
Multiplicity-dependent production of Σ(1385)± and
Ξ(1530)0 in pp collisions at √s=13 TeV

(ALICE Collaboration) Acharya, S.; ...; Erhardt, Filip; ...; Gotovac, Sven;
...; Karatović, David; ...; Lončar, Petra; ...; ...

Source / Izvornik: Journal of High Energy Physics, 2024, 2024

Journal article, Published version
Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

https://doi.org/10.1007/JHEP05(2024)317

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:932565

Rights / Prava: Attribution 4.0 International / Imenovanje 4.0 međunarodna

Download date / Datum preuzimanja: 2025-01-28

Repository / Repozitorij:

Repository of the Faculty of Science - University of 
Zagreb

https://doi.org/10.1007/JHEP05(2024)317
https://urn.nsk.hr/urn:nbn:hr:217:932565
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://repozitorij.pmf.unizg.hr
https://repozitorij.pmf.unizg.hr
https://repozitorij.unizg.hr/islandora/object/pmf:13893
https://dabar.srce.hr/islandora/object/pmf:13893


J
H
E
P
0
5
(
2
0
2
4
)
3
1
7

Published for SISSA by Springer

Received: December 19, 2023
Accepted: April 28, 2024
Published: May 29, 2024

Multiplicity-dependent production of Σ(1385)± and
Ξ(1530)0 in pp collisions at

√
s = 13 TeV

The ALICE collaboration
E-mail: alice-publications@cern.ch
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1 Introduction

Quantum chromodynamics (QCD) [1, 2] predicts an extreme state of nuclear matter at high
temperature and energy density where quarks and gluons are not confined into hadrons,
the quark-gluon plasma (QGP). These conditions are achieved in ultrarelativistic heavy-ion
collisions [3–8] like those at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron
Collider (LHC). As the system created during the collision evolves, the QGP matter cools
down and a transition to a hadron gas occurs when the pseudo-critical temperature is reached.
During the subsequent hadronic phase, inelastic scatterings among hadrons a priori stop at
the chemical freeze-out and elastic interactions cease at the later time of kinetic freeze-out.

The measurement of the production of strange hadrons has an important role in the study
of the QGP properties [9–11]. A large abundance of strange hadrons in nucleus-nucleus (AA)
collisions relative to proton-proton (pp) collisions has manifested itself, without significant
initial-energy or volume dependence from RHIC to LHC energies [12–14]. Strangeness
production in central heavy-ion collisions is described in the frame of statistical hadronisation
models utilising a grand canonical formulation and assuming a hadron gas in thermal
and chemical equilibrium at the chemical freeze-out stage [15–19]. Meanwhile, a continuous
enhancement of strange particles relative to pions has been observed with increasing number of
charged particles produced in the final state from pp, p-Pb to peripheral Pb-Pb collisions [20].
The statistical model with strangeness canonical suppression [21, 22] and the core-corona
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superposition model [23, 24] predict a multiplicity dependence of strangeness production
in small systems.

Hadron resonances are powerful tools to study the properties of the late hadronic phase
in ultrarelativistic heavy-ion collisions since the duration of such a phase is of the same order
of magnitude as the resonance lifetimes (few fm/c) [25]. Such resonances are influenced by
interactions in the hadronic phase. If resonances decay before the kinetic freeze-out, the
resonance yield reconstructed from the kinematics of the decay particles should decrease
relative to the primordial resonance yield due to rescattering of the decay particles. Conversely,
pseudo-elastic scattering of long-lived hadrons occurring after chemical freeze-out can generate
resonances and potentially increase the observed yield. The balance between rescatterings
and regeneration depends on the scattering cross sections of the decay products, the density of
the produced hadron gas, the lifetime of the resonances, and the hadronic phase duration [25].
Such a hot and dense medium usually cannot be expected to be produced in pp collisions,
in contrast to ultra-relativistic heavy-ion collisions. However, recent measurements in high-
multiplicity pp collisions [26–28] showed some features resembling those observed in heavy-ion
collisions, which can be understood as due to the collective expansion of the medium. Thus,
the study of multiplicity-dependent resonance production in pp collisions may provide insight
into the role of the hadronic interactions in small systems [29–31].

The Σ(1385)± and Ξ(1530)0 baryons are good candidates for the study of single and
double-strange resonances with different lifetimes. These baryonic resonances were previously
measured in inelastic pp collisions at

√
s = 7 TeV [32] and as a function of the charged-particle

multiplicity in p-Pb collisions at √
sNN = 5.02 TeV [33]. The present measurements in pp

collisions at
√

s = 13 TeV extend our knowledge on the production of Σ(1385)± and Ξ(1530)0

at different centre-of-mass energy and provide insight, for the first time, into the production
of these baryonic resonances as a function of the charged-particle multiplicity in pp collisions.

2 Experimental setup

A detailed description of the ALICE detector can be found in [8, 34], where the configuration
in place during the Run 1 period of the LHC (2009–2013) is discussed. This configuration
is essentially valid also for the Run 2 (2015–2018) when the data used in this analysis were
collected. The main detectors used for the measurement of Σ(1385)± (also denoted as Σ∗± in
the following) and Ξ(1530)0 (denoted as Ξ∗0) reported here are briefly discussed below.

