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Collective nuclear excitations, like giant resonances, are sensitive to nuclear deformation, as evidenced by
alterations in their excitation energies and transition strength distributions. A common theoretical framework
to study these collective modes, the random-phase approximation (RPA), has to deal with large dimensions
spanned by all possible particle-hole configurations satisfying certain symmetries. It is the aim of this work
to establish a new theoretical framework to study the impact of deformation on spin-isospin excitations, that
is able to provide fast and reliable solutions of the RPA equations. The nuclear ground state is determined
with the axially deformed relativistic Hartree-Bogoliubov (RHB) model based on relativistic point-coupling
energy density functionals (EDFs). To study the excitations in the charge-exchange channel, an axially deformed
proton-neutron relativistic quasiparticle RPA (pnRQRPA) is developed in the linear response approach. After
benchmarking the axially deformed pnRQRPA in the spherical limit, a study of spin-isospin excitations including
Fermi, Gamow-Teller (GT), and spin-dipole (SD) is performed for selected p f -shell nuclei. For GT transitions,
it is demonstrated that deformation leads to a considerable fragmentation of the strength function. A mechanism
inducing the fragmentation is studied by decomposing the total strength to different projections of total angular
momentum K and constraining the nuclear shape to either spherical, prolate, or oblate. A similar fragmentation
is also observed for SD transitions, although somewhat moderated by the complex structure of these transitions,
while, as expected, the Fermi strength is almost shape independent. The axially deformed pnRQRPA introduced
in this work open perspectives for the future studies of deformation effects on astrophysically relevant weak
interaction processes, in particular beta decay and electron capture.

DOI: 10.1103/PhysRevC.110.024323

I. INTRODUCTION

The spin-isospin excitation is one of the fundamental col-
lective modes of a nucleus. Similar to the magnetic excitations
(Mλ), they induce spin-transitions between different nuclear
states; however, they also have the isospin component, which
allows proton-neutron mixing. According to the total angu-
lar momentum J and parity π , spin-isospin excitations are
categorized as Fermi (0+), Gamow-Teller (1+), spin dipoles
(0−, 1−, 2−), and other higher order multipoles. They play a
major role in determining the abundance patterns of r-process
nucleosynthesis through β-decay rates [1,2], as well as the dy-
namics of core-collapse supernovae through electron captures
[3]. Spin-isospin transitions also have significant implications
in the field of fundamental symmetries by playing a major
role in determining the nuclear matrix elements of the neu-
trinoless double β decay, which, if measured, would prove
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the existence of Majorana neutrinos and physics beyond the
standard model [4,5]. Furthermore, the difference between
isobaric analog and Gamow-Teller (GT) resonance energies
can be used to extract the neutron skin thickness, an important
quantity closely related to the symmetry energy J of infinite
nuclear matter [6,7]. Additionally, the neutron skin thickness
can also be extracted from the sum rules of spin-dipole (SD)
excitations [8]. Therefore, it is of great theoretical interest to
further improve our understanding of spin-isospin excitations.

Currently, there is a plethora of theoretical models with the
ability to investigate spin-isospin excitations, which can be
grouped into three main categories: (i) ab initio approaches,
(ii) the nuclear shell model, and (iii) energy density functional
theory (EDF). Although there has been significant progress
in recent years in ab initio nuclear theory [9–13], based on
nuclear interactions derived from chiral effective field theory,
the study of spin-isospin modes is restricted to considering
specific nuclei only. The shell model can handle the descrip-
tion of spin-isospin excitations and resonances up to the tin
region of the nuclide chart, after which the dimension of the
Hamiltonian becomes too large [14]. One of solutions is to
use the shell-model Monte Carlo (SMMC) approach, which
in principle has no such limitations, but produces less detailed
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strength functions [15]. However, in recent years, there has
been a significant improvement in underlying interactions,
based on ab initio Hamiltonians [16,17], as well as algorithms
for diagonalization of large matrices [18,19], which will allow
further expansion of shell-model calculations. On the other
hand, there is no other model with such excellent scaling
property as the EDF theory [20,21], which, in principle, al-
lows for the calculation of spin-isospin transitions throughout
the nuclide chart, from the proton to the neutron drip line.
Since ultimately, especially for astrophysical applications, it
is necessary to describe spin-isospin excitations globally, the
EDF theory is currently the only theoretical approach that
allows for such endeavors.

In EDF theory the energy is expressed as a functional of
nuclear density ρ, and its minimization leads to the nuclear
ground state. In principle, this is an exact theory if the un-
derlying functional corresponds to the exact nucleon-nucleon
interaction. Since such approaches are still unfeasible, nuclear
EDF theory often resorts to phenomenological functionals.
These phenomenological functionals are separated into two
categories: (i) nonrelativistic and (ii) relativistic. In this
work, we focus on relativistic EDFs, where nucleons are
pointlike Dirac particles, and their effective interaction is de-
scribed with four-fermion contact interaction terms, including
isoscalar-scalar, isoscalar-vector, and isovector-vector chan-
nels [22,23]. The corresponding Lagrangian density includes
free nucleon terms, point coupling interaction terms, coupling
of protons to the electromagnetic field, and the derivative term
accounting for the leading effects of finite-range interactions
[22]. For a quantitative description of nuclear density dis-
tributions and radii, the derivative terms are necessary [22].
The model includes the density dependence explicitly through
couplings in the interactions terms [23]. The relativistic EDF
allows the description of the coordinate and spin degrees of
freedom on the same footing, enabling the natural inclusion
of spin-orbit terms without any extra parameters. To consider
superfluid nuclei one has to transform from the basis of single-
particle Dirac states to quasi-particle (q.p.) states using the
Bogoliubov transformation, leading to the relativistic Hartree-
Bogoliubov (RHB) equation, which determines the ground
state of a superfluid nucleus [24].

To build the nuclear excitations on top of the RHB ground
state, we can consider an excitation operator composed of
a superposition of two-q.p. states, which leads to the theory
known as the relativistic quasiparticle random-phase approx-
imation (RQRPA) [25]. If the two-q.p. states consist of a
proton-neutron pair, then we can construct the proton-neutron
RQRPA (pnRQRPA), which allows for a description of spin-
isospin excitations [26]. The corresponding nonrelativistic
version is termed pnQRPA [27].

In our previous work [28], we demonstrated the basics of
the pnRQRPA equations in the response function formalism
assuming spherical symmetry. In this case it is advantageous
to use the fact that equations decouple based on angular
momentum and parity Jπ blocks once the proper angular
momentum coupling is performed. The angular momentum
coupling leads to a reasonable dimension of the model space
that requires only moderate computational resources. We have
applied spherical pnRQRPA to study spin-isospin excitations

in tin isotopes. Since these nuclei have closed proton shells at
Z = 50 and are located near the N = 82 neutron magic num-
ber, they are spherical or nearly spherical in their ground state.
However, for both proton and neutron open shells, most nuclei
discovered so far are axially deformed, requiring an extension
of the model. The calculations in the axial geometry are signif-
icantly more complicated than the spherical calculations. First
of all, compared to the spherical geometry, the dimension of
the model space is much larger since no angular momentum
coupling to Jπ blocks can be performed. However, in axial
deformation, the angular momentum projection on the z axis,
K , is still a good quantum number, and if we also consider
reflection-symmetric shapes, the pnRQRPA equations can be
decoupled into Kπ blocks. Instead of diagonalizing the pn-
RQRPA matrix in the space of all two-q.p. pairs, which is
around 105 for a reasonable basis size, we employ the linear
response formalism built for point-coupling EDFs with sepa-
rable pairing interactions [22,29]. This allows us to work in
the space determined by the number of interaction channels
and the coordinate mesh, which is around 103, significantly
lower than the two-q.p. dimension.

Due to high computational costs, most of previous cal-
culations of charge-exchange transitions for deformed nuclei
assume schematic models, usually with simple separable in-
teractions. Such models have been applied to study, e.g., the
rotational excitations [30], spin-isospin excitations, and sub-
sequent calculations of β-decay half-lives [31–33], including
the double β decay in both 2ν [34,35] and neutrinoless chan-
nels [36]. Although based on relatively simple interactions,
such calculations led to important discoveries concerning the
impact of deformation on observables of interest. As com-
puting power and numerical techniques were improved, more
sophisticated implementations of the pn(R)QRPA based on
the EDF theory have been developed. Most of these are
constrained to spherical nuclei [26,27,37–39]. Concerning
the method for solving pn(R)QRPA equations, on the one
hand, there are approaches based on the matrix equations,
which require diagonalizing large matrices [40–44]. On the
other hand, implementations based on the finite-amplitude
method (FAM), where one avoids the diagonalization and
solves the equations of motion for each excitation energy
iteratively, were presented in Refs. [45,46]. The FAM method
has also been applied to spin-isospin excitations but only with
nonrelativistic EDFs in Refs. [47–49]. Concerning the rela-
tivistic EDFs, approaches based on the FAM were developed
in Refs. [50,51] and used to obtain the electric response of
axially deformed nuclei [52]. To date, there are no calcula-
tions with relativistic EDFs applied to spin-isospin excitations
in deformed nuclei. Therefore, in this work we develop the
pnRQRPA in axial geometry based on the relativistic EDFs.
Furthermore, we aim to develop a pnRQRPA solver with
speed comparable to the FAM, and propose an alternative to
the variational approach.

We note that the QRPA omits higher order correlations
which are important for properly describing the giant res-
onances, especially their decay width. Here one should
explicitly consider the ground-state correlations [53–55] as
well as coupling of two-q.p. pairs to collective phonons
[56–61]. Therefore, the present work can be viewed as an
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initial point for beyond-mean-field calculations in deformed
nuclei.

This work is organized as follows. First, we introduce
the axially deformed pnRQRPA formalism and present the
calculation techniques for external field and residual inter-
action matrix elements in Sec. II. This is supplemented with
Appendices A and B, where additional details about numerical
implementations are given. Second, we perform numerical
tests of our axially deformed pnRQRPA by comparing it to the
spherical pnRQRPA from Ref. [28] in Sec. III. After properly
testing the model calculations and determining the optimal
basis size for the nuclei of interest, we present the calculations
of the Gamow-Teller, Fermi, and spin-dipole transitions of
particular even-even p f -shell nuclei in Sec. IV.

