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The role of dynamical pairing in induced fission dynamics is investigated using the time-dependent generator
coordinate method in the Gaussian overlap approximation, based on the microscopic framework of nuclear
energy density functionals. A calculation of fragment charge yields for induced fission of 228Th is performed
in a three-dimensional space of collective coordinates that, in addition to the axial quadrupole and octupole
intrinsic deformations of the nuclear density, also includes an isoscalar pairing degree of freedom. It is shown
that the inclusion of dynamical pairing has a pronounced effect on the collective inertia, the collective flux
through the scission hypersurface, and the resulting fission yields, reducing the asymmetric peaks and enhancing
the contribution of symmetric fission, in better agreement with the empirical trend.

DOI: 10.1103/PhysRevC.104.044612

I. INTRODUCTION

Nuclear density functional theory is the only microscopic
framework that can be used over the entire table of nu-
clides in a self-consistent description of phenomena ranging
from ground-state properties and collective excitations to
large-amplitude nucleonic motion, fission and low-energy
collisions. In the case of nuclear fission [1], in particu-
lar, a fully quantum-mechanical many-body model can be
constructed starting from the time-dependent generator coor-
dinate method (TDGCM) [2]. In this approach the nuclear
wave function is represented by a linear superposition of
many-body generator states that are functions of collective
coordinates. In most cases these coordinates parametrize the
shape of the nuclear density. The Hill-Wheeler equation of
motion determines the time evolution of the wave function
in the restricted space of generator states [3]. By employ-
ing the Gaussian overlap approximation (GOA), the GCM
Hill-Wheeler equation reduces to a local, time-dependent
Schrödinger equation in the space of collective coordinates.
The microscopic input for the collective Schrödinger equa-
tion, that is, the nuclear potential and collective inertia, are
determined by self-consistent mean-field calculations for a
choice of the energy density functional (EDF) or effective
interaction. The TDGCM + GOA method can be applied to
the dynamics of induced fission, starting from the ground
state and following the time evolution of collective degrees
of freedom all the way to scission and the emergence of
fission fragments. This framework has been very success-
fully implemented in a number of fission studies based on
nonrelativistic Skyrme and Gogny functionals [2–11]. Those
studies have analyzed the dependence of the predicted fis-
sion dynamics on the choice of the EDF, initial conditions,
form of the collective inertia, and the definition of scission
configurations.

Relativistic energy density functionals [12–14] have also
been employed in the description of both spontaneous [15,16]
and induced nuclear fission [17–20]. The microscopic input
for these studies is generated using either the multidimension-
ally constrained relativistic mean-field (MDC-RMF) [21] or
the relativistic Hartree-Bogoliubov model [22]. By employing
the TDGCM + GOA collective model, several interesting
topics have been explored in this framework, such as the
influence of static pairing correlations on fission yields, differ-
ent approximations for the collective inertia tensor, and finite
temperature effects.

Most applications of the TDGCM to fission dynamics have
considered a two-dimensional (2D) space of collective coor-
dinates, such as, for instance, quadrupole and octupole shape
degrees of freedom. The recently developed computer code
FELIX [5,6] offers the possibility of solving the TDGCM +
GOA equation for an arbitrary number of collective variables.
In Ref. [8] a preliminary calculation of induced fission dy-
namics of 240Pu isotope in the three-dimensional (3D) space
of shape variables (quadrupole, octupole, and hexadecupole
intrinsic deformations) has been reported. In particular, this
model can also be used for a quantitative analysis of the
critical role of dynamical pairing correlations in the process
of induced fission.

The importance of pairing correlations for both sponta-
neous and induced nuclear fission has been emphasized in
a number of studies [16,23–31]. For spontaneous fission it
has been shown that the coupling between shape and pairing
degrees of freedom has a pronounced effect on the calculated
fission lifetimes [16,25]. In particular, when the gap parameter
is considered as a dynamical variable, pairing correlations
are generally enhanced, thus, reducing the effective inertia
and the action integral along the fission path. This effect can
significantly reduce the estimated spontaneous fission life-
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times, and it has also been noted that pairing fluctuations can
restore axial symmetry in the fissioning system. A study of in-
duced fission of 240Pu, using the microscopic time-dependent
superfluid local density approximation [30], has shown that
both shape and pairing modes determine the dynamics of the
final stage of the fission process, from configurations close to
the outer fission barrier to full scission.

