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Abstract
The paper explores the Rutherford scattering shadow in an entire class of
comoving frames—inertial frames moving along the initial projectile direc-
tion—of which the laboratory frame, where the target is initially at rest, is a
representative example. The paper is a continuation of the previous work
addressing the scattering shadow in the fixed-target and the center-of-mass
frame. It is shown that the transition from these frames is technically quite
involved, due to the scattering shadow forming at an infinite distance from an
initial target position. The central procedure involves solving the 5th degree
polynomial as a part of an associated extremization procedure. The shadow
existence itself is subject to certain conditions, dependent on a given comov-
ing frame. A new and unexpected phenomenon is found within a certain set of
comoving frames, including the laboratory frame itself. It consists of a phase
transition between an entirely smooth type of shadow and the one characterized
by a formation of a sharp edge.

Keywords: Rutherford scattering, shadow, comoving frame, laboratory frame
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1. Introduction

The famous historical experiments by Geiger and Marsden [1–3], dealing with the scattering
of α-particles by thin metal foils, are appropriately considered not only as the turning points
in physics, but also as the turning points of a rare kind in the development of the modern
civilization. These experiments have, in a most direct manner and for the first time in a history
of mankind, allowed Rutherford to reveal the inner structure of the atom [4], thus discovering
the existence of the atomic nucleus and ushering the age of nuclear technology. Aside from
the obvious social benefits of having discovered a novel and usable source of energy, these
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achievements have inadvertently had an unprecedented influence upon our understanding of
the entire universe—from a very start of its existence (the primordial nucleosynthesis) to the
origin of life on Earth (the stellar nucleosynthesis from the Sun, as a source of all life-sustaining
energy on Earth).

In a recent work [5] a remarkable feature of this scattering—nowadays known as the Ruther-
ford scattering and understood to be the scattering the electric charges due to the Coulomb
interaction—was analyzed in some detail. This feature consist in the repulsive Rutherford scat-
tering casting a proverbial shadow, shielding (under appropriately defined conditions) an entire
portion of space from admitting any charged particle trajectory. The form of this shadow was
first investigated in the fixed-target frame and the center-of-mass frame, and was shown to
be paraboloidal in both frames. Though the Rutherford scattering itself is a regular subject of
(under)graduate physics courses, as a very cornerstone of nuclear physics, and though its shad-
owing effect is at the center of a material surface investigation method known as low-energy
ion scattering spectroscopy [6, 7], the shadowing feature seems to be little known throughout
the educational literature. And all this despite it being fully within the mathematical capabil-
ities of any (under)graduate student in physical sciences. The latest attempt at rekindling the
interest in this worthy educational subject has already attracted attention and has lead to fur-
ther illuminating expositions [8, 9]. We have high hopes that all these efforts will lead to a
widespread recognition of this topic’s deserved place in physical studies.

There have been earlier isolated attempts at drawing attention to the Rutherford scattering
shadow [10–13], mostly limited to the fixed-target frame—an accelerated frame of the charged
target itself, where the target is at rest at all times. One of the earliest such references, by Adolph
et al [10], comments upon the particle trajectories in the laboratory frame—an inertial frame
where the charged target is at rest only at the initial moment—stating that ‘the construction
of the orbits (in the laboratory frame) is beyond the reach of simple geometry’. We will obtain
these trajectories by a Galilean transformation of the trajectories from the fixed-target frame.
Even more generally, we will analyze it within an entire class of comoving frames, consisting
of any inertial frame moving in an appropriate direction, with the constant speed relative to the
center-of-mass frame, i.e. to the particle-target system as a whole.

We adopt here a classical nonrelativistic approach. We hope to demonstrate that many, to
our knowledge new results may yet be gained within this approach. We will show that, as far
as the Rutherford scattering shadow is concerned, the transition between the frames in relative
motion is not just a technical challenge from which no further insight could be gained. Quite the
contrary: in opposition to the naive idea that the scattering shadow in the comoving frame might
be obtained by some simple manipulation of the parabolic shadow from the fixed-target frame,
we will find that: (1) several technical challenges appear, consisting of a divergent integral and
the 5th degree polynomial; (2) the resulting shadow is no longer parabolic; (3) the scattering
shadow cannot form in just any inertial frame; (4) there appears a qualitative alteration in the
shadow behavior, akin to a certain type of phase transition, consisting in a formation of a sharp
edge along the shadow caustic.

We face some instructive challenges in the derivation of the projectile trajectories (restricted
to appendix A). The first challenge is the appearance of a divergent integral, that we overcome
by a careful and disciplined parametrization of the emerging divergence. The second challenge
is the necessity for finding numerical solutions to the 5th degree polynomial, since there exists
no solution in radicals for a general polynomial of a degree greater than 4. There is a certain
educational benefit in the ability to demonstrate the practical utilization of the modern computer
resources in solving a particular, very well defined physical problem, appropriate even at lower
levels of the (under)graduate studies where the Rutherford scattering is a regular subject.
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Returning to the issue of the nonrelativistic approach, there is a rich discussion to be had,
carried out in section 2. In section 3 we illustrate the procedure for obtaining the projectile
trajectories in the comoving frame. The technical derivation is presented in appendix A. In
section 4 a procedure for obtaining the scattering shadow from these trajectories is presented.
Section 5 addresses and identifies the necessary conditions for the existence of the scattering
shadow. Section 6 focuses on the laboratory frame, as one of the most prominent examples of
comoving frames. Section 7 summarizes the main conclusions of this work.

This paper is accompanied by the supplementary note (http://stacks.iop.org/EJP
/42/055018/mmedia), expanding upon the main material presented herein. We stress that this
paper is self-contained and that addressing the supplementary note is by no means necessary
for following the main content. Still, the supplementary note offers deep, exciting and—to our
knowledge—many novel expositions of various aspects of the repulsive Rutherford scattering
in the comoving frame, to be appreciated by an interested reader.

