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Motivated by a novel origin of transverse single spin asymmetry (SSA) in semi-inclusive deep inelastic
scattering (SIDIS) uncovered by some of us, we quantitatively investigate its impact on the theoretical
understanding of the mechanism responsible for SSA. This new contribution from the quark-initiated
channel first appears in two-loop perturbation theory and involves the gTðxÞ distribution. We point out
another entirely analogous piece from the gluon-initiated channel proportional to the gluon helicity
distribution ΔGðxÞ. Both contributions are solely expressed in terms of twist-two polarized parton
distribution functions and twist-two fragmentation functions in the Wandzura-Wilczek approximation,
such that they can be unambiguously evaluated without introducing free parameters. We make predictions
for measurements of the asymmetries AUT at the future electron-ion collider (EIC), and find that AUT

associated with the sinðϕh − ϕSÞ, sinϕS and sinð2ϕh − ϕSÞ harmonics can reach up to 1–2% even at the top
EIC energy.

DOI: 10.1103/PhysRevD.104.094027

I. INTRODUCTION

Recently, three of us, together with D. J. Yang, have
proposed a novel mechanism for generating transverse
single-spin asymmetry (SSA) in semi-inclusive deep
inelastic scattering (SIDIS) ep↑ → e0hX [1]. It has been
demonstrated that an imaginary phase necessary for SSA
can be produced purely within a parton-level cross section
starting at two loops. The spin-dependent part of the cross
section at high transverse momentum PhT > 1 GeV (mea-
sured with respect to the virtual photon direction) can be
schematically written as

dΔσ
dPhT

∼ gTðxÞ ⊗ H ⊗ D1ðzÞ þ � � � ; ð1Þ

where gTðxÞ is the twist-three parton distribution function
(PDF) associated with a transversely polarized proton, D1

is the unpolarized twist-two fragmentation function (FF)
for the observed hadron h, and H is the hard kernel starting
at Oðα2sÞ (see also an earlier related work [2]). The terms
omitted in (1) are proportional to the “genuine twist-three”
quark-gluon correlation functions ∼hψ̄gFψi commonly

called the Efremov-Teryaev-Qiu-Sterman (ETQS) func-
tions [3,4]. As is well known, the gT distribution can be
written as the sum of the Wandzura-Wilczek (WW) part [5]
and the genuine twist-three part

gTðxÞ ¼
Z

1

x

dx0

x0
Δqðx0Þ þ ðgenuine twist threeÞ; ð2Þ

whereΔqðxÞ is the twist-two polarized (helicity) quark PDF.
It is a consistent truncation of the result in Ref. [1] to keep
only theWWpart in (2). The new source of SSA can then be
entirely expressed in terms of the twist-two PDFsΔqðxÞ and
the twist-two FFsD1ðzÞ. This is a remarkable observation in
striking contrast to the prevailing view that SSA at high-PhT
is explained by the ETQS functions and certain twist-three
fragmentation functions (see a review [6] and references
therein). Unlike these higher-twist distributions, twist-two
distributions are very well constrained by global QCD
analyses. Therefore, the mechanism proposed in [1] offers
a unique part of SSA that can be unambiguously calculated
without introducing free parameters. Moreover, in the
transverse-momentum-dependent (TMD) PDF framework
valid in the low-PhT region (PhT ≲ 1 GeV), a new source of
SSA proportional to the g1Tðx; k⊥Þ distribution (the TMD
version of gTðxÞ) has been identified, alongwithmore than a
dozen of new contributions involving various twist-three
TMDs and FFs and hard kernels up to two loops. Again,
this calls into question the prevailing view in the community
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(see, e.g., [7]) that SSA at low-PhT is entirely attributed to
the Sivers and Collins functions.
The purpose of this paper is twofold. First, we extend the

analysis of [1] to gluon-initiated channels. There exists a
gluonic counterpart of gTðxÞ, the twist-three G3TðxÞ dis-
tribution [8,9] for a transversely polarized proton. Its WW
part is related to the twist-two polarized gluon PDF ΔGðxÞ.
In complete analogy to (1), we find the structure

dΔσ
dPh⊥

∼ G3TðxÞ ⊗ Hg ⊗ D1ðzÞ

∼ ΔGðxÞ ⊗ Hg ⊗ D1ðzÞ; ð3Þ
which again consists only of twist-two distributions after
the WW approximation. We shall identify the two-loop
diagrams that go into the hard kernel Hg and study their
gauge invariance and infrared safety. Equation (3) is a novel
gluon-initiated source of SSA in SIDIS to be considered
jointly with the previously known mechanism which
involves genuine twist-three, three-gluon correlators
hFgFFi [10–12].
Second, we perform a detailed numerical analysis of

SSA and make predictions for its measurements at the
future Electron-Ion Collider (EIC) [13,14]. In doing so, we
neglect the ETQS functions and twist-three FFs, and focus
on our new contributions in order to clearly explore their
importance. The results can be viewed as a baseline for
future EIC measurements of SSA. Deviations from our
predictions, if observed, may be attributed to genuinely
twist-three effects.
This paper is organized as follows. In Sec. II, we describe

the SIDIS setup and introduce kinematic variables. In
Sec. III, we first review the result of [1] obtained for the
quark-initiated channel, and then propose an analogous, but
novel contribution to SSA in the gluon-initiated channel. In
Sec. IV, we perform a detailed analysis of the two-loop
diagrams and calculate the hard coefficients in all the
partonic channels. In Sec. V, we implement the obtained
formulas numerically and make predictions according to
the kinematic coverage of the EIC. We also present results
relevant to the COMPASS experiments [15]. Finally, we
discuss our findings and conclude in Sec. VI. Appendices
are devoted to a technical proof of the infrared finiteness of
the factorization formulas at two-loop level.

II. SIDIS KINEMATICS

In this section we give a brief review of polarized SIDIS
eðlÞpðPÞ → eðl0ÞhðPhÞX and introduce involved kinematic
variables. We have in mind light hadron production
specifically for h ¼ π�. Heavy-quark production will be
studied in a separate work. The spin-dependent part of the
differential cross section is given by

d6Δσ ¼ 1

2Sep

d3Ph

ð2πÞ32Eh

d3l0

ð2πÞ32El0

e4

ðQ2Þ2 L
μνWμν; ð4Þ

where Sep ≡ ðlþ PÞ2, Q2 ≡ −q2 ¼ −ðl − l0Þ2, Lμν ¼
2ðlμl0ν þ lνl0μÞ − gμνQ2 is the leptonic tensor, Wμν is the
hadronic tensor, and ν and μ are the polarization indices of
the virtual photon in the amplitude and the complex-
conjugate amplitude, respectively. The Bjorken variable
is denoted as xB ¼ Q2=ð2P · qÞ. We shall work in the so-
called hadron frame, where the virtual photon and the
proton move in the z direction with

qμ ¼ ð0; 0; 0;−QÞ; Pμ ¼
�

Q
2xB

; 0; 0;
Q
2xB

�
: ð5Þ

The incoming and outgoing leptons have the momenta

lμ ¼ Q
2
ðcoshψ ; sinhψ cosϕ; sinhψ sinϕ;−1Þ;

l0μ ¼ Q
2
ðcoshψ ; sinhψ cosϕ; sinhψ sinϕ; 1Þ; ð6Þ

where ϕ is the azimuthal angle relative to the z axis, and

coshψ ≡ 2xBSep
Q2

− 1: ð7Þ

We adopt the standard variables

y ¼ P · q
P · l

; zf ¼
P · Ph

P · q
; ð8Þ

with the relation xBySep ¼ Q2. Another common variable

is qT ¼
ffiffiffiffiffiffiffiffi
−q2t

p
where

qμt ≡ qμ −
Ph · q
Ph · P

Pμ −
P · q
P · Ph

Pμ
h: ð9Þ

In the present frame, the transverse part of qμt reads
q⃗tT ¼ −P⃗hT=zf. The momentum of the final state hadron
can then be parametrized as

Pμ
h ¼

zfQ

2

�
1þ q2T

Q2
;
2qT
Q

cosχ;
2qT
Q

sinχ;−1þ q2T
Q2

�
: ð10Þ

For the transverse spin of the incoming proton we choose

SμT ¼ ð0; cosΦS; sinΦS; 0Þ: ð11Þ

In terms of the above variables, the differential cross
section (4) takes the following Lorentz invariant form

d6Δσ
dxBdQ2dzfdq2Tdϕdχ

¼ α2em
128π4x2BS

2
epQ2

zfLμνWμν: ð12Þ

In practice, instead of ϕ and χ, it is more convenient to
define the hadron and spin angles relative to the lepton
plane,

ϕh ≡ ϕ − χ; ϕS ≡ ϕ −ΦS; ð13Þ
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in accordance with the Trento conventions [16]. The cross
section is then a function of ϕh andΦS − χ ¼ ϕh − ϕS. The
dependence on ϕh can be factored out by decomposing the
hadron tensor Wμν using the following set of vectors [17],

Tμ ¼ 1

Q
ðqμ þ 2xBPμÞ;

Xμ ¼ 1

qT

�
Pμ
h

zf
− qμ −

�
1þ q2T

Q2

�
xBPμ

�
;

Yμ ¼ ϵμνρσZνXρTσ;

Zμ ¼ −
qμ

Q
; ð14Þ

which form nine independent tensors, Vμν
k (see [17] for

explicit expressions), and their inverses, Ṽμν
k . Among them,

the following six symmetric tensors [17] contribute to the
decomposition of Wμν,

Ṽμν
1 ¼ 1

2
ð2TμTν þ XμXν þ YμYνÞ;

Ṽμν
2 ¼ TμTν;

Ṽμν
3 ¼ −

1

2
ðTμXν þ XμTνÞ;

Ṽμν
4 ¼ 1

2
ðXμXν − YμYνÞ;

Ṽμν
8 ¼ −

1

2
ðTμYν þ YμTνÞ;

Ṽμν
9 ¼ 1

2
ðXμYν þ YμXνÞ: ð15Þ

With these tensors we can write

LμνWμν ¼ Q2
X

k¼1;…;4;8;9

AkðϕhÞ½WρσṼ
ρσ
k �; ð16Þ

where

AkðϕhÞ ¼ LμνV
μν
k =Q2; ð17Þ

have the explicit expressions

A1ðϕhÞ ¼ 1þ cosh2ψ ;

A2ðϕhÞ ¼ −2;

A3ðϕhÞ ¼ − cosϕh sinh 2ψ ;

A4ðϕhÞ ¼ cos 2ϕhsinh2ψ ;

A8ðϕhÞ ¼ − sinϕh sinh 2ψ ;

A9ðϕhÞ ¼ sin 2ϕhsinh2ψ : ð18Þ

We are thus led to the representation (see for exam-
ple [18])

d6Δσ
dxBdQ2dzfdq2Tdϕdχ

¼ sinðϕh − ϕSÞðF 1 þ F 2 cosϕh þ F 3 cos 2ϕhÞ þ cosðϕh − ϕSÞðF 4 sinϕh þ F 5 sin 2ϕhÞ

¼ ½Fsinðϕh−ϕSÞ sinðϕh − ϕSÞ þ Fsinð2ϕh−ϕSÞ sinð2ϕh − ϕSÞ þ FsinϕS sinϕS

þ Fsinð3ϕh−ϕSÞ sinð3ϕh − ϕSÞ þ FsinðϕhþϕSÞ sinðϕh þ ϕSÞ�; ð19Þ

with

Fsinðϕh−ϕSÞ ¼ F 1;

Fsinð2ϕh−ϕSÞ ¼ F 2 þ F 4

2
;

FsinϕS ¼ −F 2 þ F 4

2
;

Fsinð3ϕh−ϕSÞ ¼ F 3 þ F 5

2
;

FsinðϕhþϕSÞ ¼ −F 3 þ F 5

2
: ð20Þ

The Fourier components sinðϕh − ϕSÞ and sinðϕh þ ϕSÞ
are referred to as the Sivers and Collins asymmetries,
respectively. While we continue to use this nomenclatures,
we emphasize that the new mechanism, which contributes
to these asymmetries and will be studied in detail below,
has nothing to do with the Sivers and Collins functions, or
their collinear twist-three counterparts.

