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Using conformal field theory calculations of the energy spectrum, within the XXZ model we investigate effects
of the flux insertion and the Umklapp term. We discuss two approaches to the evaluation of the Drude weight, the
first corresponding to the linear response theory and the second corresponding to the twisted boson theory with
the Umklapp term. Divergences obtained in the context of the former contradict the Bethe ansatz results, with
the two approaches coinciding for the free fermion point only. The origin of this discrepancy is in the different
order in which the Umklapp term and the flux insertion are treated, where the marginal perturbation should be
considered before the irrelevant perturbation. We calculate the scaling of the conductivity with system size and
temperature in the long-wave limit.
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I. INTRODUCTION

A unified understanding of nonequilibrium physics is still
one of the most significant and difficult tasks, involving var-
ious fundamental aspects of physical modeling. Notably, this
problem can be dated back to works by Kubo, Nakano, and
others [1,2]. The key achievement of these pioneer investi-
gations is the so-called (linear) response theory, which has
been established around the 1950s and 1960s. From a modern
perspective, Kubo’s response theory can be seen as the pertur-
bative treatment of a gauge field or a twist, being proven valid
for the free fermion point [3,4].

On the other hand, the exact treatment of interacting one-
dimensional systems with the twist or the flux by the use of the
Bethe ansatz has been developed in 1980s and 1990s [5–7].
Hence, one can say that the arguments of Kubo’s response
theory have been established much earlier than the investiga-
tions of the specific interacting models, such as the XXZ spin
chain with the anisotropic parameter |�| < 1. Comprehensive
analysis of this problem in Refs. [8–10] discusses conditions
under which Kubo’s response theory becomes correct.

In the context of nonequilibrium physics, the validity of
the thermalization hypothesis is one of the most common
problems for Kubo’s argument. In particular, here we consider
the validity of the perturbative treatment of the flux for inte-
grable systems, keeping in mind that the integrable systems
cannot reach the thermal equilibrium [8]. Hence, in our case,
Kubo’s argument cannot be applied, at least not straightfor-
wardly. It has been argued previously that this problem may be
overcome by assuming adiabatic processes or by considering
nonequilibrium steady states with open boundary conditions
[10].

Even when one assumes the thermalization, the perturba-
tive treatment of the flux is questionable in the context of
renormalization group (RG) arguments, as discussed by van

Kampem [11]. This problem has not captured enough atten-
tion for several reasons. As it has been emphasized previously
[12], the theories treating systems with twisted boundary
conditions have been developed in very different fields with
weak mutual interaction, ranging from high-energy and math-
ematical physics [5,6,13] to condensed matter physics [7].
Moreover, regarding calculations of conductivity, as one of
the fundamental transport properties, it is difficult to follow re-
sults across the literature because various definitions are used.
For example, some are based on the charge (spin) stiffness,
while some are based on the Drude weight and the Kubo’s
response theory, whose equivalence is not easy to establish
[9,14–16].

The spin stiffness for the XXZ chain [17] has been consid-
ered by Zotos et al. [18,19]. Various analyses have followed,
based on the Bethe ansatz and the field theory. Recently,
the previous results have been reconsidered by using T- and
Y- systems [20]. Nevertheless, the low-temperature behaviors
of the spin stiffness are still controversial. In Ref. [21], the
finite-size effects at zero temperature have been investigated
by using the field theory and the Bethe ansatz. Based on the
observation of the conformal invariance in the system, it has
been proposed that these finite-size effects may be related to
the finite-temperature effects for the infinite system [22,23].
On the other hand, Fujimoto and Kawakami have proposed
similar low-temperature behaviors of the Drude weight by
using Kubo’s argument [24]. However, even with all these
efforts undertaken and regardless of their major importance,
we are not aware of a work that would fully clarify the scaling
behavior for both the chain length and the temperature.

In this work, we consider the energy spectrum of the XXZ
chain in the long-wave and low-temperature limit, described
by the twisted boson theory with irrelevant perturbations. We
compare calculations based on Kubo’s argument with the re-
sults obtained by the twisted boson theory. Importantly, we
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find that these two approaches give different scaling behav-
iors. Furthermore, we provide a simple physical explanation
of this discrepancy, by noticing that we are dealing with a
quantum field problem with a marginal perturbation and an
irrelevant perturbation. For the XXZ chain, the marginal per-
turbation corresponds to flux and the irrelevant perturbation
corresponds to the Umklapp term. To treat this problem prop-
erly, one needs to be careful with the question of which term
should be considered first.