2. The (non)relativistic treatment

In the laboratory frame the charged target is put into motion by the recoil, which leads both
to the transformation of its electric field and the additional induction of the magnetic field.
The electric field transforms not only due to the target’s non-zero speed, but also obtains a
radiative component due to the target’s acceleration. This is clearly seen from a well known,
relativistically correct expression for the electric field of an arbitrarily moving point charge
[14, 15]:

E(r, t) =
q

4πε0

[
n̂ − β

γ2K3R2
+

n̂ × ((n̂ − β) × a)
c2K3R

]
τ

, (1)

where q is the value of the charge and ε0 is the vacuum permittivity. With R as a position-vector
of a point at which the field is to be calculated (r) relative to the position of the point charge
(r′): R = r − r′ = R n̂, the terms R and n̂ appearing in (1) are its norm and unit direction,
respectively: R = |R| and n̂ = R/R. Alongside v = dr′/dt as the velocity of the point charge,
a = dv/dt as its acceleration and c as the speed of light in vacuum, β = v/c is the standard
relativistic notation, together with the Lorentz factor γ = (1 − β · β)−1/2 and K = 1 − n̂ · β.
Finally, [·]τ denotes that all quantities within the square brackets are to be calculated at the
retarded time τ such that τ + R(τ )/c = t, since it takes finite time for the information to prop-
agate from r′ to r. It is to be noted that the first term in square brackets (∝1/R2) is the field
transformation solely due the motion of the charge, while the second one (∝1/R) is the radia-
tive component due to its acceleration. This separation of contributions to the electric field due
to the ‘levels’ of motion is even more clearly seen from an equivalent Feynman’s formula [16]:

E(r, t) =
q

4πε0

([
n̂
R2

]
τ

+
[R]τ

c
d
dt

[
n̂
R

]
τ

+
1
c2

d2[n̂]τ
dt2

)
, (2)

where the first term is evidently the pure Coulomb field (electrostatic in form), the second term
takes into account the general motion of the charge, while only the third term may produce the
dependence upon the charge acceleration. The associated magnetic field of the point charge
may be calculated from its electric field as:

B(r, t) =

[
n̂
]
τ
× E(r, t)

c
. (3)
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It is worth noting that in case of the charge moving with the constant velocity, (3) may also be
expressed as:

Ba=0 =
β × Ea=0

c
. (4)

This is easily seen since applying the vector products from either relation leaves only β × n̂ in
place of the first term from (1). In fact, the relation from (4) holds not only for the point charge,
but for any charge distribution moving with the constant velocity [17].

If we were to calculate the scattering trajectories by solving the relativistic equations of
motion in the laboratory (or any other inertial) frame, we would simply use the correct field
expressions (1) and (3), properly taking into account all aspects of the field transformations (the
departure from the electrostatic form, the induction of the magnetic field and the appearance
of the radiative component). However, would we have to account for these effects if we treated
the problem nonrelativistically, staying within the confines of Galilean mechanics? This can
be judged based on the relative magnitude between the electric and magnetic forces in a given
frame. In the nonrelativistic case any effect from the charge acceleration upon the electric field
from (1) is suppressed by 1/c2, thus being negligible. In the absence of this term the magnetic
field may be expressed as in (4), meaning that for the nonrelativistic charge it always holds
B ≈ v × E/c2. Now it is simple enough to inspect the relative magnitude between the forces
exerted upon the charged projectile (p) by the charged target (t):

FB

FE
=

|qpvp × Bt|
|qpEt|

∝ vpvt

c2
. (5)

Thus, in the nonrelativistic limit (vp, vt � c) the Lorentz force is negligible, relative to an
electric one, fully justifying the Galilean treatment that we adopt in this work.

Once the nonrelativistic treatment has been justified and adopted based on (5), the Lorentz
force must not be taken into account (assuming that the magnetic field appears due to the trans-
formation of the electric field between the frames in relative motion). The reason is the Galilean
invariance of force, combined with the fact that—within the Galilean framework—the elec-
tric field retains the electrostatic form E(r, t) = (q/4πε0)n̂/R2 in all frames, which is easily
seen from the nonrelativistic limit of (1). The short argument is this. Consider the electrostatic
force exerted upon the point charge q: F = qE. When the transition is made to a frame mov-
ing with the relative velocity v, the force is furnished by an additional, Lorentz component:
F′ = qE′ + qv ×B′. However, from the demonstrated nonrelativistic invariance of the electro-
static field (E = E′) and the Galilean invariance of force (F = F′) it follows that qv × B′ = 0,
i.e. there is no room left for any kind of effect by the magnetic field.

The previous argument is closely related to one of the two independent Galilean limits to
the classical electrodynamics [18–20], the so-called electric limit wherein the electric effects
are dominant (|E| � c|B|). It was formally shown in a famous paper by Le Bellac and Lévy-
Leblond [18] that if the Galilean invariance is to be preserved in the electric limit, one must
indeed contend with the magnetic field exerting no force upon the electric charge, rather than
taking any kind of low-velocity limit of the electric field that would account for the necessity
of an additional, Lorentz force (qv × B′ �= 0 due to E �= E′). However, this argument is not
strictly applicable to our case, since the Galilean limits to the classical electrodynamics apply
to the inertial frames in relative motion. We, on the other hand, will be concerned with the
transition between the accelerated (fixed-target) frame and the inertial (comoving) frame.

Related to the approach that we adopt in this work—boosting the charged particle trajecto-
ries from the fixed-target into the comoving frame by means of a Galilean transformation—let
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us suppose for a moment that we attempted to perform this procedure relativistically. If we
managed to obtain the relativistic particle trajectories in the fixed-target frame, we would
have to perform the relativistic boost into the comoving frame by employing the generalized
Lorentz transformations for the noninertial frames [21]. Although the correct field transforma-
tions between the frames would be implicitly accounted for by thus transformed trajectories,
it would make little sense attempting to perform a relativistic boost of the classical hyperbolic
trajectories—as they are not the relativistic solutions themselves—unless one were to use them
as the reasonable approximations to the fully relativistic trajectories in the fixed-target frame.

