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Measurement of the Cross Sections of Ξ0
c and Ξ +

c Baryons and of the Branching-Fraction
Ratio BRðΞ0

c → Ξ− e+ νeÞ=BRðΞ0
c → Ξ −π + Þ in pp Collisions at

ffiffi

s
p

= 13 TeV
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*
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The pT-differential cross sections of prompt charm-strange baryons Ξ0
c and Ξþ

c were measured at
midrapidity (jyj < 0.5) in proton-proton (pp) collisions at a center-of-mass energy

ffiffiffi

s
p ¼ 13 TeV with the

ALICE detector at the LHC. The Ξ0
c baryon was reconstructed via both the semileptonic decay (Ξ−eþνe)

and the hadronic decay (Ξ−πþ) channels. The Ξþ
c baryon was reconstructed via the hadronic decay

(Ξ−πþπþ) channel. The branching-fraction ratio BRðΞ0
c → Ξ−eþνeÞ=BRðΞ0

c → Ξ−πþÞ ¼1.38�
0.14ðstatÞ � 0.22ðsystÞ was measured with a total uncertainty reduced by a factor of about 3 with respect
to the current world average reported by the Particle Data Group. The transverse momentum (pTÞ
dependence of the Ξ0

c- and Ξþ
c -baryon production relative to the D0 meson and to the Σ0;þ;þþ

c - and Λþ
c -

baryon production are reported. The baryon-to-meson ratio increases toward low pT up to a value of
approximately 0.3. The measurements are compared with various models that take different hadronization
mechanisms into consideration. The results provide stringent constraints to these theoretical calculations
and additional evidence that different processes are involved in charm hadronization in electron-positron
(eþe−) and hadronic collisions.

DOI: 10.1103/PhysRevLett.127.272001

Measurements of heavy-flavor hadron production in
high-energy proton-proton (pp) collisions provide impor-
tant tests of quantum chromodynamics (QCD). The cross
sections of heavy-flavor hadrons are usually computed
using the factorization approach as a convolution of three
factors [1]: (i) the parton distribution functions of the
incoming protons, (ii) the hard-scattering cross section at
partonic level, and (iii) the fragmentation function of heavy
quarks into a given heavy-flavor hadron. The D- and
B-meson cross sections in pp collisions at several
center-of-mass energies at the LHC [2–7] are described
within uncertainties by perturbative QCD calculations [8–
12], which use fragmentation functions tuned on eþe− data,
over a wide range of transverse momentum (pT).
Measurements of Λþ

c -baryon production at midrapidity
in pp collisions at the center-of-mass energy

ffiffiffi

s
p ¼ 5.02

and 7 TeV were reported by the ALICE and CMS
Collaborations in Refs. [13–15]. The measured Λþ

c =D0

ratio is higher than previous measurements in eþe− [16–18]
and e−p [19,20] collisions. A similar observation was
drawn from the measurement of the inclusive Ξ0

c-baryon

production at midrapidity in pp collisions at
ffiffiffi

s
p ¼

7 TeV [21].
PYTHIA8.2 tunes including string formation beyond the

leading-color approximation [22] and a statistical hadro-
nization model (SHM) [23] including a set of higher-mass
charm-baryon states as prescribed by the relativistic quark
model (RQM) and from lattice QCD [24,25] qualitatively
describe the measured Σ0;þ;þþ

c =D0 and Λþ
c =D0 cross

section ratios [15,26], but underestimate the Ξ0
c=D0 ratio

[21]. The observed enhancement of the charm-baryon
production can also be explained by model calculations
considering hadronization of charm quarks via coalescence
in addition to the fragmentation in pp collisions [27,28].
The increased yield of charm baryons makes it mandatory
to include their contribution for an accurate measurement
of the cc̄ production cross section in pp collisions at the
LHC [29].
In this Letter, the measurements of the cross sections of