The V0 detector [35, 36] consists of two arrays (V0A and V0C) of 32 scintillating counters
each. The V0A (V0C) is located at a distance of 329 cm (−88 cm) away from the nominal
interaction point (z = 0) along the beam line that defines the z-axis in the coordinate system.
The V0A (V0C) covers the pseudorapidity range 2.8 < η < 5.1 (−3.7 < η < −1.7) and
the full azimuth. It is used for triggering, for rejection of beam-induced background events,
and for the determination of the multiplicity classes by measuring the sum of the signals
from V0A and V0C forming the V0M signal.

The Inner Tracking System (ITS) [34] is composed of six silicon layers and is the innermost
detector of ALICE. The ITS is used for charged track reconstruction, and in particular to
provide high-precision points in the vicinity of the primary vertex of the collision. The first
two layers of the ITS consist of the Silicon Pixel Detector (SPD), located at an average radial
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distance r of 3.9 cm and 7.6 cm from the beam line and covering the pseudorapidity ranges
|η| < 1.4 and |η| < 2.0 and the full azimuth around the interaction point. The SPD is used to
reconstruct short track segments that are called tracklets and to determine the primary vertex
of the collision. Beyond the SPD, there are two layers of Silicon Drift Detectors (SDD) and two
layers of Silicon Strip Detectors (SSD), with the outermost layer having a radius r = 43 cm.

The Time Projection Chamber (TPC) [34], located just outside the ITS, is a 90 m3

cylindrical drift chamber filled with a gas mixture and has a large number of readout channels
(557568 [37]). The radial and the longitudinal dimensions of the TPC are about 85 < r < 250
cm and -250 < z < 250 cm, respectively. The TPC covers the pseudorapidity range |η| < 0.9
and the full azimuthal angle. It provides excellent momentum and spatial resolution for the
reconstruction of charged-particle tracks. Besides its tracking capability, the TPC is used for
particle identification by measuring the specific ionisation energy loss (dE/dx) in the gas.

3 Data analysis

The data sample used in this study was collected with the ALICE detector during the LHC
Run 2 (2015–2018) in pp collisions at

√
s = 13 TeV with a minimum bias (MB) trigger, which

selects inelastic collisions based on the requirement of coincident signals in the V0A and V0C
detectors. In addition to the MB trigger requirement, at least one primary charged-particle
track in the |η| < 1 range is required in the offline event selection (INEL > 0), to minimise the
fraction of diffractive events in the sample [38]. The transverse momentum (pT) thresholds of
the V0 and SPD detectors are around 50 MeV/c [39, 40]. Events with pileup of collisions
occurring in different bunch crossings (out-of-bunch pileup) within the V0 readout time are
rejected based on the timing information of the V0. Events with collision pileup in the same
bunch crossing (in-bunch pileup) are removed based on the presence multiple primary vertices
reconstructed from SPD tracklets [39]. Further background events are rejected by using the
correlation between the number of hits and the number of tracklets in the SPD. Events having
a primary vertex (PV) reconstructed from global tracks (at least ITS+TPC information),
within the range of ±10 cm with respect to the nominal interaction point along the beam axis
are considered. The total number of minimum bias triggered pp events analysed is 1.82 × 109

corresponding to an integrated luminosity of Lint = 31.5 nb−1 [41].
The INEL > 0 data sample is split into several event classes denoted with Roman nu-

merals by measuring the event activity via the total charge deposited in both V0 detectors,
see details in ref. [42]. Table 1 presents the event classes used in this analysis, their cor-
responding percentile of the INEL > 0 class, and their mean charged-particle multiplicity
density ⟨dNch/dη⟩ measured in |η| < 0.5. Note that some event classes (e.g. I, II, and III) are
merged in this analysis (e.g. I+II+III) to increase the statistical significance. The detailed
information on ⟨dNch/dη⟩ distributions and values in each event class is reported in [38].

In addition to the study of the multiplicity dependence of particle production in the
INEL > 0 data sample [38], a separate analysis based on the data from inelastic events
(INEL) [39] is carried out. This inelastic (INEL) analysis differs from the INEL > 0 only
by the event selection based on the MB trigger, that does not request the condition that
at least one primary charged-particle track in the |η| < 1 range is present. It implies that
the corresponding event normalisation and its corrections differ; for INEL, the correction
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Event Class P (INEL > 0) (%) ⟨dNch/dη⟩
I+II+III 0–9.15 18.67 ± 0.20

IV+V+VI 9.15–27.50 11.46 ± 0.13
VII+VIII 27.50–46.12 7.13 ± 0.08

IX 46.12–65.53 4.49 ± 0.05
X 65.53–100.00 2.54 ± 0.03

Table 1. The event classes [42] used in this analysis, their corresponding multiplicity percentile P
(INEL > 0) (%) and the mean charged-particle multiplicity, ⟨dNch/dη⟩ [42, 43]. The ⟨dNch/dη⟩ in
inelastic events is 5.31 ± 0.18 [44].