II. THEORETICAL FORMALISM

A. Brief introduction to the linear response pnRQRPA

The relativistic Hartree-Bogoliubov (RHB) model [24,62]
provides a unified description of nuclear particle-hole (ph)
and particle-particle (pp) correlations on a mean-field level
by combining two average potentials: the consistent nuclear
mean field h that includes all the long range ph correlations,
and a pairing field � which sums up the pp correlations. In
the RHB framework the nuclear single-reference state is de-
scribed by a generalized Slater determinant |�〉 that represents
a vacuum with respect to independent quasiparticles. The
quasiparticle operators are defined by the unitary Bogoliubov
transformation, and the corresponding Hartree-Bogoliubov
wave functions U and V are determined by the solution of
the RHB equation(

hD − m − λ �

−�∗ −h∗
D + m + λ

)(
Uμ

Vμ

)
= Eμ

(
Uμ

Vμ

)
. (1)

The original single-particle basis c†
k , ck (e.g., a harmonic os-

cillator basis) is transformed to the quasparticle (q.p.) basis
βμ, β†

μ by the Bogoliubov transformation [63]

β†
μ =

M∑
l=1

Ulμc†
l + Vlμcl , (2)

βμ =
M∑

l=1

V ∗
lμc†

l + U ∗
lμcl , (3)

where M denotes the dimension of the single-particle basis.
We introduce the 2M-dimensional set of extended q.p. states
aμ, which conveniently combines the q.p. operators βμ, β†

μ

as [30]

aμ = βμ

aμ̃ = β†
μ

}
, μ = 1, . . . , M; μ̃ = −μ, (4)

which obey the anticommutation relation {aμ, aμ′ } = δμμ̃′ .
The main idea behind the transformation (4) is to represent
both the creation and the annihilation operators using one set
of operators aμ, with aμ = βμ for μ > 0 and aμ = β

†
−μ for

μ < 0. In this basis, the one-body q.p. operator is represented

as [30]

F̂ = F̂ 0 + 1

2

∑
μμ′

Fμμ′a†
μaμ′ . (5)

The matrix elements Fμμ′ with signs of the μ and μ′ indices
explicitly specified read

Fμμ′ =
(
Fμ>0 μ′>0 Fμ>0 μ′<0

Fμ<0 μ′>0 Fμ<0 μ′<0

)
. (6)

Furthermore, the following relations can easily be verified:

Fμ>0 μ′>0 = F 11
μμ′ ,

Fμ>0 μ′<0 = F 20
μ−μ′ ,

Fμ<0 μ′>0 = −F 02
−μμ′ ,

Fμ<0 μ′<0 = −F 1̄1
−μ−μ′ , (7)

where F 11, F 20, F 02, and F 1̄1 are the q.p. components of the
one-body operator defined in Ref. [63].

The 2M × 2M generalized density matrix R acquires the
following form:

R =
(

〈�|aμ̃′aμ|�〉 〈�|aμ′aμ|�〉
〈�|aμ̃′aμ̃|�〉 〈�|aμ′aμ̃|�〉

)
, μ, μ′ > 0, (8)

where |�〉 is the vacuum state obtained by solving the RHB
equations [24,30].

We derive the linear response equations by considering
the time-dependent generalized density R(t ) in an external
charge-changing field F (t ) which obeys the equation of mo-
tion

iṘ(t ) = [H(R(t )) + F (t ),R(t )], (9)

with H = ∂E
∂R . Assuming harmonic time dependence of the

external field

F (t ) = Fe−iωt + H.c., (10)

with excitation energy ω, and linearizing the generalized
density

R(t ) = R0 + (δRe−iωt + H.c.), (11)

where [H(R0),R0] = 0 is the static RHB equation, we can
derive the Bethe-Salpeter equation for the response R, up to
the leading order in δR, in the matrix form

R = R0 + R0W R, (12)

defined through the expression

δRπν =
∑
π ′ν ′

Rπνπ ′ν ′Fπ ′ν ′ , (13)

where π (ν) labels proton (neutron) q.p. states. The effective
interaction matrix W is a functional derivative of the interac-
tion Hamiltonian,

Wπνπ ′ν ′ = δHπν

δRπ ′ν ′
, (14)
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while the unperturbed response is diagonal in the q.p. space

R0
πνπ ′ν ′ = ( fπ − fν )δππ ′δνν ′

ω − Eπ − Eν + iη
. (15)

Small parameter η is introduced to avoid the occurrence of
singularities and provide finite width of the resonances. In the
q.p. basis, matrices R0 and H0 are diagonal,

R0 =
(

fμ 0
0 fμ̃

)
, H0 =

(
Eμ 0
0 Eμ̃

)
, (16)

with the eigenvalues,

fμ = 0, fμ̃ = 1,

Eμ = Ek, Eμ̃ = −Ek . (17)

The formalism can be easily extended to finite temperature by
identifying fμ with the Fermi-Dirac factor [28]. The strength
function is defined by contracting the response matrix R with
the external field

SF (ω) = − 1

π
Im

∑
πνπ ′ν ′

(F ∗
πνRπνπ ′ν ′Fπ ′ν ′ ). (18)

Although Eq. (12) can be solved by direct matrix inversion,
this is not computationally feasible since the size of the two-
q.p. space increases rapidly with the basis dimension. This
problem can be circumvented if the full interaction Hamilto-
nian can be written as a sum of separable terms,

Ĥ = Ĥ0 +
∑
cc′

vcc′Q̂†
cQ̂c′ , (19)

where Ĥ0 is the mean-field Hamiltonian, and indices c, c′
run over a set of operators Q̂c with coupling strength vcc′ . In
general, index c runs over states in the discretized basis, e.g.,
coordinate space basis (r, z), momentum space basis (pr, pz )
or harmonic oscillator basis (nr, nz ). The interaction matrix
W has the following form [28]:

Wπνπ ′ν ′ =
∑
cc′

vcc′
(
Qc

πν

)∗
Qc′

π ′ν ′ + vcc′
(
Qc

π̃ ′ ν̃ ′
)∗

Qc′
π̃ ν̃ , (20)

and we can define the reduced response function

Rcc′ (ω) =
∑

πνπ ′ν ′

(
Qc

πν

)∗
Rπνπ ′ν ′Qc′

π ′ν ′ , (21)

as well as the unperturbed reduced response function

R0
cc′ (ω) =

∑
πνπ ′ν ′

(
Qc

πν

)∗
R0

πνπ ′ν ′Qc′
π ′ν ′ . (22)

The dimension of the Rcc′ (ω) and R0
cc′ (ω) matrices is defined

by the number of interaction channels Nc. By plugging the
definitions (20), (21), and (22) into Eq. (12), we obtain the
following equation:

RcF (ω) = R0
cF (ω) +

∑
c′c′′

R0
cc′ (ω)vc′c′′Rc′′F , (23)

where

RcF =
∑

πνπ ′ν ′

(
Qc

πν

)∗
Rπνπ ′ν ′Fπ ′ν ′ . (24)

Equation (23) can be solved by inverting the (1 − R0v) matrix
in the reduced space spanned by interaction channels. Next,
we obtain the response RFF as

RFF = R0
FF +

∑
cc′

R0
Fcvcc′Rc′F , (25)

with the following definitions:

RFF =
∑

πνπ ′ν ′

(
F ∗

πνRπνπ ′ν ′Fπ ′ν ′
)
, (26)

R0
FF =

∑
πνπ ′ν ′

(
F ∗

πνR0
πνπ ′ν ′Fπ ′ν ′

)
, (27)

R0
Fc =

∑
πνπ ′ν ′

(
F ∗

πνR0
πνπ ′ν ′Qc

π ′ν ′
)
. (28)

Finally, the strength function is given by

SF (ω) = − 1

π
Im RFF . (29)

Specific details of above computations can be found in
Appendix A. There are several important differences be-
tween the spherical linear response pnRQRPA introduced in
Ref. [28] and the present work. First, in the axial geom-
etry, the pnRQRPA equations cannot be separated into Jπ

blocks, defined by the total angular momentum J and parity
π . However, since the Jz component of the angular momentum
operator and the parity operator still commute with the nuclear
Hamiltonian, the pnRQRPA equations can still be cast into
block diagonal form with Kπ blocks [64]. Here, K denotes
the eigenvalue of the Jz operator and π denotes the parity.

Therefore, the following selection rules are applied when
constructing the q.p. pairs within the axially deformed
pnRQRPA:

K = p − n, π = πp × πn. (30)

Of course, the dimension of the axially deformed pnRQRPA
equation is much larger than the spherical pnRQRPA equa-
tion. We notice that in Eq. (30) both the states k with k > 0
and time-reversed states k̄ with k < 0 have to be taken
into account, which complicates the expressions for matrix
elements. Finally, the number of interaction channels Nc in
spherical geometry is determined as a product of the num-
ber of terms in the residual interaction and the number of
discretized points in the radial mesh. For axially symmetric
geometry, Nc is roughly doubled because we have to discretize
the two-dimensional (r, z) mesh.

The single-particle Dirac wave-functions in the coordinate
space have the form [65]

�k = 1√
2π

⎛
⎜⎜⎜⎝

f +
k (r, z)ei(k−1/2)φ

f −
k (r, z)ei(k+1/2)φ

ig+
k (r, z)ei(k−1/2)φ

ig−
k (r, z)ei(k+1/2)φ

⎞
⎟⎟⎟⎠, (31)
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with the corresponding time-reversed states

�k̄ = 1√
2π

⎛
⎜⎜⎜⎝

f −
k (r, z)e−i(k+1/2)φ

− f +
k (r, z)e−i(k−1/2)φ

−ig−
k (r, z)e−i(k+1/2)φ

ig+
k (r, z)e−i(k−1/2)φ

⎞
⎟⎟⎟⎠, (32)

where f ±
k are upper and g±

k lower radial components.
In the following, we separately discuss how to calculate the

matrix elements of the external field operator, the particle-
hole (ph) residual interaction, and the particle-particle (pp)
residual interaction. Finally, we transform from the single-
particle to the q.p. basis and make a connection with the linear
response formalism of Ref. [28].

B. External field matrix elements

In this work we consider Fermi (Jπ = 0+), Gamow-Teller
(Jπ = 1+), and spin-dipole (Jπ = 0−, 1−, 2−) external field
operators. For the Fermi transitions, the only possible mode
is K = 0, while for the Gamow-Teller and spin-dipole tran-
sitions we have to take into account modes K = 0,±1 and
K = 0,±1,±2, respectively. We notice that modes K = ±1
and K = ±2 are degenerate, i.e., it is sufficient to calculate
the K = +1 and K = +2 only.

