE (logical 1 or 0, respectively), while in the 
RPC it would return an RPT with p = 1 or p = 0, respectively.

We note that subtraction circuit SUB3 goes into saturation and yields 0 for all p0 > p1 , which, in theory, 
could be used to detect that p0 > p1 . But this measure is not sharp: it will not switch to 1 as soon as p0 < p1 , 
rather, it would give a small value equal to p1 − p0 . Instead, we propose a simple circuit, shown in Fig. 23a, which 
performs an arbitrary sharp comparison function. Output, being an RPT rather than a logic state, means that it 
can assume a value anywhere in the range [0, 1] , not only exact value of 0 or 1.

We opted for 8-bit circuits as they are the most optimal, in our opinion, regarding highest precision and 
smallest amount of hardware used. This circuit yields 0 when p0 < p1 and switch to 1 when p0 > p1 , with a 
sharpness that depends on the capacity of the counter, as seen in Fig. 23b. We find, heuristically, an approximate 
description of the transfer function of the circuit:

The hardware efficiency of this circuit is best appreciated by noting that the slope (derivative) of the transfer 
function at the point p0 = p1 is equal to (9/16)2N , i.e., it rises exponentially with the length of the counter N.

If, instead of an RPT, a steady logic state (HIGH or LOW) is required, for example for interfacing to a con-
ventional computer, then the AND gate and the CLK input can be omitted and the most significant bit (MSB) of 
the counter (in this case Q4 ) used as the output. Namely, the output probability pz

(

p0, p1
)

 equals the mean duty 
cycle of the MSB, thus state of the MSB is an optimal estimator of the state of the comparator circuit.

Influence of non‑maximal entropy to the precision of calculations. In an RPC computer, complex 
functions are achieved by connecting basic operation circuits in a network. As noted, the crucial assumption for 
proper operation of an RPC circuit is that it receives pulse trains of maximal relative KS entropy, otherwise it 
may not function properly. To illustrate the problem, we use the standard squaring  circuit22 fed by either division 
or subtraction circuit (DIV1-3, SUB1-3) that we studied above, as shown in Fig. 24.

This squaring circuit calculates square precisely when fed by an RPT. However, as already shown, circuits 
DIV1-3 and SUB1-3 produce PTs with a non-maximal relative KS entropy. To see how this influences precision 
of the computation, we define and measure two types of errors.

The first type of error is a total computation error, defined as py −
(

p0/p1
)2 for a division circuit and 

py −
(

p1 − p0
)2 for a subtraction circuit. This error encompasses both errors of the DIV (SUB) circuits and 

the squaring operation. The respective results are shown in Fig. 25a,b. Referring to Figs. 15 and 22, we see that 
the superior output entropy performance of RFF-based circuits DIV2 and SUB2 translates into 1–2 orders of 
magnitude smaller error in the region of interest (where p0 ≤ p1).

The second type of error accounts only for the error made by the squaring circuit, namely py − pz
2 , and 

is shown in Fig. 25c,d. This type of error shows how much the precision of the square circuit alone is affected 
by receiving the non-maximal input entropy. We emphasize that this error would be zero should inputs to the 

(20)pz
(

p0, p1
)

≈
1

1+ exp
(

9
8 2

N+1(
p1 − p0

)

) .

Figure 23.  The comparator circuit (a) and its transfer functions for various counter bit-lengths (b).

Figure 24.  A circuit for testing an FPGA realization of a squaring circuit for a time-discrete RPT. The circuit 
multiplies the input RPT with its copy delayed by one period of the CLK clock.
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squaring circuit be RPTs. Instead, we find striking similarity of total error and squaring error curves in the 
region of interest for both DIV-Square and SUB-Square composite circuits. This means that the total error is 
dominated by the squaring error. The lower error is achieved by DIV1 and SUB1 circuits which yield 1–2 orders 
of magnitude smaller error than the other circuits, for any p0 and p1 , because of their best performance in terms 
of the output entropy.