The influence of ground-state (static) pairing correlations
on charge yields and total kinetic energy of fission fragments
for the case of induced fission of 226Th isotope was analyzed
in Ref. [17] using the TDGCM + GOA framework. It has been
shown that an increase in the strength of the pairing interac-
tion, beyond the range determined by empirical pairing gaps
obtained from the experimental masses of neighboring nuclei,
reduces the asymmetric peaks and enhances the symmetric
peak in charge yields distribution. This is a very interesting
result, and, thus, it is important to explore dynamical pairing
correlations in induced fission. In this paper we explicitly
include the isoscalar pairing degree of freedom in the space of
TDGCM + GOA collective coordinates and perform the first
realistic three-dimensional calculation of induced fission of
228Th. The theoretical framework and methods are reviewed
in Sec. II. The details of the calculation and principal results
are discussed in Sec. III. Section IV contains a short summary
and outlook for future studies.

II. THE TDGCM + GOA METHOD

In the TDGCM + GOA framework-induced fission is de-
scribed as a slow adiabatic process determined by a small
number of collective degrees of freedom. The initial step in
modeling the fission of a heavy nucleus is a self-consistent
mean-field calculation of the corresponding deformation
energy surface as a function of few selected collective coordi-
nates. Such a calculation provides the microscopic input, that
is, the single-quasiparticle states, energies, and occupation
factors, that determine the parameters of a local equation of
motion for the collective wave function.

The theoretical framework and specific model have been
detailed in our previous studies [17–20]. For completeness,
here we include a short outline and discuss in more detail
the specific points that arise when considering pairing as a
collective degree of freedom. The relativistic energy den-
sity functional DD-PC1 [32] is employed in the particle-hole
channel, whereas pairing correlations are taken into account
in the Bardeen-Cooper-Schrieffer (BCS) approximation by a
separable pairing force of finite range [33]. The parameters
of the pairing interaction have been adjusted to reproduce the
empirical pairing gaps in the mass region considered in the
present paper [19].

The self-consistent deformation energy surfaces are cal-
culated using the multidimensionally constrained relativistic
mean-field (MDC-RMF) model [16,21,34,35] with con-
straints on mass multipole moments Qλμ = rλYλμ and the
particle-number dispersion operator �N̂2 = N̂2 − 〈N̂〉2. The
Routhian is, therefore, defined as

E ′ = ERMF +
∑
λμ

1

2
CλμQλμ + λ2�N̂2, (1)

where ERMF denotes the total RMF energy that includes static
BCS pairing correlations. The amount of dynamic pairing
correlations can be controlled by the Lagrange multipliers
λ2τ (τ = n, p) [16,25,36,37]. To reduce the number of col-
lective degrees of freedom and, therefore, the considerable
computational task, here we only consider isoscalar dynam-
ical pairing; λ2n = λ2p ≡ λ2 is employed as the collective
coordinate.

The dynamics of the fission process is governed by a lo-
cal time-dependent Schrödinger-like equation in the space of
collective coordinates q. The collective Hamiltonian Ĥcoll(q),

Ĥcoll(q) = − h̄2

2

∑
i j

∂

∂qi
Bi j (q)

∂

∂q j
+ V (q) (2)

determines the time evolution of the nuclear wave function
from an initial state at equilibrium deformation, up to scission
and the formation of fission fragments. Bi j (q) and V (q) denote
the inertia tensor and collective potential, respectively, that are
computed using the self-consistent solutions for the RMF +
BCS deformation energy surface. Here we assume axial sym-
metry with respect to the axis along which the two fragments
eventually separate and consider the 3D collective space of
quadrupole β2 and octupole β3 deformation parameters and
the dynamical pairing coordinate λ2. The inertia tensor is the
inverse of the mass tensor, that is, Bi j (q) = (M−1)i j (q). The
mass tensor is calculated using the adiabatic time-dependent
Hartree-Fock-Bogoliubov (ATDHFB) method in the cranking
approximation [38],

MC
i j = h̄2

2q̇iq̇ j

∑
μν

F i∗
μνF j

μν + F i
μνF j∗

μν

Eμ + Eν

, (3)

where

F i

q̇i
= U † ∂ρ

∂qi
V ∗ + U † ∂κ

∂qi
U ∗ − V † ∂ρ∗

∂qi
U ∗ − V † ∂κ∗

∂qi
V ∗.