3. Coulomb trajectories in the comoving frame

We will obtain the charged particle trajectories in the comoving frame by a Galilean boost of
well known hyperbolic trajectories from the fixed-target frame. We remind the reader of the
basic steps leading to these hyperbolic solutions. With projectile and target charges Zp and Z t,
respectively, in units of the elementary charge e, and ε0 as the vacuum permittivity, one starts
from a Coulomb force Ft→p exerted upon the charged projectile:

Ft→p =
ZpZte2

4πε0

rp − rt

|rp − rt|3
, (6)

and performs a standard separation of variables by introducing the target-relative projectile
position1 r ≡ rp − rt and the center-of-mass position R ≡ (mprp + mtrt)/(mp + mt). In doing
so the motion of the system as a whole (R) decouples from the relative motion (r). The equation
of the relative motion then reads:

r̈ =
ZpZte2

4πε0μ

r
r3

, (7)

where the reduced mass μ of a projectile-target system appears, determined by the projectile
and target masses mp and mt as μ−1 ≡ m−1

p + m−1
t . With the appropriate set of initial conditions

expressed in cylindrical coordinates:

r(t = 0) = �0ρ̂−
(

lim
z0→∞

z0

)
ẑ, (8)

ṙ(t = 0) = v0ẑ, (9)

the solution for the radial component of the target-relative projectile position r reduces to:

r(θ) =
�2

0

2
(
�0 tan θ

2 − χ
)

cos2 θ
2

, (10)

with this particular form being the most convenient to this work. The polar angle θ is a conven-
tionally defined spherical coordinate relative to the z-axis oriented along the projectile’s initial

1 Our term for the ‘fixed-target frame’ comes from a definition of a relative position r: in a frame where we can
equate the projectile position with r, the target is by construction at rest, fixed at the origin of the frame. Therefore,
the ‘fixed-target’ term should not be confused with target being infinitively massive or held in place by an external
force. For a finitely massive target the fixed-target frame is accelerated, as the target is continuously being recoiled
from the incoming projectile. An alternative, somewhat mouthful term to be found in literature for this frame is the
‘instantaneous rest frame (of the charge)’.

5
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velocity. An impact parameter �0 determines a specific projectile trajectory and corresponds
to the initial distance from the z-axis. The central parameter χ is defined as:

χ ≡ ZpZte2

4πε0μv2
0

, (11)

with v0 as the initial relative speed between the target and projectile, that remains invariant
under Galilean transformations. The infinity from the z-component of the initial relative posi-
tion (8) will propagate into later calculations, therefore we need to carefully parameterize so
as to formally keep it under control. In this work we choose to parameterize it by a positive
parameter z0.

In the absence of external forces a center-of-mass position R satisfies the equation of motion
R̈ = 0, meaning that the system as a whole cannot accelerate spontaneously. In other words,
the total linear momentum of the isolated system is conserved. Immediately introducing the
shorthands:

ηp,t ≡
mp,t

mp + mt
, (12)

the definitions of r and R may be inverted in order to recover the absolute projectile and target
coordinates in any reference frame:

rp = R + ηtr, (13)

rt = R − ηpr, (14)

where the motion of the frame itself—or, equivalently, of the entire physical system within the
given frame—is reflected solely through R. Given the initial center-of-mass position R0, the
solution to R̈ = 0 is a rectilinear motion with the constant velocity Vcm:

R(t) = R0 + Vcmt. (15)

Among all possible inertial frames, we limit our attention only to those moving along the z-
axis (Vcm = Vcmẑ), corresponding to the projectile’s initial direction of motion. In addition, the
origin of the coordinate frame will coincide with the target’s initial position. Specifically, the
final solution in the laboratory frame—where the target is at rest at the initial moment, so that
ṙ(lab)

t (t = 0) = 0 and ṙ(lab)
p (t = 0) = v0ẑ—may always be recovered from the general solution

by taking V (lab)
cm = ηpv0.

In order to specify that the target is initially at the origin of the comoving frame, we
complement the initial relative position (8) by a consistent set of initial absolute positions:

rp(t = 0) = �0ρ̂−
(

lim
z0→∞

z0

)
ẑ, (16)

rt(t = 0) = 0. (17)

From a definition of the center-of-mass position it now trivially follows that: R0 = ηprp(t = 0).
Though compelling due to several interesting technical changeless, the derivation of the

Coulomb trajectories in the comoving frame is rather tedious and results in somewhat lengthy
expressions. However, it is of central importance to this work so we present it in appendix A
(instead of the supplementary note). For conciseness we only sketch here the general procedure
and present the final results.

6
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• Starting from the known projectile trajectories (10) in the fixed-target frame, use the non-
relativistic kinematics from (13) and (14) in order to obtain a Galilean boost into the
comoving frame.

• In performing a Galilean transformation, a divergent integral appears; carefully parame-
terize this divergence by means of a well defined limit:

Z0 =

(
Vcm

v0
− ηp

)
lim

z0→∞
z0 +

Vcm

v0
χ lim

z0→∞
ln

2z0

eL , (18)

in order to isolate it from the relevant part of expression. In that, an arbitrary length scale L
appears, formally required for an argument of the logarithm to be dimensionless. A natural
logarithm base e also appears here, not to be confused with the unit charge e.

• Separate the parameterized divergence from the z-component zp of the particle trajectory
such that:

zp = Zp + Z0, (19)

which is equivalent to the shift in coordinate origin by Z0, and continue calculations with
the remaining, finite part of the expression:

Zp(ρp) =
Vcm

v0
χ

(
ρp

ηt�0
+ ln

L(ρp − �0)
ηtχ�0

− ηp

ηt

)

+

(
Vcm

ηtv0
+ 1

) (
�0(ρp − �0)

2χ
− χ(ρp − ηp�0)2

2�0(ρp − �0)

)
, (20)

corresponding to the axial component of a projectile trajectory in the comoving frame
where the center of mass moves along the z-axis with the speed Vcm. The boosted projectile
trajectory is now fully determined:

rp(ρp) = ρpρ̂+ [Zp(ρp) + Z0]ẑ (21)

as a function of a radial distance ρp from the z-axis.