Within the twisted boson theory, it seems natural to con-
sider the effects of the marginal perturbation first, because the
effects of irrelevant terms are treated after the considerations
of the fixed point and the marginal operator. However, Kubo’s
argument involves the opposite ordering, considering the ef-
fect of the flux after considering the effect of irrelevant terms.
Hence, except for the free fermion point that does not contain
the Umklapp term, the results of the two approaches cannot
match.

II. DRUDE WEIGHT AND SPIN STIFFNESS

We start with a short discussion of the two ways of calcu-
lating the Drude weight commonly found in the literature. In
particular, we compare the Drude weight obtained from the
definition of the spin stiffness and the Drude weight obtained
perturbatively within the linear response theory [1,2,17]. In
this context, we analyze the spin chain system described by
the anisotropic Heisenberg model. As is well known, this
problem can be mapped to the spinless fermion model using
the Jordan-Winger transformation. In the presence of a mag-
netic flux �, the Hamiltonian corresponding to the spin-1/2
anisotropic XXZ spin chain is given by

Ĥ (�) = J
L∑

i=1

(
S+

i S−
i+1ei �

L + H.c. + �Sz
i Sz

i+1

)
. (1)

Here, L is the system length, and � is the anisotropy
parameter, directly related to the parameter of the Tomonaga-
Luttinger liquid (TLL), K , with � = cos(γ ), K = π/2(π −
γ ) and J = (π − γ )/[2π sin(γ )] [23]. For the Fermi velocity,
vF ∼ J , we take the most simple normalization vF = 1. The
Luttinger parameter characterizes the universal behaviors of
the system such as the correlation functions and the central
charge. K = 1/2 corresponds to the SU(2)1 Wess-Zumino-
Witten model, while K = 1 corresponds to the free Dirac
fermion model [25]. Here, we concentrate on the critical phase
|�| < 1.

The Drude weight may be obtained from the spin stiffness
[17,18],

Ds = L
∑

n

pk
d2E ex

k (�)

d�2
|�=0, (2)

where E ex
k (�) are the eigenenergies of the Hamiltonian with

flux � and pn are the Boltzmann weights. The solutions of
the problem with finite flux may be obtained from the Bethe
ansatz or by using the field theory approach [5–7].

By treating the flux � as a perturbation, the Hamiltonian
(1) is written in the form of the perturbative expansion [3,17],

Ĥ (�) =
∑
n=0

1

n!

(
i
�

L

)n

Ĥn, (3)

where Ĥ0 = Ĥ (0), while for n � 1 one has Ĥ2n−1 = −i ĵ =
J

∑L
i=1 S+

i S−
i+1 − S−

i S+
i+1 and Ĥ2n = T̂ = J

∑L
i=1 S+

i S−
i+1 +

S−
i S+

i+1. [For readers familiar with conformal field theory
(CFT), it should be noted that we use T̂ as the kinetic energy
of the model not as the energy-momentum tensor.] Thus, up
to the second order in this perturbation theory, the energy of
the system is given by

EKubo
k (�) = 〈k|

[
Ĥ (0) + �

L
ĵ − 1

2

(
�

L

)2

T̂

]
|k〉

−
(

�

L

)2 ∑
k′ �=k

|〈k′| ĵ|k〉|2
E ex

k (0) − E ex
k′ (0)

, (4)

where k labels the eigenenergies and eigenstates of the Hamil-
tonian without flux � = 0 again. Many works are based on
this perturbative approach [17,19,20], since it permits one to
analyze the systems for finite flux � by calculating the matrix
elements and the energies for the system without flux.

Inserting the energies obtained perturbatively, instead of
the exact solutions in Eq. (2) one obtains another expression
for the Drude weight,

D = 1

L

(
〈−T̂ 〉th − 2

∑
k �=k′

pk′
|〈k′| ĵ|k〉|2

E ex
k (0) − E ex

k′ (0)

)
, (5)

where 〈.〉th denotes the thermal average.
Frequently [3,17,18], it is assumed that the two expressions

(2) and (5) give the same result, D = Ds. However, this state-
ment is not self-evident, particularly, for low temperatures,
when the system is described by TLL.

A few problems should be emphasized. First, Eq. (4) is
only valid for free fermions. It is inconsistent with the Bethe
ansatz and the field theory with interaction and finite flux. The
free fermion point is special because Eq. (4) becomes exact if
the perturbative theory is taken into infinite order in �.

For free fermions, each point is twofold degenerate by
momentum inversion. This degeneracy is slightly (or “irrel-
evantly”) broken by the Umklapp term because this term
prevents the momentum from being a good quantum number.
In other words, the U(1) current ĵ cannot become conserved,
except for the free fermion point. Moreover, because the
twofold degeneracy is broken, the second term in Eq. (4) may
grow as the limit L → ∞ is approached.