III. NEW CONTRIBUTIONS TO SSA

In this section we first recapitulate the gTðxÞ contribution
to SSA discussed in [1], and apply the so-called Wandzura-
Wilczek (WW) approximation to simplify the result.
We then derive another new contribution to SSA due to
the gluonic counterpart of gT .
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A. Quark-initiated channel

In [1], it has been shown that the imaginary phase
necessary for SSA in SIDIS can come from the hard kernel
in perturbation theory starting at two loops, and all the
relevant two-loop diagrams have been identified. However,
only the quark (and antiquark) initiated channel was
considered there. In this channel, motivated by the structure
(1), we factorize the fragmentation function out of the
hadronic tensor Wμν as

Wμν ¼
X

a¼q;q̄;g

Z
dz
z2

Da
1ðzÞwa

μν; ð21Þ

where we have taken into account the fact that the observed
hadron can also come from the fragmentation of a radiated
gluon in the final state. The result of [1] reads (suppressing
the label a for simplicity)

wμν ¼
MN

2

Z
dxgTðxÞTr½γ5STSð0Þμν ðxPÞ� −MN

4

Z
dxg̃ðxÞTr

�
γ5PSαT

∂Sð0Þμν ðkÞ
∂kαT

����
k¼xP

�

þ iMN

4

Z
dx1dx2Tr

��
PϵαPnST

GFðx1; x2Þ
x1 − x2

þ iγ5PSαT
G̃Fðx1; x2Þ
x1 − x2

�
Sð1Þμναðx1P; x2PÞ

�
; ð22Þ

in which MN is the proton mass, and Tr denotes trace over
colors and Dirac indices. Our conventions are ϵ0123 ¼ þ1,
γ5 ¼ iγ0γ1γ2γ3 and ϵαPnS ¼ ϵαβρλPβnρSTλ with the lightlike
vector nμ satisfying n2 ¼ 1 and n · P ¼ 1. The gTðxÞ
distribution function is defined as

Z
dλ
2π

eiλxhPST jψ̄ jð0Þ½0; λn�ψ iðλnÞjPSTi

¼ MN

2
ðγ5STÞijgTðxÞ þ…: ð23Þ

while GFðx1; x2Þ and G̃Fðx1; x2Þ are the ETQS functions
(We follow the notation of Ref. [19] where explicit
definitions can be found). The “kinematical” distributions
g̃ðxÞ and gTðxÞ are related through the QCD equation of
motion

gTðxÞ þ
g̃ðxÞ
2x

¼
Z

dx0
GFðx; x0Þ þ G̃Fðx; x0Þ

x − x0
: ð24Þ

The hard matrix elements Sð0Þμν ðxPÞ and Sð1Þμναðx1P; x2PÞ are
computable in perturbation theory. As observed in [1], the
first nonzero contribution to Sð0Þ appears at two loops,
Sð0Þ ∝ α2s , and Sð1Þ is obtained from Sð0Þ by attaching an
extra gluon in all possible ways. Two representative
diagrams contributing to Sð0Þ are shown in Fig. 1. The
crosses denote on-shell lines that lead to an imaginary
phase via the Cutkosky rules. We note that Ref. [2] arrived
at essentially the same structure as (22), but did not specify
the hard kernels Sð0;1Þ.
We shall compute wμν in theWWapproximation, namely,

by systematically neglecting genuine twist-three distribu-
tions everywhere. This is a consistent approximation in the

sense that it preserves both QED and QCD gauge invari-
ance. In this approximation, we may write1

gTðxÞ →
Z

1

x

dx0

x0
ðΔqðx0Þ þ Δq̄ðxÞÞ;

g̃ðxÞ ≈ −2xgTðxÞ; ð25Þ

where ΔqðxÞ and Δq̄ðxÞ are the standard twist-two polar-
ized quark and antiquark distributions. Moreover, the first
two lines in (22) can be combined into

wμν ≈
MN

2

Z
dxgTðxÞSαT

� ∂
∂kαT Tr½γ5=kS

ð0Þ
μν ðkÞ�

�
k¼xP

: ð26Þ

We thus arrive at the structure mentioned in the
Introduction,

dΔσ ∼ ðΔqðxÞ þ Δq̄ðxÞÞ ⊗ H ⊗ D1ðzÞ: ð27Þ

The above formulas hold for each quark flavor. In practice,
we must sum over flavors weighted by the quark electro-
magnetic charge. In physical cross sections, we thus apply
gTðxÞ →

P
f e

2
fgTfðxÞ where gTf is given by (25) for each

quark flavor f.
Let us compare (27) with the conventional contribution

from the ETQS function [19–21] which schematically
reads2

1Δq̄ðxÞ is formally related to the operator definition of gTðxÞ in
the negative support region 0 > x > −1. We have checked that
the antiquark contribution can be effectively included via the
replacement (25) in the physical region 1 > x > 0 using the same
hard kernel.

2To avoid confusion, we note that theGF and G̃F pieces in (22)
are not the conventional ETQS contribution quoted here, but
rather its OðαsÞ corrections.
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dΔσETQS ∼GFðx; x0Þ ⊗ H0 ⊗ D1ðzÞ: ð28Þ

Since H ∼Oðα2sÞ and H0 ∼OðαsÞ, naively the former is
parametrically suppressed by a factor of αs. However, the
definition GF ∼ hψ̄gFψi explicitly contains the coupling g
which actually comes from perturbative diagrams. That is,
some suppression associated with the coupling g goes
into GF in the convention (28). As for the soft part, both
conceptually and practically, we have a far better grasp of
twist-two distributions than twist-three distributions: Δq
and D1 have been well constrained thanks to a wealth of
experimental data and global QCD analyses, whereas the
ETQS functions are still poorly constrained. These con-
siderations make (27) a new and attractive source of SSA
that can be unambiguously calculated without introducing
any free parameters. The main goal of this paper is to carry
out such a calculation, both analytically and numerically.
But before doing so, let us point out that an entirely
analogous contribution exists in the gluon-initiated
channel.

B. Gluon-initiated channel

The gluonic counterpart of gTðxÞ for a transversely
polarized proton is defined as [8,9,22]Z

dλ
2π

eixλhPST jFnαð0Þ½0; λn�FnβðλnÞjPSTi

¼ iMNxG3TðxÞϵnαβST þ…: ð29Þ

Similar to gTðxÞ, it can be written as the sum of the WW
part and the genuine twist-three part,

G3TðxÞ ¼
1

2

Z
1

x

dx0

x0
ΔGðx0Þ þ ðgenuine twist threeÞ; ð30Þ

where the WW part is related to the polarized (helicity)
gluon PDFΔGðxÞ, and the genuine twist-three part consists
of three-gluon correlators ∼hFFFi. Their full expressions
can be found in [9].
The G3T distribution appeared in the previous calculation

of the double spin asymmetry ALT in proton-proton
collisions p→p↑ → hX [23]. The cross section formula
derived in [23] can be straightforwardly adapted to the case
of single spin asymmetry in SIDIS ep↑ → hX. Writing the
hadronic tensor as

Wg
μν ¼

X
a¼q;q̄

Z
dz
z2

Da
1ðzÞwg;a

μν ; ð31Þ

we find (see (17) and (25) of [23])

wg
μν ¼ iMN

Z
dx
x
G3TðxÞϵnαβSTSð0Þα

0β0
μν ðxPÞωα0αωβ0β − iMN

Z
dx
x2

g̃ðxÞðgβλT ϵαPnST − gαλT ϵβPnST Þ
�∂Sð0ÞμναβðkÞ

∂kλ
�

k¼xP

−
1

2

Z
dx1dx2
x1x2

Mαβγ
F ðx1; x2Þ

Sð1Þα0β0γ0 ðx1; x2Þ
x2 − x1

ωα0αωβ0βωγ0γ; ð32Þ

FIG. 1. Prototype two-loop diagrams contributing to SSA in the quark initiated channel, where the crosses denote the cuts needed to
generate an imaginary phase, the vertical line is the final state cut, and p1 ¼ xP is the incoming quark momentum.
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where gμνT ¼ gμν − Pμnν − nμPν and ωμν ¼ gμν − Pμnν are
the projectors to the transverse space. g̃ðxÞ is again a
kinematical function with its precise definition given in [9]

(see also [22] where it is called ΔGð1Þ
T ðxÞ). MF denotes the

three-gluon correlators hFFFi (see (19) of [23]). The hard
part also starts at two loops, Sð0Þ ∼ α2s , whose diagrams
have the same topology as in the quark-initiated channel.
A representative diagram is displayed on the left hand side
of Fig. 2, and Sð1Þ is obtained by attaching a gluon to this
diagram in all possible ways. The diagram on the right,
which is an analog of the right diagram in Fig. 1, does not
contribute due to Furry’s theorem. Note that in the
computation of ALT in Ref. [23], the imaginary phase
comes from the definition of ΔGðxÞ for the longitudinally
polarized proton. That is, the nonpole part of the hard
kernel was calculated. In the present case, the imaginary
phase comes from propagator poles in the hard kernel Sμναβ,
and this is why two-loop diagrams are needed.
In the WW approximation, we may write

G3TðxÞ ≈
1

2

Z
1

x

dx0

x0
ΔGðx0Þ; g̃ðxÞ ≈ x2G3TðxÞ; ð33Þ

and neglect the third line of (32). We thus arrive at a new
contribution to SSA of the form (3) which consists only of

twist-two distributions. For light-hadron production, this
contribution is suppressed compared to the quark one
discussed earlier. However, for SSA in productions of
heavy systems such as open charm and J=ψ , it is expected
to play a more important role.

IV. COMPUTATION OF THE HARD PART:
QUARK-INITIATED CHANNEL

In this and the next sections, we embark on an analysis of
the two-loop diagrams for the quark and gluon initiated
channels, respectively. The calculation is rather involved,
especially because nontrivial cancellations of infrared
divergences are in demand. In the end, we shall have
infrared safe formulas that can be straightforwardly evalu-
ated numerically.

A. Quark-fragmenting channel

In Fig. 1, either a quark or a gluon in the final state
fragments into the observed hadron. For definiteness,
we focus on the former process below. The treatment of
the latter is basically analogous, and will be included
only in the final formulas. The hard factor Sð0Þμν for the
quark-initiated and quark-fragmenting channel explicitly
reads [1]

Sð0ÞμνðkÞ ¼ −
g4

2Nc
ð2πÞδððkþ q − pqÞ2Þ

Z
d4l2
ð2πÞ4 ð2πÞδðl

2
2Þð2πÞδððkþ q − l2Þ2Þ

× fiAαμðkþ q − pqÞM̄αβðkþ q − pq; l2ÞAνβðl2Þ − iAαμðl2ÞM̄αβðl2; kþ q − pqÞAνβðkþ q − pqÞg; ð34Þ

where k and pq are the momenta of incoming and outgoing quarks, respectively, and

FIG. 2. Prototype two-loop diagrams contributing to SSA in the gluon initiated channel, where the crosses denote the cuts needed for
SSA and the vertical line is the final state cut. The right diagram with a s-channel gluon does not contribute due to Furry’s theorem.
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M̄αβðkþ q − pq; l2Þ

¼ NcðN2
c − 1Þ
4

pq

�
−
Vαβρðkþ q − pq; l2Þγρ
ðkþ q − pq − l2Þ2

þ N2
c − 1

N2
c

γα
=kþ q

ðkþ qÞ2 γβ −
1

N2
c
γβ

pq − =l2
ðpq − l2Þ2

γα

�
ð=kþ q − =l2Þ; ð35Þ

Vαβρðkþ q − pq; l2Þ ¼ gαβðl2 þ kþ q − pqÞρ þ gαρðl2 − 2ðkþ q − pqÞÞβ þ gρβðkþ q − pq − 2l2Þα; ð36Þ

Aαμðkþ q − pqÞ ¼ γα
pq − =q

ðpq − qÞ2 γ
μ þ γμ

=kþ =q
ðkþ qÞ2 γ

α; ð37Þ

Aνβðl2Þ ¼ γν
=k − =l2

ðk − l2Þ2
γβ þ γβ

=kþ =q
ðkþ qÞ2 γ

ν: ð38Þ

Equation (34) represents the sum of 12 ¼ 2 × 3 × 2 dia-
grams, two of which are shown in Fig. 1. One can easily
recognize the part of diagrams each piece of Feynman rules
corresponds to. In (35) we have performed a color trace,
while the Dirac trace is yet to be done. There are three
δ-functions, one for the unobserved gluon in the final state
δððkþ q − pqÞ2Þ, and the other two come from the poles of
internal propagators (denoted by the crosses in Fig. 1).