4. Scattering shadow

We now ask: at the radial distance ρp from the Z-axis, which trajectory reaches an extremal
distance along the same axis (i.e. the extremal distance from the xy-plane), thus defining the
point along the shadow caustic?

The problem boils down to finding the extremum2 of Zp(ρp) in respect to the impact param-
eter �0, for a constant ρp. This is done by finding the zero of the associated derivative, i.e. by

2 The only (and inconsequential) difference in respect to the extremization procedure from [5] is that the angular
parameter θ was kept constant therein, as in both the fixed-target and the center-of-mass frame it corresponds to a true
angular coordinate. In any particular frame the extremization procedure must be performed by keeping some appro-
priate geometric parameter from the same frame constant, as we are interested in the point of the extremal approach
(among all possible trajectories) to a given point, axis or plane within that frame. Since we already have an explicit
dependence Zp(ρp) from (20), we can directly extremize the trajectories’ distance from the xy-plane by keeping ρp

constant, instead of first having to find the angular coordinate θp = arccot(Zp/ρp) and then having to extremize the
distance from the coordinate origin by keeping θp constant. In that, it should be noted that the extremization procedure
from [5] was a minimization of the distance from the coordinate origin, while (22) leads to the maximization of the
trajectories’ reach in the Z-direction, and only because of the selected direction of the initial projectile velocity.

7
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solving:

dZp

d�0

∣∣∣∣
�̃0

=
{

(ηtv0 + Vcm)�̃2
0(ρp − 2�̃0)(ρp − �̃0)2

+
[
ηt(ηtv0 + Vcm)�̃0 − (ηtv0 − Vcm)(ρp − �̃0)

]
×χ2ρp(ηp�̃0 − ρp)

}/[
2ηtv0χ�̃

2
0(ρp − �̃0)2

]
= 0 (22)

for �̃0. We see that, in general case, we need to find the zero(s) of the 5th degree polynomial in
�̃0. The general solution cannot be expressed in radicals. Even if it could, already the general
solutions to the 3rd and 4th degree polynomial (Cardano formula and Ferrari method, respec-
tively) are excessively long and incomprehensible. Therefore, we need to proceed numerically
from this point.

In order to avoid the confusion between the trajectory equation Zp(ρp; �0) and the shadow
equation, we will use the notation Zp(ρp) for shadow caustic, in a sense:

Zp(ρp) ≡ Zp[ρp; �̃0(ρp)]. (23)

Evidently, the shadow caustic is obtained by adopting the extremizing value �̃0(ρp) from (22).
There is one constraint upon the sought solution:

0 � �̃0(ρp) � ρp, (24)

that one might hope to use in eliminating the spurious solutions. It follows from purely geo-
metric considerations: in order to have reached the radial distance ρp, the projectile must have
started from a lesser �̃0, due to the repulsive scattering away from the z-axis. However, there
may still be multiple branches �̃(i)

0 consistent with (24), among which only one yields a sought
solution at any given point. A detailed numerical investigation leads to a simple procedure for
obtaining the shadow boundary under such conditions:

Zp(ρp) = max
i

{
Zp[ρp; �̃(i)

0 (ρp)]
}

, (25)

where i enumerates all the solutions consistent with (24). The basic reasoning behind this pro-
cedure may be easily understood. All nonnegative solutions to the extremization problem (22)
do indeed yield some meaningful, local extremum. However, the shadow caustic is determined
by the global maximum, beyond which no additional trajectories are to be found (we recall
that the maximum is the relevant extremum only because of the selected direction of initial
projectile velocity). Thus, beyond the maximum of all local extrema no other extremum, as a
candidate for a point on a shadow caustic, can be found.

5. Existence conditions

Let us try to anticipate any possible conditions for the existence of the scattering shadow in a
given comoving frame. In attempting this, a shadow vertex—a single shadow point lying on
the Z-axis, i.e. Zp(ρp = 0)—will be of special importance. To this end let us consider what
happens with the projectile trajectory impinging frontally upon the target (�0 = 0). It is to be
noted that the shadow vertex is completely determined by precisely this one trajectory, which is
entirely confined along theZ-axis. If, in a given comoving frame, the projectile with the impact
parameter �0 = 0 can be backscattered (recoiled backwards off the target), then the shadow
vertex stays at some finite position along the Z-axis. On the other hand, if the backscattering

8
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is kinematically impossible (due to the projectile being too massive or the forward center-of-
mass speed Vcm being too high), the projectile keeps moving in a forward direction, implying
that the shadow vertex escapes to infinity, even after the primary shift to infinity by Z0!

It is now a simple matter to argue that if the �0 = 0 trajectory is entirely forward directed,
than all other �0 > 0 trajectories also retain the forward motion without ever bending back-
wards. To this end we first consider the motion in the center-of-mass frame. At the initial
moment all projectiles are put into motion with the velocity v(cm)

p (0) = ηtv0ẑ. This speed value
also corresponds to a maximum speed componentV (max)

z along the same axis, for any trajectory
and among all trajectories (for any �0):

V (max)
z ≡ max

t,�0

[
v(cm)

p (t; �0)
]

z
=

[
v(cm)

p (0; �0)
]

z
= ηtv0. (26)

The same speed is also reached asymptotically by all projectile trajectories: v(cm)
p (∞) = ηtv0.