The external field matrix element is defined as

〈p|FJK |n〉 =
∫

r dr dz dφ[�†
pFJK�n]. (33)

We have to consider four combinations of pairs in the previous
equation: pn, pn̄, p̄n, and p̄n̄, where n̄ ( p̄) denotes the time-
reversed neutron (proton) state. The Fermi transition operator
is defined as

F00 = τ±, (34)

where τ± is the isospin raising or lowering operator. The GT
external field operator is defined as

F1K = σ1Kτ±, (35)

where σ denotes the Pauli spin matrix. The SD operator reads

FJK = r[σ1 ⊗ Y1]JK , (36)

where YJM is the spherical harmonic and J = 0, 1, 2. The
matrix elements of these operators can be readily evaluated
in the proton-neutron single-particle basis by using the wave
functions defined in Eqs. (31) and (32).

Finally, the matrix elements have to be transformed to
the q.p. space. This is analogous to Ref. [28] for spherical
pnRQRPA, with the difference that no angular momentum
coupling J is performed. In the q.p. basis the external field
operator assumes the form

F̂JK =
∑

pn

〈p|FJK |n〉c†
pcn

=
∑
πν

(U †FJKU )πνβ
†
πβν + (U †FJKV ∗)πνβ

†
πβ†

ν

+ (V T FJKU )πνβπβν + (V T FJKV ∗)πνβπβ†
ν . (37)

Introducing the doubled q.p. basis as in Eq. (4) we can rewrite
the above expression as

F̂JK =
∑
πν

(U †FJKU )πνaπ̃aν + (U †FJKV ∗)πνaπ̃aν̃

+ (V T FJKU )πνaπaν + (V T FJKV ∗)πνaπaν̃ , (38)

where π, ν > 0. Using the matrix structure defined in Eq. (6)
and extending π, ν to negative values we can conveniently
rewrite the external field operator as

F̂JK =
∑
πν

(
(U †FJKU )πν (U †FJKV ∗)πν

(V T FJKU )πν (V T FJKV ∗)πν

)
a†

πaν, (39)

consistent with derivations in Ref. [28].

C. Particle-hole matrix elements

In this work we employ two relativistic point-coupling
EDFs, DD-PC1, and DD-PCX, which follow the separable
form of Eq. (19). Due to the isospin selection rules, only two
terms of the interaction Lagrangian density can contribute to
the charge-exchange linear response equations. The first is the
isovector-vector (TV) term with the matrix element

V TV
pnn′ p′ = −

∫
d3r1d3r2αTV[ρv][�̄p(r1)γ (1)

μ τ (1)�n(r1)]

× [�̄n′ (r2)γ μ(2)τ (2)�p′ (r2)]δ(r1 − r2), (40)

where �̄ = �†γ0. The coupling αTV is a function of the vector
density

ρv (r) =
∑

k

V †
k (r)Vk (r), (41)

where Vk (r) is the coordinate-space representation of the
lower component of the q.p. wave function and the summation
is performed by omitting the antiparticle states, within the
no-sea approximation [21,66]. We note that the αTV coupling
is fully constrained at the ground-state level. The TV residual
interaction term can be separated into timelike and spacelike
components,

V TV(t )
pnn′ p′ = −2

∫
r dr dz dφ αTV[ρv][�†

p(r)�n(r)]

× [�†
n′ (r)�p′ (r)],

V TV(s)
pnn′ p′ = −2

∫
r dr dz dφ αTV[ρv]

×
∑

μ

(−)μ
[
�†

p(r)

(
0 σμ

σμ 0

)
�n(r)

]

×
[
�

†
n′ (r)

(
0 σ−μ

σ−μ 0

)
�p′ (r)

]
, (42)

where factor 2 originates from the isospin matrix element. We
see that interaction can be written in a separable form, where
the separable channels are defined as

QTV(t )
pn (r, z) = �†

p(r, z)�n(r, z), (43)

QTV(s),μ
pn = �†

p(r, z)

(
0 σμ

σμ 0

)
�n(r, z). (44)
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TABLE I. Separable matrix elements of the isovector-vector (TV) interaction in the coordinate-space representation [cf. Eq. (43)]. We
show the matrix elements for the pn and p̄n̄ types of transitions.

pn p̄n̄

QTV(t )
pn (r, z) f +

p f +
n + f −

p f −
n + g+

p g+
n + g−

p g−
n f +

p f +
n + f −

p f −
n + g+

p g+
n + g−

p g−
n

QTV(s),+1
pn (r, z) i

√
2[g+

p f −
n − f +

p g−
n ] (+)i

√
2[g−

p f +
n − f −

p g+
n ]

QTV(s),0
pn (r, z) −i[g+

p f +
n − g−

p f −
n − f +

p g+
n + f −

p g−
n ] −i[g+

p f +
n − g−

p f −
n − f +

p g+
n + f −

p g−
n ]

QTV(s),−1
pn (r, z) −i

√
2[g−

p f +
n − f −

p g+
n ] (−)i

√
2[g+

p f −
n − f +

p g−
n ]

The integration over the φ angle can be performed analytically
and provides the selection rules for the angular momentum
projections. The total number of the separable channels for the
TV interaction term is 4 × NGH

z × NGL
r , where NGH

z and NGL
r

are the numbers of Gauss-Hermite and Gauss-Laguerre inte-
gration mesh points in the z and r directions, respectively. In
Table I we show the separable channels of the TV interaction
for pn and p̄n̄ types of the transitions in the coordinate-space
basis.

Although the pion does not contribute at the Hartree level,
it can have significant impact on the pnRQRPA residual
interaction [26,39]. Therefore, we also include the isovector-

pseudovector (TPV) term in the residual interaction:

V TPV
pnn′ p′ = g0

∫
d3r1d3r2

[
�̄p(r1)γ (1)

5 γ (1)
μ τ (1)�n(r1)

]
× [

�̄n′ (r2)γ (2)
5 γ μ(2)τ (2)�p′ (r2)

]
δ(r1 − r2). (45)

We note that the Landau-Migdal strength parameter g0 is un-
constrained at the ground-state level. Therefore, in this work
we use g0 = 0.734(0.621) for the DD-PC1 (DD-PCX) EDFs,
adjusted to reproduce the experimental GT centroid in 208Pb
(see Refs. [28,39]).

Analogously to the TV case, the isovector-pseudovector
(TPV) residual interaction can be written as

V TPV(t )
pnn′ p′ = 2g0

∫
r dr dz dφ

[
�†

p(r)

(
0 1
1 0

)
�n(r)

][
�

†
n′ (r)

(
0 1
1 0

)
�p′ (r)

]
,

V TPV(s)
pnn′ p′ = 2g0

∫
r dr dz dφ

∑
μ

(−)μ
[
�†

p(r)

(
σμ 0
0 σμ

)
�n(r)

][
�

†
n′ (r)

(
σ−μ 0

0 σ−μ

)
�p′ (r)

]
, (46)

for timelike and spacelike components, respectively. The sep-
arable channels are defined as

QTPV(t )
pn (r, z) = �†

p(r, z)

(
0 1
1 0

)
�n(r, z), (47)

QTPV(s),μ
pn = �†

p(r, z)

(
σμ 0
0 σμ

)
�n(r, z). (48)

Therefore, the total dimension of the TPV separable channels
is also 4 × NGH

z × NGL
r . The corresponding matrix elements

in the coordinate-space basis are shown in Table II.
The separable matrix elements are transformed to the q.p.

basis analogously to the external field matrix elements in

Eq. (38),

Q̂cc′ =
∑
πν

(
(U †Qcc′U )πν (U †Qcc′V ∗)πν

(V T Qcc′U )πν (V T Qcc′V ∗)πν

)
a†

πaν, (49)

where (c, c′) label the separable interaction channels.

D. Particle-particle matrix elements

For the particle-particle (pp) interaction we assume the
separable pairing form [67]

V ′(r1, r2, r′
1, r′

2) = − f Gδ(R − R′)P(r, z)P(r′, z′), (50)

TABLE II. Same as in table I but for the TPV interaction.

pn p̄n̄

QTPV(t )
pn (r, z) i[ f +

p g+
n + f −

p g−
n − g+

p f +
n − g−

p g−
n ] (−i)[ f +

p g+
n + f −

p g−
n − g+

p f +
n − g−

p f −
n ]

QTPV(s),+1
pn (r, z) −√

2[ f +
p f −

n + g+
p g−

n ]
√

2[ f −
p f +

n + g−
p g+

n ]

QTPV(s),0
pn (r, z) f +

p f +
n + g+

p g+
n − f −

p f −
n − g−

p g−
n (−)[ f +

p f +
n + g+

p g+
n − f −

p f −
n − g−

p g−
n ]

QTPV(s),−1
pn (r, z)

√
2[ f −

p f +
n + g−

p g+
n ] −√

2[ f +
p f −

n + g+
p g−

n ]
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where R = 1
2 (r1 + r2) is the center-of-mass and r = r1 − r2 is

the relative coordinate. The overall factor f is defined as

f =
{

V pp
0 , T = 0, S = 1,

1, T = 1, S = 0,
(51)

where V pp
0 is the isoscalar pairing strength, not constrained

at the ground-state level [28]. The form factor P(r, z) corre-
sponds to the Gaussian function

P(r, z) = 1

(4πa2)3/2
e− z2+r2

4a2 , (52)

with strength G and range a parameters adjusted to reproduce
the pairing gap of the Gogny pairing force [67]. It is conve-
nient to calculate the matrix element in the axially deformed
harmonic oscillator (h.o.) basis

〈12|V |1′2′〉 = 〈12|V ′(1 − PrPσ Pτ )|1′2′〉, (53)

where each state is denoted with the h.o. quantum numbers
|1〉 ≡ |nz1 nr1�1ms1 mt1〉, where nz and nr are quantum numbers
in z and r directions, respectively. � is the projection of the
orbital angular momentum on the z axis, ms is the spin projec-
tion, and mt denotes the isospin projection. In the coordinate
space the h.o. eigenfunction has the form

〈r|nz1 nr1�1ms1 mt1〉

= φnz1
(z, bz )φ�1

nr1
(r, br )

eiφ�1

√
2π

χ1/2ms1
ξ1/2mt1

, (54)

where χ1/2ms1
denotes the spin and ξ1/2mt1

the isospin wave
functions. br and bz are the oscillator lengths, defined in
Ref. [67].