Eventually we shall take the collinear limit k → p1 ≡ xP
in these expressions and introduce shorthand notations
p2 ≡ p1 þ q and l1 ≡ p2 − pq, the latter being the momen-
tum of the unobserved gluon in Fig. 1. However, this has to
be done with some care because the limit does not commute
with the kT-derivative acting on the hard kernel in (26).
Let us define

Sð0Þμν ðkÞ ¼ g4ð2πÞδððkþ q − pqÞ2Þ
Z

d2 ⃗l2Tdl
þ
2

ð2πÞ32lþ2
ð2πÞδððkþ q − l2Þ2ÞŜð0Þμν ðkÞ; ð39Þ

where Ŝð0Þμν ðkÞ can be read off from (34). We first convert the kT-derivatives of the δ-functions to the x-derivatives as [24]

SαT

� ∂
∂kαT δððkþ q − pqÞ2Þ

�
k¼p1

¼ −
pq · ST

p1 · ðp2 − pqÞ
x
∂
∂x δððp2 − pqÞ2Þ ¼

l1 · ST
p1 · l1

x
∂
∂x δðl

2
1Þ; ð40Þ

SαT

� ∂
∂kαT δððkþ q − l2Þ2Þ

�
k¼p1

¼ −
l2 · ST

p1 · ðp2 − l2Þ
x
∂
∂x δððp2 − l2Þ2Þ; ð41Þ

and then use integration by parts to shuffle the x-derivatives from the δ-functions to the hard factor Ŝð0Þμν . From the term
∂δðl21Þ=∂x in (40), we get a term with ∂gT=∂x and a term with

∂
∂x

�
x
Z

d2 ⃗l2Tdl
þ
2

ð2πÞ32lþ2
…

�
: ð42Þ

From the term ∂δððp2 − l2Þ2Þ=∂x in (41), we get a term with ∂δðl21Þ=∂x, a term with ∂gT=∂x and a term with

∂
∂x fTr½γ5p1Ŝ

ð0Þ
μν ðp1Þ�g: ð43Þ

We further convert ∂δðl21Þ=∂x to a term with ∂gT=∂x and a term like (42). The two resulting terms with ∂gT=∂x cancel. In
total, we are led to
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wμν ¼
MN

2

Z
dxgTðxÞSαT

� ∂
∂kαT Tr½γ5=kS

ð0Þ
μν ðkÞ�

�
k¼p1

¼ MN

2

Z
dxð2πÞδðl21Þ

�
−x

∂gTðxÞ
∂x

Z
d2 ⃗l2Tdl

þ
2

ð2πÞ32lþ2
l1 · ST
p1 · l1

ð2πÞδððp2 − l2Þ2Þg4Tr½γ5p1Ŝ
ð0Þ
μν ðp1Þ�

− gTðxÞ
∂
∂x

�
x
Z

d2 ⃗l2Tdl
þ
2

ð2πÞ32lþ2

�
l1 · ST
p1 · l1

þ l2 · ST
p1 · ðp2 − l2Þ

�
ð2πÞδððp2 − l2Þ2Þg4Tr½γ5p1Ŝ

ð0Þ
μν ðp1Þ�

	

þ xgTðxÞ
Z

d2 ⃗l2Tdl
þ
2

ð2πÞ32lþ2
l2 · ST

p1 · ðp2 − l2Þ
ð2πÞδððp2 − l2Þ2Þg4

∂
∂x fTr½γ5p1Ŝ

ð0Þ
μν ðp1Þ�g

þ gTðxÞ
Z

d2 ⃗l2Tdl
þ
2

ð2πÞ32lþ2
ð2πÞδððp2 − l2Þ2Þg4SαT

� ∂
∂kαT Tr½γ5=kŜ

ð0Þ
μν ðkÞ�

�
k¼p1

�
; ð44Þ

for which l1 is fixed through momentum conservation as
l1 ¼ p2 − pq.
A general proof on both QED and QCD gauge invariance

of the hadronic tensor (22) was given in [1]. It was also
realized that the first two terms in (22) contain infrared
divergence separately when the momentum l2 becomes
collinear to the incoming quark line (see Fig. 1), but the
divergences cancel exactly. Now that we have written the
original formula in a significantly different form (44), it is a

nontrivial task to check that (44) is gauge invariant and
divergence free. In Appendix A, we show that this is indeed
the case, but only after summing all the lines of (44).
Knowing where divergences are hidden in intermediate
expressions greatly helps a numerical analysis.

B. Calculation of the hard coefficients

With (16), (21) and (44), the polarized cross section (12)
takes the following form

d6Δσ
dxBdQ2dzfdq2Tdϕdχ

¼ α2emα
2
SMN

16π2x2BS
2
epQ2

X
k

Ak

Z
dx
x

Z
dz
z
ð2πÞδ

�
q2T
Q2

−
�
1 −

1

x̂

��
1 −

1

ẑ

��X
f

e2fDfðzÞ

×

�
−x2

∂gTfðxÞ
∂x

l1 · ST
p1 · l1

Z
d2 ⃗l2Tdl

þ
2

ð2πÞ32lþ2
ð2πÞδððp2 − l2Þ2ÞTr½γ5p1Ŝ

ð0Þ
μν ðp1ÞṼμν

k �

− xgTfðxÞ
∂
∂x

�
x
Z

d2 ⃗l2Tdl
þ
2

ð2πÞ32lþ2
ð2πÞδððp2 − l2Þ2Þ

�
l1 · ST
p1 · l1

þ l2 · ST
p1 · ðp2 − l2Þ

�
Tr½γ5p1Ŝ

ð0Þ
μν ðp1ÞṼμν

k �
	

þ xgTfðxÞ
Z

d2 ⃗l2Tdl
þ
2

ð2πÞ32lþ2
ð2πÞδððp2 − l2Þ2Þ

l2 · ST
p1 · ðp2 − l2Þ

x
∂
∂x fTr½γ5p1Ŝ

ð0Þ
μν ðp1ÞṼμν

k �g

þ xgTfðxÞ
Z

d2 ⃗l2Tdl
þ
2

ð2πÞ32lþ2
ð2πÞδððp2 − l2Þ2Þ

� ∂
∂kαT Tr½γ5=kS

α
TŜ

ð0Þ
μν ðkÞṼμν

k �
�

k¼p1

	
; ð45Þ

where the common notations x̂≡ xB=x and ẑ≡ zf=z have been introduced. We have included a flavor summation with

explicit charges e2f, as commented after (27). Equation (45) contains two δ-function constraints with the first one δðq2TQ2 − � � �Þ
originating from δðl21Þ. Solving the conditions l21 ¼ ðp2 − pqÞ2 ¼ 0 and p2

q ¼ ðp2 − l1Þ2 ¼ 0, we find two roots

lþ
1ða1Þ ¼

pþ
2

2
ð1þ a1Δ1Þ; l−

1ða1Þ ¼
p−
2

2
ð1 − a1Δ1Þ; Δ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4l21T
p2
2

s
; a1 ¼ �1: ð46Þ

Recalling the definition zf ¼ P · Ph=P · q, we have p−
q ¼ p−

2 − l−1 ¼ ẑq−, whose matching onto (46) leads to
Δ1 ¼ a1ð2ẑ − 1Þ. Since Δ1 > 0, the two roots lþ

1ða1Þ effectively split the z integration according to the constraint

a1ð2ẑ − 1Þ > 0:
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Z
dz ¼

X
a1¼�

Z
dzθða1ð2ẑ − 1ÞÞ: ð47Þ

The second δ-function sets ðp2 − l2Þ2 ¼ 0, which, together
with the condition l22 ¼ 0, give two roots

lþ
2ða2Þ ¼

pþ
2

2
ð1þ a2Δ2Þ; l−

2ða2Þ ¼
p−
2

2
ð1 − a2Δ2Þ;

Δ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4l22T
p2
2

s
; a2 ¼ �1: ð48Þ

We are allowed to perform the l2 integrals as

Z
d2 ⃗l2Tdl

þ
2

ð2πÞ32lþ2
ð2πÞδððp2 − l2Þ2Þ

¼
X
a2¼�

Z
d2 ⃗l2T
ð2πÞ2

1

2p2
2Δ2

Z
∞

−∞
dlþ2 δðlþ2 − lþ

2ða2ÞÞ

¼ 1

32π2
X
a2¼�

Z
1

0

dΔ2

Z
2π

0

dϕ2: ð49Þ

In the last equality, we have switched to the polar
coordinate and changed the integration variable from l2T
toΔ2. This facilitates the computation significantly because
we do not have to integrate over rational functions
involving square roots.
Next, we compute the Dirac traces using FEYNCALC [25]

and apply the x- and kT-derivatives to the 3rd, 4th, and 5th
lines of (45), which have to be done carefully. Note that the
x-derivative acts outside the l2 integral in the 3rd line. We
can only evaluate δððp2 − l2Þ2Þ and the evaluation of δðl21Þ
cannot be performed before taking the x-derivative. In the
4th (5th) line the x (kαT)-derivative is within the l2 integral
and so both p2 − l2 and l1 are put on-shell after the
derivatives are taken.
The subsequent integrals over ϕ2 and Δ2 are the

most cumbersome part of the entire calculation. The
nontrivial angular dependence comes from the propagator
denominators

ðl1 − l2Þ2 ¼ −
�
p2
2

4
ða1Δ1 − a2Δ2Þ2 þ ð⃗l1T − ⃗l2TÞ2

�
;

ðp2 − l1 − l2Þ2 ¼ −
�
p2
2

4
ða1Δ1 þ a2Δ2Þ2 þ ð⃗l1T þ ⃗l2TÞ2

�
;

ð50Þ

leading to a cosðϕ1 − ϕ2Þ term, while in the numerator,
after taking Dirac traces, we are left with powers of
cosðϕ1 − ϕ2Þ as well as linear terms of the forms
sinðϕ2 −ΦSÞ and cosðϕ2 −ΦSÞ arising from ϵPnl2ST and
l2 · ST , respectively. We list the formulas used to carry out
such integrals in Appendix C. After the ϕ2 integration, the
k ¼ 1, 2, 3, 4 terms are proportional to

ϵl1TST ¼ −
1

z
ϵPhTST ¼ −qTẑ sinðΦS − χÞ; ð51Þ

where ϵ12 ¼ −ϵ21 ¼ 1, and the k ¼ 8, 9 terms are propor-
tional to

l1 · ST ¼ −⃗l1T · S⃗T ¼ 1

z
P⃗hT · S⃗T ¼ qTẑ cosðΦS − χÞ: ð52Þ

In the individual lines of (45), the integral over the
modulus l2T has a singularity when l2T → 0 (or when
Δ2 → 1), and when a2 ¼ −1. However, as we will dem-
onstrate in Appendix A, the total expression is finite
because of the QCD Ward identity. Therefore, we first
compute the ϕ2 integrals for each line separately, sum up
the results from all the lines and perform the l2T (Δ2)
integration afterwards. One notable feature is that the loop
integration yields in principle a different expression for
each of the four combinations of the roots ða1; a2Þ.
However, we have found that after the summation over
a2 the results are independent of a1. This is an important
consistency check as it effectively ensures that, after all, the
split (47) is not necessary and we are back to the ordinary z
integral over a complete domain allowed by kinematics.
The above discussion is for the quark-initiated and

quark-fragmenting channel. We have repeated the whole
procedure for the quark-initiated and gluon-fragmenting
channel. Adding the two pieces, we finally arrive at the
total result

d6Δσ
dxBdQ2dzfdq2Tdϕdχ

¼ α2emα
2
SMN

16π2x2BS
2
epQ2

X
k

AkSk

Z
1

xmin

dx
x

Z
1

zmin

dz
z
δ

�
q2T
Q2

−
�
1 −

1

x̂

��
1 −

1

ẑ

��

×
X
f

e2f

�
DfðzÞx2

∂gTfðxÞ
∂x Δσ̂qqDk þDfðzÞxgTfðxÞΔσ̂qqk þDgðzÞx2

∂gTfðxÞ
∂x Δσ̂qgDk þDgðzÞxgTfðxÞΔσ̂qgk

�
; ð53Þ

where Sk ¼ sinðΦS − χÞ for k ¼ 1, 2, 3, 4 and Sk ¼ cosðΦS − χÞ for k ¼ 8, 9. Note that we may substitute x∂gTf=∂x ≈
−ΔqfðxÞ in the above expression. The hard coefficients in the quark-fragmenting (qq) channel are given by
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Δσ̂qqD8 ¼
ðN2

c − 1Þx̂ ẑ
2N2

cQð1 − ẑÞ2 ½ð1 − ẑÞð1 − x̂þ ẑ − 3x̂ ẑþN2
cð1 − x̂ − ẑþ 3x̂ ẑÞÞ þ 2ð1 − 2x̂Þẑ logðẑÞ�;