III. CALCULATION OF SPIN STIFFNESS AND
KUBO-DRUDE WEIGHT WITHOUT UMKLAPP TERM

According to the numerical and analytical findings [7,26],
the spectrum of the system in the long-wave and the low-
temperature limit is given by

Ek (�) − E0 = 2π

L

[
K

(
m + �

2π

)2

+ n2

4K
+ N + N

]
, (6)
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with the ground-state energy

E0 = −L
2(π − γ )

π2

∫ ∞

0

sin γ t
π

sinh(t ) cosh
(

π−γ

π
t
) − π

6L
. (7)

Here Ek (�) are the energy of the excited states. The index k
denotes different combinations of four indices characterizing
the type of excitations, k ≡ {n, m, N, N}. m denotes the in-
teger momentum, n is the magnetization index [23,27], and
N and N are positive integers, specifying the particle-hole
excitations with degeneracy g(N ) and g(N ) [28,29]. Hereafter,
we consider the system with zero magnetization fixing n = 0,
or the half-filled case in the spinless fermion representation
of the model. It should be noted that the twofold degeneracy,
m → −m, is removed by the flux, even in the absence of the
Umklapp term.

In the context of the CFT, each primary state of the system
is represented by

|m, n〉� = exp

[
i

(
m + �

2π

)
φ(x) + inθ (x)

]
|0〉, (8)

where |0〉 is the vacuum state, while φ(x) and θ (x) are
the dual bosonic fields, satisfying the commutation rela-
tion [φ(x), ∂θ (x′)] = iδ(x − x′). By applying descendant field
(or particle-hole excitation operators) on the vacuum state,
one obtains descendant states |m, n, N, N〉 with the energy
given by Eq. (6). These states are eigenstates of the total
momentum ĵ,

ĵ|m, n〉� = 2K

(
m + �

2π

)
|m, n〉�. (9)

Consequently, the last term in Eq. (4), involving nondiago-
nal processes, gives a finite contribution only in the presence
of the Umklapp term in the model.

The interesting question that remains unanswered is
whether or not in the absence of the Umklapp term the two
expressions for the Drude weight, Eqs. (3) and (4), coincide.
We argue, using the CFT, that this is not the case. In particular,
from Eq. (6) one may easily calculate Ds as

Ds = L
∑

k

pk
d2Ek

d�2
= K

π
, (10)

where the normalization
∑

pk = 1 is assumed, with the k
summation running over m, N , and N and with degeneracies
g(N ) and g(N ) accounted for. Hence, if we think about our
system in terms of the TLL, which is an accurate description
of the long-wave and the low-temperature behavior, one ob-
tains a temperature- and L-independent Ds. In other words, for
the temperature-dependent behavior, the effects of irrelevant
perturbations should be taken into account. Moreover, as we
show in the next section, this finite contribution to the Drude
weight at T = 0 temperature is quite robust. This is also
consistent with the temperature dependence of D ≈ D(T =
0) + aT b obtained by Zotos [18].

Using the CFT further, we can calculate D in Eq. (5),
where in the absence of Umklapp processes only the first term
contributes. By considering the U(1) symmetry generated by
the current operator ĵ and the total magnetization operator∑

i Sz
i , for the half-filling n = 0 case [23] the kinetic energy

is given by T̂ ∼ ∫
dx(∂xθ )2,

D = 1

L

∑
k

g(N )g(N )〈−Tm,N,N 〉 = −aE0

L
− bUb,

Ub = 1

L

∑
k

g(N )g(N )(Ek − E0)pk, (11)

where a and b are constants of proportionality that depend
on the interaction, while Ub is the CFT energy density of the
bosonic excitations,

Ub = − 1

L

∂

∂β
log[Zb]. (12)

The partition function is within the CFT given by

Zb(τ ) = 1

|η(τ )|2
∑

m

qKm2
, (13)

with τ = iβ/L, q = e2π iτ , and η(τ ) = q1/24 ∏∞
N ′=1(1 − qN ′

),
and β is the inverse temperature of the system [12,30]. In this
notation, we can express the Kubo-Drude weight by

D ∼ −aE0

L
+ ib

L2

∂

∂τ
log[Zb(τ )]

= −aE0

L
+ ib

βL

∂

∂τ ′ log[Zb(τ )], (14)

with τ ′ = −1/τ , and where we have used the modular invari-
ance of the model, Zb(τ ) = Zb(τ ′).

One can easily see now that the second term in Eq. (14)
gives a different scaling with L in comparison to Eq. (10).
This difference cannot be solved by considering the effect
of irrelevant perturbations, except for the free fermion point.
Furthermore, we show that the effects of the Umklapp term
cannot be treated successfully by the Kubo-Drude formalism
irrespective of the interaction.