The projector operators exchange the position, spin, and
isospin of two nucleons:

Pr |r1r2〉 = |r2r1〉, Pσ |SMS〉 = (−)S−1|SMS〉,
Pτ |T MT 〉 = (−)T −1|T MT 〉, (55)

where S and T denote the total spin and isospin of two states,
with projections MS and MT , respectively. The wave function
coupled to total spin S and isospin T reads

|12〉 = φnz1
(z1, bz )φ�1

nr1
(r1, br )φnz2

(z2, bz )φ�2
nr2

(r2, br )

× 1

2π
eiφ1�1 eiφ2�2

∑
SMS

CSMS
1/2ms1 1/2ms2

|SMS〉

×
∑
T MT

CT MT
1/2mt1 1/2mt2

|T MT 〉. (56)

In order to calculate the matrix elements, we have to
transform the h.o. wave functions from the laboratory to the
center-of-mass frame. First, the product of z-component wave
functions can be written as (see Ref. [50] and references
therein)

φnz1
(z1)φnz2

(z2) =
∑
Nznz

M
nz1 nz2
Nznz

φNz (Z, b̃Z )φnz (z, b̃z )(−)nz ,

(57)
where b̃Z = √

2bz and b̃z = bz/
√

2. M
nz1 nz2
Nznz

is the one-
dimensional Talmi-Moshinsky coefficient [68]. Next, we

apply the same transformation to the radial wave functions
[50]

φ�1
nr1

(r1)φ�2
nr2

(r2) =
∑
Nr�

∑
nrλ

M
nr1 �1nr2 �2

Nr�nrλ

× φ�
Nr

(R, b̃R)φλ
nr

(r, b̃r )(−)λ, (58)

where b̃R = √
2br and b̃r = br/

√
2. M

nr1 �1nr2 �2

Nr�nrλ
is the two-

dimensional Talmi-Moshinsky coefficient [68]. The Talmi-
Moshinsky coefficients imply the following selection rule that
connects quantum numbers in the intrinsic and laboratory
frame [50]:

nz1 + nz2 = Nz + nz, (59)

nr + Nr = nr1 + nr2 + |�1| + |�2| + |�1 + �2|
2

, (60)

�1 + �2 = � + λ. (61)

The total matrix element in the coupled basis reads

〈12̄|V |1′2̄′〉 = −Gδλ0δλ′0δ��′
1

bzb2
r

�(S, T )

×
∑
NzNr

W Nz

12̄
W Nr

12̄
W Nz

1′2̄′W
Nz

1′2̄′ , (62)

where we have defined the separable terms analogously to
Ref. [23]:

W Nz
12 = 1√

bz
MNznz

nz1 nz2
δnz,even

(−)nz/2

(2π )1/4

√
nz!

2nz/2(nz/2)!

×
(

b2
z

a2 + b2
z

)1/2(
b2

z − a2

b2
z + a2

)nz/2

, (63)

W Nr
12 = 1

br
MNr�nr 0

nr1 �1nr2 �2

1

(2π )1/2

b2
r

b2
r + a2

(
b2

r − a2

b2
r + a2

)nr

. (64)

We notice that nz can only assume even values. Spin-isospin
part �(S, T ) has the form

�(S, T ) =
∑
SMS

∑
T MT

1

2
[1 − (−)S+T ](−)1/2−ms2 (−)1/2−m′

s2

× CSMS
1/2ms1 1/2−ms2

CSMS
1/2m′

s1
1/2−m′

s2

× CT MT

1/2m′
t1

1/2m′
t2
CT MT

1/2mt1 1/2mt2
, (65)

from which it follows that S + T assumes only odd val-
ues. Two cases can be distinguished corresponding to either
isovector (T = 1, S = 0) or isoscalar (T = 0, S = 1) pairing
interaction. The separable matrix element for the isovector
pairing is characterized by Nr, Nz quantum numbers and has
the form

W T =1,S=0
Nr ,Nz

= 1√
2

W Nz

12̄
W Nr

12̄
(−)1/2−ms2 C00

1/2ms1 1/2−ms2
, (66)

where the 1/
√

2 factor stems from the isospin part and
C10

1/2−1/21/2+1/2 = 1/
√

2. On the other hand, the isoscalar ma-
trix element is determined by the MS quantum number, in
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addition to Nr, Nz:

W T =0,S=1
Nr ,Nz,MS

= − 1√
2

W Nz

12̄
W Nr

12̄
(−)1/2−ms2 C1MS

1/2ms1 1/2−ms2
. (67)

The total pp residual interaction matrix element can be written
in the following form:

V pp
pnp′n′ = 〈pn̄|V |p′n̄′〉c†

pc†
n̄cn̄′cp′

=
∑

NzNr MS

(
W NzNr MS

pn

)∗
c†

pc†
n̄W NzNr MS

p′n′ cn̄′cp′

=
∑

NzNr MS

(
Q̂NzNr MS

pn

)†
Q̂NzNr MS

p′n′ , (68)

where we have defined a separable term as (Q̂NzNr MS
pn )† =

(W NzNr MS
pn )∗c†

pc†
n̄. The total number of separable matrix ele-

ments for the isovector pairing interaction is Nr × Nz, while
for the isoscalar pairing interaction it is 3 × Nz × Nr (factor
3 comes from projections of spin S = 1). Next, we have to
transform the pp separable matrix elements from the single-
particle to the q.p. basis. Here one has to take into account
the transformation properties of time-reversed states [63] to
obtain the correct expression,

Ŵcc′ =
∑
πν

(−(U T Wcc′V ∗)πν (U †Wcc′U )πν

−(V T Wcc′V ∗)πν (V T Wcc′U ∗)πν

)
a†

π aν, (69)

where (c, c′) denote the separable pp residual interaction
channels.

III. NUMERICAL TESTS

The first numerical test is performed for the doubly magic
neutron-rich 28O isotope. To prevent the pairing collapse, we
have artificially increased the pairing strength of the DD-PC1
effective interaction from Gp,n = −728 MeV fm−3 to Gp,n =
−1500 MeV fm−3. This value is sufficient to break the shell
closure in 28O, thus providing a stringent test for the im-
plementation of the pp channel in the residual interaction.
For initial numerical tests, we employ a small basis space
of Nosc = 8 h.o. shells without any additional cutoff on the
two-q.p. basis. As a rule of thumb, we have found that rea-
sonable convergence of the integrals can be achieved by using
NGL

z = NGL
r ∼ Nosc mesh points. Furthermore, the smearing

parameter is set to a small value η = 0.25 MeV to provide
better resolution of individual peaks in the strength function.
Results calculated with the axially deformed pnRQRPA are
compared with the spherical pnRQRPA from Ref. [28]. To
make the comparison meaningful, the axially deformed RHB
calculations are constrained to a spherical shape. Throughout
this work, excitation energies ω from Eq. (29) are shown with
respect to the parent nucleus.

In Fig. 1(a) we show the Fermi strength function in the
β− direction (IAS−). The results obtained with deformed
and spherical pnRQRPA code are in excellent agreement.
In Fig. 1(b) we display the GT− strength function for both
K = 0 and K = 1 modes. In spherical limit, all three modes
K = ±1 and K = 0 should be degenerated and this result is

FIG. 1. Comparison between the spherical and axially deformed
pnRQRPA results for 28O for the IAS− (a) and GT− (b) strength func-
tion, with Nosc = 8 oscillator shells. The strength function calculated
with the spherical pnRQRPA is represented with red circles. Differ-
ent components of the axially deformed response are also shown:
K = 0 mode is represented with solid blue and K = 1 mode with
dashed green. The response function of the deformed pnRQRPA is
multiplied by 3 to account for degeneracy.

reproduced by our calculation. Due to the degeneracy, the to-
tal GT strength is S(GT−) = 3 × S(K = 0) = 3 × S(K = 1),
where S(K = 0, 1) denotes the strength function for the K =
0, 1 mode. We note that the total strength agrees with the
spherical calculation. We note that the excitation energy with
respect to the parent nucleus ω can be negative if the binding
energy of the daughter nucleus is smaller than that of the
parent, i.e., ground state of the daughter lies below that of
the parent [69]. Within the present linear response formalism,
ω > 0 corresponds to the β− strength function and ω < 0 to
the β+ strength function, with poles being symmetric around
0. For instance, if considering the GT− transition, we choose
the ω > 0 strength. In order to turn ω to energy with respect
to the parent nucleus we have to subtract the ground-state
energies between parent and daughter. In this case, the energy
can become negative. In particular, ωparent, the energy with
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FIG. 2. Schematic representation of the integration contour C
used to obtain the total strength �(GT±). The contour involves two
parts: integration over large negative energies which include αh pairs,
denoted as Cαh, and integration over q.p. states at positive energies,
denoted with Cq.p..

respect to the parent nucleus is obtained as

ωparent = ω − λn(p) + λp(n), (70)

for β− (β+) strength function, where λn(p) are neutron(proton)
chemical potentials. In the following, we replace ωparent

with ω.
As an additional test of our implementation, we verify the

exhaustion of the sum rules. For instance, in the case of GT
response, the total strength satisfies the Ikeda sum rule [63]

�(GT−) − �(GT+) = 3(N − Z ), (71)

where

�(GT±) = 1

2π i

∮
C

RFF (ω)dω (72)

is the sum of the GT± strength. In the case of the linear
response formalism, the total strength �(GT±) can be calcu-
lated by a contour integration of the response function RFF (ω)
over a suitably chosen contour C. However, for relativistic
interactions, it is well known that one has to consider the con-
tribution of antiparticle pairs in order to satisfy the sum rules
[25,26,70]. They originate from the empty Dirac sea states
and are located at large negative energies ω < −1000 MeV.
Therefore, the integration contour C can be written as a sum
of two contours; C = Cαh + Cq.p., where Cαh encircles the neg-
ative energy poles and Cq.p. includes the positive energy poles.
These contours are schematically depicted in Fig. 2. As a
test, we constrain the nuclear shape to spherical and choose
two nuclei, 28O and 48Ca with Nosc = 12. The integration
over the circular contours is performed using the Simpson’s
quadrature.

The results are summarized in Table III. Indeed, we are
able to exhaust 100% of the sum rule for both nuclei. We ob-
serve that without including the antiparticle states (αh pairs)

the sum rule is satisfied up to 94–96%. The additional 4–6%
amounts to including the αh pairs. This is a well known result,
already discussed in Refs. [26,71], but serves as an addi-
tional check of our numerical implementation. Furthermore,
we have verified that antiparticles have negligible contribution
on the positive energy strength function.