the prompt (i.e., produced directly in the hadronization of
charm quarks and in the decays of directly produced
excited charm states) charm-strange baryons Ξ0

c and Ξþ
c

at midrapidity (jyj < 0.5) in pp collisions at
ffiffiffi

s
p ¼ 13 TeV

are reported. The Ξ0
c baryon was reconstructed via the

decay channels Ξ−eþνe, BR ¼ ð1.8� 1.2Þ% and Ξ−πþ,
BR ¼ ð1.43� 0.32Þ% [30] together with their charge
conjugates in the interval 1 < pT < 12 GeV=c. The Ξþ

c
baryon was reconstructed via the decay channel Ξ−πþπþ,
BR ¼ ð2.86� 1.21� 0.38Þ% [31], together with its
charge conjugate, in the interval 4 < pT < 12 GeV=c.
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The ratio BRðΞ0
c → Ξ−eþνeÞ=BRðΞ0

c → Ξ−πþÞ was also
measured. In the following, the notation Ξc is used to refer
to both Ξ0

c and Ξþ
c states, if not differently specified.

A description of the ALICE detector and its performance
are reported in Refs. [32,33]. The data used for these
analyses were recorded with a minimum-bias trigger, based
on coincident signals in the two scintillator arrays (V0)
located on both sides of the interaction vertex. Offline
selections, based on the V0 and Silicon Pixel Detector
signals [3], were applied to remove background from
beam-gas collisions. Pileup events (less than 1% [34])
containing multiple primary vertices were rejected. Only
events with a reconstructed primary vertex position within
�10 cm in the longitudinal direction from the nominal
center of the detector were used. With these requirements,
1.9 × 109 pp events were selected, corresponding to an
integrated luminosity of Lint ¼ 32.08� 0.51 nb−1 [34].
Charged-particle tracks and particle-decay vertices were

reconstructed in the central barrel using the inner tracking
system (ITS) and the time projection chamber (TPC),
which are located inside a solenoidal magnet of field
strength 0.5 T. The hadron (electron) selection criteria
are the same as those reported in Ref. [3] ([21]). Particle
identification (PID) was performed using the information
on the energy loss (dE=dx) through the TPC gas, and with
the flight-time measurement of the time-of-flight detector
[35]. The Ξ− baryons were reconstructed from the decay
chain Ξ− → π−Λ, BR ¼ ð99.887� 0.035Þ%, followed
by Λ → π−p, BR ¼ ð63.9� 0.5Þ% [30]. The Ξ− and Λ
baryons were reconstructed by exploiting their character-
istic decay topologies as reported in Refs. [21,36].
For the measurements in the hadronic decay channels,

pions were selected according to the criteria described in
Ref. [29]. The Ξc candidates were reconstructed combining
one or two pions, with the correct electric charge, to the
selected Ξ baryon. A Kalman-Filter vertexing algorithm
[37] was used for the reconstruction of the Ξ0

c → Ξ−πþ
decay channel. The package allows us to set constraints on
the mass and on the production point of the reconstructed
particles, using also information about the errors of
daughter particle trajectories improving reconstruction
accuracy of the mother particle. The mass constraint
improves the mass and momentum reconstruction of the
particle, while the production point constraint helps to
determine whether the particle is coming from a certain
vertex. These constraints were applied to each vertex
and particle (Λ and Ξ) in the decay chain reconstruction.
In the case of the Ξþ

c baryon, the mean-proper lifetime
cτ ¼ 132 μm [30] was exploited. The Ξþ

c secondary vertex
was reconstructed using only two pions having the same-
sign charge, because the reconstructed Ξ trajectory has a
much worse resolution when propagated to the primary
vertex. Selections on the cosine of the pointing angle of the
Ξþ
c to the primary vertex, the distance of closest approach