A. Free fermion point

For the free fermion point, it is easy to obtain the exact
form of energy spectrum by using the Fourier transformation,

E ex
k (�) ∝ −

∑
j

cos

(
π (2 j + 1)

L
+ �

L

)
. (15)

By taking the derivative of Eq. (15), one obtains

d2E ex
k

d�2
= − 1

L2
E ex

k (�). (16)

Thus, in both cases, Eqs. (2) and (5), in the absence of
interaction the same result is obtained for any temperature,
Ds = D. It should be noted that Eq. (15) can only contain the
corrections of irrelevant terms which do not break the twofold
degeneracy of the system at � = 0. Hence, there exists no
contribution from the Umklapp term in this case [31].

IV. UMKLAPP TERM AND KUBO’S RESPONSE THEORY

We start our discussion of the Umklapp term by con-
sidering the zero-flux case. Since the other excitations are
unimportant for the present analysis, we consider explicitly
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just the excitations corresponding to the momentum m. With-
out the flux, the spectrum of the system is doubly degenerate
except for the ground m = 0 state of even (+) parity. In the
basis of odd and even states, m > 0,

|m,±〉 = 1√
2

(|m〉 ± | − m〉). (17)

The Umklapp term,

VU = λ

2π

∫
dx cos[2φ(x)], (18)

introduces transitions between states of the same parity. For
m � 2, one gets [26]

〈m′,±| cos 2φ|m,±〉 ∝ δm′,m+2 + δm′,m−2

2

(
2π

L

)4K

, (19)

while for m = 1 one obtains

〈1,±| cos 2φ|1,±〉 ∝ ±1

2

(
2π

L

)4K

. (20)

Using the perturbation theory it is easy to calculate the
change of the energy spectrum. In particular, for the first m =
1 excited state the leading correction to the energy depends on
the parity,

E ex
1,±(0) − E1(0) ∼ �1,± = ±

(
2π

L

)4K−1
λ

2
, (21)

and for m = 1 the twofold degeneracy is lifted in the first order
in λ.

Since the current operator is odd under space inversion,
the nonzero matrix elements involve states of opposite parity,
〈m,±| ĵ|m′,∓〉 = m δm,m′ . Combining the perturbative treat-
ment of the Umklapp term in Eq. (21) and the perturbative
treatment of the flux in Eq. (3), one may easily determine
the contribution to the Drude weight given by the last (non-
diagonal) term in Eq. (4). In the low-temperature limit this
contribution is dominated by the lowest excitation, scaling as

1

L2

|〈1,+| ĵ|1,−〉|2
2�1,+

≈ 1

4π2λ

( L

2π

)4K−3

. (22)

Within the perturbative treatment, the energy of the system
with the flux and the Umklapp term may be expressed by

EKubo
1,± (�) ∼ E1,±(0) ∓ K2�2

π2λ

( L

2π

)4K−3

. (23)

Thus, for K � 1/2, as a function of � we should observe
an additional energy splitting if Kubo’s formulation is valid.
However, such a splitting contradicts the numerical results
obtained by the Bethe ansatz and the corresponding field
theory [5,7,29]. Moreover, whereas Eq. (6) and the results
of the Bethe ansatz contain the linear term proportional to
�/L, it is impossible to obtain such a contribution within the
perturbative approach in Eq. (23).

Regarding higher excitations, it follows from Eqs. (19) and
(20) that the twofold degeneracy is lifted by the Umklapp term
for all m. Within the perturbation theory, for odd m each state
|m,±〉 in Eq. (17) is connected to the state |1,±〉. Unlike
the odd-parity states, the even-parity states are connected to
the vacuum |0〉 state. In any case, the twofold degeneracy

becomes lifted in the mth order in λ. The energy splitting
given by the perturbative theory may be expressed by

�m,+ − �m,− = cmλm

(
2π

L

)m(4K−2)+1

. (24)

where cm is the coefficient given by the mth order perturbation
theory in λ. However, for large m, the energy splitting induced
by the flux �,

EKubo
m,± (�) = Em,±(0) ∓ m2K2�2

π2cmλm

( L

2π

)m(4K−2)−1

, (25)

grows with L. This means that the last term in Eq. (4) grows in
the L → ∞ limit as well, which means that the linear response
theory in Eqs. (3) and (4) contains a problem for finite fluxes.