Next, we would like to determine the basis size necessary
for performing reliable calculations of spin-isospin response
in medium mass nuclei. For this purpose, we have calculated
the GT− response in the neutron-rich 70Fe isotope for several
numbers of h.o. shells ranging from Nosc = 8 to Nosc = 16.
The RHB ground state in each calculation is constrained to
β2 = 0.3. Results are shown in Fig. 3 for both K = 0 (a)
and K = 1 (b) projections. From the figure, we conclude
that reasonable convergence for the GT− strength is achieved
already with Nosc = 12. Furthermore, the strength functions
for Nosc = 14 and Nosc = 16 are almost indistinguishable. We
note that this conclusion agrees with calculations based on
the nonrelativistic EDF presented in Ref. [44], where good
convergence for A ≈ 70 nuclei is obtained with Nosc = 13.

Therefore, in the following calculations, we use Nosc = 16,
which guarantees good convergence for p f -shell nuclei con-
sidered in this work. We notice that the number of two-q.p.
pairs for Nosc = 16 becomes very large. In Table IV we show
the total number of two-q.p. pairs, Npair, for GT− (K = 0 and
K = 1) modes in the 70Fe isotope with β2 = +0.3. Therefore,
solving for one projection with Nosc = 16 would require diag-
onalization of a square matrix with dimension 180 000. Here,
the linear response formalism based on the reduced response
function for separable interaction is advantageous. We have to
perform a sum over Npair and invert a matrix with moderate
size of 5400×5400. We notice that the sum over the two-q.p.
pairs can be easily parallelized, thus reducing the computation
time.

Finally, by performing the singular-value decomposition
(SVD) of the Qc matrices, one can reduce the number of
interaction channels, thus speeding-up matrix-multiplication
operations while preserving the accuracy. Details of this pro-
cedure are discussed in Appendix B.

IV. SPIN-ISOSPIN EXCITATIONS IN MEDIUM HEAVY
AXIALLY DEFORMED NUCLEI

In this section we study the effects of deformations on the
spin-isospin response in selected medium heavy nuclei. Cal-
culations are performed with the DD-PC1 [22] and DD-PCX
[29] relativistic EDFs and Nosc = 16 h.o. shells, and no other
truncation on the two-q.p. basis is imposed. The contributions
from the antiparticle transitions are neglected because their

TABLE III. The total GT± strength �(GT±) in 28O and 48Ca, decomposed to the contribution of q.p. pairs �(GT±)q.p. and αh pairs
�(GT±)αh, such that �(GT±) = �(GT±)q.p. + �(GT±)αh. The last column shows the exhaustion of the Ikeda sum rule with and without (in
parentheses) the antiparticle contribution.

Nucleus �(GT−)q.p. �(GT−)αh �(GT+)q.p. �(GT+)αh �(GT−) − �(GT+) % sum rule (no antipar.)

28O 34.49352 2.45572 0.04248 0.90677 35.99999 99.99997 (95.69733)
48Ca 22.74978 4.35741 0.16787 2.93932 24.00000 100.00000 (94.09129)
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FIG. 3. Convergence tests of the GT− strength for 70Fe with β2 =
+0.3 for a varying number of oscillator shells Nosc and no additional
cutoff to the two-q.p. basis. Results are shown for the K = 0 (a) and
K = 1 (b) projections.

influence on the charge-exchange excitations are negligible
[71]. The strength functions are smeared with η = 1 MeV. For
unnatural parity transitions Jπ = 0−, 1+, and 2−, the isoscalar
pairing strength is set to V pp

0 = 1.0. Since the main aim of this
work is to study the influence of deformation on spin-isospin
strength functions, detailed optimization of V pp

0 is left for
future work, and we refer the reader to Refs. [72,73].

TABLE IV. Number of proton-neutron two-q.p. pairs, Npair , in
70Fe for K = 0 and K = 1 projections of the Gamow-Teller response
for an increasing number of oscillator shells Nosc.

Nosc Npair (K = 0) Npair (K = 1)

8 5002 4857
10 12444 12188
12 26894 26481
14 52432 51808
16 94482 93585

A. The isobaric analog resonance

In the following we study the Fermi (Jπ = 0+) strength
function in the 56–62Fe isotopes. The potential energy curves
(PEC), calculated with the DD-PC1 interactions, are dis-
played in the upper panels (a)–(d) of Fig. 4. For each isotope,
the energy is normalized with respect to the binding energy
of the global minimum. The pnRQRPA calculations are per-
formed on top of the configurations marked with crosses that
correspond to oblate, spherical, and prolate shapes.

Simple structure of the Fermi operator, as in Eq. (34),
allows only transitions with the same quantum numbers in the
Nilsson basis. Furthermore, only the K = 0 component of the
angular momentum projection is allowed. One of the impor-
tant characteristics of the isobaric analog resonance (IAR) is
its narrow width. This is because it has the same isospin as
the parent state, while the neighboring states have the isospin
of the ground state of the daughter nucleus, i.e., they differ in
isospin by one unit. This means that they will couple only
weakly with the IAR. The excitation energy of IAR corre-
sponds to the difference between the even-even parent and
odd-odd daughter nucleus Coulomb energy, corrected by the
residual interaction.

In lower panels of Figs. 4(e)–4(h) we show the Fermi
strength function for 56,58,60,62Fe for prolate, oblate, and
spherical configurations. We observe that deformation has
almost no influence on the Fermi strength function, i.e., the
differences between the position of IAR for prolate, oblate,
and spherical configurations do not exceed 0.05 MeV. This is
indeed an expected result because small quadrupole deforma-
tions induce only a second-order effect on the total Coulomb
energy (∼β2

2 ) [63]. The experimental centroid energy, ob-
tained from the (3He, t) charge-exchange reaction in Ref. [74],
is denoted by a black arrow. The strong IAR was extracted
at ω ≈ 8.9 MeV, around 0.5 MeV higher in comparison to
our calculations. We have also performed calculations with
the DD-PCX interaction for the 56Fe isotope and found that
the strength is shifted around 0.13 MeV to higher energies,
slightly closer to the experimental data. Although we have
found that the Fermi strength function is almost independent
of the deformation, calculations presented in this section still
provide a reliable test of our numerical implementation of the
deformed pnRQRPA.

B. The Gamow-Teller resonance

Next we study the response to the GT operator defined in
Eq. (35). The Pauli spin matrix in the GT operator induces
the selection rules for spin and angular momentum �S = 1
and �L = 0. The calculations require strength functions for
two projections K = 0 and K = 1 because of the degener-
acy of K = +1 and K = −1 modes. The total strength is
calculated as

S(GT±, ω) = S(K = 0, ω) + 2 × S(K = 1, ω). (73)

Because of the selection rule for pp matrix elements S + T =
odd, only the isoscalar pairing (S = 1, T = 0) contributes to
the pp residual interaction.

As a first example we study the role of deformation ef-
fects on the GT+ strength in 60Ni isotope. First we perform
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FIG. 4. (a)–(d) Potential energy curves for 56–62Fe isotopes as functions of the β2 deformation, calculated with the DD-PC1 interaction.
For each isotope, the energy is normalized with respect to the binding energy of the global minimum. The crosses mark locations of oblate,
spherical, and prolate configurations used in the subsequent pnRQRPA calculations. (e)–(h) The IAS− strength function for 56−62Fe isotopes
calculated on top of the oblate, spherical, and prolate configurations marked with crosses in upper panels. The experimental centroid energy
from Ref. [74] is denoted with a black arrow.

a constrained RHB calculation, and the resulting potential
energy curve is displayed in Fig. 5(a). We select three points
on the PEC: oblate minimum at β2 = −0.19, local maximum
at the spherical point, and prolate local minimum β2 = 0.13.

FIG. 5. (a) The PEC for 60Ni calculated with the axially de-
formed RHB with the DD-PC1 interaction. Three stationary points
(marked with crosses) correspond to the oblate (blue), spherical
(green), and prolate (red) configurations. (b) The GT+ strength as
a function of the excitation energy ω. Calculations are performed
on top of the three selected configurations marked with crosses in
panel (a).

On top of these three configurations we have performed the
pnRQRPA calculation for the GT+ response. The resulting
strength is displayed in Fig. 5(b) as a function of the exci-
tation energy. We notice that the oblate configuration shows
pronounced fragmentation of the strength function. On the
other hand, for the prolate shape, the fragmentation is re-
duced. However, the broadening of the resonance around ω ≈
3 MeV suggests the existence of the second peak. This is
a consequence of using η = 1 MeV as the smearing width,
effectively masking the strength. In fact, we have verified
that by using a smaller value η = 0.5 MeV instead, a clear
separation of the main peak at ω ≈ 1.7 MeV and another
peak at ω ≈ 3 MeV is observed. The fragmentation is more
pronounced for the oblate configuration because of the larger
value of the quadrupole moment in comparison to the prolate
configuration, causing deformation to play a more signifi-
cant role. On the other hand, the strength function for the
spherical configuration is concentrated in a single peak at
ω = 2.3 MeV. Of course, the fragmentation in the deformed
pnRQRPA strength stems from the degeneracy breaking of the
Nilsson q.p. orbitals.

It is instructive to compare the GT+ strength function
with the available experimental data. Unfortunately, the GT
strength function has been measured only for a handful of
nuclei in the p f shell and a limited range of excitation ener-
gies [75–78]. This means that only a part of the total strength
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FIG. 6. The GT+ strength function for selected p f -shell nuclei as a function of the excitation energy ω. The calculations are performed
with the axially deformed pnRQRPA by employing the DD-PC1 (blue solid line) and DD-PCX (orange solid line) interactions and the spherical
pnRQRPA for the DD-PC1 interaction (green dashed line). The results are compared with the available experimental data from Refs. [75–78]
(black circles). The isoscalar pairing strength is set to V pp

0 = 1.0 in all calculations.

function is accessible in the experiment and often it is not the
part with the main resonance peak.

In Fig. 6 panels (a)–(f) we compare the GT+ strength
function in 60,62,64Ni, 64Zn, 56Fe, and 46Ti with available ex-
perimental data. Calculations were performed by employing
DD-PC1 (blue solid line) and DD-PCX (orange solid line)
effective interactions. First, we note that all presented nuclei
display axially deformed shapes in the ground state, either
prolate (56Fe and 46Ti) or oblate (60,62,64Ni and 64Zn). We
have summarized the values of the ground state quadrupole
deformations β2 for selected nuclei in Table V. In Fig. 6
we have also included the GT+ strength function calculated
with the DD-PC1 effective interaction on top of the spherical
configurations for each isotope (green dashed line).