between the two decay pions, and the decay length of the

reconstructed secondary vertex were applied. For the Ξ0
c-

baryon analysis, a multivariate technique based on the
adaptive boosted decision tree (BDT) algorithm in the
Toolkit for Multivariate Data Analysis (TMVA) [38] was
used. The BDT algorithm was trained using reconstructed
signal candidates obtained by simulating pp collisions with
PYTHIA8.2 [39] and propagating the generated particles
through the detector using the GEANT3 transport code [40],
including a realistic description of the detector response
and alignment during the data taking period. The back-
ground candidates were taken from data by selecting
candidates with invariant mass in the intervals 2.17 < M <
2.39 GeV=c2 and 2.55 < M < 2.77 GeV=c2. The model
was trained independently for each pT interval with input
variables related to the Ξ− decay topology and to the PID
information of the decay tracks. The Ξc raw yields were
obtained from fits to the candidate invariant-mass distri-
butions. The signal peak was modeled with a Gaussian and
the background was described by a linear function.
The Ξ0

c → Ξ−eþνe analysis was performed using the
technique reported in Ref. [21]. The Ξ0

c candidates were
defined from opposite-sign charge eΞ pairs with an open-
ing angle smaller than 90°. In order to reject electrons from
photon conversions occurring in the detector material, the
electron-candidate tracks are required to have associated
hits in the two innermost layers of the ITS [41,42]. Further
rejection of background electrons originating from Dalitz
decays of neutral mesons and photon conversions was
performed using a technique based on the invariant mass of
eþe− pairs [43,44]. The electron (positron) candidates were
paired with opposite-sign charge tracks from the same
event and are rejected if they form at least one eþe− pair
with an invariant mass smaller than 50 MeV=c2. A cor-
rection for the misidentification probability was imple-
mented, estimated to be 2% by applying the algorithm to
same-sign charge e�e� pairs. The background in the eþΞ−

pair distribution is estimated by exploiting the fact that Ξ0
c

baryons decay into eþΞ−ν̄e, but not into e−Ξ−ν̄e, while
most of the background sources contribute equally to both
samples. The yield of same-sign charge pairs is therefore
used to estimate the background. The Ξ0

c raw yield was then
obtained by subtracting the distribution of same-sign
charge eΞ-pairs from the distribution of opposite-sign
charge pairs, and integrating the invariant-mass distribution
forMðeΞÞ < 2.5 GeV=c2. The procedure was verified with
PYTHIA8.2 [39] simulations and the GEANT3 transport code.
A similar procedure was adopted by the ARGUS and
CLEO Collaborations [45,46]. The same-sign charge pairs
also contain a contribution from Ξ0;−

b → e−Ξ−ν̄eX decays
not present in the distribution of opposite-sign charge pairs,
leading to an oversubtraction. It was corrected for based on
the assumptions reported in Ref. [21] and ranges from 1%
to 4%, depending on pT . The pT distribution of eþΞ− pairs
was corrected for the missing momentum of the undetected
neutrino using the Bayesian unfolding technique [47]
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implemented in the RooUnfold package [48]. Additional
information on the unfolding procedure is reported in
the additional material [49].
The raw yields were divided by the acceptance-times-

efficiency for prompt hadrons, ðacc × εÞprompt, and were
corrected for the beauty feed-down contribution. The
ðacc × εÞprompt corrections were obtained from a
Monte Carlo simulation with the same configuration of
the one used for the BDT training. The simulated Ξc pT
distributions were modified by a two step iterative pro-
cedure in order to mimic data. In the first step, the Ξc
reconstruction efficiency is obtained with the pT distribu-
tion generated with PYTHIA8.2. This ðacc × εÞprompt is then
used to calculate a first estimate of the Ξ0

c pT -differential
spectrum. This first estimate is used to reweight the
simulated Ξc pT distributions, which is then used for the
final computation of the ðacc × εÞprompt. The ðacc × εÞprompt

increases with pT from 0.6% to 12% depending on the
particle and decay channel. The contribution from beauty
feed down to the measured Ξc yields was subtracted. The
cross section of feed down Ξc is calculated from the one of
Λþ
c originating from Λ0