V. TWISTED BOSON AND CONFORMAL
PERTURBATION THEORY

To take into account the effects of both the Umklapp term
in Eq. (18) and the flux � properly, we consider twisted
boson theory. We use the Hamiltonian formalism of the CFT
with the perturbation theory introduced by Cardy [26]. As
we have shown, the quantum states without flux and with
the Umklapp term are specified by the positive index m and
their parity in Eq. (17). On the other hand, within the twisted
boson theory, the quantum states are specified by the mo-
mentum m + �/2π . Hence these two formalisms cannot be
connected continuously by taking the � → 0 limit. In fact,
by considering higher-order contributions in λ, one generally
gets higher-order singularities in state energies.

The matrix elements in the |m〉 basis associated with the
Umklapp term are given by

〈m|2VU/λ|m′〉 = δm+2,m′

(
2π

L

)h−
+ δm−2,m′

(
2π

L

)h+
, (26)

where the exponents h± are flux dependent, h± = 4K (1 ±
�/2π ) − 1, coming from the conformal dimension of e±2φ .
We have dropped indices {n, N, N} as in the previous section.

It follows from Eq. (26) that within the perturbative theory
there are no linear contributions in λ, as expected from the
charge neutrality condition of the free boson CFT. In the
second order in λ, the energy of the states Ek (�) in Eq. (6)
gets an additional contribution EU,

EU = − λ2

16K

(
1

m + 1 + �
2π

− 1

m − 1 + �
2π

)(
2π

L

)8K−3

,

(27)
with E ex

k (�) − E0 ∼ Ek (�,λ) = Ek (�) + EU. Because K �
1/2, in comparison to Ek (�) in Eq. (6), EU behaves as a sub-
leading contribution to the total energy Ek (�,λ). For � = 0,
in its perturbative form in Eq. (27), EU involves a singular-
ity for m = ±1 because we do not consider the degenerate
perturbation theory. However, by summing the m and −m
contributions in Eq. (27) together, this divergent behavior is
easily removed in the � → 0 limit. (By considering higher-
order perturbation theories, we can obtain the divergence for
general m, but this is out of the scope of the present work.)

With the flux dependence of the energy in Eq. (27) known,
we can discuss in more detail its adiabatic physics. The tradi-
tional discussion can be found in Appendix A or Refs. [3,4].
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The higher-order derivatives of Eq. (27), which are closely
related to higher response functions and the nonlinear Drude
weight investigated in Refs. [3,4,32], are given for l > 2 by

dlEU

d�l
= −(−2π )−l λ2

16K
(l!)Al (m,�)

(
2π

L

)8K−3

, (28)

with

Al (m,�) = 1(
m + 1 + �

2π

)l+1 − 1(
m − 1 + �

2π

)l+1 . (29)

Hence, the derivatives in Eq. (28) vanish in the L →
∞ limit. Actually, this behavior is consistent with the
“divergence” at zero temperature of the nonlinear Drude
weight discussed in Refs. [3,4,32]. This divergency follows
from the different definition of the nonlinear Drude weight
in these works, which involve the additional Ll−1 factor,
Ll−1dlE ex

0 (�)/d�l ∼ Ll−4−8K . On the other hand, other ir-
relevant terms which may be expressed as multiplication of
holomorphic and antiholomorphic energy-momentum tensors
[23,33] can only give finite contributions to the nonlinear
Drude weight.

In the � → 0 limit, the thermal average of the derivatives
in Eq. (28) are approximately given by〈

dl EU

d�l

〉
th

=
∑

k

e−βEk (�=0,λ=0)

Zb(τ )

dlEk (�,λ)

d�l
, (30)

where Ek (� = 0, λ = 0) = Ek (0) − E0 in Eq. (6). The terms
in Eq. (30) vanish for odd l , since in these cases the terms for
m and −m given by Eq. (29) cancel. For even l > 2, in the
� → 0 limit one gets〈

dlEU

d�l

〉
th

= −
∑

n,N,N

g(N )g(N )
λ2

16K
(−2π )−l (l!)

(
2π

L

)8K−3

×
(

2p0,n,N,N + p1,n,N,N

2l
+ 2

∑
m>1

Al (m, 0)pm,n,N,N

)
.

(31)

The last term in Eq. (31),

F l
m>1 = 2

∑
m>1

Al (m, 0)e− 2πβK
L m2

, (32)

may be evaluated numerically. We can now express Eq. (31)
as 〈

dlEU

d�l

〉
th

= − (l!)(−2π )−lλ2

16K z(L, β )

×
(

2 + e− 2πβK
L

2l
+ F l

m>1

)(
2π

L

)8K−3

, (33)

with the partition function z(L, β ) = ∑∞
m=−∞ e− 2πβK

L m2
taking

the form of the Riemann θ function.