Baryon
Valence Mass Width cτ

Decay channel
B.R.

quarks (MeV/c2) (MeV/c2) (fm) (%)
Σ(1385)+ uus 1382.8±0.4 36.0±0.7 5.5±0.1 Λ+π+ 87.0±1.5
Σ(1385)− dds 1387.2±0.5 39.4±2.1 5.0±0.3 Λ+π− 87.0±1.5
Ξ(1530)0 uss 1531.8±0.3 9.1±0.5 22.0±1.0 Ξ−+π+ 66.7
Ξ− dss 1321.7±0.1 4.91×1013 Λ+π− 99.9
Λ uds 1115.7 7.89×1013 p+π− 63.9±0.5

Table 2. Quark content, mass, width, lifetime, decay channel used in this analysis and corresponding
branching ratio for the Σ(1385)± and Ξ(1530)0 resonances as well as for the Ξ− and Λ [45] hyperons.
Antiparticles are not listed for conciseness.

on the event normalisation is obtained from the ratio of the ALICE visible cross section
to the total inelastic cross section [41, 43]

3.1 Reconstruction of Σ(1385)± and Ξ(1530)0

The properties of the particles involved in this analysis and the decay modes used for their
reconstruction together with the branching ratios are reported in table 2.

The charged Σ(1385)± and the Ξ(1530)0 are reconstructed via their hadronic decay
channels. The two charged states Σ(1385)+, Σ(1385)− and their anti-particles (Σ(1385)−,
and Σ(1385)+) are separately reconstructed via

Σ(1385)+ → Λ + π+ → (p + π−) + π+

Σ(1385)− → Λ + π− → (p + π+) + π−

Σ(1385)− → Λ + π− → (p + π−) + π−

Σ(1385)+ → Λ + π+ → (p + π+) + π+ .

(3.1)

Likewise, Ξ(1530)0 and its antiparticle (Ξ(1530)0) are reconstructed via

Ξ(1530)0 → Ξ− + π+ → (Λ + π−) + π+ → [(p + π−) + π−] + π+

Ξ(1530)0 → Ξ+ + π− → (Λ + π+) + π− → [(p + π+) + π+] + π− .
(3.2)
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(a) Σ(1385)±.

Λ
p

�−

�First±

�Bach− �Ξ

DCA Λ to PV

�(Ξ)
PV

Ξ−
Ξ(1530)0

DCA Ξ daughters

Ԧ�Ξ

(b) Ξ(1530)0.

Figure 1. Sketch of the decay modes of Σ(1385)± and Ξ(1530)0 and depiction of the relevant variables
employed for the selection of displaced decay topologies. The distance between the decay vertex (black
circle) of the resonances and the PV (red circle) is inflated for clarity, that is, to separate such vertices
normally just a few dozen femtometers away from one another.

The decays are schematically presented in figure 1 which illustrates the major variables
used in the selection of decay topologies on a magnified scale for clarity.

The pT-differential yields in inelastic pp collisions are calculated using the following
equation:

1
Nevent

d2N

dpTdy
= ϵTrig × ϵVertex

Nevent,raw

Nraw × fS.L.

∆pT∆y

1
A × ϵrec × B.R.

(3.3)

where Nevent,raw is the total number of analysed events after the online trigger and the offline
selections, Nraw is the raw yield of the particles extracted in each pT and rapidity interval,
with widths of ∆pT and ∆y. The factor A is the acceptance of the detector, ϵrec is the
resonance reconstruction efficiency, and B.R. is the branching ratio of the decay used for
the Σ(1385)± and Ξ(1530)0 reconstruction. ϵTrig is the trigger efficiency, ϵVertex is the vertex
selection efficiency, and both correct the number of events. fS.L. is the pT-dependent signal
loss correction factor correcting the raw signal yields. The extraction of the raw yield, Nraw,
is discussed in section 3.3. The correction factors, such as the pT-dependent A × ϵrec × B.R.,
the multiplicity-dependent ϵTrig and ϵVertex, and fS.L. which is dependent on both pT and
multiplicity, are discussed in section 3.4.

3.2 Track and topological selections

Due to the very short lifetime of the strong decaying Σ(1385)± and Ξ(1530)0 baryons, pions
and hyperons originating from the primary vertex are considered for the reconstruction of
the resonances. Pions from the primary vertex are required to have pT > 0.15 GeV and to be
located in the pseudorapidity range |η| < 0.8 to avoid edge effects in the TPC acceptance [34].
To ensure a good track reconstruction quality, primary tracks are required to cross at least 70
out of 159 TPC readout rows with a normalised χ2 (χ2 per TPC space point) lower than 4. In
addition, tracks are required to have a ratio of crossed readout rows, Ncrossed, to the number
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Secondary track selection
|η| < 0.8
Ncrossed > 60
TPC dE/dx (σ) < 3
Primary track selection
|η| < 0.8
pT (GeV/c) > 0.15
Ncrossed > 70
Ncrossed/Nfindablecluster > 0.8
χ2/cluster in TPC < 4
χ2 of ITS-TPC track fit < 36
DCAz to PV (cm) < 2
DCAr to PV (cm) < 0.0105 + 0.035p−1.1

T

number of SPD points ≥ 1
TPC dE/dx (σ) < 3

Table 3. Summary of the track selection criteria applied to primary and secondary tracks. The unit
of pT in the DCAr to PV formula is GeV/c.

of findable clusters, Nfindablecluster, in the TPC larger than 80%. Primary tracks are also
required to have at least one hit in the SPD. The χ2

ITS−TPC, calculated by comparing with
combined ITS+TPC track parameters to those obtained only from the TPC and constrained
to the interaction point, is required to be lower than 36. Ξ− and Λ baryons produced in
the resonance decays are long lived and they are reconstructed from their decay particles
produced in secondary vertices displaced from the primary vertex. The decay particles
produced in these secondary vertices are selected among tracks with |η| < 0.8 based on a
looser selection with respect to the one for the primary tracks. They are required to cross
at least 60 TPC readout rows, while no request on ITS hits is applied. Finally, the selected
pion and proton candidates are identified by requiring that the specific ionisation energy
loss, dE/dx, measured in the TPC lies within three standard deviations (σTPC) from the
specific energy loss expected for pions or protons.