Yet, due to the particular scattering angle, only for the frontal trajectory (�0 = 0) is the final
velocity directed entirely along the z-axis, meaning that this particular case yields the minimum
speed component V (min)

z , for this particular trajectory and among all possible trajectories:

V (min)
z ≡ min

t,�0

[
v(cm)

p (t; �0)
]

z
=

[
v(cm)

p (∞; 0)
]

z
= −ηtv0. (27)

Therefore, if the center-of-mass speed Vcm is sufficient to boost forward the asymptotic state
of the frontal trajectory (i.e. if V (min)

z + Vcm � 0, being equivalent to Vcm � ηtv0) then all
other trajectories will also be forward directed. This has a remarkable consequence: there
will be no back-bending of any trajectory, so that when the frontal trajectory escapes to infin-
ity (beyond Z0), there is a continuum of entirely-forward-directed trajectories sweeping the
entire geometric space. Thus, the scattering shadow cannot exist at all in comoving frames
with Vcm � ηtv0!

There is another extreme to this condition. As V (max)
z is the maximum speed along the z-axis

for any and all trajectories, consider what happens when V (max)
z + Vcm � 0, i.e. when Vcm �

−ηtv0. In such frames all the projectiles are immediately boosted backwards and the entire
geometric space beyond their initial position is shielded from their trajectories. This means
that the scattering shadow spans the entire geometric space. Its form may still be properly
parameterized, being trivial in itself. One only needs to note that the shadow caustic is now a
plane spanning the geometric place of all initial projectile positions. Ever since (16), we have
had these positions parameterized as: zp(t = 0; �0) = −limz0→∞ z0. By the virtue of (19) and
(23) we may immediately write:

Zp(ρp; Vcm � −ηtv0) = − lim
z0→∞

z0 −Z0, (28)

which we call a trivial scattering shadow3.

3 It is not as trivial to obtain it formally as a limit limVcm→−ηtv0 Zp(ρp; Vcm) of the procedure from the section 4. Taking
another glance at (22), we may notice that precisely in the limiting case Vcm = −ηtv0 the extremization condition
simplifies from the 5th degree to the 2nd degree polynomial, i.e. the quadratic equation in �̃0, yielding the two solutions:
�̃(1)

0 = ρp and �̃(2)
0 = ρp/ηp. The second solution is clearly unacceptable, as seen from (24), since 0 � ηp � 1. Though

the first solution is also unacceptable— as �̃0 = ρp can only be for the frontal trajectory (�0 = 0)—it clearly represents
the limit of the acceptable solutions, as Vcm approaches −ηtv0. However, one can easily check that plugging this
solution into (23) does not help in identifying the trivial-shadow equation (28), due to no apparent connection between
ρp − �̃0 and z0 in the limit Vcm →−ηtv0. Finally, it is interesting to explicitly state the physical meaning behind the
frame defined by Vcm = −ηtv0. From the definition of the center-of-mass speed we can easily see that in this frame,
instead of the target, the projectile is at rest at the initial moment. Thus, we may think of it as the inverse-laboratory
frame.
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Figure 1. Examples of the projectile trajectories in the laboratory frame for several
selected values of ηp. The trajectories’ envelope forms a scattering shadow caustic. For
visual purposes the impact parameters are not all selected as equidistant, thus the plots
do not display the true density of the trajectories. For each separate value of ηp, the ori-
gin shift Z0 from (18) is different, therefore the care should be taken in interpreting the
transformed coordinate Z (lab)

p . The scattering shadow in the laboratory frame exists only
for ηp < 0.5, otherwise the trajectories sweep the entire geometric space.

In summary, the scattering shadow in the comoving frame can exist and take a nontrivial
form if and only if:

−ηtv0 < Vcm < ηtv0 ⇔ ηt >
|Vcm|
v0

. (29)

The left expression is to be interpreted as the condition upon the center-of-mass speed, given the
projectile and target masses. The right expression is the condition upon their respective masses,
given the center-of-mass speed. Since 0 � ηt � 1, these conditions mean that there cannot
possibly exist a (nontrivial) scattering shadow in the comoving frames such that |Vcm| � v0,
regardless of the selection of the projectile and target masses.

6. Laboratory frame

In this section we commit ourselves to the laboratory frame, where the target is at rest at
the initial moment: v(lab)

t (0) = 0. Since the projectile carries all of the initial relative speed:
v(lab)

p (0) = v0, the center-of-mass speed in the laboratory frame is: V (lab)
cm = ηpv0. Plugging this

into (20) and choosing L = χ for an arbitrary length scale, we obtain the particle trajectories

10
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Figure 2. Examples of the scattering shadow in the laboratory frame, obtained by solv-
ing (32) for �̃0 and employing (25). The shadow exists in the laboratory frame only
for ηp < 0.5. The relative positioning of shadows in a transformed coordinate Z

(lab)
p

does not reflect their true geometric positioning. The case η(A)
p = 0 corresponds to

an infinitely massive target, when the laboratory frame coincides both with the fixed-
target and the center-of-mass frame, with the shadow taking a simple paraboloidal form
Z

(lab)
p /χ = (ρp/χ)2/8 − 2 from [5].

in the laboratory frame:

Z (lab)
p (ρp) =

χ(ρp − ηp�0)[(ηp − ηt)ρp − ηp�0]
2ηt�0(ρp − �0)

+
�0(ρp − �0)

2ηtχ
+ ηpχ ln

ρp − �0

ηt�0
. (30)

It should be noted that after selecting the natural scale L = χ, the trajectory and all the
results following from it may be expressed in a scaled, dimensionless coordinates x̄ ≡ x/χ,
where x ∈ {�0, ρp,t, zp,t,Zp,t,Zp,t, . . . }. Though this universal form—independent of the under-
lying parameters from χ—may already be applied to a general case from (20), for illustrative
purposes we only give the example of a scaled version of (30):

Z̄ (lab)
p (ρ̄p) =

(ρ̄p − ηp�̄0)[(ηp − ηt)ρ̄p − ηp�̄0]
2ηt�̄0(ρ̄p − �̄0)

+
�̄0(ρ̄p − �̄0)

2ηt
+ ηp ln

ρ̄p − �̄0

ηt�̄0
. (31)

We use such scaled coordinates for displaying all graphical results. In that, figure 1 shows
examples of the projectile trajectories in the laboratory frame—according to (31)—for several
values of ηp. According to the existence conditions from (29) the scattering shadow in the
laboratory frame exists only for ηp < 0.5.