b decays (as described in Ref. [15])
and scaled by the fraction of Ξb decaying in a final state
with a Ξc, which is taken to be about 50% from the
PYTHIA8.2 generator [39], and by the ratio of the measured
pT -differential yields of inclusive Ξc and prompt Λþ

c
baryons. This procedure relies on the assumptions that the
pT shape of the cross sections of feed down Λþ

c and Ξc are
similar, and that the ratio Ξc=Λþ

c is the same for inclusive
and feed-down baryons. The prompt fraction (fpromptÞ
decreases with increasing pT and it ranges from 0.99 at
low pT to 0.93 at high pT . To obtain the prompt Ξc cross
sections, the corrected yields were divided by a factor of 2
to obtain the particle-antiparticle averaged yields, by the
BR, by the widths of the pT and y intervals considered, and
by Lint, as shown in Eq. (1).

d2σΞ
0
c

dpTdy
¼ 1

BR
×

1

2ΔyΔpT
×
fprompt × NΞ0

cþΞ̄0
c

raw

ðacc × εÞprompt
×

1

Lint
: ð1Þ

Systematic uncertainties were estimated considering
several sources. For the hadronic decay channels, the
systematic uncertainty on the raw-yield extraction was
evaluated by repeating the fit of the invariant-mass dis-
tribution with varied fit interval, functional form of the
background contribution, and width of the Gaussian
function used to describe the signal peak. For the Ξ0

c in
the semileptonic decay channel, the raw-yield extraction
systematic uncertainty was estimated by varying the
selection criteria on the opening angle and on the invariant
mass of the pair. The systematic uncertainties were defined
as the RMS of the distribution of the signal yields obtained
from these variations. The relative uncertainty on raw-yield
extraction ranges from 7% to 11% depending on the pT .

The uncertainty on the track reconstruction efficiency was
evaluated by varying the track-selection criteria and by
comparing the probability to prolong the tracks from the
TPC to the ITS hits in data and simulations. A 5% (7%)
uncertainty was assigned for the Ξ0

c (Ξþ
c ). The uncertainty

on the selection efficiency originates mainly from imper-
fections in the description of the detector response and
alignment in the simulation. It was estimated from the
ratios of the corrected yields obtained by varying the BDT
and topological selections applied; an uncertainty ranging
from 2% to 5% was assigned. The systematic uncertainty
due to the shape of the Ξc pT distributions used for the
calculation of ðacc × εÞprompt was estimated by considering
different pT shapes in the simulation, obtained by varying
the weights mentioned above within their uncertainty [21]
and it amounts to 1% for pT < 3 GeV=c. The systematic
uncertainty on the subtraction of feed down from beauty-
hadron decays was evaluated as in Ref. [15] and addition-
ally by scaling up the Ξc=Λþ

c ratio by a conservative factor
of 2 and scaling it down to the Ξ−

b =Λ0
b ratio measured by the

LHCb Collaboration [50], important in the case that
BRðΞ0

b → Ξ−
c XÞ is the same as BRðΛ0

b → Λþ
c XÞ. The

assigned uncertainty ranges from 1% to 9% depending
on pT . Additional uncertainties related only to the Ξ0

c
semileptonic decay channel were estimated as follows. The
uncertainties related to the unfolding procedure were
estimated by varying the number of iterations of the
algorithm, the pT range and the widths of the pT intervals
used in the Bayesian unfolding procedure, and the
unfolding method itself to the singular value decomposition
[51], and ranges from 2% to 12% depending on pT . The
systematic uncertainty related to the oversubtraction due
to the Ξb contribution in the same-sign charge eΞ pairs was
estimated by scaling the assumed Ξb momentum distribu-
tion by a conservative 50% [52]. A maximum of 2%
uncertainty was assigned at high pT . A 2% uncertainty was
assigned to account for possible differences in the accep-
tance of eþΞ− pairs in data and simulation, which is
evaluated by performing the measurement in different
rapidity intervals between jyj < 0.5 and 0.8. The cross
sections have an additional global normalization uncer-
tainty due to the uncertainties on the integrated luminosity
[34] and the BRs [30,31].
The Ξ0