The first emitted pion (π±
First in figure 1) tracks appear as if they originate from the

primary vertex (PV), so they are selected using the condition that the distance of closest
approach (DCA) to the primary vertex along the beam axis (DCAz) should be lower than 2
cm and the DCA in the transverse plane (DCAr) lower than 0.0105 + 0.035p−1.1

T cm, with pT
in units of GeV/c. The primary track selection criteria, which are the standard criteria used
in ALICE analyses, are summarised in table 3, along with those for secondary tracks.

The secondary vertices of Λ and Ξ− are reconstructed via their decay mode into p+π−

and Λ+π− (and charge conjugates) respectively, by applying a similar strategy as the one
used in [32, 33, 42, 43]. The applied geometrical selections on the displaced decay-vertex
topology are summarised in table 4.
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Selection criteria Σ(1385)± Ξ(1530)0

DCA Λ daughters (cm) < 1.6 < 1.4
DCA Λ to PV (cm) < 0.3 > 0.07
DCA π to PV (cm) > 0.05 > 0.05
DCA p to PV (cm) > 0.05 > 0.05
cos θΛ > 0.98 > 0.97
r(Λ) (cm) 1.4 < r < 100 0.2 < r < 100
|mpπ − mΛ,PDG| (MeV/c2) < 10 < 7
DCAr of pions decaying from Ξ− to the PV (cm) > 0.015
DCA Ξ− daughters (cm) < 1.6
cos θΞ > 0.97
r(Ξ) (cm) 0.2 < r < 100
|mΛπ − mΞ,PDG| (MeV/c2) < 7
|y| of reconstructed resonance < 0.5

Table 4. Summary of the selection criteria for Σ(1385)± and Ξ(1530)0 candidates. See the text and
figure 1 for the details.

The Λ(Λ) from Σ(1385)± decays are selected if the DCA between the two daughter
tracks (DCA Λ daughters in figure 1(a)) is smaller than 1.6 cm and the DCA of the Λ in the
xy-plane to the PV (r(Λ) in figure 1(a)) is larger than 0.02 cm to ensure that those tracks are
not primary charged particles coming from the PV. In addition, the DCA of Λ to the PV is
required to be lower than 0.3 cm to reject the Λ baryons from Ξ− or Ξ+ [32]. The invariant
mass of the mpπ− pair is required to be within ±10 MeV/c2 with respect to the world-average
Λ mass value [45], i.e. within a mass window which is at least about 4 times the reconstructed
mass resolution for Λ [46]. The cosine of the pointing angle (θΛ) between the direction of the
momentum of the Λ and the line connecting the secondary to the primary vertex is required
to be larger than 0.98 to reject any potential secondary Λ from other particle decays.

The Ξ− from Ξ(1530)0 decays are selected by requiring that the accompanying pion called
“bachelor” pion, π−

Bach, and the Λ baryon stem from a common point in space by imposing
that the DCA between Ξ− daughters is < 1.6 cm (see figure 1(b)) and further demanding
the π−

Bach from Ξ− to be a secondary particle, i.e. a track sufficiently apart from the primary
vertex (DCA π−

Bach to PV > 0.015 cm). The DCA between the Λ decay products, π and p
(DCA Λ daughters in figure 1(b)) is required to be lower than 1.4 cm. The Λ baryon itself is a
secondary decay product in the decay topology, hence the DCA of Λ to the PV (DCA Λ to PV
in figure 1(b)) is required to be larger than 0.07 cm. Selections on the invariant masses of the
daughter particles, the cosine of the pointing angles (θΛ and θΞ), and the transverse distance
from PV r(Λ) and r(Ξ) are applied to optimise the balance between purity and efficiency of
each particle species. The selection criteria for Σ(1385)± and Ξ(1530)0 are listed in table 4.

Finally, all reconstructed resonances are required to be in the rapidity interval (|y| < 0.5).
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Figure 2. The invariant mass distribution of Λπ+ + Λπ− pairs (a) and the charge conjugates
(c) in |y| < 0.5 produced in pp collisions at

√
s = 13 TeV for 1.8 < pT, Λπ < 2.0 GeV/c and the

I+II+III multiplicity class (full black circles). The combinatorial background estimated with the event
mixing technique is shown as open red squares in the (a) and (c) panels, whereas the invariant mass
distributions after combinatorial background subtraction are shown in the (b) and (d) panels together
with the fits to the signal and the residual background contributions. The solid red curves are the
results of the combined fit and the dashed black lines represent the residual background.