Δσ̂qqD9 ¼
ðN2

c − 1Þð1 − x̂Þx̂ ẑ
2N2

cqTð1 − ẑÞ2 ½ð1 − ẑÞð3N2
cð1 − ẑÞ þ 3ẑ − 1Þ − 2ð1 − 2ẑÞ logðẑÞ�; ð54Þ

Δσ̂qq1 ¼ N2
c − 1

2N2
cqTð1 − ẑÞẑ ½ð1 − ẑÞðẑ x̂ðx̂ð3þ 10ẑÞ − 3ð1þ ẑÞÞ − 1Þ

þ N2
cẑðx̂2ð3þ 2ẑð5ẑ − 6ÞÞ − 1 − 3x̂ð1 − ẑÞ2Þ þ 6x̂ð2x̂ − 1Þẑ2 logðẑÞ�;

Δσ̂qq2 ¼ ðN2
c − 1Þx̂

Nc
2qTð1 − ẑÞ ½ð1 − ẑÞðð1þ N2

cÞð−1þ x̂Þ þ ðN2
c − 1Þð1 − 3x̂ÞẑÞ þ 2ð2x̂ − 1Þẑ logðẑÞ�;

Δσ̂qq3 ¼ ðN2
c − 1Þx̂

4N2
cQð1 − x̂Þð1 − ẑÞ2 ½ð1 − ẑÞfð1 − x̂Þð5x̂þ N2

cð2 − 11x̂ÞÞẑ − ð1þ N2
cÞð1 − x̂Þ2

− ðN2
c − 1Þð1þ x̂ð14x̂ − 13ÞÞẑ2g − 2ẑð1 − ẑ − x̂ð5 − 4x̂ − 8ð1 − x̂ÞẑÞÞ logðẑÞ�;

Δσ̂qq4 ¼ ðN2
c − 1Þx̂

2N2
cqTð1 − ẑÞ2 ½ð1 − ẑÞf3ð1 − ẑÞ2 þ x̂ð−3þ ð5 − 4ẑÞẑÞ

− N2
cð1 − ẑÞð2 − 3ẑþ x̂ð−2þ 4ẑÞÞg − 2ðx̂ − ð1 − ẑÞ2 − 2x̂ð1 − ẑÞẑÞ logðẑÞ�;

Δσ̂qq8 ¼ ðN2
c − 1Þx̂

4N2
cQð1 − x̂Þð1 − ẑÞ2 ½ð1þ N2

cÞð1 − x̂Þ2 þ ð1 − x̂Þð5 − 10x̂þ N2
cð6x̂ − 5ÞÞẑ

− ð9þ x̂ð15x̂ − 26Þ − N2
cð7þ 9ðx̂ − 2Þx̂ÞÞẑ2

− ðN2
c − 1Þð3þ x̂ð4x̂ − 9ÞÞẑ3 − 2ẑðx̂ð7 − 4x̂ − 2ẑÞ þ ẑ − 3Þ logðẑÞ�;

Δσ̂qq9 ¼ ðN2
c − 1Þx̂

2N2
cqTð1 − ẑÞ2 ½ð1 − ẑÞð2N2

cð1 − x̂ð1 − ẑÞ − 2ẑÞð1 − ẑÞ − 3þ ẑð9 − 4ẑÞ þ x̂ð3 − ð7 − 2ẑÞẑÞÞ

− 2ð1þ ðẑ − 3Þẑþ x̂ð2ẑ − 1ÞÞ logðẑÞ�; ð55Þ

and in the gluon-fragmenting (qg) channel by

Δσ̂qgD8 ¼
ðN2

c − 1Þx̂
2N2

cQẑ
½ẑð−2þ ẑ − N2

cẑþ x̂ð4 − 3ẑþ N2
cð−2þ 3ẑÞÞÞ − 2ð1 − 2x̂Þð1 − ẑÞ logð1 − ẑÞ�;

Δσ̂qgD9 ¼
ðN2

c − 1Þð1 − x̂Þx̂ð1 − ẑÞ
2Nc

2qTẑ2
½ẑð2þ 3ðN2

c − 1ÞẑÞ þ ð2 − 4ẑÞ logð1 − ẑÞ�; ð56Þ

Δσ̂qg1 ¼ N2
c − 1

2N2
cqTẑ2

½ẑð1þ x̂2ð−13þ 23ẑ − 10ẑ2Þ þ 3x̂ð2 − 3ẑþ ẑ2ÞÞ

− N2
cð1 − ẑÞð−1 − 3x̂ẑ2 þ x̂2ð1 − 8ẑþ 10ẑ2ÞÞ − 6x̂ð−1þ 2x̂Þð1 − ẑÞ2 logð1 − ẑÞ�;

Δσ̂qg2 ¼ ðN2
c − 1Þx̂ð1 − ẑÞ
N2

cqTẑ2
½ẑð2 − ẑþ N2

cẑ − x̂ð4 − 3ẑþ Nc
2ð−2þ 3ẑÞÞÞ þ 2ð1 − 2x̂Þð1 − ẑÞ logð1 − ẑÞ�;

Δσ̂qg3 ¼ −
ðN2

c − 1Þx̂
4Nc

2Qð1 − x̂Þẑ2 ½ẑfð−1þ ẑÞð2þ ðN2
c − 1ÞẑÞ þ x̂ð10 − 24ẑþ 13ẑ2 þ N2

cð−4þ 16ẑ − 13ẑ2ÞÞ

þ x̂2ð−8þ 23ẑ − 14ẑ2 þ N2
cð4 − 17ẑþ 14ẑ2ÞÞg

þ 2ð1 − ẑÞð−1þ x̂ð5 − 8ẑÞ þ ẑþ x̂2ð−4þ 8ẑÞÞ logð1 − ẑÞ�;

Δσ̂qg4 ¼ −
ðN2

c − 1Þx̂ð1 − ẑÞ
2Nc

2qTẑ3
½ẑð2þ ð4N2

c − 3Þẑ − 3ðN2
c − 1Þẑ2 þ x̂ð−2þ ð3 − 2Nc

2Þẑþ 4ðN2
c − 1Þẑ2ÞÞ

þ 2ðð1 − ẑÞ2 − x̂ð1 − 2ẑþ 2ẑ2ÞÞ logð1 − ẑÞ�;
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Δσ̂qg8 ¼ ðN2
c − 1Þx̂

4N2
cQð1 − x̂Þẑ2 ½ẑf6 − ð1þ Nc

2Þẑþ 3ðN2
c − 1Þẑ2 þ x̂ð−22þ 8ẑþ 9ẑ2 þ Nc

2ð4 − 9ẑ2ÞÞ

þ x̂2ð16 − 9ẑ − 4ẑ2 þ N2
cð−4þ 3ẑþ 4ẑ2ÞÞg þ 2ð1 − ẑÞð3þ 8x̂2 þ ẑ − x̂ð11þ 2ẑÞÞ logð1 − ẑÞ�;

Δσ̂qg9 ¼ ðN2
c − 1Þx̂ð1 − ẑÞ
2N2

cqTẑ3
½ẑðð4 − N2

cÞẑ − 4 − 4ðN2
c − 1Þẑ2 þ x̂ð4þ 3ðN2

c − 2Þẑþ 2ðN2
c − 1Þẑ2ÞÞ

þ 2ð−2þ 2x̂þ 3ẑ − 4x̂ ẑþẑ2Þ logð1 − ẑÞ�: ð57Þ

Let us briefly comment on the analytic structure of the
above results. The hard kernels depend on the virtual quark
propagator 1=ðp1 − l1Þ2 ≈ 1=ð−2pþ

1 l
−
1 Þ. We have parame-

trized the fragmenting parton momentum as pq ¼ p2 −
l1 ¼ Ph=z and l1 ¼ Ph=z in the q → q and q → g channels,
respectively. Since P−

h ¼ zfq− and p−
2 ¼ q−, we have l−1 ¼

ð1 − ẑÞq− in the former case, and l−1 ¼ ẑq− in the latter
case. This is why the hard cross sections for the q → q and
q → g channels contain the factor 1=ð1 − ẑÞ and 1=ẑ,
respectively. When zf ≪ 1, both factors 1=ð1 − ẑÞ ¼
z=ðz − zfÞ and 1=ẑ ¼ z=zf become large as z is varied
between zf and 1. When zf → 1, only the former becomes
large around the endpoint z≳ zf, so the q → q channel
dominates over the q → g channel. This observation will be
confirmed in the later numerical analysis. The denominator
qT hints that higher-order corrections will introduce the

large Sudakov logarithms ln2ðQ=qTÞ at low qT, whose
resummation should be implemented in principle. This is
however beyond the scope of this work.

V. COMPUTATION OF THE HARD PART:
GLUON INITIATED CHANNEL

The gluon initiated channel is somewhat simpler, since
the right diagram in Fig. 2 does not contribute due to
Furry’s theorem as already pointed out. We thus consider
only four diagrams: the left diagram in Fig. 2 and its
crossing diagrams with the photon and gluon attachments
being interchanged. Considering the quark-fragmenting
channel for definiteness, we sum the four diagrams and
their complex-conjugates in the form

Sð0ÞμναβðkÞ ¼ −
ig4

2ðN2
c − 1Þ ð2πÞδððkþ q − pqÞ2Þ

Z
d4l2
ð2πÞ4 ð2πÞδðl

2
2Þð2πÞδððp2 − l2Þ2Þ

× ½Aαμ
lj ðkþ q − pqÞM̄jiklðkþ q − pq; l2ÞAνβ

ik ðl2Þ − Aβν
lj ðkþ q − pqÞM̄jiklðkþ q − pq; l2ÞAμα

ik ðl2Þ�; ð58Þ

with

M̄jiklðkþ q − pq; l2Þ ¼ −
N2

c − 1

4Nc

1

ðkþ q − pq − l2Þ2
½pqγ

ρðp2 − =l2Þ�ji½=l2γρð=kþ q − pqÞ�kl; ð59Þ

Aαμðkþ q − pqÞ ¼ γα
pq − q

ðpq − qÞ2 γ
μ þ γμ

pq − =k

ðpq − kÞ2 γ
α; ð60Þ

Aνβðl2Þ ¼ γν
p1 − =l2

ðp1 − l2Þ2
γβ þ γβ

=q − =l2
ðq − l2Þ2

γν: ð61Þ

Here k represents the initial gluon momentum, pq is the observed quark, with the unobserved antiquark carrying the
momentum kþ q − pq (equal to l1 ¼ p2 − pq in the collinear limit), and l2 is the loop momentum. The derivative ∂=∂kλ in
(32) can be performed along the steps analogous to the case of the quark initiated channel. Defining

Sð0ÞμναβðkÞ ¼ g4ð2πÞδððkþ q − pqÞ2Þ
Z

d2 ⃗l2T
ð2πÞ3

dlþ2
2lþ2

ð2πÞδððkþ q − l2Þ2ÞŜð0ÞμναβðkÞ; ð62Þ

where Ŝð0ÞμναβðkÞ can be read off from (58), we find
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d6Δσ
dxBdQ2dzfdq2Tdϕdχ

¼ α2emα
2
SMN

16π2x2BS
2
epQ2

X
k

Ak

Z
dx
x

Z
dz
z
ð2πÞδ

�
q2T
Q2

−
�
1 −

1

x̂

��
1 −

1

ẑ

��X
f

e2fDfðzÞ

× 2i

�
G3TðxÞ

Z
d2 ⃗l2Tdl

þ
2

ð2πÞ32lþ2
ð2πÞδððp2 − l2Þ2ÞϵnαβST Ŝð0Þα

0β0
μν ðp1Þωα0αωβ0βṼ

μν
k

þ x2
∂G3TðxÞ

∂x
lβ1Tϵ

αPnST − lα1Tϵ
βPnST

p1 · l1

Z
d2 ⃗l2Tdl

þ
2

ð2πÞ32lþ2
ð2πÞδððp2 − l2Þ2ÞŜð0Þμναβðp1ÞṼμν

k

þ xG3TðxÞ
∂
∂x

�
x
Z

d2 ⃗l2Tdl
þ
2

ð2πÞ32lþ2
ð2πÞδððp2 − l2Þ2Þ

×

�
lβ1Tϵ

αPnST − lα1Tϵ
βPnST

p1 · l1
þ lβ2Tϵ

αPnST − lα2Tϵ
βPnST

p1 · ðp2 − l2Þ
�
Ŝð0Þμναβðp1ÞṼμν

k

	