(4)
U and V are the self-consistent Bogoliubov matrices, and
ρ and κ are the corresponding particle and pairing density
matrices, respectively. The cranking expression Eq. (3) can be
further simplified in the perturbative approach [39–43], and
this leads to the perturbative cranking mass tensor,

MC p = h̄2M−1
(1)M(3)M

−1
(1) , (5)

where

[M(k)]i j =
∑
μν

〈0|Q̂i|μν〉〈μν|Q̂ j |0〉
(Eμ + Eν )k

. (6)

|μν〉 are the two-quasiparticle states with the corresponding
quasiparticle energies Eμ and Eν .

At this point we introduce an approximation that is not en-
tirely consistent but is necessary to reduce the computational
task and stabilize the time evolution of the collective state.
Because we consider the particle-number dispersion operator
�N̂2 = N̂2 − 〈N̂〉2, the pairing part of the mass tensor must
be calculated using the nonperturbative cranking expression
Eq. (3). In the recent study of the differences between the per-
turbative and the nonperturbative ATDHFB collective masses
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in the TDGCM + GOA description of induced fission [20] us-
ing the axial quadrupole and octupole intrinsic deformation as
dynamical variables, we have shown that the structure of non-
perturbative collective masses is much more complex due to
changes in the intrinsic shell structure across the deformation
energy surface and is characterized by pronounced isolated
peaks located at single-particle level crossings near the Fermi
surface. It has been shown that the choice of nonperturbative
cranking collective mass leads to a reduction of symmetric
charge yields and, generally, to a better agreement with data.
Even though in the 2D analysis of Ref. [20] both nonpertur-
bative and perturbative mass tensors were used in modeling
induced fission dynamics, in the present 3D study the number
of mesh points required to accurately calculate all the nonper-
turbative collective masses becomes prohibitively large. The
reason is the occurrence of pronounced peaks in the collective
masses related to single-particle level crossings near the Fermi
surface and the corresponding abrupt changes in the occu-
pation factors of single-particle configurations. This would
require a major refinement of the grid, leading to very large
number of mesh points and possible instabilities. Therefore, to
be able to quantitatively analyze the effect of dynamical pair-
ing on induced fission, here we use the perturbative cranking
expression Eq. (5) to calculate the elements of the mass tensor
that correspond to the quadrupole and octupole deformations
whereas, as noted above, the pairing element of the mass
tensor must be computed using the nonperturbative cranking
formula. With the indices 1–3 corresponding to the β20, β30,
and λ2 collective coordinates, the following elements of the
mass tensor are used: MC p

11 , MC p
12 , MC p

22 , MC
33, and we ne-

glect the coupling terms M13 and M23.
To model the fission dynamics we follow the time evolution

of an initial wave packet, built as a Gaussian superposition
of quasibound states and with an average collective energy
set 1 MeV above the fission barrier. The time propagation is
modeled using the TDGCM + GOA computer code FELIX

(version 2.0) [6]. The time step is δt = 5 × 10−4 zs (1 zs =
10−21 s), and the charge and mass distributions are calculated
after 4 × 104 time steps, which correspond to 20 zs.

The collective space is divided into an inner region with
a single nuclear density distribution and an external region
that contains two separated fission fragments. The scission
hypersurface that divides the inner and external regions is
determined by the expectation values of the Gaussian neck
operator Q̂N = exp[−(z − zN )2/a2

N ], where aN = 1 fm and zN

is the position of the neck [44]. We define the prescission
domain by 〈Q̂N 〉 > 3 and consider the frontier of this domain
as the scission surface. The flux of the probability current
through this hypersurface provides a measure of the proba-
bility of observing a given pair of fragments at time t [6],

F (ξ, t ) =
∫ t

t0

dt ′
∫

q∈ξ

J(q, t ′) · dS, (7)

where J(q, t ) is the current,

Jk (q, t ) = h̄
∑

l

Bkl (q)Im

(
g∗ ∂g

∂ql

)
; (8)