3.3 Signal extraction

The selected hyperons and primary pions from the same event are combined into pairs to
compute the invariant mass in given pT intervals and in the region |y| < 0.5. The invariant
mass distributions of Λπ+ (Λπ−) and Λπ− (Λπ+) pairs for 1.8 < pT < 2.0 GeV/c and Ξ−π+

(Ξ+π−) pairs for 1.6 < pT < 2.0 GeV/c are shown in figures 2 and 3, respectively. In order
to increase the significance of the signal, the invariant mass distributions of Σ(1385)+ and
Σ(1385)− are summed together in figure 2a and 2b. Similarly, the distributions for Σ(1385)−

and Σ(1385)+ (figure 2c and 2d), as well as Ξ(1530)0 and Ξ(1530)0, are also summed (figure 3).
The combinatorial background distributions in the figures are estimated through an event-
mixing technique where Λπ (Ξπ) pairs are formed by combining Λ (Ξ) candidates from one
event with π from different events. Each event is combined with nine others. To minimise
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Figure 3. The invariant mass distribution of Ξ−π+ + Ξ+π− pairs in |y| < 0.5 produced in pp
collisions at

√
s = 13 TeV for 1.6 < pT, Λπ < 2.0 GeV/c and the I+II+III multiplicity class (full black

circles). The combinatorial background estimated with the event mixing technique is shown as open
red squares in panel (a), whereas the invariant mass distribution after combinatorial background
subtraction is shown in panel (b) together with the fits to the signal and the residual background
contributions. The solid red curve is the result of the combined fit and the dashed black line represents
the residual background.

distortions due to the different positions of the PV and to ensure a similar event structure,
the events entering the pool for mixing are requested to i) have a similar PV position in the
z direction (|∆zPV| < 1 cm) and ii) belong to the same multiplicity class.

The mixed-event background and the same-event distributions are normalised in an
invariant mass interval where they are supposed to overlap, away from the signal peak. The
normalisation regions are 1.7 < MΛπ < 1.9 GeV/c2 and 1.65 < MΞπ < 1.75 GeV/c2 for Λπ

and Ξπ invariant mass distributions, respectively.
The mixed-event background is subtracted from the same-event invariant mass dis-

tribution producing the histograms for Σ(1385)+ (Σ(1385)−), Σ(1385)− (Σ(1385)+) and
Ξ(1530)0 (Ξ(1530)0) candidates, which are reported in the right panels of figures 2 and 3.
These distributions are fitted with a combination of a non-relativistic Breit-Wigner function
or a Voigtian function to describe the signal peak and a function to describe the residual
background of correlated pairs, which is detailed subsequently below, that remain after the
subtraction of the combinatorial background estimated with the mixed-event technique. The
Breit-Wigner function is used to describe the signal peak of Σ(1385)± and the Voigtian
function, with the width of the Lorentzian part fixed at the PDG value, is used for Ξ(1530)0.
The Voigtian function is the convolution of a Breit-Wigner function to the line shape of the
resonance and a Gaussian function to account for the detector resolution that for Ξ(1530)0

is not negligible in comparison with the width of the resonance. The fitting ranges are
1.28 < MΛπ < 1.54 GeV/c2 for Σ(1385) and 1.47 < MΞπ < 1.65 GeV/c2 for Ξ(1530)0, as
in previous analysis at

√
s = 7 TeV [32].

The residual background consists of Λπ (Ξπ) pairs originating from the decays of other
particles. For Σ(1385)±, a template function is implemented for the residual background
based on Monte Carlo simulations. As explained in [32] where the reader is redirected for
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details, the residual background is partly due to the decays of other particles which have
Λπ among the decay products and partly due to the dynamics of the collision that is not
removed from the subtraction of the mixed-event background. In figure 2c and 2d the peak
from Ξ− → Λ + π− (Ξ+ → Λ + π+) is visible: this physical background is accounted for by
an additional component entering the residual background for Σ(1385)− (Σ(1385)+) decays.
For Ξ(1530)0, a second-order polynomial is used.

In each pT interval, the raw yield of Σ(1385)± and Ξ(1530)0 is obtained by integrating
the Breit-Wigner function and Voigtian function, respectively.

3.4 Corrections and normalisation

The raw yields of Σ(1385)± and Ξ(1530)0 resonances for each pT interval are corrected for
the geometrical acceptance and the reconstruction efficiency of the detector, and normalised
for the branching ratios of the considered decay channels.

The correction factors are estimated from Monte Carlo simulations based on the PYTHIA
8 event generator [47] with the Monash 2013 tune [48] and on GEANT 3 [49] (v2-4-14)
for the transport of particles through the ALICE detector. The Σ(1385)± and Ξ(1530)0

resonances from the simulation are reconstructed and selected by applying the same track
quality, topological, and particle identification criteria as for the data. The generated and
reconstructed resonances in PYTHIA 8 are used to calculate the correction factors. The
corrections, including acceptance, efficiency, and total branching ratio, A × ϵrec × B.R., for
INEL > 0 events are shown in figure 4. Since no strong multiplicity dependence of the
efficiency is observed as in ref. [42], the values from the INEL > 0 events are used for the
correction of the raw yields of all the multiplicity classes, and a 2% systematic uncertainty,
constant across pT bins, is assigned to account for residual differences.