Figure 2 recovers several selected shadow forms directly, by following all the steps required
by the shadow determination procedure from (25). The central part of this procedure is the
numerical identification of the relevant roots to the 5th degree polynomial from the associated

11
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extremization condition for determining �̃0:

dZ (lab)
p

d�0

∣∣∣∣
�̃0

=
{
�̃2

0(ρp − 2�̃0)(ρp − �̃0)2 − χ2ρp
[
ηp(ηp − 2ηt)�2

0 + 2(ηt − η2
p)�0ρp

+ (ηp − ηt)ρ2
p

]} /[
2ηtχ�̃

2
0(ρp − �̃0)2

]
= 0. (32)

It should be noted that both in figures 1 and 2 each particular shadow has been shifted by a
separate value of Z0, so that in a transformed coordinateZp the separate shadows do not reflect
their true relative geometric positioning, as they do in a true spatial coordinate zp.

Something remarkable may be observed in figures 1 and 2. For the values of ηp above
approximately 0.49 there is a discontinuity among the projectile trajectories which contribute
to the formation of a shadow caustic, causing the scattering shadow to exhibit a sharp edge. This
is indeed the case and not just the visual artifact. The sudden breakdown of the shadow smooth-
ness is directly related to a qualitative change in the behavior of solutions to the extremization
problem (22) and the appearance of the multiple roots �̃(i)

0 consistent with (24). Singling out
the relevant root is the precise purpose of the method from (25). Based on these observations,
one can rightly claim that this effect has a mathematical form of a phase transition—a new and
by no means obvious phenomenon that does not manifest itself either in the fixed-target or the
center-of-mass frame.

For a few selected values of ηp, figure 3 shows the behavior of the solutions
�̃0(ρp)—consistent with (24)—to the extremization condition (32) from the laboratory frame.
In order to reinforce the notion of a phase transition, at least by mathematical analogy, the
inverse dependence ρp(�̃0) is deliberately shown, so as to remind the reader of a phase transi-
tion in a well known van der Waals equation of state, describing the thermodynamic behavior of
real gases. Within this analogy, each curve from figure 3 is reminiscent of a particular isotherm
from a pressure-volume diagram of the van der Waals model. Thus, the following analogies
may be identified between its thermodynamic parameters—temperature T, (molar) volume V
and pressure p—and the Rutherford scattering parameters: ηp/t ↔ T, �̃0 ↔ V and ρp ↔ p.

A phase transition in the van der Waals model clearly corresponds to a thermodynamic
transition between the liquid and gaseous state of matter. A physical interpretation of a phase
transition in the Rutherford scattering shadow is more difficult to identify. The reason is the
nature of parameters governing the phase states. The phase transition in the scattering shadow
can be achieved (1) by varying the projectile/target mass ratio from ηp, (2) by varying the
ratio Vcm/v0 of relevant speeds4, thus switching between the comoving frames, (3) or by vary-
ing both ratios simultaneously, as in the case of all possible laboratory frames, defined by
V (lab)

cm /v0 = ηp. Unlike the thermodynamic parameters from the van der Waals model, the pro-
jectile and target masses can hardly be varied—either continuously or at all—thus obscuring
the physical interpretation of the phase transition by precluding its realization in practice. On
the other hand, inducing a phase transition by switching between the comoving frames makes
both the shadow itself and (the possibility of) its phase transition observer-dependent. This
means that the shadow phase is determined by the observer’s point of view, rather than being

4 It is shown in section F of the supplementary note that for a given mass ratio (ηp or, equivalently, ηt) one can always
achieve a phase transition by varying the ratio Vcm/v0. However, for a given Vcm/v0 one can achieve a phase transition
by varying the mass ratio only if Vcm/ηtv0 /∈ [0, 6

√
15/25] ≈ [0, 0.9295]. This demonstration is outside of the scope

of calculations presented herein.
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Figure 3. Solutions �̃0(ρp)—consistent with (24)—to the extremization condition (32)
from the laboratory frame, for different values of the projectile/target mass ratio,
expressed through ηp. Inverse dependence ρp(�̃0) is shown in order to illustrate the anal-
ogy with the thermodynamic van der Waals model. Cases A–D show a split shadow
phase; cases F–K show a smooth shadow phase. Case E (a thick line) corresponds to
a critical value of ηp, when a phase transition between the shadow phase states occurs.
Examples of the Maxwellian construction are shown by horizontal line segments.

an intrinsic property of the scattering shadow itself, again obstructing the physical interpreta-
tion of its phase transition. For this reason it should be reemphasized that the phase transition
in the scattering shadow is only a matter of a mathematical analogy, lacking in physically
meaningful ‘parameters of state’ that would uniquely determine the shadow state upon which
all observers could agree. Rather, the phase transition occurs in the observer’s own kinematic
relation to (and in his/her own perception of) the portion of space shielded from the projectile
trajectories. This is because—for simultaneously released projectiles—the shadow caustic is
not formed simultaneously. It ensues from the intersection of the trajectories’ geometric forms,
without them actually passing through the same point in space at the same point in time. For
a moving observer different points alongside the projectile trajectory are shifted by a differ-
ent amount (Vcmt), thus affecting the shape of the entire trajectory, rather than just translating
it between the frames in relative motion. Since the trajectories themselves deform, so does
the locus of their geometric intersections. This justifies any and all shadow caustic distortions
between the frames in relative motion, including the possibility of a sudden and significant
qualitative change, mathematically manifested as a type of a phase transition.