From Fig. 6 one can observe a large discrepancy between
spherical and deformed calculations. The spherical strength
functions (green dashed line) are concentrated in a one reso-
nance peak for all nuclei except for 46Ti that displays more

TABLE V. The optimal quadrupole deformation β2 for selected
p f -shell nuclei using both the DD-PC1 and DD-PCX interactions.

Nucleus β2(DD-PC1) β2(DD-PCX)

60Ni −0.19 −0.16
62Ni −0.22 −0.18
64Ni −0.13 −0.09
64Zn −0.24 −0.13
56Fe 0.24 0.21
46Ti 0.24 0.22

structure in the spherical GT+ response. On the other hand,
the strength functions calculated on top of the deformed con-
figurations display pronounced fragmentation with reduced
strength. The difference between spherical and deformed cal-
culations can be attributed to increased density of states and
splittings between the Nilsson orbitals for deformed con-
figurations. Overall, the calculated strength functions based
on deformed configurations are in better agreement with the
experiment. For instance, deformation effects lead to very
good agreement with experiment for oblate deformed 60Ni
and 62Ni isotopes. For 64Ni, the deformation effects lead to
splitting of the main resonance peak with reduced strength, in
better agreement with the experimental data. For 64Zn we no-
tice that calculations significantly overestimate the measured
strength, which predicts no noticeable resonance structure.
The deformed pnRQRPA predicts fragmentation of the main
resonance peak around ω ≈ 1 MeV. In prolate deformed 56Fe
and 46Ti, the inclusion of deformation effects improves the
agreement with the experiment. However, we notice that our
calculation predicts some peaks that are not present in ex-
perimental data, especially at lower excitation energies. Since
the deformation effects are included, we expect that the dif-
ferences between the experiment and our calculations can
be attributed mainly to coupling with higher-order config-
urations, as well as the configuration mixing. Namely, the
relatively simple pnRQRPA theory includes only the con-
tribution of two-q.p. excitations to the response function.
Expanding the present formalism by including the coupling
of two-q.p. excitations to the phonons (QPVC) would lead
to more fragmentation of the strength function, and possibly
a better agreement with the experimental data [57,59,60,79].
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FIG. 7. The GT− strength function for selected even-even isotopes of iron, shown for the prolate (a)–(c) and oblate (d)–(f) configurations.
The total strength function (solid black) is decomposed to the K = 0 (solid blue) and K = 1 (solid orange) projections of the total angular
momentum J = 1.

However, we note that the deformed QPVC at the level of
the residual interaction is at present in its nascent phase
[54,80], due to significant numerical challenges. In addition,
it is known that optimization of isoscalar pairing strength V pp

0
can lead to better agreement of strength centroids [26,81];
however, we leave these efforts for future work. Further-
more, Eq. (73) is only an approximation valid for large
deformations (the so-called needle approximation). The prob-
lem is that the transformation from the intrinsic system of
the nucleus to the laboratory system has to be performed,
which mixes contributions of different angular momenta J .
Therefore, a proper projection method for the response of
the deformed nuclei should be implemented as discussed in
Refs. [40,82].

To assess the possible systematic uncertainties within our
calculations, we also perform the deformed pnRQRPA calcu-
lations by employing the DD-PCX interaction (solid orange
line). The DD-PCX relativistic EDF was adjusted to both the
ground-state properties and excitations in atomic nuclei [29].
From Fig. 6 we observe significant differences in the strength
function calculated with two interactions. For instance, the
agreement with experimental data deteriorates slightly for
60,62Ni isotopes, as the strength function for the DD-PCX
interaction is pushed to slightly higher excitation energies.
On the other hand, although the strength is overestimated,
the DD-PCX leads to better agreement with the experimental
centroid in the 64Ni isotope. For other nuclei we also observe
a slight shift of the strength centroid to higher excitation
energies. For 56Fe, the strength function calculated with the
DD-PCX interaction is more concentrated around the main
resonance peak, thus better describing the experimental dis-
tribution. In the case of 46Ti, the strength functions calculated
with the DD-PCX and DD-PC1 interactions have similar
shape, although the DD-PCX strength function is shifted to
higher energy around ≈0.5 MeV. On the other hand, for
64Zn this shift is more pronounced, being around 1.5 MeV,

hence the experimental centroid is better reproduced with the
DD-PCX interaction. Therefore, based on our calculations
with two different functionals we can conclude that the GT
strength function is very sensitive not only to deformation
of the atomic nucleus, but also to details of the effective in-
teraction used in the calculations. Furthermore, including the
deformation effects in the calculation considerably improves
the overall agreement between the theoretical and experimen-
tal GT+ strength function.

In the following, we turn our attention to the GT− strength
function. Nuclei displaying significant GT− strength are often
neutron-rich, thus obtaining the experimental data is much
more difficult. In fact, most of the experimental data exist for
nuclei around the shell closure, such as tin isotopes [83]. Due
to the proximity of shell closure, these nuclei are most often
spherical, therefore considering the deformation effects is of
no importance for the strength function. We have already com-
pared the results of our spherical pnRQRPA with the DD-PC1
interaction for particular tin isotopes in Ref. [28] with avail-
able experimental data, and obtained excellent agreement of
the strength centroids. The low-lying GT− strength function
is especially important for calculating the β-decay half-lives,
since part of the low-lying strength is contained within the
Qβ energy window. We investigate the GT− strength function
for 58,60,62Fe, with the deformed pnRQRPA using the DD-PC1
interaction. All three nuclei display oblate and prolate minima
in the potential energy curve, therefore, we can study the
influence of deformation on the GT− strength function. In
Figs. 7(a)–7(f) we show the GT− strength function for se-
lected iron isotopes. Solid blue and orange lines denote K = 0
and K = 1 components, while the solid black line denotes the
total strength calculated by using Eq. (73). Calculations based
on prolate minima are displayed in Fig. 7 panels (a)–(c), while
those based on oblate minima are displated in Fig. 7 panels
(d)–(f). We observe that the GT− strength function consists
of the low-lying peak and a resonance peak (GTR) located at
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FIG. 8. The total GT− strength function in 58Fe, 60Fe, and 62Fe, shown for the prolate (solid red), oblate (solid blue), and spherical (dashed
green) configuration.

higher excitation energies. A similar structure was also ob-
tained in spherical calculations [28]. In comparison to results
presented in Ref. [28], the deformed GT− response function
displays more complicated structure. It is interesting to notice
that, for prolate shapes (β2 > 0), the dominant contribution
to the low-lying strength comes from the K = 0 component,
while the strength in resonance region is dominated by the
K = 1 component. On the other hand, the opposite is true
for the oblate shape (β2 < 0). In spherical nuclei, both K =
0 and K = 1 modes are degenerate; however, in deformed
nuclei, the degeneracy is broken and these modes split. For
the oblate configurations, the K = 0 mode is pushed towards
the lower excitation energies and K = 1 towards higher. The
opposite is true for the prolate configurations. The amount
of splitting between the modes is proportional to the magni-
tude of β2. We notice that similar degeneracy splitting was
already observed in Refs. [40,42,43] for the like-particle re-
sponse function and in Refs. [41,47] for the charge-exchange
case.

Finally, in Figs. 8(a)–8(c) we show the total GT− strength
function for the prolate, oblate, and spherical configurations.
Compared to the spherical strength function, which consists
mainly of two peaks, the deformed strength function displays
more complicated structure. For nuclei with larger quadrupole
deformations, 58Fe and 60Fe, we observe a larger difference
compared to the spherical strength function. For these nu-
clei, oblate configurations show more fragmentation in the
GTR region in comparison to the prolate ones. By inspect-
ing Figs. 7(d)–7(f) we observe that a large splitting of the
GTR strength originates from the K = 0 mode, which is more
dominant at higher excitation energies. On the other hand,
62Fe has a lower value of β2 compared to the 58,60Fe isotopes,
thus the differences between strength functions for spherical,
prolate, and oblate configurations are reduced. Overall, a sig-
nificantly richer structure predicted by deformed pnRQRPA
follows from a higher density of states for axially deformed
nuclei compared to the spherical ones. Therefore, we ex-
pect that deformed calculations will predict more strength
contributing to the Qβ window and therefore they could
significantly alter β-decay half-lives compared to spherical
calculations.

C. The spin-dipole resonance

The spin-dipole operator was introduced in Eq. (36). It
corresponds to transitions coupled to total spin �S = 1 and
orbital angular momentum �L = 1. This results in coupling
to three possible values of angular momentum, Jπ = 0−, 1−,
and 2−. The energy nonweighted moment of the SD strength
m0 is proportional to the difference between neutron and
proton root-mean-square radii [8]. Therefore, measurements
of the SD transition strength can provide constraint for the
nuclear equation of state (EOS) parameters through extracting
the neutron skin thickness [7]. Most of the theoretical and
experimental effort is focused on the GT and Fermi transi-
tions. On the other hand, results for the SD are scarce, and
mostly limited to spherical nuclei [8,37,84,85]. While for the
0− transition we have to calculate only the K = 0 mode, the
expression for the total strength function of the 1− mode is
similar to that of the GT in Eq. (73). The strength for the 2−
mode, assuming time-reversal symmetry, is given by

S(SD−, ω) = S(K = 0, ω) + 2 × S(K = 1, ω)

+ 2 × S(K = 2, ω). (74)

Unlike Fermi and GT operators, SD operator introduces
the radial dependence in the matrix elements which leads
to an overall richer structure of the transition strength,
since the overlap between basis states with different radial
dependence can be nonvanishing. The first-forbidden (FF)
weak-interaction rates, e.g. in the β-decay, have a large contri-
bution from the spin-dipole operator [86], and it is well-known
that FF transitions can play a large role in determining the total
rates [48,73]. Therefore, it is important to study the influence
of the deformation, not only on the GT, but also on the SD
strength function.