FIG. 1. Two-dimensional projections of the deformation-energy
manifold of 228Th on the quadrupole-octupole axially symmetric
plane, calculated with the RMF + BCS model based on the func-
tional DD-PC1 for selected values of the pairing coordinate λ2.
Contours join points on the surface with the same energy, and the
separation between neighboring contours is 1 MeV. The red curves
denote static fission paths of minimum energy for each value of λ2.

and g(q, t ) is the wave function of the collective variables q
and time t . The yield for the fission fragment with mass A is
defined by

Y (A) ∝
∑
ξ∈A

lim
t→∞ F (ξ, t ). (9)

The set A(ξ ) contains all elements belonging to the scission
hypersurface such that one of the fragments has mass number
A.

III. RESULTS AND DISCUSSION

As an illustrative example, the fission of 228Th is con-
sidered. For this nucleus the charge distribution of fission
fragments exhibits a coexistence of symmetric and asym-
metric peaks [45]. In the first step a large-scale MDC-RMF
calculation is performed to generate the potential-energy sur-
face, single-nucleon wave functions, and occupation factors in
the (β2, β3, λ2) collective space. The intervals for the values
of the collective variables are as follows: −1 � β2 � 7 with a
step �β2 = 0.04; 0 � β3 � 3.5 with a step �β3 = 0.05; and
−0.1 � λ2 � 2.0 with a step �λ2 = 0.1.

Figure 1 displays the 2D projections of the 3D deforma-
tion energy surface of 228Th on the collective plane (β2, β3)
for several values of the collective coordinate λ2. Note that
the value λ2 = 0 corresponds to static BCS pairing, whereas
positive λ2 equates to enhanced pairing correlations. Only
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FIG. 2. Pairing gaps for neutrons �n (upper panel) and protons
�p (lower panel) along the static fission path as functions of the axial
quadrupole deformation for selected values of the isoscalar pairing
collective coordinate λ2.

configurations with QN � 3 are plotted, and the frontier of
this domain determines the scission contour. The red curves
correspond to static fission paths of minimum total energy.
The deformation surfaces for λ2 = 0 and λ2 = 0.3 are very
similar with a pronounced ridge separating the asymmetric
and symmetric fission valleys. This ridge decreases with in-
creasing values of the pairing coordinate λ2. The scission
contour for λ2 = 0 starts from an elongated symmetric point
at β2 ≈ 6 and evolves to a minimal elongation β2 ≈ 3 as
reflection asymmetry increases. For larger values of λ2 the
scission contour is not modified significantly, although the
starting point of the scission contour on the quadrupole axis
shifts to smaller elongations at β2 ≈ 5.

To illustrate the dynamical effect on the pairing correla-
tions, in Fig. 2 we display the values of the neutron (upper
panel) and proton (lower panel) pairing gaps along the static
fission paths as functions of the quadrupole coordinate β2 for
several values of the isoscalar pairing collective coordinate λ2

(cf. Fig. 1). In the interval of values of λ2 considered here, the
values of the pairing gaps increase by a factor of ≈2 to 3 and,
characteristically, for λ2 � 0.6 all traces of the underlying
shell effects along the static fission path vanish.

In Fig. 3 we plot the values of the perturbative cranking
collective masses MC p

11 , MC p
22 , and the nonperturbative crank-

ing mass MC
33 on a logarithmic scale along the static fission

path as functions of the quadrupole deformation for different
pairing collective coordinates λ2. As noted above, the indices
1–3 refer to the β2, β3, and λ2 coordinates, respectively. The
collective masses MC p

11 and MC p
22 exhibit a more complex struc-

ture for smaller values of deformations β2 < 1 and decrease
for larger deformations. One notes that MC p

22 exhibits a sharper
decrease for β2 > 1, compared to MC p

11 . The behavior of the
MC

33 collective mass is much more complex due to the fact
that it has been calculated using the nonperturbative cranking
formula Eq. (3). This leads to the appearance of prominent

FIG. 3. Perturbative cranking masses MC p
11 , MC p

22 , and the non-
perturbative cranking mass MC

33 (in h̄2 MeV−1) (logarithmic scale)
along the static fission path for several values of λ2.