c measurements in the two decay channels agree
within statistical and uncorrelated systematic uncertainties
[49]. The results from the two decay channels were
combined to obtain a more precise measurement of the
prompt pT -differential Ξ0

c-baryon cross section. The
tracking and feed-down systematic uncertainties were
propagated as correlated between the two measurements.
Figure 1 shows the average of the cross sections, computed
considering as weights the inverse square of the relative
statistical and pT -uncorrelated systematic uncertainties
[53]. The prompt Ξþ

c -baryon cross section, also shown in
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Fig 1, is compatible within the uncertainties with the Ξ0
c

measurement.
The pT -integrated cross sections in the measured pT

interval for the Ξc are dσΞ
0
c

pp;13 TeV=dyjð1<pT<12 GeV=cÞ
jyj<0.5 ¼

149.6 � 20.8ðstatÞ � 35.6ðsystÞ � 2.4ðlumiÞ μb and

dσΞ
þ
c

pp;13 TeV=dyjð4<pT<12 GeV=cÞ
jyj<0.5 ¼ 14.9 � 2.0ðstatÞ�

6.6ðsystÞ � 0.2ðlumiÞ μb. In calculating the pT -
integrated cross section and the ratio of the branching
fractions, the systematic uncertainty related to unfolding,
for the Ξ0

c → Ξ−eþνe, was considered as pT uncorrelated
and the other uncertainties as fully pT correlated. For the
hadronic decay channels, the uncertainty related to the raw-
yield extraction was considered pT uncorrelated, because the

signal-over-background ratio is observed to largely vary as a
function of pT , while the others as fully pT correlated. The pT

-integrated Ξ0
c cross section at midrapidity was obtained by

extrapolating the visible cross section to the full pT range. The
pT dependence of the Catania model [28], which better
describes the shape of the measured cross section with respect
to other model calculations as seen in Fig. 2, was used to
calculate the extrapolation factor, which is 1.29þ0.12

−0.08 .
The systematic uncertainty was estimated considering calcu-
lations [22,23,27] that describe the shape of the cross section
in the measured pT interval. The pT -extrapolated cross

section for the Ξ0
c is dσΞ

0
c

pp;13TeV=dyjjyj<0.5¼193.6�
26.9ðstatÞ�46.1ðsystÞ�3.1ðlumiÞþ17.5

−12.0ðextrapÞ μb.
The measurement of the Ξ0

c-baryon cross sections, not
corrected by the BRs, in the two different decay channels
allowed the computation of the BRðΞ0

c → Ξ−eþνeÞ=
BRðΞ0

c → Ξ−πþÞ ratio. The pT -dependent ratio of the
two measurements, which was observed to be flat in pT
[49], was averaged over pT using the inverse uncorrelated
relative uncertainties as weights [53]. The final systematic
uncertainty on the ratio was obtained by summing in
quadrature the pT-correlated and uncorrelated systematic
uncertainties. The measured ratio is BRðΞ0

c → Ξ−eþνeÞ=
BRðΞ0

c → Ξ−πþÞ ¼ 1.38 � 0.14ðstatÞ � 0.22ðsystÞ. The
result is consistent with the global average reported by the
PDG (1.3� 0.8) [30] and has a total uncertainty reduced by a
factor of 3. The result is also consistent with the one released
by the Belle Collaboration [54].
Figure 2 (left) shows the Ξc=D0 ratios measured as a

function of pT . The systematic uncertainties related to the
track-reconstruction efficiency, feed-down subtraction, and
luminosity were propagated as correlated in the ratio. The
observed pT dependence of the Ξc=D0 ratio is similar to
what was measured for the Λþ