As mentioned in section 3, INEL > 0 selection is required. However, due to the inefficiency
of the trigger, some INEL > 0 events are not selected and, in turn, all the Σ(1385)± and
Ξ(1530)0 resonances produced in those events are not counted as well. A signal-loss correction,
fS.L., is thus applied, which accounts for resonances in non-triggered events. This is evaluated
using the same simulations used to estimate the acceptance and efficiency. To calculate this
correction factor, the simulated resonance pT spectrum before triggering and event selection
is divided by the corresponding pT spectrum after those selections for each multiplicity class.
This correction is more important for the lower multiplicity classes (10% correction for class
X, while only 1% for class I+II+III).

Along with the correction of the yield, the number of events needs to be corrected
for the inefficiencies of the trigger and the event selections, such as the primary vertex
selection. The trigger efficiency ϵTrig and the vertex selection efficiency ϵVertex are about
88% and 98%, respectively, for the lower-multiplicity classes and reach almost 100% for the
higher-multiplicity classes [42, 50]. In the case of inelastic collisions, a global normalisation
factor, ϵTrig × ϵVertex = 0.74 with a relative uncertainty of 2.5% [43] is applied.

4 Systematic uncertainties

Different sources of systematic uncertainty on the measured Σ(1385)± and Ξ(1530)0 observ-
ables ( d2N

dpTdy , dN
dy , ⟨pT⟩) were considered: the sources are essentially associated with the global
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Figure 4. The product of geometrical acceptance (A), reconstruction efficiency of the detector (ϵrec)
and branching ratio (B.R.) for Σ(1385)± and Ξ(1530)0 resonances as a function of pT in |y| < 0.5
obtained with simulations based on event generation with PYTHIA 8 Monash 2013 [48] and particle
transported with GEANT 3 [49].

Source of uncertainty Σ(1385)+ Σ(1385)− Ξ(1530)0

pT-dependent
Signal extraction 4–10% 8–15% 1–17%

Topological selection 1–10% 1–10% 1–3%
TPC particle identification 1–3% 1–3% 1–3%

Material budget 0.8–8.3% 0.8–8.3% 1.2–5.1%
pT-independent

ITp-PPC matching 3% 3% 3%
Dependence of efficiency on multiplicity 2% 2% 2%

Branching Ratio 1.1% 1.1% 0.3%
Signal loss correction negl. negl. negl.

Trigger efficiency negl. negl. negl.
Vertex selection efficiency negl. negl. negl.

Total 6–17% 9–20% 4–19%

Table 5. Summary of systematic uncertainties on the differential yield d2N/dpTdy for the INEL > 0
event class. Negligible contributions are noted as negl.
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tracking efficiency, track quality and topological selections, particle identification, signal
extraction, and knowledge of the ALICE material budget. The systematic uncertainties are
determined by varying the fit range and the selection criteria. The procedure applies to
both pT-dependent and pT-independent uncertainties and is reconsidered for each pT interval
and multiplicity class. The list of sources is given in table 5 together with the range of
values estimated for each of them.

The signal extraction uncertainty includes the uncertainty from the fitting procedure
quantified by varying the fit range, and the normalisation range of the invariant mass
distributions of the mixed-event background. The signal extraction is the main contribution
to the total systematic uncertainty for Σ(1385)±, originating from the bump structure located
on the left side of the signal peak (see figure 2 (b)). The signal extraction uncertainty on
the Σ(1385)+ is around 10% in most of the pT and multiplicity intervals while the one of
the Σ(1385)− is around 15% due to the effect of the additional Ξ− peak in the background.
The signal extraction uncertainty of the Ξ(1530)0 is around 5–6 % on average and reaches up
to 17%, but only in the case of the first pT bin in the highest multiplicity event (I+II+III)
case caused by the poor significance of the signal. The systematic uncertainty originating
from an imperfect description in the simulation of the variables utilised in the selection of
displaced decay topologies are estimated by varying the criteria on the DCA and the cosine
of the pointing angle of the particle decay products Λ and Ξ−, and their mass windows.
Variations are performed around the nominal values of the selection variables one at a
time, while fixing all the other ones. Σ(1385)± show a relatively higher uncertainty for the
topological selection than the one of Ξ(1530)0, given that the Σ(1385) family is indeed further
affected by the residual background (see figure 2). The systematic uncertainty associated
with particle identification is determined by using a tighter and a looser requirement on the
TPC dE/dx. The uncertainty from the material budget of the ALICE detector is taken from
the studies performed for the reconstruction of Λ and Ξ− hyperons reported in [43]. Finally,
the systematic uncertainty on ITp-PPC matching efficiency of the first emitted pion from the
resonances (πfirst in figure 1) was defined from the difference in the prolongation probability
of TPC tracks to ITS points between data and Monte Carlo simulations. The matching
efficiency uncertainty and the tiny variation of the reconstruction efficiency in different
multiplicity classes are considered as fully pT-correlated uncertainties. Other uncertainties
such as the ones on signal loss correction, trigger efficiency, and vertex selection efficiency
have a negligible contribution to this study.