− xG3TðxÞ
Z

d2 ⃗l2Tdl
þ
2

ð2πÞ32lþ2
ð2πÞδððp2 − l2Þ2Þ

lβ2Tϵ
αPnST − lα2Tϵ

βPnST

p1 · ðp2 − l2Þ
x
∂
∂x Ŝ

ð0Þ
μναβðp1ÞṼμν

k

− xG3TðxÞ
Z

d2 ⃗l2Tdl
þ
2

ð2πÞ32lþ2
ð2πÞδððp2 − l2Þ2ÞðgβλT ϵαPnST − gαλT ϵβPnST Þ

� ∂
∂kλ Ŝ

ð0Þ
μναβðkÞ

�
k¼p1

Ṽμν
k

	
: ð63Þ

It will be useful to write the 2nd line as

ϵnαβST Ŝð0Þα
0β0

μν ðp1Þωα0αωβ0β

¼ ϵnPβST Ŝð0Þμνnβ − ϵnPαST Ŝð0Þμναn: ð64Þ

Similar to (45) for the quark-initiated channel, the indi-
vidual lines in (63) contain infrared divergences which
must be canceled in the sum over all the lines. We will
prove this cancellation in Appendix B.
The hard coefficients can be obtained in complete

analogy to the quark initiated channel. We have the same

sets of roots ða1; a2Þ as before [see (46) and (48)]. As we
will show in Appendix B, a divergence comes neither from
the p1 − l2 propagator (corresponding to the choice a2 ¼
−1 for the root) nor from the q − l2 propagator (corre-
sponding to the choice a2 ¼ 1) in (61). Therefore, the l2T
loop integral is finite, which can be performed analytically.
We have also confirmed that, similarly to the previous case,
we obtain an expression independent of the choice of the
roots for lþ

1ða1Þ after the loop integral and after the sum over

the lþ
2ða2Þ roots. All in all, the final result for the cross

section can be written in a compact way as

d6Δσ
dxBdQ2dzfdq2Tdϕdχ

¼ α2emα
2
SMN

16π2x2BS
2
epQ2

X
k

AkSk

Z
1

xmin

dx
x

Z
1

zmin

dz
z
δ

�
q2T
Q2

−
�
1 −

1

x̂

��
1 −

1

ẑ

��

×
X
f

e2fDfðzÞ
�
x2

∂G3TðxÞ
∂x Δσ̂gqDk þ xG3TðxÞΔσ̂gqk

�
; ð65Þ

with x∂G3T=∂x ≈ −ΔGðxÞ=2 in the present approximation. The hard coefficients are given explicitly by

Δσ̂gqD8 ¼
2ð1 − x̂Þx̂

NcQð1 − ẑÞ2ẑ ½ð1 − x̂Þðẑ logðẑÞ − ð1 − ẑÞ logð1 − ẑÞÞ þ x̂ ẑð1 − ẑÞð1 − 2ẑÞ�;

Δσ̂gqD9 ¼
2ð1 − x̂Þ2x̂

NcqTð1 − ẑÞ2ẑ2 ½ð1 − ẑÞ2 logð1 − ẑÞ þ ẑ2 logðẑÞ þ ẑð1 − ẑÞðẑ2 þ ð1 − ẑÞ2Þ�; ð66Þ
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Δσ̂gq1 ¼ ð1 − x̂Þ
NcqTð1 − ẑÞẑ2 ½ð1 − 2ẑÞð1þ 2x̂2ð1 − 2ẑÞ2 − ð1 − ẑÞẑ − 2x̂ð1 − ð1 − ẑÞẑÞÞ

þ 6ð1 − x̂Þx̂ðð1 − ẑÞ logð1 − ẑÞ − ẑ logðẑÞÞ�;

Δσ̂gq2 ¼ 4ð1 − x̂Þx̂
NcqTð1 − ẑÞẑ2 ½ð1 − ẑÞðx̂ð2ẑ − 1Þẑþ ð1 − x̂Þ logð1 − ẑÞÞ − ð1 − x̂Þẑ logðẑÞ�;

Δσ̂gq3 ¼ x̂
NcQð1 − ẑÞ2ẑ2 ½ð1 − ẑÞẑð1 − 2ð1 − ẑÞẑþ x̂ð−6þ ð13 − 12ẑÞẑÞ þ x̂2ð5 − 12ð1 − ẑÞẑÞÞ

þ ð1 − x̂Þðð1 − ẑÞð1 − ẑþ x̂ð−3þ 4ẑÞÞ logð1 − ẑÞ − ẑð1 − ẑ − x̂ð1 − 4ẑÞÞ logðẑÞÞ�;

Δσ̂gq4 ¼ 2ð1 − x̂Þx̂
NcqTð1 − ẑÞ2ẑ3 ½ð1 − ẑÞfẑðx̂ − 2x̂ ẑ ð2þ ẑð−3þ 2ẑÞÞ − ð1 − ẑÞð1þ ẑð−3þ 4ẑÞÞÞ

− ð1 − x̂ð1 − ẑÞÞð1 − ẑÞ logð1 − ẑÞg − x̂ẑ3 logðẑÞ�;

Δσ̂gq8 ¼ x̂
NcQð1 − ẑÞ2ẑ2 ½ð−1þ ẑÞẑð−3þ 10x̂ − 7x̂2 þ ð−2þ x̂Þẑþ 2ð1þ 2ð−1þ x̂Þx̂Þẑ2Þ

þ ð1 − x̂Þðð1 − ẑÞð3 − 3ẑþ x̂ð−5þ 2ẑÞÞ logð1 − ẑÞ − ẑð1 − 3ẑþ x̂ð−1þ 2ẑÞÞ logðẑÞÞ�;

Δσ̂gq9 ¼ −2ð1 − x̂Þx̂
NcqTð1 − ẑÞ2ẑ3 ½ð2þ x̂ð−2þ ẑÞ − 2ẑÞð1 − ẑÞ2 logð1 − ẑÞ þ ẑ2ð1 − x̂ − ð2 − x̂ÞẑÞ logðẑÞ

− ẑð1 − ẑÞð−2þ 3ẑþ ð−1þ ẑÞð−2x̂þ x̂zþ 2ð−1þ x̂Þẑ2ÞÞ�: ð67Þ

In this computation we have chosen the quark to be observed in the final state (pq → Ph=z) while the antiquark goes
unobserved. As a nontrivial check we have verified that taking the antiquark as the observed final state (l1 → Ph=z) and the
quark as the unobserved one, we recover exactly the same hard coefficients.

VI. NUMERICAL RESULTS

With all the analytical results presented in the previous sections, we are now ready to make predictions for EIC
measurements. Specifically, we will numerically compute the asymmetries from the following definition

AsinðαϕhþβϕSÞ
UT ¼ 2

R
2π
0 dϕhdϕS sinðαϕh þ βϕSÞ½dσðϕh;ϕSÞ − dσðϕh;ϕS þ πÞ�R

2π
0 dϕhdϕS½dσðϕh;ϕSÞ þ dσðϕh;ϕS þ πÞ� ; ð68Þ

where dσðϕh;ϕSÞ is a shorthand for

dσðϕh;ϕSÞ≡ d6σ
dxBdQ2dzfdq2Tdϕdχ

: ð69Þ

The numerator of (68) is proportional to theOðα2sÞ polarized cross section we calculated. In terms of the Fourier coefficients
(19), we have
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F 1 ¼ αSMNF 0

Z
dx
x

Z
dz
z
δ

�
q2T
Q2

−
�
1 −

1

x̂

��
1 −

1

ẑ

��X
f

e2f

× ½ð1þ cosh2ψÞðDfðzÞxgTfðxÞΔσ̂qq1 þDfðzÞxG3TðxÞΔσ̂gq1 þDgðzÞxgTfðxÞΔσ̂qg1 Þ
− 2ðDfðzÞxgTfðxÞΔσ̂qq2 þDfðzÞxG3TðxÞΔσ̂gq2 þDgðzÞxgTfðxÞΔσ̂qg2 Þ�;

F 2 ¼ αSMNF 0

Z
dx
x

Z
dz
z
δ

�
q2T
Q2

−
�
1 −

1

x̂

��
1 −

1

ẑ

��X
f

e2fð− sinh 2ψÞ

× ½DfðzÞxgTfðxÞΔσ̂qq3 þDfðzÞxG3TðxÞΔσ̂gq3 þDgðzÞxgTfðxÞΔσ̂qg3 �;

F 3 ¼ αSMNF 0

Z
dx
x

Z
dz
z
δ

�
q2T
Q2

−
�
1 −

1

x̂

��
1 −

1

ẑ

��X
f

e2fsinh
2ψ

× ½ðDfðzÞxgTfðxÞΔσ̂qq4 þDfðzÞxG3TðxÞΔσ̂gq4 þDgðzÞxgTfðxÞΔσ̂qg4 Þ�;

F 4 ¼ αSMNF 0

Z
dx
x

Z
dz
z
δ

�
q2T
Q2

−
�
1 −

1

x̂

��
1 −

1

ẑ

��X
f

e2fð− sinh 2ψÞ

× ½DfðzÞx2g0TfðxÞΔσ̂qqD8 þDfðzÞx2G0
3TðxÞðxÞΔσ̂gqD8 þDgðzÞx2g0TfðxÞΔσ̂qgD8

þDfðzÞxgTfðxÞΔσ̂qq8 þDfðzÞxG3TðxÞΔσ̂gq8 þDgðzÞxgTfðxÞΔσ̂qg8 �;

F 5 ¼ αSMNF 0

Z
dx
x

Z
dz
z
δ

�
q2T
Q2

−
�
1 −

1

x̂

��
1 −

1

ẑ

��X
f

e2fsinh
2ψ

× ½DfðzÞx2g0TfðxÞΔσ̂qqD9 þDfðzÞx2G0
3TðxÞΔσ̂gqD9 þDgðzÞx2g0TfðxÞΔσ̂qgD9

þDfðzÞxgTfðxÞΔσ̂qq9 þDfðzÞxG3TðxÞΔσ̂gq9 þDgðzÞxgTfðxÞΔσ̂qg9 �; ð70Þ

with the definition

F 0 ¼
α2emαS

16π2x2BS
2
epQ2

; ð71Þ

and the abbreviations

xg0TfðxÞ≡ x
∂gTfðxÞ

∂x ≈ −ΔqfðxÞ; xG0
3TðxÞ≡ x

∂G3TðxÞ
∂x ≈ −

ΔGðxÞ
2

: ð72Þ

The integration variables x and z are in the ranges

1 > x > xmin ≡ xB

�
1þ zf

1 − zf

q2T
Q2

�
; 1 > z > zmin ≡ zf

�
1þ xB

1 − xB

q2T
Q2

�
: ð73Þ

As for the unpolarized cross section in the denominator, we use the leading-order OðαsÞ formula [17], summarized by
Eqs. (54)–(59) in [19]. The angular decomposition can be cast in the following form

d6σ
dxBdQ2dzfdq2Tdϕdχ

¼ F1 þ Fcosϕh cosϕh þ Fcos 2ϕh cos 2ϕh; ð74Þ

Since we integrate over the lepton angle (see below), only the first term F1 is relevant with the explicit expression
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F1 ¼ F 0

Z
dx
x

Z
dz
z
δ

�
q2T
Q2

−
�
1 −

1

x̂

��
1 −

1

ẑ

��

×
X
f

e2ffDfðzÞqfðxÞ½ð1þ cosh2ψÞσ̂qq1 − 2σ̂qq2 � þDgðzÞqfðxÞ½ð1þ cosh2ψÞσ̂qg1 − 2σ̂qg2 �

þDfðzÞGðxÞ½ð1þ cosh2ψÞσ̂gq1 − 2σ̂gq2 �g; ð75Þ

where GðxÞ is the unpolarized gluon PDF and the summation over f includes both quarks and antiquarks. The hard factors
are given by

σ̂qq1 ¼ N2
c − 1

Nc
x̂ ẑ

�
1

Q2q2T

�
Q4

x̂2ẑ2
þ ðQ2 − q2TÞ2� þ 6

	
;

σ̂qq2 ¼ 2σ̂qq4 ¼ 4
N2

c − 1

Nc
x̂ ẑ; ð76Þ

σ̂qg1 ¼ N2
c − 1

Nc
x̂ð1 − ẑÞ

�
1

Q2q2T

�
Q4

x̂2ẑ2
þ ð1 − ẑ2Þ

ẑ2

�
Q2 −

ẑ2

ð1 − ẑÞ2 q
2
T

�
2
�
þ 6

	
;