Discussion and conclusions
Functional circuits for the RPC in a computing paradigm are a subject of vivid research. For the first time, we 
use notion of entropy in the study of RPC circuits. We find a rule, named "entropy budget criterion" (EBC), 
which states that output entropy of any physical RPC circuit is smaller or equal to the sum of all available input 
and internal entropies. Using the EBC, we find that binary and n-ary multiplication and subtraction, as well as 
half-addition, can be done by a deterministic circuit, while the other two arithmetic operations, namely addition 
and division, cannot be accomplished by deterministic circuits and require an additional source of entropy. By 
showing that deterministic half-addition and subtraction circuits are allowed by the EBC, their actual design 
becomes an open problem.

In the previous art, precision of RPC circuits has been analyzed under the assumption that their inputs are fed 
by perfect RPTs, while the level of randomness of their output pulse trains (PT) was ignored 7–9. This approach 
has led to a large calculation errors when circuits are chained, for example in evaluation of polynomials 22. In 
this study, we introduce relative KS entropy as a figure of merit randomness of PT, that is of closeness of a PT to 
an RPT with the same pulse probability. Based upon a case study of the squaring circuit, as well as theoretical 
arguments, we conclude that an RPC circuit, whose output PT has relative KS entropy less than 1, will gener-
ally cause a computational error in downstream circuits. Since, eventually, the goal is to build a universal RPC 
computer by networking RPC circuits, one should strive to design circuits with output relative KS entropy being 
as high as possible, while keeping the hardware cost of circuits as low as possible. Bearing in mind those two 
opposing requirements, we have presented here four new circuits (DIV2, DIV3, SUB2, SUB3) with improved 
output randomness and shown that they indeed cause lesser error in the subsequent calculation than the previ-
ously known ones. Finally, to build a programmable computer, one also needs a flow control circuit such as the 
comparator, which we presented in the last section.

In our search for novel RPC circuits, we use biologically-inspired approach. As it turns out, cell body of 
mammal neuron contains a specialized structure, the axon hillock 36, which processes signals from multitude of 
input synapses in a way similar to an up/down counter, followed by a comparator. On top of that, it features the 

Figure 25.  Measured computation errors for composite circuits: total errors of division and subtraction circuits 
followed by the square circuit (a,b); squaring errors of division and subtraction circuits followed by the square 
circuit (c,d). Statistical error margins on all figures are on the order of 10−6.
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ability to invert input signals and reset the counter. Excitatory pulses from synapses increase, while inhibitory 
pulses decrease the state of the neuronal counter. Literature is vague on how many pulses a neuron can count 
before going into saturation, but some works mention  thousands37, which could account for up to 10–12 bits. 
Additionally, it has been found that some simple neurons emit random pulses without any  input38. These may 
serve as a source of additional entropy needed to satisfy the EBC. Thus, live neurons integrate all of the functions 
required to build RPC circuits presented in this work.

Regarding hardware cost, a counter and a magnitude comparator each require dozens to hundreds of logic 
gates. There is clearly a dramatic rise in number of logic gates of the division and subtraction circuits, in com-
parison to the multiplication and addition circuits. On the other hand, low hardware cost is supposed to be one 
of the main advantages of the RPC. One approach is to build RPC circuits from sequential logic circuits only, 
as in the aforementioned work of Liu and  Parhi22, which ended up with an overly complex subtraction circuit, 
which still has only a moderate precision.

Contrary to that approach, the biological neurons inspire us to follow the approach that includes counters, 
comparators, and random number generators. In doing so, one has to bear in mind that, while the digital 
approach, adopted here, is especially useful for understanding the basic principles of the RPC, it is not neces-
sarily the most hardware-efficient way to realize them. Indeed, recent research has demonstrated neuron-like 
functions by the use of analog silicon  chips39 or photon-induced plasticity of Si3N4SiO2 40.

We believe that bio-inspired research of RPC circuits can lead to high-performance artificial networks as well 
as to better understanding of live neurons and live neuronal networks.
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