In Fig. 9 we display the total SD− strength function in
58,60,62Fe isotopes for Jπ = 0−, 1−, and 2− modes. Calcula-
tions are performed with the DD-PC1 interaction for three
selected configurations in each isotope: oblate, spherical, and
prolate. Deformed configurations correspond to local min-
ima on the potential energy curve with β2 values denoted
in Fig. 4, while spherical configuration corresponds to the
local maximum on the potential energy curve. Furthermore,
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FIG. 9. The SD− strength function for prolate (solid red), oblate (solid blue), and spherical (dashed green) configurations in 58Fe (a)–(c),
60Fe (d)–(f), and 62Fe (g)–(i). The total SD− contribution is split into 0− (upper panels), 1− (middle panels), and 2− (lower panels).

in Table VI we show the location of centroids Ecent., for each
multipole and different nuclear shapes, defined as Ecent. =
m1/m0, where mk = ∫

dω ωkS(SD−, ω) is kth moment of the
strength distribution. First of all, as discussed in Ref. [28],
we notice a clear separation of centroid energies Ecent. for
different Jπ modes within the same nucleus, irrespective of
its shape. In particular, as can be observed in Table VI, the
ordering Ecent.(2−) < Ecent.(1−) < Ecent.(0−) reflects the fact
that higher-rank operators are usually easier to excite since
the multipole selection rules allow for more configurations
to enter into the strength function [37,84,85]. Overall, the
strength functions are rather complicated and for deformed
shapes more fragmented in comparison to the spherical shape.

We can also get a grasp of what happens as the neutron
number is increased. First of all, as can be seen in Table VI,
there is a systematic shift of the strength function towards
lower excitation energies, and the overall strength function
increases, since SD modes become easier to excite in neutron-
rich nuclei. Due to lowering of |β2| for 62Fe, we observe a

formation of a stronger resonance peaks for 0−, 1− transitions
around ω ≈ 30 MeV. On the other hand, the 2− transition
strength is broadly distributed, although the strength function
appears less fragmented compared to 58Fe and 60Fe.

To study the mechanism driving the shape evolution of the
SD− strength within Fe isotopes, we focus on 58Fe and in
Fig. 10 plot the SD− strength for Jπ = 0− [panels (a) and (d)],
1− [panels (b) and (e)], and 2− [panels (c) and (f)] multi-
poles. Calculations are performed with DD-PC1 interaction
for prolate [panels (a), (b), and (c)] and oblate [panels (d),
(e), and (f)] configurations. The total strength is denoted by
the solid black line, while the K = 0, K = 1, and K = 2
components are denoted by dotted blue, dashed orange, and
dashed-dotted green lines, respectively. We start with the 0−
transitions for which only the K = 0 mode is possible. The
resonance region is found around ω ≈ 30 MeV and displays
more fragmentation for oblate configurations, similarly to the
GT case. The 1− strength has more complicated structure in
comparison to the GT strength function. We can observe the

TABLE VI. The centroid energy Ecent. (in MeV) of spin-dipole 0−, 1−, and 2− excitations for selected iron isotopes and oblate, spherical,
or prolate constrained shapes.

58Fe 60Fe 62Fe

oblate spherical prolate oblate spherical prolate oblate spherical prolate

0− 28.333 28.445 28.368 26.407 26.856 26.538 25.098 25.398 25.133
1− 27.074 26.855 26.972 25.203 25.414 25.194 24.135 24.089 24.112
2− 22.039 22.374 21.970 20.268 20.759 20.269 19.117 19.351 19.111
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FIG. 10. The SD− strength function for 58Fe decomposed to different K modes for prolate (a)–(c) and oblate (d)–(f) configurations of
0−, 1−, and 2− multipoles.

splitting between the K = 0 and K = 1 modes depending on
the nuclear shape. For the prolate configuration, the K = 0
centroid is located at 27.5 MeV, while the K = 1 centroid is
at 25.7 MeV. On the other hand, for the oblate configuration,
the K = 0 strength is pushed downwards in energy with the
centroid at 25.5 MeV, while the K = 1 strength centroid is
pushed upward to 26.9 MeV. Although the conclusions are
the same as for GT strength, the mechanism responsible for
the splitting of the SD 1− strength is more involved (see
discussion in Ref. [85]). For the 2− mode, we also have a
contribution from the K = 2 projection. For prolate shapes
strength around ω ≈ 30 MeV is dominated by the K = 2
component, while for the oblate shape the K = 2 component
determines the low-lying strength around ω ≈ 10 MeV.

From the experimental perspective, one cannot disentan-
gle different K modes, or multipoles, from the SD strength
function, therefore, it remains a significant challenge to study
shape-induced effects on the SD strength.

V. CONCLUSIONS

In this work, we have developed an axially deformed pn-
RQRPA based on covariant energy density functional theory.
The solver utilizes point-coupling EDFs with separable pair-
ing interaction for which the residual interaction Hamiltonian
can be written as a sum of products of separable terms. Since
the dimension of the two-quasiparticle space increases rapidly
with the number of oscillator shells, it is advantageous to
reformulate the Bethe-Salpeter equation in terms of the re-
duced response functions represented by separable interaction
channels, thus considerably reducing the computational cost
and allowing for large-scale calculations.

By employing the deformed pnRQRPA, we have investi-
gated the impact of the deformation of atomic nucleus on the
strength functions for several types of spin-isospin excitations.
We have found that the deformation effects do not contribute
to the Fermi transitions because the quadrupole deformation
leads to second-order correction to the Coulomb energy which

determines the position of the IAS centroid. For the GT
strength, we show that deformation effects lead to splitting
between the K = 0 and K = 1 modes, resulting in pronounced
fragmentation of the strength function. In fact, by comparing
our results with the experimental GT+ strength, a systematic
improvement over the spherical pnRQRPA is achieved. The
impact of different interactions is investigated by employing
two different functionals, DD-PC1 and DD-PCX. Although
we have found that the strength function is sensitive to the de-
tails of the effective interaction, our main conclusions related
to the deformation effects remain valid. The impact of the
nuclear geometry is studied by constraining the nuclear shape
to spherical, oblate, and prolate configurations, which leads
to considerable changes in the strength function. In particular,
the direction of the K = 0 and K = 1 splitting in deformed nu-
clei is proportional to the strength of quadrupole deformation
|β2|, while its direction depends on the sign of β2. Finally, the
SD transitions show a complicated pattern. The fragmentation
of strength for deformed shapes is still pronounced, especially
for 0− and 1− modes. Due to the less restrictive selection
rule for 2− transitions, already the spherical strength shows
a complicated structure without clear resonance peaks, which
is again more fragmented for deformed nuclei. Therefore, the
deformation of atomic nucleus has a pronounced effect on the
spin-isospin resonances. The development of efficient QRPA
solvers together with a considerable increase in computing
power in recent years finally make large-scale calculations
for the response of axially deformed nuclei feasible. Thus the
pnRQRPA introduced in this work also opens perspectives for
the future studies of deformation effects on astrophysically
relevant weak interaction processes in the relativistic EDF
framework, e.g., beta decay [87] and electron capture [88] and
their role in supernova evolution [89].

The formalism developed in this work could easily be
extended to finite temperature, which would enable a study
of competition between nuclear shape, pairing, and tempera-
ture effects. Of course, one has to be careful when applying
pnRQRPA to global calculations across the nuclide chart.
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First, without any angular momentum projections, results ap-
ply to well-deformed nuclei. Second, coupling to higher-order
correlations going beyond two-q.p. excitations requires the
development of axially deformed QPVC. For the latter, the
formalism developed in this work presents a suitable starting
point for coupling to like-particle phonons. These develop-
ments will be addressed in future work.
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APPENDIX A: CALCULATING THE REDUCED
RESPONSE FUNCTION Rcc′

In this Appendix we present some additional details of
the linear response equations in axial geometry. We assume
π, ν > 0 [cf. Eq. (4)] and explicitly label each q.p. component
with j = 1, . . . , 4. Numerically most intensive part of the
calculation is to construct the unperturbed reduced response
defined in Eq. (22). This equation can be recast into the matrix
form as

R0(ω) =
∑
j=1,4

QT
j N (ω) jQ j, (A1)

where R0(ω) ∈ CNc×Nc , Qj ∈ RNpair×Nc , and N (ω) j ∈
CNpair×Npair . The total number of interaction channels Nc

can be written as a sum of the number of ph and pp channels,
Nc = Nph + Npp. Npair denotes the total number of q.p. pairs.
The Qj matrix includes separable channels of the residual
interaction Hamiltonian and has the following form:

Qj =

⎛
⎜⎜⎜⎝

Q1, j
i1

. . . Q
Nph, j
i1

W 1, j
i1

. . . W
Npp, j

i1
...

. . .
...

...
. . .

...

Q1, j
iNpair

. . . Q
Nph, j
iNpair

W 1, j
iNpair

. . . W
Npp, j

iNpair

⎞
⎟⎟⎟⎠,

(A2)
where first superscript denotes the interaction channel (from
1 to Nph and Npp for ph and pp interaction channels
respectively), second superscript ( j = 1, . . . , 4) denotes com-
binations of the q.p. components and subscript denotes the
two q.p. pairs from i1 ≡ (π1, ν1) to iNpair ≡ (πNpair , νNpair ). For

instance, the separable ph matrix elements for the pair i1 will
have the following form:

Q1, j=1
i1

= (U †Q(r1, z1)U )i1 , Q1, j=2
i1

= (U †Q(r1, z1)V ∗)i1 ,

Q1, j=3
i1

= (V T Q(r1, z1)U )i1 , Q1, j=4
i1

= (V T Q(r1, z1)V ∗)i1 ,

(A3)

where interaction channel 1 corresponds to point (r1, z1) in
the coordinate space. For the ph interaction, two interaction
terms (TV and TPV) contribute each with four components,
one timelike and three spacelike μ = −1, 0, 1. Discretizing
equations on the two-dimensional mesh with NGH

z nodes in
the z direction and NGL

r nodes in radial direction generates
8×NGH

z × NGL
r interaction channels. However, we notice that

the summation over interaction channels in Eq. (20) includes
also a second product with Qc, j

π̃ ν̃ , with π̃ states defined in
Eq. (4). One can show that the following relations hold:

Qc, j=1
π̃ ν̃ = Qc, j=4

πν ,

Qc, j=2
π̃ ν̃ = Qc, j=3

πν , (A4)

from which we observe that the second term in Eq. (20)
induces mixing of the j indices. Therefore, the total number of
ph channels is Nph = 2 × 8 × NGH

z × NGL
r , and the Qj matrix

has the following form:

Q
1,...,Nph

j=1 = (
QTPV

j=1 QTV
j=1 QTPV

j=4 QTV
j=4

)
,

Q
1,...,Nph

j=2 = (
QTPV

j=2 QTV
j=2 QTPV

j=3 QTV
j=3

)
,

Q
1,...,Nph

j=3 = (
QTPV

j=3 QTV
j=3 QTPV

j=2 QTV
j=2

)
,

Q
1,...,Nph

j=4 = (
QTPV

j=4 QTV
j=4 QTPV

j=1 QTV
j=1

)
, (A5)

where QTPV and QTV correspond to the isovector-
pseudovector and isovector-vector separable interaction
matrices [see Eqs. (43) and (47)], respectively. The dimension
of each matrix is 4 × NGH

z × NGL
r .