We have already noted that after selecting the natural scaleL = χ in (18) and (20), just as we
have done in (30), the Rutherford scattering problem becomes scale invariant. Van der Waals
equation also exhibits the scale invariance when expressed in terms of the so-called reduced
thermodynamic variables: ( p̄+ 3/V̄2)(3V̄ − 1) = 8T̄ , each scaled by an appropriate critical
value: T̄ = T/Tc, p̄/pc, V̄ = V/Vc. By now it should not be surprising at all that that the phase
transition in the scattering shadow also features its own (analogies of) critical parameters. Axes
labels in figure 3 help in observing that for both ρp and �̃0 the analogy of the critical, scaling
parameter is the length scaleχ. The existence and the value of the critical projectile/target mass
ratio is dependent on a particular comoving frame, but when it exists it is a critical value in
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a true sense. The constraint V (lab)
cm = ηpv0 defining the laboratory frame for a particular value

of ηp is such that the critical value of ηp does exist among all possible laboratory frames (for
different ηp). In figure 3 the critical value ηp ≈ 0.489 756, i.e. mp/mt ≈ 0.959 846 is illustrated
by a thick line corresponding to the case E.

The parallels with the van der Waals model go so far that the phase transition in the scattering
shadow even features its own analogy of the Maxwell construction. Within the van der Waals
model the Maxwell construction consists of a manual correction of the smooth but unphysical
p(V) dependencebelow the critical temperature Tc, when the phase transition just becomes pos-
sible to achieve. The analogy of the Maxwell construction for the scattering shadow—that we
call a Maxwellian construction—comes about as a consequence of the recipe (25) for select-
ing the appropriate, shadow related solution �̃0. In figure 3 the examples of the Maxwellian
construction are shown by horizontal segments, appearing beyond (and only beyond) the crit-
ical value of ηp. In case of the scattering shadow the solution �̃0(ρp) discontinuously switches
between the leftmost and rightmost branch, so that no solution �̃0, i.e. no projectile trajectory
within the range of Maxwellian construction takes part the shadow formation. Precisely this
discontinuity leads to the appearance of a sharp edge along the shadow caustic.

There are two related differences in respect to the van der Waals model that need to be
clarified, so as to avoid any confusion. The first, inessential one is a matter of nomenclature:
what we regard as a phase transition, i.e. what we consider as distinct phases in the scattering
shadow. The second, essential one is related to the attainability of the thermodynamic states
along the Maxwell construction and of the solutions �̃0(ρp) along the Maxwellian construction.
In the van der Waals model the p(V) dependences from each side of the Maxwell construction
correspond to the separate, liquid and gaseous phase states. The Maxwell construction corre-
sponds to a phase transition itself, representing a realistic mixture of these phase states, through
which the evolution of a thermodynamic system progresses in reality. In case of the scatter-
ing shadow we consider the entire �̃0(ρp) dependences for particular values of ηp as separate
phases, based on the (non)existence of the sharp edge along the shadow caustic. Recalling the
shadow existence condition (29), we distinguish between four phase states: a smooth shadow
phase, a split shadow phase, a trivial shadow phase and no shadow phase. In this sense, only
the critical line (case E) from figure 3 represents the phase transition, between a split (cases
A–D) and a smooth (cases F–K) shadow. It also bears repeating that the solutions �̃0(ρp) along
the Maxwellian construction are excluded from the shadow formation, i.e. are not attainable
in a sense of a liquid–gas mixture from the van der Waals model. In a direct analogy with the
van der Walls model, the smooth shadow would represent a pure gaseous state, the only one
present above the critical temperature. Within the split shadow phase the sharp edge along the
shadow caustic—manifested in the Maxwellian construction—would correspond to the mix-
ture of phase states, while the two split shadow branches would correspond to a pure liquid and
a pure gaseous state. In that, the branch containing the shadow vertex (ρp = 0) is reminiscent
of a liquid state—as its portion increases by driving the relevant ηp parameter away from the
smooth shadow phase—leaving the other, asymptotically paraboloidal branch to represent a
gaseous state. If one’s imagination was let to run free, one could make further comparisons of
a trivial and no shadow phase with the plasma and solid state of matter, respectively.

7. Conclusion

We have established a method for obtaining the Rutherford scattering shadow in the comoving
frame—an inertial frame moving along the initial projectile direction, with the charged target
initially being at the origin of the frame. The laboratory frame fits this categorization perfectly,
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being defined by an additional requirement that the target be initially at rest. The method itself
consists of the extermization procedure related to the projectile trajectories in the comoving
frame and involves solving the 5th degree polynomial. We have identified the condition for
the existence of the (nontrivial) scattering shadow in a given comoving frame, which puts a
limitation on its speed of motion, relative to the center-of-mass frame. The trivial scattering
shadow refers to the entire geometric space being shadowed, when all the projectile trajectories
are immediately boosted backwards due to the excessive center-of-mass speed in a backward
direction. In the laboratory frame, in particular, the scattering shadow exists only if the target
is more massive than the projectile (mt > mp). Otherwise, the projectile trajectories sweep the
entire geometric space, not forming any shadow at all. A new phenomenon was identified,
related to a transition between the comoving frames or, alternatively, to a varying ratio of the
projectile and target masses. It consists of a phase transition between an entirely smooth type
of scattering shadow and the one characterized by a loss of smoothness at the point where the
shadow caustic splits, forming a sharp edge. This finding shows that the transition between the
frames is not just a technical challenge to be carried out for the sake of completeness. Rather, it
is a rewarding venture, offering a novel insight into otherwise well known scattering process.