0.001 1 1000
x

0.001

0.01

0.1

1

10

G(x)

K = 0.5
K = 0.9

FIG. 1. Results showing the scaling behavior of G(x) in Eq. (35)
for K = 0.5 and K = 0.9. For small x < 0.005, one clearly observes
the power-law behavior, with the coefficient α = 0.5. This power-law
behavior is governed by the β/L dependency of the partition function
z(L, β ).

We can use Eqs. (6) and (33) for l = 2 to obtain the spin
stiffness,

Ds = K

π
− λ2

32π2K
G(x)

(
2π

L

)8K−4

, (34)

where, for a given value of K , G(x) is a function of a single
parameter x = β/L = −iτ ,

G(x) = 1

z(L, β )

(
2 + e− 2πβK

L

4
+ F l=2

m>1

)
. (35)

The function G(x) is shown in Fig. 1. In the zero-
temperature limit, when x is large, the finite-size effects are
described by a temperature-independent power-law behavior,

Ds = K

π
− λ2

32π2K

(
2π

L

)8K−4

, (36)

and this result is consistent with the RG result in
Ref. [21]. Further exponentially small corrections in the low-
temperature region can be evaluated from Eq. (34).

In the x → 0 limit, the Drude weight preserves a tempera-
ture dependence,

Ds = K

π
− λ2

32π2K

√
2Kβ

L

(
2π

L

)8K−4

. (37)

At elevated temperatures in Eq. (37), the finite-size effects
become strongly suppressed as L increases. In particular, irre-
spective of the value of K , for x = β/L < 0.005 the function
G(x) in Fig. 1 follows the power-law behavior x−α , with
α = 1/2. This limit is beyond the present exact diagonaliza-
tion approaches since it involves very large system sizes of
L > 200 even for quite large temperatures, β = 1. However,
it is not clear whether the CFT can approximate the energies
of the lattice models in this region. It should also be noted that
the Lagrangian formalism may be more useful to analyze this
limit [23], especially for the calculations of the free energy
and correlation functions. However, there exist ambiguities
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to define susceptibility in this formalism [14], and the com-
parison between our results and those from the Lagrangian
formalism is a future problem.

In the intermediate region 0.005 < x < 1, G(x) cannot be
described by the power-law function, changing quite sharply
near x ≈ 1. In this intermediate region, effects of other irrel-
evant terms which we have neglected, for example, that of
cos4φ, may appear if L is not sufficiently large. This may
explain controversial findings of the literature [9,18,19].

As we show in Appendix C, there exist other irrelevant
terms with conformal dimension 4 [23,33]. Here we show
only the results of the contributions of these terms to spin
stiffness,

DT T
s = FT T + QT T + πK

6L2
(λ+ − 2λ−), (38)

where we have used the functions

FT T = 4πb

L2

∑
m

m2 e− 2πβK
L m2

z(L, β )
, (39)

QT T = −2b′

L

∂

∂β
log

1

η(τ )2
, (40)

and b and b′ are two parameters defined by coupling constants
λ± of these irrelevant terms.

VI. CONCLUSIONS

In the context of the conformal field theory, we have con-
sidered the energy spectrum of TLL to investigate transport
properties in the long-wave and the low-temperature limit. We
have discussed the role of the irrelevant perturbation cos(2φ),
representing the Umklapp term, and the role of the flux �

insertion, demonstrating that Kubo’s linear response theory
cannot reproduce the results of the Bethe ansatz and the
twisted boson theory. It is shown that this difference should
be ascribed to a different role that the Umklapp term plays for
the system with or without the flux.

In the absence of the Umklapp term and without the flux
insertion, the system is characterized by the twofold degener-
acy related to the momentum inversion m → −m. With the
Umklapp term, this degeneracy is properly treated by con-
sidering the symmetric and the antisymmetric combination of
states, |m〉 ± | − m〉. Using in the next step Kubo’s perturba-
tive formulation to include the effect of the flux, one obtains
an additional level splitting that is in contradiction with other
approaches.

On the other hand, within the twisted boson theory, be-
cause of the nature of flux that behaves as the momentum
shift, ±m → ±m + �/2π , with the flux there is no twofold
degeneracy. Consequently, the treatment of the Umklapp term
within the standard perturbation theory gives the correct de-
scription of this irrelevant perturbation. Thus, it is crucial to
take into account the irrelevant terms (Umklapp) after the
marginal terms (flux) are taken first. Namely, the marginal
effects (flux) change the scaling properties of theories [5,7].

Similar arguments may give a natural reason why the flux
effects may be treated perturbatively for gapped systems. In
general, these systems may be regarded as a system flowed by
relevant perturbations. In this context, the flux as the marginal

perturbation loses its relevance; i.e., the energy of the system
becomes stable against the flux [34].