σ̂qg2 ¼ 2σ̂qg4 ¼ 4
N2

c − 1

Nc
x̂ð1 − ẑÞ; ð77Þ

σ̂gq1 ¼ x̂ð1 − x̂Þ
�
Q2

q2T

�
1

x̂2ẑ2
−

2

x̂ z
þ 2

�
þ 10 −

2

x̂
−
2

ẑ

�
;

σ̂gq2 ¼ 2σ̂gq4 ¼ 8x̂ð1 − x̂Þ: ð78Þ

Using F1 (75) and the relation (20), we obtain from (68)

AsinðαϕhþβϕSÞ
UT ¼ FsinðαϕhþβϕSÞ

F1
: ð79Þ

In practice, we show our results as functions of PhT , zf or
xB by integrating out all the other variables in the numerator
and denominator. Instead of Q2, it is convenient to use
y ¼ Q2=ðxBSepÞ so that we have dQ2 ¼ xBSepdy and the
relations

1þ cosh2ψ ¼ 2
1þ ð1 − yÞ2

y2
;

sinh2ψ ¼ 4
1 − y
y2

;

sinh 2ψ ¼ 4
ð2 − yÞ ffiffiffiffiffiffiffiffiffiffiffi

1 − y
p
y2

: ð80Þ

There are general kinematical constraints on the integration
ranges of xB, zf and y. The condition xmin < 1 [see (73)]
leads to

xB ≤ 1 −
1

zfð1 − zfÞ
P2
hT

ySep
: ð81Þ

Requiring the upper bound of xB to be positive, we find a
condition on y,

y >
1

zfð1 − zfÞ
P2
hT

Sep
: ð82Þ

Similar constraints can be obtained from zmin < 1, which
are however not very restrictive because P2

hT ≪ Sep. In
actual experiments, AUT is integrated over conveniently
chosen bins in xB, zf and y, and we will follow suit.
Since we are using the leading-order cross sections for

both the numerator and denominator, one may ask a
legitimate question about the effect of higher order cor-
rections, in particular when PhT ≪ Q and the resummation
of the Sudakov logarithms is required. While such a
procedure is well established for unpolarized cross sec-
tions, that for transversely polarized cross sections is poorly
understood. On a general ground, we expect that the impact
of resummation largely cancels in the ratio, but this has to
be checked, and will be left for a future work. As for the
scale μ of the QCD coupling constant αS (and also of PDFs
and FFs), we argue that the lower scale μ ¼ PhT is more
appropriate than the larger one μ ¼ Q in the typical
kinematic region PhT ≪ Q we are considering. This is
understood simply from the aspect of the Sudakov (kT)
resummation usually done in the Fourier conjugate impact
parameter space bT . The running of the coupling tends to
pick up a dominant contribution from the large bT region
under the inverse Fourier transformation (for which some
prescription is needed to avoid the Landau pole [26]).
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Therefore, the choice of a lower scale μ ¼ PhT ∼Oð1=bTÞ
fits the above all-order picture better.
The computation is performed with the most recent

NNPDF and JAM global fits. For the NNPDF sets we use
the helicity PDFs from [27] and FFs from [28]. For the
JAM sets we use the helicity PDFs and FFs from a
simulatenous fit in [29]. gTfðxÞ and G3TðxÞ are deduced
from the helicity PDFs according to the formulas (25) and
(30) in the WW approximation. The uncertainties in PDFs
(FFs) in NNPDF and JAM fits are quantified by the
Monte Carlo replica method to generate a variance accord-
ing to the normal distribution. In all the plots below the
band represents a combination of 1-σ uncertainty due to the
replica method and also uncertainty in the scale choice
according to 0.5 < μ=PhT < 2.0, added in quadrature. Note
that the edge μ ¼ 0.5PhT starts at PhT ¼ 2 GeV.

A. Calculation for COMPASS kinematics

Though our approach is most naturally and legitimately
applied to the kinematics for EIC, let us first present the
results relevant to the COMPASS experiment [15].
Admittedly, the collinear factorization may not be appli-
cable to the COMPASS kinematics since most of the data
points have PhT below 1 GeV. There is, however, one
published data point with PhT ≈ 1.5 GeV. We thus only
show the PhT distribution for PhT > 1 GeV, integrating out
the other variables over the following coverage [15]

0.003≤ xB ≤ 0.7; 0.1≤ y≤ 0.9; 0.2≤ zf ≤ 1; ð83Þ

as well as

Q2 > 1 GeV2; W2 > 25 GeV2; ð84Þ

where W2 ¼ ðqþ PÞ2 ¼ Q2ð1 − xBÞ=xB. With a 160 GeV
muon beam colliding on a fixed proton target, the center of
mass energy is

ffiffiffiffiffiffiffi
Sμp

p
≈ 17.4 GeV. The PhT distributions

are shown in Fig. 3 for both πþ and π− productions.
We see that the Sivers asymmetry for πþ is smaller than

0.5% in magnitude using the NNPDF fits and about
∼0.5% − 1% in magnitude using the JAM fits. In either
case, the sign is opposite to the highest PhT COMPASS
data point (see the top-right plot in Fig. 9 of [15]). Although
the significant experimental uncertainty makes a mean-
ingful comparison difficult, the result does indicate the
importance of other sources of SSA, such as the ETQS
function. However, PhT ≳ 1 GeV is the borderline between
the collinear and TMD approaches. Therefore, our analysis
implies that not only the Sivers function but also the new
higher-twist contributions found in [1] need to be included
in the global determination of nonperturbative inputs in
this regime. As for the Collins asymmetry, our result is
negligibly small. The data show nonvanishing central
values at PhT ¼ 1.5 GeV (see the top-right plot in Fig. 6
of [15]), but they are consistent with zero after the large
error bars are taken into account.

B. Calculation for EIC kinematics

We now present our results for the EIC kinematics.
Figure 4 shows the zf distribution of the πþ Sivers

FIG. 3. PhT distributions of Sivers (left) and Collins (right) asymmetries for π� production at COMPASS.

BENIĆ, HATTA, KAUSHIK, and LI PHYS. REV. D 104, 094027 (2021)

094027-16



asymmetry for
ffiffiffiffiffiffiffi
Sep

p ¼ 45 GeV integrated over the win-
dow 0.1<xB<0.9 and 0.01<y<0.95 and PhT > 1 GeV.
The upper bound for the integral over PhT is obtained from
(81) by placing the remaining kinematic variables at their

extremal values in the above kinematic window. We
also impose the conditions Q2 > 1 GeV2 and W2 ¼
ðPþ qÞ2 > 25 GeV2. In addition to the total asymmetry
(“tot”), respective contributions from different channels
(qq; qg; gq) are shown. The asymmetry is largest in the
forward region zf → 1, at most 1.5% in magnitude, and
decreases toward zero as zf decreases. As we discussed at
the end of Sec. IV, the large zf region is dominated by the
quark-fragmenting channel, while the gluon-fragmenting
channel becomes important at small zf. Since the final state
quark and gluon are back-to-back, this explains the sign
change for the two channels. A somewhat larger asymmetry
is observed from the JAM fit than from the NNPDF fit.
This is in fact a general feature seen also for example in
Fig. 3, but most directly understood from the zf-distribu-
tions in Fig. 4 where the qg channel contribution is dying
off more rapidly as zf → 1 for the JAM fits. Consequently,
the cancellation between the qq and the qg channels is
less effective using the JAM fits. The underlying reason
is the smaller g → πþ FF in the JAM fit than in the
NNPDF fit.
Figure 5 gives the PhT distributions of the πþ Sivers

asymmetry in low zf (0.05 < zf < 0.4, left) and high zf
(0.5 < zf < 0.9, right) bins. We can again see the role of
the g → πþ FF: at low zf the Sivers asymmetry can even
become positive (albeit rather small in magnitude) using the
NNPDF fits, while in the large zf region the qg channel
quickly dies off so the JAM fits predict a larger (negative)
Sivers asymmetry, around 0.5% ∼ 1.5% in magnitude.

FIG. 4. zf distributions of the Sivers asymmetry for πþ

production at
ffiffiffiffiffiffiffi
Sep

p ¼ 45 GeV differentiated among individual
channels.

FIG. 5. PhT distributions of the Sivers asymmetry for πþ production at
ffiffiffiffiffiffiffi
Sep

p ¼ 45 GeV in low zf (left) and high zf (right) bins.
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Note that the gluon-initiated (gq) channel is negligibly
small, almost invisible in the plots. A closer look reveals
that the contribution to AN from this channel is less than
10−3 in all the bins we have studied. We have anticipated
that the gluon-initiated channel gives a small contribution
to light-hadron production. However, the suppression is
stronger than expected, and we attempt to explain the
reason in the concluding section.
Further predictions for the PhT distributions of the πþ

Sivers asymmetry across three bins in xB and Q2, using the
NNPDF and JAM fits, are exhibited in Fig. 6. We find that
the Sivers asymmetry can reach up to 2% in magnitude for
the JAM fit covering both large xB (0.1 < xB < 0.7) and
moderate xB (0.05 < xB < 0.1) bins for the lowest Q2 bin.
Going from moderate to small xB, the Sivers asymmetry
drops to a sub-percent level, as seen in the last xB bin with
0.001 < xB < 0.05. This suppression at small xB in fact has
the same origin as the smallness of the gluon-initiated
channel mentioned above (see the discussion in the con-
cluding section). Figure 7 covers the Sivers asymmetry for
two collision energies (Sep) and two bins in xB. The results
show very mild dropping of the Sivers asymmetry as

ffiffiffiffiffiffiffi
Sep

p
is increased from 45 GeV to the top EIC energy of 140 GeV
(see also [30]). The reason is that the energy dependence
mainly comes from the y dependence, which roughly

cancels out between the numerator and denominator.
Compared with an earlier prediction for EIC in the TMD
framework at low momentum PhT < 1 GeV (see Fig. 21 of
[31]), our result for the Sivers asymmetry is similar or
somewhat smaller in magnitude but opposite in sign,
although a detailed comparison is not possible because
there is no overlap in the plotted PhT ranges. This suggests
that there are cancellations between different mechanisms
which may lead to a sign change. However, we emphasize
again thatwhenPhT ≲ 1 GeV, other sources of asymmetries
from various twist-three TMDs found in [1] should be added
to the contribution from the Sivers function.
Finally, in Fig. 8, we present a full set of moments

introduced in (20) and (79) for three different bins in xB
and for fixed bins in Q2 and zf (1 < Q2 < 10 GeV2,
0.5 < zf < 0.9). We find that two additional moments

AsinðϕSÞ
UT and Asinð2ϕh−ϕSÞ

UT reach up to 2% in magnitude in
the highest xB bin 0.7 < xB < 0.1. In the TMD framework
for low PhT, the sinðϕSÞ and sinð2ϕh − ϕSÞ asymmetries
are known to be generated by various twist-three TMDs
[32]. We have just demonstrated that the gT distribution (or
its TMD counterpart g1T by extension) is also a potentially
significant source of these asymmetries. Indeed, our pre-
diction 1%-2% at PhT ¼ 1 GeV is comparable to previous
TMD-based calculations [33,34].

FIG. 6. PhT distributions of the Sivers asymmetry for πþ production at
ffiffiffiffiffiffiffi
Sep

p ¼ 45 GeV for three different xB and Q2 bins (we have
dropped the units in GeV2 on the plot), covering 0.5 < zf < 0.9.
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FIG. 8. PhT distributions of all asymmetry moments AUT for πþ production at
ffiffiffiffiffiffiffi
Sep

p ¼ 45 GeV for three different xB bins integrated
over 1 < Q2 < 10 GeV2 and 0.5 < zf < 0.9.