Appendix A. Derivation of the Coulomb trajectories in the comoving frame

We need to determine the time dependence of the trajectories in order to be able to boost them
via the R(t) term from (15). We start from (see, for example [5]):

dθ
dt

= − �0v0

r2(θ)
⇒

∫ t(θ)

0
dt′ = − 1

�0v0
lim
θ0→π

∫ θ

θ0

r2(θ′)dθ′, (A.1)

which is equivalent to the conservation of the angular momentum. It is to be noted that the
angular coordinate θ is still the one from the fixed-target frame and will remain so throughout
the entirety of our calculations. Therefore, it is not to be confused with the actual angular
coordinate from the given comoving frame. Since the initial angular coordinate of the projectile
(θ0 → π) leads to the divergence in the right-hand-side integral, based on (16) we parameterize
it as: limθ0→π θ0 = π − limz0→∞ arctan(�0/z0), so that:

t(θ) = − 1
�0v0

lim
z0→∞

∫ θ

π−arctan(�0/z0)
r2(θ′)dθ′. (A.2)

It should be stated that for finite z0 (i.e. θ0 →/ π) the solution (10) for r(θ) does not hold any
more. However, we will keep z0 infinite at all times, while this parameterization only serves to
do so in a strictly controlled and formally correct manner. The antiderivative of r2(θ) is:

∫ θ

r2(θ′)dθ′ =− (�0 cos θ + χ sin θ) r(θ) + χ�0 ln

[(
�0 tan

θ

2
− χ

)
/L

]
, (A.3)

with L as an arbitrary length scale, formally required for an argument of the logarithm to be
dimensionless. In entering the lower integration bound from (A.2) we make use of the following
limits:

lim
θ0→π

r(θ0) sin θ0 = �0, (A.4)

lim
θ0→π

r(θ0) cos θ0 = − lim
z0→∞

z0, (A.5)
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lim
θ0→π

ln
�0 tan θ0

2 − χ

L = lim
z0→∞

ln
2z0

L . (A.6)

Using these in the context of (A.2), we have:

t(θ) =
1
v0

[(
cos θ +

χ

�0
sin θ

)
r(θ) − χ ln

[(
�0 tan

θ

2
− χ

)
/L

]

+ lim
z0→∞

z0 + χ lim
z0→∞

ln
(
2z0/eL

)]
. (A.7)

Here we have absorbed an additional −χ term—related to the limit (A.4)—within the last
logarithm by introducing the natural logarithm base e (not to be confused with the unit
charge e).

Combining (13) and (16), and recalling that R0 = ηprp(t = 0), a particle trajectory in an
arbitrary comoving frame where the center of mass moves along the z-axis with the velocity
Vcm = Vcmẑ:

rp(θ) = R0 + Vcmt(θ) + ηtr(θ) (A.8)

is easily decomposed into the cylindrical components as:

ρp(θ) = rp(θ) · ρ̂ = ηp�0 + ηtr(θ) sin θ, (A.9)

together with:

zp(θ) = rp(θ) · ẑ = −ηp lim
z0→∞

z0 + Vcmt(θ) + ηtr(θ) cos θ = Zp(θ) + Z0, (A.10)

where we have absorbed all the infinities into:

Z0 ≡
(

Vcm

v0
− ηp

)
lim

z0→∞
z0 +

Vcm

v0
χ lim

z0→∞
ln

2z0

eL , (A.11)

and isolated all the relevant dependence by:

Zp(θ) ≡
(

Vcm

v0
+ ηt

)
r(θ) cos θ +

Vcm

v0

χ

�0
r(θ) sin θ − Vcm

v0
χ ln

[(
�0 tan

θ

2
− χ

)
/L

]
.

(A.12)

It bears repeating that the angle θ is still the one from the fixed-target frame, parameterizing
the trajectory in a selected comoving frame. This is precisely why the projections of a target-
relative projectile position r(θ) may be and have been performed simply by taking r(θ)sin θ and
r(θ)cos θ. From Z0 and rt = rp − r we see that that the Coulomb interaction is strong enough
that the target is pushed infinitely far by a recoil before the projectile manages to approach it at
some finite distance (θ < π). This may have been suspected, but not a priori expected from the
fixed-target and the center-of-mass frame. In all frames the infinite distance must be negotiated
between the projectile and the target, but that does not mean in advance that the target itself
is shifted by an infinite distance from its initial position. Seeing now that it is in any of the
comoving frames, we introduced the new coordinate origin Z0, thus defining the new, trans-
formed coordinate Z ≡ z −Z0. In other words, we are now observing the scattering around
the point Z0 at an infinite distance from the target’s initial position, so that the transformed
coordinate Z is entirely under control. Since θ is an angular coordinate from the fixed-target
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frame, rather than from the comoving frame, no geometric redefinition of it needs to take place
due to this origin shift.

We now have the projectile trajectory parameterized by the cylindrical coordinates from
(A.9) and (A.12), dependent on the angle θ from the fixed-target frame. In order to determine
the scattering shadow in the comoving fame, we need to find the extremum of some specific tra-
jectory distance by keeping fixed some geometric parameter from the same frame. For example,
we might extremize the distance from the origin by keeping fixed an angle relative to the Z-
axis, or the distance along the Z-axis by keeping fixed the distance ρp from the same axis.
To this end, we aim to translate the dependence Zp(θ) from (A.12) into Zp(ρp). For brevity
of expressions we temporarily define the projectile distance from the z-axis in a fixed-target
frame as:

ξp ≡ ρ(fix)
p = r(θ) sin θ. (A.13)

Using (10), one easily obtains:

ξp =
�2

0 tan θ
2

�0 tan θ
2 − χ

⇒ tan
θ

2
=

χξp

�0(ξp − �0)
, (A.14)

so that:

r(θ) cos θ =
�2

0

(
1 − tan2 θ

2

)
2

(
�0 tan θ

2 − χ
) =

�2
0(ξp − �0)2 − χ2ξ2

p

2χ�0(ξp − �0)
. (A.15)

Combining these results within (A.12) and using the relation for ξp(ρp) from (A.9):

ξp(ρp) =
ρp − ηp�0

ηt
, (A.16)

we finally arrive at:

Zp(ρp) =
Vcm

v0
χ

(
ρp

ηt�0
+ ln

L(ρp − �0)
ηtχ�0

− ηp

ηt

)

+

(
Vcm

ηtv0
+ 1

)(
�0(ρp − �0)

2χ
− χ(ρp − ηp�0)2

2�0(ρp − �0)

)
, (A.17)

which is a projectile trajectory in the comoving frame where the center of mass moves along
the Z-axis with the speed Vcm.
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