The total uncertainty is calculated as the quadratic sum of the uncertainties from the
different sources. The pT-independent uncertainties are considered but as a separate group
for d2N

dpTdy spectra and ⟨pT⟩ quantities, since they do not affect the pT shape of the spectra
but just their overall magnitude. On the other hand, such uncertainties are of special
concern for pT-integrated quantities such as dN

dy . For quantities given along dNch/dη, a
special investigation was conducted to quantify the level of correlation of all systematic
uncertainties along event multiplicity.
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5 Results

The pT-differential yields (pT spectra) for Σ(1385)+, Σ(1385)−, and Ξ(1530)0 (and their
antiparticles) in the various multiplicity classes, as well as the ratios of these spectra to
the inclusive INEL> 0 spectrum, are shown in figure 5. The pT spectra of Σ(1385)+ and
Σ(1385)− are identical within uncertainties.

For pT < 4 GeV/c, a hardening of the pT spectra from low to high-multiplicity events is
clearly visible, while at higher pT the spectra have the same shape regardless of the multiplicity
class, indicating that the processes that affect the shape of the pT spectra depending on the
multiplicity of particles produced in the collision are dominant at low pT. A similar behaviour
was reported for other species, in collisions at the same energy [51].

Figure 6 shows the ratios of the transverse momentum spectra for inelastic pp collisions
at

√
s = 13 TeV to those at

√
s = 7 TeV for Σ(1385)± (left) and Ξ(1530)0 (right). For both

Σ(1385)± and Ξ(1530)0, the yield ratios at low pT (pT < 2 GeV/c) are slightly larger than
unity, even though they are compatible with unity within the systematic uncertainties. The
yield ratios are also consistent with being independent of pT at low pT. These considerations
suggest that the production mechanism of these resonances in the soft scattering regime is
only mildly dependent on the collision energy in the measured energy range. For pT > 2
GeV/c, the ratios are observed to depart from unity, indicating a hardening of the pT spectra
at

√
s = 13 TeV as compared with

√
s = 7 TeV. A similar behaviour was observed for the

yield ratios of π±, Λ and Ξ− [43] which are shown in figure 6 overlaid to the Σ(1385)± and
Ξ(1530)0 results. The slope of the Ξ(1530)0 yield ratios in figure 6 (b) is compatible within
uncertainties with the slope of Ξ∓ yield ratios and the rapid increase of Ξ(1530)0 for pT > 3
GeV/c needs to be confirmed in the higher pT region with more precise measurements on
larger data samples for further interpretations on any distinction.

To calculate the total yields of Σ(1385)± and Ξ(1530)0 integrated over pT (dN/dy) and
their mean transverse momentum ⟨pT⟩, the measured pT-differential spectra are fitted with
a Lévy-Tsallis function [53] defined as:

1
Nevent

d2N

dpTdy
= pTN ′ (n − 1)(n − 2)

nC [nC + m0(n − 2)]

1 +

√
p2

T + m2
0 − m0

nC

−n

, (5.1)

where Nevent is the number of events in a given multiplicity class, m0 is the world-average
mass of the particle, and n, C, and the integrated yield N ′ are free parameters of the fit.
This function is successfully used to describe most of the identified particle spectra in pp
collisions [42, 43]. The Lévy-Tsallis functions obtained by fitting the pT spectra in the different
multiplicity classes are shown as dashed lines in figure 5.

The value of dN/dy is obtained by integrating the measured spectrum from pT = 0.7
(0.8) to 6.0 (8.8) GeV/c for Σ(1385)± (Ξ(1530)0) and the extrapolated fitting curve in the
unmeasured regions down to pT = 0 and up to pT = 10 GeV/c. The ⟨pT⟩ is defined as∑

j
(pT,j×dpT,j×Ij)

dN/dy , where j means each pT bin, pT ,j means bin center, dpT ,j mean bin width
and Ij means measured pT-differential yield. Similar to the dN/dy, ⟨pT⟩ is computed using
the measured spectra in the pT interval of the measurement and the Lévy-Tsallis function
outside this range. The values of dN/dy and ⟨pT⟩ are reported in table 6.
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Figure 5. Transverse momentum spectra of Σ(1385)+ (a), Σ(1385)− (b) and Ξ(1530)0 (c) in pp colli-
sions at

√
s = 13 TeV in multiplicity classes and for the inclusive case (INEL > 0). Statistical and total

systematic uncertainties are shown by error bars and boxes, respectively. The bottom panels show the
ratios of the multiplicity-dependent spectra to the INEL > 0 distributions. The systematic uncertainties
on the ratios are obtained by considering only contributions of multiplicity-uncorrelated uncertainties
described in table 5. The dashed lines represent the fits to the spectra with the Lévy-Tsallis function.
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Figure 6. Ratios of transverse momentum spectra of Σ(1385)± (a) and Ξ(1530)0 (b) in inelastic
pp collisions at

√
s = 13 TeV to the ones in inelastic pp collisions

√
s = 7 TeV [32] compared with

those of Ξ−, Λ and π± [43, 52]. The statistical and systematic uncertainties are shown as vertical
error bars and boxes, respectively. In the present measurement, the shaded boxes represent the
multiplicity-uncorrelated uncertainties.

The fractions of extrapolated particle yield at low pT for different multiplicity classes
are 26–43% and 21–43% depending on the multiplicity class for Σ(1385)± and Ξ(1530)0,
respectively. The extrapolated yields in the high-pT region are negligible. Alternative
functions such as the Boltzmann, Fermi-Dirac, mT-exponential, pT-exponential, and blast-
wave functions are employed to estimate the systematic uncertainty of this extrapolation,
which amounts to about 3–4% for both resonances. The fit functions used for the systematic
study are listed in appendix A. As reported in table 6, the relative uncertainties of the
INEL results are larger than those of the INEL > 0 results due to the propagation of the
uncertainty on the normalisations, ϵTrig, ϵVertex, and fS.L. which are slightly different for
the INEL and the INEL > 0 samples.