FIG. 7. PhT distributions of the Sivers asymmetry for πþ production at
ffiffiffiffiffiffiffi
Sep

p ¼ 45 GeV and
ffiffiffiffiffiffiffi
Sep

p ¼ 140 GeV for two different xB
and for 1 < Q2 < 500 GeV2, covering 0.5 < zf < 0.9.
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VII. DISCUSSIONS AND CONCLUSIONS

In this paper we have performed the complete analytical
and numerical evaluation of the novel two-loop contribu-
tions to SSA proportional to the twist-two polarized PDFs
ΔqðxÞ andΔGðxÞ. Our results indicate that, at the EIC, AUT
for pions can reach 1-2% for the three harmonics
sinðϕh − ϕSÞ, sinðϕhÞ and sinð2ϕh − ϕSÞ. On the other
hand, contributions from the gluon-initiated channel are
negligibly small. Since we are dealing with higher-order
perturbative diagrams, we have anticipated that the result-
ing asymmetry would be small. However, the stronger-
than-expected suppression we observed, especially in the
gluon sector, calls for an explanation. Parametrically, the
asymmetry behaves as

AUT ¼ dΔσ
dσ

∼
α2s

MN
PhT

ðxΔqðxÞ or xΔGðxÞÞ
αsðqðxÞ or GðxÞÞ

: ð85Þ

In addition to the obvious factor of αs, AUT is suppressed by
the smallness of polarized PDFs as compared to unpolar-
ized ones. In particular, the gluon-initiated channel is
expected to be important for x ≪ 1, but there, ΔGðxÞ ∼
xGðxÞ as a rule of thumb. On top of this, there is a
somewhat unexpected extra factor of x in the numerator
which comes from the rewriting

R
dxgTðxÞ ¼

R
dx
x xgTðxÞ

and
R
dxG3TðxÞ ¼

R
dx
x xG3TðxÞ. Of course the same factor

exists in the unpolarized cross section in the denominator,
which is, however, accompanied by Pþ, and the product
xPþ ¼ pþ

1 goes into the hard part and gets absorbed.
Therefore, our new contribution, especially in the gluon
initiated channel, is strongly suppressed like ∼x2 at low x,
or in more practical terms, as the selected kinematic bin is
sensitive to the low xB region. This tendency has been
clearly shown in Fig. 8. In the literature, gluon-initiated
channels are usually ignored in the calculation of AUT for
light-hadrons (see, however, an attempt in pp collisions
[35]), partly because it is believed to be small, but also
because nothing is known about the strength of the three-
gluon correlators hFgFFi. For the first time, we have
presented a reliably calculable piece of the gluon initiated
contributions, and found very small values. After all, our
main interest in the gluon initiated processes focuses on
AUT in heavy systems such as open charm and J=ψ . This
will be studied elsewhere.
It is worthwhile to compare (85) with the well-known

parametric estimate of SSA

AUT ∼
αsmq

PhT
; ð86Þ

where mq∼ a few MeV is the current quark mass. This
formula has been inferred from the argument in [36], and is
often quoted in order to emphasize the smallness of SSA in
perturbation theory and the necessity to introduce new

nonperturbative distributions. The factor of αs is because
one needs loop diagrams such as in Fig. 1 to get an
imaginary part, and the factor of mq is because one needs a
helicity flip. However, this suppression bymq is illusory for
the proton initial state. As is clear from the definitions of gT
and G3T in (23) and (29),mq is replaced by the proton mass
MN (see also a related argument in [37]). Thus the correct
argument in the DIS case would be that, naively AUT ∼ αsMN

PhT

is large, but the coefficient is suppressed due to the above-
mentioned factor x2, resulting in SSA of about 1% as we
have shown. In SIDIS at PhT > 1 GeV, this should be
comparable to other nonperturbative origins of SSA.
Precisely measuring AUT in the sub-percent region is

challenging at the EIC. Conversely, if the future data on
AUT turn out to be consistently larger than 1%, most likely
genuine twist-three effects are at work. But our result must
be subtracted when one tries to extract various twist-three
distributions. The distinct kinematical features of our
contribution, such as the suppression in low zf and low-
xB regions, may be useful to isolate this purely perturbative
“background.” At lower PhT < 1 GeV, predictions based
on the Sivers function are available [30,31]. However, in
the TMD regime PhT < 1 GeV, there are many other
sources of the sinðϕh − ϕSÞ asymmetry which are unrelated
to the Sivers function [1], that must be taken into consid-
eration in order to reliably extract the Sivers function.
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APPENDIX A: ANALYSIS OF INFRARED
DIVERGENCES: QUARK-INITIATED CHANNEL

In this Appendix we show that the collinear divergences
from the l2T integral in (44) cancel. The key step is to
establish the QCD Ward identity associated with the l2
gluon, which is formulated by substituting lβ2 for A

νβðl2Þ in
Sð0Þμν ðkÞ. As explained in [1], the part of the cross section,
which is contracted with the component lþ2 , is the only
piece contributing in the collinear region of l2. Once the
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Ward identity holds, this part of the cross section with the
potential divergences must vanish in the collinear limit
l−2 ; l2T → 0. Below we demonstrate the cancellation of the
collinear divergences by means of the Ward identity. It has

been proved in [1] that =kSð0Þμν ðkÞ satisfies the Ward identity,
as the momenta pq, l1, l2 and p2 − l2 are on-shell. The
identity should be still valid even when the derivatives
apply as in (44). Nevertheless, we will verify the identity
explicitly for rigorousness, starting from (44).

The second line in (44), for which

lβ2p1M̄
μ
β ¼ 0; ðA1Þ

with the notation M̄μ
β ≡ AαμM̄αβ holds trivially due to on-sell

l1 and p2 − l2, obeys the Ward identity by itself. In the third
line, l1 ¼ kþ q − pq is not on-shell, and in the fourth and
fifth lines, p2 − l2 ¼ kþ q − l2 is not either prior to taking
the derivatives. A generalization of the Ward identity for our
discussion, that covers these two cases, is expressed as

lβ2=kM̄
μ
β ¼

NcðN2
c − 1Þ
4

=kAαμpq

� ðkþ q−pqÞ2
ðkþ q−pq − l2Þ2

γαð=kþ q− =l2Þ−
�

l2α
ðkþ q−pq − l2Þ2

þN2
c − 1

N2
c

γα
=kþ q

ðkþ qÞ2
�
ðkþ q− l2Þ2

	
:

ðA2Þ

For the third line in (44) with off-shell l1, (A2) gives

lβ2p1M̄
μ
β ¼ p1Aαμpq

NcðN2
c − 1Þ
4

� ðp2 − pqÞ2γα
ðp2 − pq − l2Þ2

�
ðp2 − =l2Þ: ðA3Þ

We take the derivative ∂=∂x, and then take l1 on-shell, for which only the derivative of l21 is needed,

x
∂
∂x l

2
1 ¼ x

∂
∂x ðp2 − pqÞ2 ¼ pα

1

∂
∂pα

1

ðp2 − pqÞ2 ¼ 2p1 · ðp2 − pqÞ: ðA4Þ

Multiplying (A3) by the prefactor in the third line, we find a nonzero result

−
�
l1 · ST
p1 · l1

þ l2 · ST
p1 · ðp2 − l2Þ

�
x
∂
∂x ðl

β
2p1M̄

μ
βÞ ¼ −

�
l1 · ST þ ðl2 · STÞðp1 · l1Þ

p1 · ðp2 − l2Þ
�

× p1Aαμðp2 − =l1Þ
NcðN2

c − 1Þ
2

γα
ðl1 − l2Þ2

ðp2 − =l2Þ: ðA5Þ

For the fourth line, we first perform the x-derivative and put p2 − l2 on shell next. In practice, it means that l2 is
independent of x, so the only x dependence stems from p1. We then write x∂=∂x ¼ pα

1∂=∂pα
1 as in (A4), and get

l2 · ST
p1 · ðp2 − l2Þ

x
∂
∂x ðl

β
2p1M̄

μ
βÞ ¼

ðl2 · STÞðp1 · l1Þ
p1 · ðp2 − l2Þ

p1Aαμðp2 − =l1Þ
NcðN2

c − 1Þ
2

γα
ðl1 − l2Þ2

ðp2 − =l2Þ

− ðl2 · STÞp1Aαμðp2 − =l1Þ
NcðN2

c − 1Þ
2

�
l2α

ðl1 − l2Þ2
þ N2

c − 1

N2
c

γα
p2

p2
2

�
: ðA6Þ

The fifth line contains

SαT

� ∂
∂kαT ðl

β
2=kM̄

μ
βÞ
�
k¼p1

¼ ðl1 · STÞp1Aαμðp2 − =l1Þ
NcðN2

c − 1Þ
2

γα
ðl1 − l2Þ2

ðp2 − =l2Þ

þ ðl2 · STÞp1Aαμðp2 − =l1Þ
NcðN2

c − 1Þ
2

�
l2α

ðl1 − l2Þ2
þ N2

c − 1

N2
c

γα
p2

p2
2

�
: ðA7Þ

Summing up (A5), (A6) and (A7), we obtain the vanishing net result. Therefore, even though the individual lines in (44)
yield nonzero pieces, the QCD Ward identity is respected by their sum.
Next we analyze the collinear divergences in the l2T integral. It has been known in [1] that no infrared divergences arise

from the l1 − l2 and p2 − l1 − l2 propagators in (35). The divergence from the l1 − l2 propagator would appear when
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⃗l2T → ⃗l1T , but is canceled in the symmetric piece of Sð0Þμν . The potential divergence from the p2 − l1 − l2 propagator as
⃗l2T → −⃗l1T is suppressed by the numerator of the respective quark propagator. We thus devote the remainder of this
Appendix to the possible divergence from the p1 − l2 propagator, whose denominator ðp1 − l2Þ2 ¼ −2pþ

1 l
−
2 diminishes as

l2T → 0 [corresponding to the sign a2 ¼ þ1 in (48)]. In this limit l−2 ¼ l22T=2l
þ
2 → 0, while the on-shell condition

ðp2 − l2Þ2 ¼ 0 requires lþ2 → pþ
2 .

We rewrite the Ward identity (A1) as

p1M̄
μ
þ ¼ −p1

l−2
lþ2

M̄μ
− − p1

li2
lþ2

M̄μ
i ; ðA8Þ

and examine whether the resultant piece in the second line of (44)

Tr

�
γ5p1M̄

μ
βγ

ν p1 − =l2
ðp1 − l2Þ2

γβ
�
¼ Tr

�
γ5p1M̄μ

−γ
ν p1 − =l2
ðp1 − l2Þ2

�
−
l−2
lþ2

γþ þ γ−
��

þ Tr

�
γ5p1M̄

μ
i γ

ν p1 − =l2
ðp1 − l2Þ2

�
−
li2
lþ2

γþ þ γi
��

; ðA9Þ

is divergent. Given the denominator in the above expression ðp1 − l2Þ2 ¼ −2pþ
1 l

−
2 ∼Oðl22TÞ as l2T → 0, the integral will be

finite, if the numerator is Oðl2TÞ. The first term in the numerator, proportional to l−2 γ
þ, is counted as l−2 ∼Oðl22TÞ. The

second term, proportional to γ−, vanishes because of γ−p1 ¼ 0. The third term, proportional to li2γ
þ, is Oðl2TÞ apparently.

The fourth term, proportional to γi, is at least Oðl2TÞ since p1 projects out the factor ðp1 − =l2Þp1 ¼ −ðl−2 γþ þ =l2TÞp1.
Hence, the second line is infrared finite.
In the third line of (44) the x-derivative acts outside the l2 integral, so l1 can be off-shell. The Ward identity (A5) then

leaves us with an additional piece

�
l1 · ST

p1 · ðp2 − pqÞ
þ l2 · ST
p1 · ðp2 − l2Þ

�
NcðN2

c − 1Þ
4

l21
ðl1 − l2Þ2

Tr

�
γ5p1Aαμðp1 − =l1Þγαðp2 − =l2Þγν

p1 − =l2
ðp1 − l2Þ2

γþ

lþ2

�
; ðA10Þ

where the l2 · ST term, being at least Oðl2TÞ, is finite, while the l1 · ST term looks divergent. Applying x∂=∂x, we have the
divergent remainder from the third line

NcðN2
c − 1Þ
2

l1 · ST
ðl1 − l2Þ2

Tr

�
γ5p1Aαμðp2 − =l1Þγαðp2 − =l2Þγν

p1 − =l2
ðp1 − l2Þ2

γþ

lþ2

�
: ðA11Þ

The fourth line can be divided into two parts. The first part, coming from the derivative x∂=∂x hit on the p1M̄
μ
β structure,

contains a prefactor l2 · ST according to (A6) and is finite. The second part from the x∂=∂x ¼ pα
1∂=∂pα

1 hit on the p1 − l2
propagator is given by

−pα
1

∂
∂pα

1

p1 − =l2
ðp1 − l2Þ2

¼ p1 − =l2
ðp1 − l2Þ2

p1

p1 − =l2
ðp1 − l2Þ2

; ðA12Þ

with the Oðl42TÞ denominator. The numerator ðp1 − =l2Þp1ðp1 − =l2Þ ¼ 2ðp1 · l2Þ=l2 ¼ 2pþ
1 l

−
2 =l2 ∼Oðl22TÞ, together with the

prefactor l2 · ST, provides sufficient suppression at l2T → 0, so the fourth line is finite.
We can also split the fifth line into two parts, the extra piece from implementing theWard identity (A7) and the remainder.