c =D0 ratio [15], while the
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Ξc=D0 ratio is generally lower. This result provides strong
indications that the fragmentation functions of baryons and
mesons differ significantly. The PYTHIA8.2 event generator
with the Monash tune [39], and tunes that implement color
reconnection (CR) beyond the leading-color approximation
[22], which lead to an increased baryon production, were
compared to the measurements. The Monash tune signifi-
cantly underestimates the data by a factor of 23–43 in the
low-pT region and by a factor of about 5 in the highest pT
interval. All three CR modes give a similar magnitude and
pT dependence of Ξc=D0, and although they predict a
larger baryon-to-meson ratio with respect to the Monash
tune, they still underestimate the measured Ξc=D0 ratio by
a factor 4–9 for pT < 4 GeV=c. The measured Ξc=D0 ratio
was also compared to a SHM [23] that includes additional
excited charm-baryon states not yet observed but predicted
by the RQM [24] and by lattice QCD [25]. While this
model describes the Λþ

c =D0 and Σ0;þ;þþ
c =D0 ratios [15,26],

it underestimates the Ξc=D0 ratio. The measured ratios
were also compared with models that include hadronization
via coalescence. In the quark (re-)combination mechanism
(QCM) [27], the charm quark can pick up a comoving light
antiquark or two comoving quarks to form a single-charm
meson or baryon. The model does not describe the Ξc=D0

ratio. The Catania model [28,55] implements charm-quark
hadronization via both coalescence and fragmentation, and
it is the model that is closer to the measured ratio over the
full pT interval.
The Ξ0

c=Λþ
c and Ξ0;þ

c =Σ0;þ;þþ
c [26] cross section ratios

are reported in the right panel of Fig. 2. The tracking, feed
down, and luminosity systematic uncertainties were propa-
gated as correlated. The Ξ0

c=Λþ
c ratio is approximately

0.5 and within the current uncertainties there is no
significant pT dependence. All the PYTHIA8.2 tunes, as
well as the QCM, Catania, and the SHMþ RQM
models, do not describe the measured ratio. To compute
the Ξ0;þ

c =Σ0;þ;þþ
c , the Ξ0

c was summed with the Ξþ
c for pT >

4 GeV=c and scaled by a factor of 2 in the interval
2 < pT < 4 GeV=c. The ratio is at approximately 2 and
it is compatible with the Monash tune, which under-
estimates by a similar amount the Ξ0;þ

c and Σ0;þ;þþ
c cross

sections [21,26]. The PYTHIA8.2 tunes with CR and the
SHMþ RQM calculation also underestimate the measure-
ment. The QCM model shows an almost flat value at unity,
largely underestimating the measured ratio. The Catania
model describes the data within the uncertainties.
In summary, measurements of the prompt charm-strange

baryons Ξþ
c and Ξ0

c at midrapidity in pp collisions at
ffiffiffi

s
p ¼

13 TeV were presented. The results pose important con-
straints to models of charm-quark hadronization in pp
collisions. Finally, the ratio BRðΞ0

c → Ξ−eþνeÞ=BRðΞ0
c →

Ξ−πþÞ was measured with a total uncertainty reduced by a
factor 3 with respect to the global average reported by the
PDG [30].
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S. Sadovsky,94 J. Saetre,21 K. Šafařík,38 S. K. Saha,143 S. Saha,89 B. Sahoo,50 P. Sahoo,50 R. Sahoo,51 S. Sahoo,67 D. Sahu,51

P. K. Sahu,67 J. Saini,143 S. Sakai,136 S. Sambyal,104 V. Samsonov,96,101,†D. Sarkar,145 N. Sarkar,143 P. Sarma,43 V. M. Sarti,108