peaks at the locations of single-particle level crossing near
the Fermi surface. However, in general, also MC

33 decreases
for large deformations, and the peaks are less pronounced. As
the value of the dynamical pairing coordinate λ2 increases,
all three collective masses decrease, and the underlying shell
effects gradually vanish. This effect is consistent with the re-
sults shown in Fig. 6 of Ref. [17]. The scission contours in the
(β2, β3) plane are shown in Fig. 4 for several collective pairing
coordinates λ2. The contours are generally not very different
especially for asymmetric fission. In particular, scission points
that are close to the static fission path are not sensitive to dy-
namical pairing. For larger values of λ2, however, the scission
contour is shifted towards smaller quadrupole deformations
β2 values for nearly symmetric fission.

In Fig. 5 we compare the theoretical predictions for the
charge yields with the data for photoinduced fission of 228Th.
The 3D calculation employs the collective space built from
the deformation β2, β3 and pairing λ2 coordinates, whereas
the 2D calculation includes only the shape degrees of freedom
β2 and β3, and static pairing correlations. As in our study
of Ref. [17], the calculation in the 2D collective space cor-
responds to normal and enhanced static pairings, that is, to
100% and 110% of the normal pairing strength, determined
by the empirical pairing gaps. For completeness, in Fig. 6 we
plot the corresponding 2D deformation energy surfaces on the
β2-β3 axially symmetric plane.

The theoretical predictions follow the general trend of
the data, except that our model obviously cannot reproduce
the odd-even staggering of the experimental charge yields.
The calculation that includes only the 2D collective space with
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FIG. 4. The scission contour of 228Th on the (β2, β3) deformation
plane for several values of the collective pairing coordinate λ2.

a static pairing strength adjusted to empirical ground-state
pairing gaps in this mass region (100%) predicts yields that
are entirely dominated by asymmetric fission with peaks at
Z = 35 and Z = 55. By increasing static pairing (110%), the
asymmetric peaks are reduced, and a contribution of symmet-
ric fission develops but not strong enough to reproduce the

FIG. 5. Charge yields for induced fission of 228Th, calculated
in the 3D collective space built from the deformation β2, β3 and
dynamical pairing λ2 coordinates (solid red curve). The yields are
shown in comparison to the results obtained in the 2D space of shape
degrees of freedom β2 and β3 with static pairing correlations adjusted
to empirical ground-state pairing gaps (100% pairing strength) and
enhanced by 10% (110% pairing strength). The data for photoin-
duced fission correspond to photon energies in the interval 8–14 MeV
and peak value of Eγ = 11 MeV [45].

FIG. 6. Two-dimensional deformation-energy surface of 228Th
on the β2-β3 axially symmetric plane, calculated with the
RMF + BCS model based on the functional DD-PC1 and with
normal (100%) and enhanced (110%) static pairing strengths as
determined by the empirical pairing gaps. Contours join points on
the surface with the same energy, and the separation between neigh-
boring contours is 1 MeV.

data. It is interesting to note that a very similar distribution
of charge yields is predicted by the 3D model calculation that
includes dynamical pairing. On a quantitative level, even the
3D calculation does not completely reproduce the experimen-
tal yields. The model predicts tails of the asymmetric peaks
that are not seen in experiment and, thus, fails to quantita-
tively match the symmetric contribution. It has to be noted,
however, that in the present paperthe collective potential and
inertia tensor have been calculated at zero temperature. In
our recent study of finite temperature effects in TDGCM +
GOA [18], a calculation of induced fission of 226Th has shown
that, although the model can qualitatively reproduce the em-
pirical triple-humped structure of the fission charge and mass
distributions already at zero temperature, the position of the
asymmetric peaks and the symmetric-fission yield can be de-
scribed much better when the potential and collective mass are
determined at a temperature that approximately corresponds
to the internal excitation energy of the fissioning nucleus.