Applying these findings, in the context of the twisted boson
theory we were able to calculate the Drude weight scaling
behaviors for the problem of the XXZ chain, being char-
acterized by the nonanalyticity of the energy for � = 0. In
particular, we find the leading power-law corrections in the
low-temperature and the long-wave limit. Our results reveal
the difficulties to obtain such behaviors from the opposite
side, by using exact calculations for systems of limited sizes
and by applying the finite-size analysis. Namely, we find that
the low-temperature and the long-wave scalings inevitably
involve significant finite-size effects.

Finally, it may also be interesting to consider higher-
dimensional analogs. If one assumes that a conductor should
be described by a massless quantum field theory with irrele-
vant perturbations, as in the present one-dimensional case a
similar divergence of energy under finite flux and for the large
system size may exist. Hence, to consider response functions
properly, one needs to consider appropriate generalizations of
quantum field theories when both the irrelevant terms and the
flux are present.
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APPENDIX A: KUBO’S RESPONSE THEORY AND THE
ADIABATIC LIMIT

We consider the Schrödinger equation in the adiabatic
flux insertion. Our discussion in this section follows that of
Ref. [3].

First, let us introduce the general form of the Schrödinger
equation with Hamiltonian Ĥ (�t ),

ih∂t |α(t )〉 = Ĥ (�t )|α(t )〉, (A1)

where �t is the time-dependent flux. In general, the eigen-
function of the time-dependent Hamiltonian H (�t ) cannot
give the solution to this equation. To avoid this problem, we
concentrate on the adiabatic flux insertion process.

In the adiabatic limit, one can obtain the following rela-
tions,

∂t |k〉�t ∼ 0, (A2)

Ĥ (�t )|k〉�t = E ex
k (�t )|k〉�t , (A3)

where |k〉�t is the eigenstate of the Hamiltonian with flux
�t . In this limit, one may approximate the solution as the
eigenfunction of the time-dependent Hamiltonian (and we can
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evaluate it by the Bethe ansatz and the field theory). Hence,
starting from the equilibrium mixed state, we can obtain the
following density matrix,

ρt =
∑

k

pk|k〉�t 〈k|�t , (A4)

where pk is the Boltzmann weight.
It should be noted that we have assumed that the energy

eigenstate changes continuously under the flux insertion in
this argument. We start from zero flux �0 = 0 at t = 0. Then
we sufficiently slowly insert flux to the system until t = T
with �T = �. Then, we can obtain the response theory as

〈 j(T )〉 − 〈 j(0)〉 = L∂�〈H (�T )〉 − L∂�〈H (�0)〉

=
∑
l�2,k

L
pk

(l − 1)!
�l−1 dlE ex

k

d�l
(� = 0).

(A5)

In this traditional argument, we have assumed the Taylor’s
expansion of the energy around � = 0. Hence, by assuming
this Taylor’s expansion (or the response theory) and the per-
turbation theory in the flux �, we can obtain Eq. (4) without
considering the sum rule or other complicated calculations,
as shown in Ref. [3]. However, as we have shown in the
main text, the Taylor’s expansion around � = 0 and Kubo’s
argument are not consistent with the energy spectrum of the
model for finite � obtained by the Bethe ansatz. Similar
discontinuity can be found in Refs. [23,35].

Besides this ambiguity of Kubo’s argument, we point out
some typos of the two quantities 〈k|∂ l

�Ĥ |k〉 and ∂ l
�E ex

k =
∂ l
�〈k|Ĥ (�)|k〉 in Ref. [3]. Actually, these quantities are dif-

ferent except for the free fermion point. In other words, the
higher derivative extension of the Feynmann-Hellman equa-
tion is generally invalid.

APPENDIX B: CONFORMAL PERTURBATION THEORY
IN HAMILTONIAN FORMALISM

We review the CFT in the Hamiltonian formalism [26].
First, let us assume that the total system is described by the
following Hamiltonian,

HQFT = HCFT + λ

2π

∫
dxφi, (B1)

where HCFT is a Hamiltonian of a conformal field theory, φi

is a primary field of it labeled by index i, and λ is a coupling
constant of the model. In Ref. [26], the matrix element of the
field is calculated as

〈 j|φi|k〉 = Cjik

(
2π

L

)hi

, (B2)

where Ci jk is the coefficient of the operator product expansion
(OPE) of the theory.

The first- and the second-order perturbation theories give
the following energy spectrum,

Ej → Ej + λCji j

(
2π

L

)hi−1

+ λ2
∑

k

CjikCki j

E j − Ek

(
2π

L

)2h j−2

,

(B3)

where we have used the notation Ej − E0 = 2πhi/L. One may
see that hi = 2 gives a marginal effect to the energy spectrum
by comparing the first and the second term. Hence this for-
malism is consistent with the usual Lagrangian formulation of
RG analysis.