M. H. P. Sas,148 J. Schambach,99,121 H. S. Scheid,70 C. Schiaua,49 R. Schicker,107 A. Schmah,107 C. Schmidt,110

H. R. Schmidt,106 M. O. Schmidt,107 M. Schmidt,106 N. V. Schmidt,70,99 A. R. Schmier,133 R. Schotter,139 J. Schukraft,35

Y. Schutz,139 K. Schwarz,110 K. Schweda,110 G. Scioli,26 E. Scomparin,61 J. E. Seger,15 Y. Sekiguchi,135 D. Sekihata,135

I. Selyuzhenkov,96,110 S. Senyukov,139 J. J. Seo,63 D. Serebryakov,65 L. Šerkšnytė,108 A. Sevcenco,69 T. J. Shaba,74

A. Shabanov,65 A. Shabetai,117 R. Shahoyan,35 W. Shaikh,112 A. Shangaraev,94 A. Sharma,103 H. Sharma,120 M. Sharma,104

N. Sharma,103 S. Sharma,104 O. Sheibani,127 K. Shigaki,47 M. Shimomura,86 S. Shirinkin,95 Q. Shou,41 Y. Sibiriak,91

S. Siddhanta,56 T. Siemiarczuk,88 T. F. Silva,123 D. Silvermyr,83 G. Simonetti,35 B. Singh,108 R. Singh,89 R. Singh,104

R. Singh,51 V. K. Singh,143 V. Singhal,143 T. Sinha,112 B. Sitar,13 M. Sitta,32 T. B. Skaali,20 G. Skorodumovs,107

M. Slupecki,45 N. Smirnov,148 R. J. M. Snellings,64 C. Soncco,114 J. Song,127 A. Songmoolnak,118 F. Soramel,28

S. Sorensen,133 I. Sputowska,120 J. Stachel,107 I. Stan,69 P. J. Steffanic,133 S. F. Stiefelmaier,107 D. Stocco,117 I. Storehaug,20

M.M. Storetvedt,37 C. P. Stylianidis,93 A. A. P. Suaide,123 T. Sugitate,47 C. Suire,80 M. Suljic,35 R. Sultanov,95

M. Šumbera,98 V. Sumberia,104 S. Sumowidagdo,52 S. Swain,67 A. Szabo,13 I. Szarka,13 U. Tabassam,14 S. F. Taghavi,108

G. Taillepied,137 J. Takahashi,124 G. J. Tambave,21 S. Tang,7,137 Z. Tang,131 M. Tarhini,117 M. G. Tarzila,49 A. Tauro,35

G. Tejeda Muñoz,46 A. Telesca,35 L. Terlizzi,25 C. Terrevoli,127 G. Tersimonov,3 S. Thakur,143 D. Thomas,121 R. Tieulent,138

A. Tikhonov,65 A. R. Timmins,127 M. Tkacik,119 A. Toia,70 N. Topilskaya,65 M. Toppi,53 F. Torales-Acosta,19 T. Tork,80

A. Trifiró,33,57 S. Tripathy,55,71 T. Tripathy,50 S. Trogolo,28,35 G. Trombetta,34 V. Trubnikov,3 W. H. Trzaska,128

T. P. Trzcinski,144 B. A. Trzeciak,38 A. Tumkin,111 R. Turrisi,58 T. S. Tveter,20 K. Ullaland,21 A. Uras,138 M. Urioni,59,142

G. L. Usai,23 M. Vala,39 N. Valle,29,59 S. Vallero,61 N. van der Kolk,64 L. V. R. van Doremalen,64 M. van Leeuwen,93

P. Vande Vyvre,35 D. Varga,147 Z. Varga,147 M. Varga-Kofarago,147 A. Vargas,46 M. Vasileiou,87 A. Vasiliev,91

O. Vázquez Doce,108 V. Vechernin,115 E. Vercellin,25 S. Vergara Limón,46 L. Vermunt,64 R. Vértesi,147 M. Verweij,64
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26Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Bologna, Italy
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