Finally, to illustrate the effect of dynamical pairing on the
flux of the probability current through the scission hypersur-
face, in Fig. 7 we plot the time-integrated flux through the
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FIG. 7. Time-integrated collective flux B(λ2) Eq. (10) through
the scission contour as a function of the pairing collective coordinate
λ2.

scission contour on the (β2, β3) plane for a given value of the
pairing collective coordinate λ2,

B(λ2) ∝
∑
ξ∈B

lim
t→∞ F (ξ, λ2, t ). (10)

The set B(ξ ≡ β2, β3) contains all elements of the scission
contour with a given value λ2. Even though it appears that
dynamical pairing does not significantly modify the scission
contour (cf. Fig. 4), nevertheless, its effect on the collective
flux and, therefore, on the occurrence of fission, is remarkable.
For negative values of λ2, that is, for correlations weaker than
static pairing at λ2 = 0, the flux rapidly decreases to zero. For
positive values of λ2 the flux exhibits a steep increase and a
prominent peak at λ2 ≈ 0.3. Note that this value corresponds
to an increase in ≈20% with respect to the static proton and
neutron pairing gaps (cf. Fig. 2). The collective flux through
the scission contour weakens with a further increase in pairing
and eventually vanishes for λ2 > 1.

IV. SUMMARY

The influence of dynamical pairing degrees of freedom
on induced fission has been investigated in a unified theo-
retical framework based on the GCM with the GOA. In an
illustrative calculation of fragment charge yields for induced
fission of 228Th, the collective potential and inertia tensor have
been computed using the self-consistent multidimensionally
constrained relativistic mean field model, based on the en-
ergy density functional DD-PC1 and with pairing correlations
treated in the BCS approximation with a separable pairing
force of finite range. The fission fragment charge distributions
are obtained by propagating the initial collective state in time
with the time-dependent GCM + GOA. The flux of the prob-
ability current through the scission hypersurface determines
the probability of observing a given pair of fragments.

In this paper, for the first time, the dynamics of induced
fission has been consistently described in a three-dimensional
space of collective coordinates that in addition to the axial
quadrupole and octupole intrinsic deformations of the nuclear
density also includes an isoscalar pairing degree of freedom.
A number of studies have already established the importance
of dynamical pairing for the calculation of spontaneous fission
lifetimes and static pairing correlations for modeling induced
fission. As this paper has also shown a much more difficult
problem is the inclusion of dynamical pairing degrees of free-
dom in a time-dependent description of induced fission. One
expects, of course, that the model becomes more realistic as
the Hilbert space of collective coordinates is expanded. How-
ever, as the present analysis has illustrated, it can be difficult
to numerically stabilize the time evolution of the fissioning
system when shape and pairing collective coordinates are
considered simultaneously in a three-dimensional calculation.
Here it was necessary to compute the collective inertia using
different cranking approximations for the shape and pairing
degrees of freedom. Nevertheless, this approach enables a
qualitative study of the effect of dynamical pairing on induced
fission.

This paper has clearly demonstrated the important effect
that dynamical pairing correlations have on the induced-
fission fragment distribution. In particular, the charge dis-
tribution of fission fragments of 228Th is characterized by
symmetric and asymmetric peaks, but this structure cannot
be reproduced in a two-dimensional calculation that only in-
cludes shape collective variables. In that case, and with a static
pairing strength adjusted to empirical ground-state pairing
gaps, the calculated yields correspond to a completely asym-
metric fission. Only by artificially increasing the static pairing
correlations or, more naturally, by including the dynamical
pairing degree of freedom in the three-dimensional calcula-
tion, the asymmetric peaks get reduced, and a contribution of
symmetric fission develops in agreement with the empirical
trend. It is also interesting to note that the time-integrated
collective flux through the scission contour on the (β2, β3)
plane, exhibits a characteristic functional dependence on the
pairing collective coordinate with a prominent peak at a value
that correspond to an increase in ≈20% with respect to the
static pairing gaps.

Future advances in computational capabilities will open the
possibility of more quantitative applications of multidimen-
sional TDGCM + GOA to fission dynamics. An immediate
task will be to consider shape and pairing degrees of freedom
on an equal footing and consistently compute the correspond-
ing collective inertia tensor and metric. A more challenging
problem is to include dynamical pairing degrees of freedom in
recently developed fission models that attempt to incorporate
restoration of symmetries broken by the intrinsic densities in
constrained mean-field calculations (rotational, reflection, and
particle number symmetry) [46–48].
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