The pp part of the Qj matrix has a similar structure

Q
Nph+1,...,Nph+Npp

j=1 = (
Wj=1 Wj=4

)
,

Q
Nph+1,...,Nph+Npp

j=2 = (
Wj=2 Wj=3

)
,

Q
Nph+1,...,Nph+Npp

j=3 = (
Wj=3 Wj=2

)
,

Q
Nph+1,...,Nph+Npp

j=4 = (
Wj=4 Wj=1

)
, (A6)

with each submatrix Wj of dimension (3 − 2T ) × Nr × Nz,
where Nz and Nr denote the number of harmonic oscillator
shells in the z and r directions (cf. Sec. II D). The number
of pp interaction channels is given by Npp = 2 × (3 − 2T ) ×
Nr × Nz, and depends on the value of the total isospin T . This
means that the total number of interaction channels is

Nc = 2 × 8 × NGH
z × NGL

r + 2 × (3 − 2T ) × Nr × Nz. (A7)
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The N (ω) matrix is diagonal in the q.p. space and has the form

N (ω) j=1 = diag

(
fν1 − fπ1

ω − Eπ1 + Eν1 + iη
, . . . ,

)
,

N (ω) j=2 = diag

(
fν̃1 − fπ1

ω − Eπ1 + Eν̃1 + iη
, . . . ,

)
,

N (ω) j=3 = diag

(
fν1 − fπ̃1

ω − Eπ̃1 + Eν1 + iη
, . . . ,

)
,

N (ω) j=4 = diag

(
fν̃1 − fπ̃1

ω − Eπ̃1 + Eν̃1 + iη
, . . . ,

)
, (A8)

where occupation factors fμ and q.p. energies Eμ are defined
in Eq. (17). Therefore, at zero temperature, only j = 2 and
j = 3 components contribute, and have the form

N (ω) j=2 = diag

(
1

ω − Eπ1 − Eν1 + iη
, . . . ,

)
,

N (ω) j=3 = diag

( −1

ω + Eπ1 + Eν1 + iη
, . . . ,

)
. (A9)

Next, we have to calculate the unperturbed R0
FF response,

defined as

R0
FF (ω) =

4∑
j=1

F T
j N (ω) jFj, (A10)

where R0
FF (ω) ∈ C, and Fj ∈ RNpair . Finally, the R0

cF reduced
response reads

R0(ω)cF =
∑
j=1,4

QT
c, jN (ω) jFj, (A11)

of the dimension Nc, mixing both the residual interaction and
the external field matrix element. The vcc′ interaction matrix
in Eq. (20) is diagonal (since we consider no derivative terms
in the residual interaction) and is given by a direct sum of
diagonal matrices containing interaction couplings

vcc′ =
16+2(3−2T )⊕

i=1

vi
cc′, (A12)

where for the ph channels

v(1) = v(9+(3−2T )) = +g0/(2π )INGH
z ×NGL

r
,

v(2) = v(10+(3−2T )) = −g0/(2π )INGH
z ×NGL

r
,

v(3) = v(11+(3−2T )) = −g0/(2π )INGH
z ×NGL

r
,

v(4) = v(12+(3−2T )) = −g0/(2π )INGH
z ×NGL

r
,

v(5) = v(13+(3−2T )) = +αTV/(2π )INGH
z ×NGL

r
,

v(6) = v(14+(3−2T )) = −αTV/(2π )INGH
z ×NGL

r
,

v(7) = v(15+(3−2T )) = −αTV/(2π )INGH
z ×NGL

r
,

v(8) = v(16+(3−2T )) = −αTV/(2π )INGH
z ×NGL

r
, (A13)

with the total number of channels depending on the isospin T .
For the pairing channels we take the average of the separable

FIG. 11. The decay of singular values σk/σ0 for different inter-
action channels of the Qj matrix. The results are shown for j = 2
component.

pairing strength for neutrons (Gn) and protons (Gp), so that
their form is

v(9) = v(18) = (Gn + Gp)/2INz×Nr , T = 1,

v(9,10,11) = v(20,21,22) = V pp
0 (Gn + Gp)/2INz×Nr , T = 0.

(A14)

After all the necessary matrices are calculated, we first invert
the matrix δcc′ − ∑

c′′ R0
cc′′vc′′c′ and then calculate the RcF re-

sponse

RcF (ω) =
∑

c′

[
δcc′ −

∑
c′′

R0
cc′′ (ω)vc′′′ c

]−1

R0
c′F (ω). (A15)

Finally, the response function is obtained as

RFF (ω) = R0
FF (ω) +

∑
cc′

R0
cF (ω)vcc′Rc′F (ω), (A16)

its imaginary part giving the strength function [see Eq. (29)].
Therefore, from the computational perspective, for a given

energy ω, one has to multiply matrices of the size Nc × Npair

in Eq. (A1), vectors of dimension Npair in Eq. (A10), and
their cross-terms in Eq. (A11), all for j = 1, 2, 3, and 4 (or
j = 2, 3 at zero temperature). After that, the square matrix
R0

cc′ of the size Nc × Nc has to be inverted and multiplied with
R0

cF in Eq. (A15), other operations being less computationally
expensive. To illustrate, if we use Nosc = 16 h.o. shells, then
NGH

z = NGL
r ≈ 16 for the mesh and Nz = Nr ≈ 16 for the

pairing interaction. Therefore, Nph ≈ 4096 and Npp ≈ 1500
for the more expensive isoscalar pairing (500 for isovector).
The total number of channels is Nc ≈ 5600. The number of
pairs for the K = 0 mode of the GT transitions is Npair ≈
50 000, meaning that the largest matrix size for the multipli-
cation is of the order 5600×50 000 and for matrix inversion
5600×5600, easily manageable on a moderate computer clus-
ter. These dimensions can be further reduced as explained in
Appendix B.
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FIG. 12. The K = 1 mode of GT− strength in 62Fe calculated
with a different truncation on the power spectrum s. The solid green
(s = 10−3) and solid red (s = 10−4) lines basically overlap with the
black dotted (s = 0) line which utilizes no low-rank approximation.

APPENDIX B: SPEEDING UP CALCULATION
OF UNPERTURBED RESPONSE MATRICES

WITH SINGULAR VALUE DECOMPOSITION

A significant part of the computational time is spent on
calculating the unperturbed reduced response function

R0
cc′ (ω) =

4∑
j=1

∑
πν

(
Qc, j

πν

)∗
N (ω)πν, jQ

c′, j
πν , (B1)

where the N (ω) matrix is defined in Eq. (A8). Since the
dimension of the Qc, j

πν matrix (Npair × Nc) becomes quite large
for reasonable basis size, it is worthwhile to investigate the
rank of this matrix. We perform the singular value decompo-
sition (SVD)

Qj = Uj� jV
T
j , j = 1, . . . , 4, (B2)

where the diagonal � j ∈ RNpair×NC matrix contains the sin-
gular values, while Uj ∈ CNpair×Npair , and V T

j ∈ CNc×Nc are
matrices with left and right singular vectors. Therefore, in the
matrix notation (suppressing q.p. pair and channel indices) we
can rewrite Eq. (B1) as

R0 =
4∑

j=1

Vj� j
[
U T

j N (ω) jUj
]
� jV

T
j . (B3)

If the singular value spectrum decays fast, so that all singu-
lar values σk become smaller than some predefined threshold
(e.g. σk/σ1 � 10−8) we can use the so-called low-rank ap-
proximation to write Qj matrix by using only the first Nk � Nc

columns of Uj matrix, and Nk rows of V T
j matrix

Qj ≈ ÛNpair×Nk × �̂Nk×Nk × V̂ T
Nk×Nc

, (B4)

TABLE VII. The ratio between the cut-off number of channels
Nk [determined by the power spectrum s defined in Eq. (B6)] and
total number of channels Nc (in %) for different terms of isovector-
vector (TV) and isovector-pseudovector (TPV) interaction. The total
number of channels is Nc = 361, and j = 2.

TV(t ) TV(μ = −1) TV(μ = 0) TV(μ = +1)

s = 10−1 5.5 6.1 6.1 6.6
s = 10−2 11.1 11.4 11.6 12.7
s = 10−3 18.0 19.1 18.6 20.5
s = 10−4 27.4 28.3 27.4 30.5

TPV(t ) TV(μ = −1) TV(μ = 0) TV(μ = +1)
s = 10−1 6.1 5.3 6.1 5.8
s = 10−2 11.4 11.1 11.6 11.6
s = 10−3 18.6 18.6 19.4 19.4
s = 10−4 27.1 27.1 28.8 28.3

where subscripts denote the matrix dimension. In the low-rank
approximation Eq. (B3) has the form

R0 ≈
4∑

j=1

V̂j�̂ j
[
Û T

j N (ω) jÛ j
]
�̂ jV̂

T
j , (B5)

where the inner multiplication now requires much less com-
putational effort. To test our approach, we study the singular
value decay of the Qj matrix in the 62Fe isotope for the
K = 1 GT− transition. We use Nosc = 16 harmonic oscillator
shells, and quadrupole deformation constrained to β2 = +0.2.
Results are shown in Fig. 11 for j = 2 component (analogous
results follow for other j components). Although the full
dimension is Nc = 361, we observe that this can be reduced
by more than 50% for all interaction channels.

In order to define where to truncate Nk , we inspect the
power spectrum defined as

s = 1 −
∑Nk

i=1 σi∑Nc
i=1 σi

. (B6)

In Fig. 12 we show the strength function for our test case
using different values of s ranging from 10−1 (90% of the
spectrum is retained) to 10−4 (99.99% of the spectrum is
retained). We observe that already for s = 10−2 the strength is
well converged, nearly indistinguishable from the full strength
without any approximation (s = 0). In Table VII, we show the
percentage of the retained number of interaction channels for
various values of the power spectrum s. We note that using
s = 10−2 corresponds to retaining around 11% of the total
number of interaction channels Nc. Since the computational
effort of matrix-matrix multiplication scales with matrix di-
mension as N3, such a cutoff leads to significant speed-up of
the code.
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