The divergence in the piece proportional to l1 · ST ,

−
NcðN2

c − 1Þ
4

2l1 · ST
ðp2 − pq − l2Þ2

Tr

�
γ5p1Aαμpqγαðp2 − =l2Þγν

p1 − =l2
ðp1 − l2Þ2

γþ

lþ2

�
; ðA13Þ

is of the same form, but with an opposite sign to that of (A11). The remaining divergences are collected, after the
cancellation between the third and fifth lines, by
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− Tr

�
γ5STM̄

μ
βγ

ν p1 − =l2
ðp1 − l2Þ2

γβ
�
þ Tr

�
γ5p1M̄

μ
βγ

ν p1 − =l2
ðp1 − l2Þ2

ST
p1 − =l2

ðp1 − l2Þ2
γβ
�

¼ −Tr
�
γ5STM̄

μ
i γ

ν ðpþ
1 − lþ2 Þγ−

ðp1 − l2Þ2
γi
�
þ Tr

�
γ5p1M̄μ

−γ
ν p1 − =l2
ðp1 − l2Þ2

ST
p1 − =l2

ðp1 − l2Þ2
�
γ− −

l−2
lþ2

γþ
��

þ Tr

�
γ5p1M̄

μ
i γ

ν p1 − =l2
ðp1 − l2Þ2

ST
p1 − =l2

ðp1 − l2Þ2
�
γi −

li2
lþ2

γþ
��

; ðA14Þ

with the Ward identity (A8), where the first term in the second line and the third line involve the divergences.
The relation

p1 − =l2
ðp1 − l2Þ2

ST
p1 − =l2

ðp1 − l2Þ2
¼ −2ðl2 · STÞ

p1 − =l2
ðp1 − l2Þ4

−
ST

ðp1 − l2Þ2
; ðA15Þ

and the multiplication by p1 on the left lead the third line of (A14) to

�
−2ðl2 · STÞ

p1 − =l2
ðp1 − l2Þ4

−
ST

ðp1 − l2Þ2
��

γi −
li2
lþ2

γþ
�
¼ 2ðl2 · STÞ

=l2T
ðp1 − l2Þ4

γi þ 2ðl2 · STÞ
li2
lþ2

pþ
1 − lþ2

ðp1 − l2Þ4
γ−γþ −

1

ðp1 − l2Þ2
STγi

¼ −l22T
ST

ðp1 − l2Þ4
γi − l22T

SiT
lþ2

pþ
1 − lþ2

ðp1 − l2Þ4
γ−γþ −

1

ðp1 − l2Þ2
STγi

¼ −
pþ
1 − lþ2
pþ
1

1

ðp1 − l2Þ2
ðSTγi þ SiTγ

−γþÞ: ðA16Þ

where the angular average has been performed for the second expression, and l22T ¼ 2lþ2 l
−
2 has been inserted into the third

expression. Multiplying the last expression by p1 in the trace on the right and using STγiγ− − SiTγ
−γþγ− ¼ −γ−γiST , we

arrive at

−
�
2ðl2 · STÞ

p1 − =l2
ðp1 − l2Þ4

þ ST
ðp1 − l2Þ2

��
γi −

li2
lþ2

γþ
�
p1 ¼

ðpþ
1 − lþ2 Þγ−

ðp1 − l2Þ2
γiST: ðA17Þ

The divergent piece in third line of (A14) is thus reduced to the same form as the first term in the second line of (A14), but
has an opposite sign. That is, the divergences in (A14) cancel each other. In conclusion, the l2 integral in (44) is infrared
finite, and we can safely proceed to its numerical evaluation.

APPENDIX B: ANALYSIS OF INFRARED DIVERGENCES: GLUON-INITIATED CHANNEL

The gluon-initiated differential cross section (63) has two potential sources of infrared divergences from the p1 − l2 and
q − l2 quark propagators in (61). The p1 − l2 propagator in Aνβ causes a divergence as ðp1 − l2Þ2 ¼ −2pþ

1 l
−
2 ∝ l22T → 0

[corresponding to a2 ¼ þ1 in (48)]. With the multiplication of =l2 on the right, as indicated by the γ-matrix indices in (59),
the divergent piece in the second line of (63) is proportional to

Aνβ=l2 → γν
p1 − =l2

ðp1 − l2Þ2
γβ=l2 → 2lþ2 δβ−γν

ðpþ
1 − lþ2 Þγ−

ðp1 − l2Þ2
; ðB1Þ

where β ¼ − has been singled out. One can easily check that a divergence is not produced due to l−2 ∝ l22T in the numerator
when β is transverse. In the third line, β is transverse and there is no divergence for the same reason. The derivative x∂=∂x
acts outside of the l2T integral in the fourth line, so we evaluate the integral and take the derivative afterwards. It is then seen
that there is no divergence, for β is also transverse. In the fifth line we take the derivative first, which, as hitting AαμM̄, does
not induce a divergence since β is transverse. When it hits Aνβ, we have

x
∂
∂xAνβ → −γν

p1 − =l2
ðp1 − l2Þ2

p1

p1 − =l2
ðp1 − l2Þ2

γβ: ðB2Þ
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With ðp1 − =l2Þp1ðp1 − =l2Þ ∼Oðl22TÞ and the prefactor going asOðl2TÞ, the numerator in total behaves likeOðl32TÞ, such that
the l2T integral is finite.
In the sixth line, when ∂=∂kλ hits AαμM̄, the result is finite because β is transverse. When it hits Aνβ, we get

∂
∂kλ Aνβ → −γν

p1 − =l2
ðp1 − l2Þ2

γλ
p1 − =l2

ðp1 − l2Þ2
γβ ¼ 2l2λγν

p1 − =l2
ðp1 − l2Þ4

γβ þ γνγλγβ
1

ðp1 − l2Þ2
: ðB3Þ

The multiplication by =l2 on the right yields

∂
∂kλ Aνβ=l2 → −2lþ2 δλβ

1

pþ
1

γν
ðpþ

1 − lþ2 Þγ−
ðp2 − l1Þ2

; ðB4Þ

where we have performed the angular average and inserted l22T ¼ 2lþ2 l
−
2 . The total contribution then goes as

−
1

x
ϵnPαST Ŝð0Þμνα−

1

Pþ − ðgβλT ϵαPnST − gαλT ϵβPnST Þ
� ∂
∂kλ Ŝ

ð0Þ
μναβðkÞ

�
k¼p1

→ −ϵnPαST2lþ2
1

pþ
1

γν
ðpþ

1 − lþ2 Þγ−
ðp1 − l2Þ2

þ ðgβλT ϵαPnST − gαλT ϵβPnST Þ2lþ2 δλβ
1

pþ
1

γν
ðpþ

1 − lþ2 Þγ−
ðp1 − l2Þ2

¼ 0: ðB5Þ

That is, even though the second and sixth lines are separately divergent when lþ2 → pþ
2 and l−2 ; l2T → 0, there is no infrared

divergence in their sum.
Next we come to the potential divergence in the q − l2 quark propagator [corresponding to a2 ¼ −1 in (48)], whose

denominator ðq − l2Þ2 ¼ −2p1 · ðp2 − l2Þ ¼ −2pþ
1 ðp−

2 − l−2 Þ with ðp2 − l2Þ2 ¼ 0 diminishes when l−2 → p−
2 and

lþ2 ; l2T → 0. The divergent piece in the second line of (63) is identified as

ðp2 − =l2ÞAνβ → 2pþ
2 δβ−

qþγ−

ðq − l2Þ2
γν; ðB6Þ

which, together with the overall prefactors, gives

−ϵnPαST
1

x
Ŝð0Þμνα− →

2pþ
2

pþ
1

ϵαPnST
qþγ−

ðq − l2Þ2
γν: ðB7Þ

The third line is finite as before. In the fourth line, β is transverse in Ŝð0Þ, but the prefactor now goes as Oð1=l2TÞ. Since
the derivative x∂=∂x acts outside the l2T integral, we first evaluate the δ-function, obtaining the relevant piece

∂
∂x

�
x
lβ2Tϵ

αPnST − lα2Tϵ
βPnST

p1 · ðp2 − l2Þ
ðp2 − =l2ÞAνβ

�
: ðB8Þ

Due to the condition ðp2 − l2Þ2 ¼ 0, l2 also depends on x, in addition to p1. The relation

x
∂lμ2
∂x ¼ 1

2

pþ
1

pþ
2

l̃μ2; l̃μ2 ¼ ð2lþ2 ; 0; ⃗l2TÞ; ðB9Þ

then leads (B8) to

x
∂
∂x ½ðl

β
2Tϵ

αPnST − lα2Tϵ
βPnST Þðp2 − =l2ÞAνβ�

¼ ðlβ2TϵαPnST − lα2Tϵ
βPnST Þ

�
p1Aνβ þ

�
−1þ 1

2

pþ
1

pþ
2

�
ðp2 − =l2ÞAνβ −

1

2

pþ
1

pþ
2

=̃l2Aνβ −
1

2

pþ
1

pþ
2

γβ
=̃l2

ðq − l2Þ2
γν

�
; ðB10Þ

viewing that the factor x=p1 · ðp2 − l2Þ is independent of x. In the fifth line, the x-derivative acts inside the l2 integral, so the
only effect is

BENIĆ, HATTA, KAUSHIK, and LI PHYS. REV. D 104, 094027 (2021)

094027-24



x
∂
∂x ðp2 − =l2ÞAν

β ¼ p1Aν
β; ðB11Þ

which cancels the first term in the square brackets on the right-hand side of (B10). Therefore, we focus on the remaining
terms in the fourth line,

lβ2Tϵ
αPnST − lα2Tϵ

βPnST

p1 · ðp2 − l2Þ
��

−1þ 1

2

pþ
1

pþ
2

�
ðp2 − =l2ÞAνβ −

1

2

pþ
1

pþ
2

=̃l2Aνβ −
1

2

pþ
1

pþ
2

γβ
=̃l2

ðq − l2Þ2
γν

�

→

�
2

�
1 −

pþ
2

pþ
1

�
ϵαPnST − ϵβPnST γαγβ

�
qþγ−

ðq − l2Þ2
γν: ðB12Þ

The sixth line contributes

ðgβλT ϵαPnST − gαλT ϵβPnST Þ
� ∂
∂kλ ½ð=kþ q − =l2ÞAνβ�

	
k¼p1

→ ð2ϵαPnST − ϵβPnST γαγβÞ
qþγ−

ðq − l2Þ2
γν: ðB13Þ

It is clear that the divergences in the fourth and sixth lines cancel up to a piece

−
2pþ

2

pþ
1

ϵαPnST
qþγ−

ðq − l2Þ2
γν; ðB14Þ

which is exactly what we need to cancel the divergence in the second line in (B7). In conclusion, the l2 integral in (63) is
infrared finite, and we can safely proceed to its numerical evaluation.

APPENDIX C: USEFUL INTEGRALS

In this Appendix we list the integrals over ϕ2 (azimuthal angle of the parton with momentum l2) that we have employed
in the calculation of the hard coefficients:

Z
2π

0

dϕ2

1

aþ b cosðϕ1 − ϕ2Þ
¼ 2πsgnðaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 − b2
p ;

Z
2π

0

dϕ2

1

ðaþ b cosðϕ1 − ϕ2ÞÞ2
¼ 2πjaj

ða2 − b2Þ3=2 ;Z
2π

0

dϕ2

sinðϕ2 −ΦSÞ
aþ b cosðϕ1 − ϕ2Þ

¼ 2π

b
sinðϕ1 −ΦSÞ

�
1 −

jajffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p
�
;

Z
2π

0

dϕ2

sinðϕ2 −ΦSÞ
ðaþ b cosðϕ1 − ϕ2ÞÞ2

¼ −2πb sinðϕ1 −ΦSÞ
sgnðaÞ

ða2 − b2Þ3=2 ;Z
2π

0

dϕ2

cosðϕ2 −ΦSÞ
aþ b cosðϕ1 − ϕ2Þ

¼ 2π

b
cosðϕ1 −ΦSÞ

�
1 −

jajffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p
�
;

Z
2π

0

dϕ2

cosðϕ2 −ΦSÞ
ðaþ b cosðϕ1 − ϕ2ÞÞ2

¼ −2πb cosðϕ1 −ΦSÞ
sgnðaÞ

ða2 − b2Þ3=2 : ðC1Þ
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