By applying this formalism to TLL, one can obtain the
second-order perturbation theory in Eq. (27). It should be
noted that cos2φ = (e2iφ + e−2iφ )/2, and e±2iφ are the pri-
mary fields of the theories. In TLL, the label of a primary
field is characterized by the two indexes m and n, and the OPE
coefficients are obtained by considering the U(1) charge of
the theory. Hence, we can obtain the following of the matrix
elements as

〈m, n, N, N |e−2iφ|m′, n′, N ′, N ′〉

= δn,n′δN,N ′δN,N
′δm+2,m′

(
2π

L

)4K (1− �
2π

)

, (B4)

〈m, n, N, N |e2iφ|m′, n′, N ′, N ′〉

= δn,n′δN,N ′δN,N
′δm−2,m′

(
2π

L

)4K (1+ �
2π

)

. (B5)

By considering the integration around spacial direction∫
dx, we can obtain the matrix element of the Umklapp term

in Eq. (26).

APPENDIX C: CONTRBUTIONS
FROM OTHER IRRELEVANT TERMS

As can be seen in Refs. [23,33], in the XXZ chain there
exist other irrelevant perturbations, T 2, which are described
by the multiplications of the energy-momentum tensors T
and T . In principle, one may consider more irrelevant terms,
such as T 3 and T

3
, which can contribute to higher response

functions. Compared with the Umklapp term, these terms are
unique because they do not break the twofold degeneracy of
the original model, and energy eigenstates are eigenstates of
these terms as well.

Here, we calculate the contributions of these terms, T T ,
T 2, and T

2
, within the conformal perturbation theory of

the twisted boson theory. By applying the calculations in
Ref. [23], the contribution of these terms to the energy may
be expressed by

ET T
m,0,N,N

(�)

∼
(

2π

L

)3

λ+H1[E (m, N,�)]H1[E (m, N,�)]

+
(

2π

L

)3

λ−
{
H3[E (m, N,�)] + H3[E (m, N,�)]

}
,

(C1)

where we have introduced the following functions,

H1(E ) = E − 1
24 , (C2)

H3(E ) = E4 − E2

4
, (C3)

E (x, y, z) = 1

2
K

(
x + z

2π

)2
+ y, (C4)
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and λ± are determined by coupling constants for these terms.
Hence, from these terms, one may obtain the following con-
tribution for the Drude weight,

DT T
s = L

∑
m,N,N

g(N )g(N )pm,0,N,N

d2ET T
m,0,N,N

d�2

∼ 4π (λ+ + 2λ−)

L2

∑
m,N,N

g(N )g(N )

×
[

3K2m2 + K

(
N + N − 1

12

)]
pm,0,N,N

+ πK

6L2
(λ+ − 2λ−)

= FT T + QT T + πK

6L2
(λ+ − 2λ−), (C5)

where we have introduced the functions

FT T = 4πb

L2

∑
m

m2 e− 2πβK
L m2

z(L, β )
, (C6)

QT T = −2b′

L

∂

∂β
log

1

η(τ )2
= 4ib′

L2

∂

∂τ
log η(τ ), (C7)

and b and b′ are the parameters defined as b = 3K2(λ+ +
2λ−) and b′ = 2K (λ+ + 2λ−). We use the standard nota-

tion for the Riemann θ function in the main text, z(L, β ) =
θ0,0(iβK/L, 0).

By using the following relation for the Riemann θ function
and its logarithmic derivative,

∂τ θ00(t, z) = i

4π
∂2

z θ00(t, z), (C8)

∂z log θ00(t, z) = 4π

∞∑
k=1

(−1)k ekπ it

1 − e2kπ it
sin 2πkz (C9)

f ′′

f
=

(
f ′

f

)′
+

(
f ′

f

)2

, (C10)

one obtains

FT T ∼ 4πb

L2

∞∑
k=1

(−1)k kekπ it

1 − e2kπ it
, (C11)

where t = 2iβK/L.
Hence for low temperatures, we may use the approxima-

tion 1 − e2kπ it ∼ 1, and FT T may be expressed by

FT T ∼ 4πb

L2

eπ it

(1 + eπ it )2 ∼ 1

L2
e− 2πβK

L . (C12)

For finite temperatures, one may use an approximation to
replace

∑
and

∫
. We obtain

FT T ∼ 4πb

L2

∫
dxx2e− 2πβK

L x2∫
dxe− 2πβK

L x2
∼ 2b

LβK
. (C13)
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