Figure 7 shows the pT-integrated yields, dN/dy, as a function of the charged-particle
pseudorapidity density at midrapidity and in comparison with the values previously measured
in pp collisions at

√
s = 7 TeV [32] and in p-Pb collisions at √

sNN = 5.02 TeV [33] by the
ALICE Collaboration. The comparison suggests that the integrated yields depend only on
the multiplicity, irrespective of the collision energy and system. This is consistent with
previous results at the LHC [42, 51], highlighting the fact that the mechanisms of particle
production are related essentially to the event properties that determine the multiplicity.
The measurements are compared with the predictions of different event generators, namely
EPOS-LHC [54], PYTHIA 8 with Monash 2013 tuning [48], and PYTHIA 8 with Rope
shoving [55–58]. Both EPOS-LHC and PYTHIA8 are QCD-inspired event generators. The
EPOS-LHC includes a modelling of the collective behaviour implemented via a core-corona
approach [59]. Instead, PYTHIA 8 with Monash 2013 does not include a collective expansion
and is based on the Lund string fragmentation model. PYTHIA 8 with Rope shoving describes
multiparton interactions by allowing nearby strings to shove each other and form a colour
“rope” from overlapping strings. The model predictions are reported for pp collisions at
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Baryon Event Class dN/dy (×10−3) ⟨pT⟩ (GeV/c)

Ξ(1530)0

INEL > 0 4.29 ± 0.05 ± 0.20 (0.16) 1.44 ± 0.01 ± 0.06 (0.05)
I+II+III 14.29 ± 0.15 ± 1.07 (0.78) 1.64 ± 0.01 ± 0.07 (0.06)

IV+V+VI 7.96 ± 0.10 ± 0.57 (0.39) 1.44 ± 0.01 ± 0.06 (0.06)
VII+VIII 4.42 ± 0.07 ± 0.47 (0.41) 1.30 ± 0.01 ± 0.07 (0.07)

IX 2.14 ± 0.05 ± 0.18 (0.14) 1.22 ± 0.01 ± 0.05 (0.05)
X 0.85 ± 0.05 ± 0.09 (0.08) 1.05 ± 0.03 ± 0.05 (0.04)

INEL 2.98 ± 0.07 ± 0.15 (0.11) 1.45 ± 0.02 ± 0.06 (0.05)

Σ(1385)±

INEL > 0 14.50 ± 0.11 ± 1.33 (0.82) 1.29 ± 0.01 ± 0.05 (0.03)
I+II+III 45.02 ± 0.72 ± 5.26 (3.24) 1.50 ± 0.01 ± 0.11 (0.11)

IV+V+VI 26.53 ± 0.50 ± 2.97 (2.06) 1.33 ± 0.02 ± 0.07 (0.07)
VII+VIII 15.19 ± 0.36 ± 1.89 (1.37) 1.19 ± 0.02 ± 0.07 (0.06)

IX 8.39 ± 0.25 ± 1.22 (0.77) 1.09 ± 0.02 ± 0.06 (0.05)
X 3.66 ± 0.14 ± 0.70 (0.46) 0.92 ± 0.02 ± 0.06 (0.06)

INEL 10.91 ± 0.18 ± 0.89 (0.59) 1.27 ± 0.01 ± 0.04 (0.02)

Table 6. The values of dN/dy and ⟨pT⟩ for multiplicity-integrated spectra (INEL, INEL > 0)
and for each multiplicity class. Statistical (first one), total systematic (second one) and multiplicity-
uncorrelated systematic (third one, in brackets) uncertainties are quoted. The multiplicity-uncorrelated
systematic uncertainties are not an additional source here but must be considered as a component of
the total systematic uncertainties.
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Figure 7. The pT-integrated yields as a function of charged-particle pseudorapidity density
⟨dNch/dη⟩|η|<0.5 for Σ(1385)± (left) and Ξ(1530)0 (right) compared with the measurements in pp
collisions at

√
s = 7 TeV [32] and p-Pb collisions at √

sNN = 5.02 TeV [33]. The open and shaded
boxes represent the total and multiplicity-uncorrelated systematic uncertainties, respectively. The mea-
sured points are compared with predictions from different event generators, namely EPOS-LHC [54],
PYTHIA 8 with Monash 2013 tuning [48], and PYTHIA 8 with Rope shoving [55–58]. (Appendix B).
The predictions are obtained for pp collisions at

√
s = 13 TeV on INEL > 0 events.
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Figure 8. The ⟨pT⟩ as a function of charged-particle pseudorapidity density for Σ(1385)± (left)
and Ξ(1530)0 (right) compared with the measurements in pp collisions at

√
s = 7 TeV [32] and

p-Pb collisions at √
sNN = 5.02 TeV [33]. The open and shaded boxes represent the total and

multiplicity-uncorrelated systematic uncertainties, respectively. The measured points are compared
with predictions from different event generators, namely EPOS-LHC [54], PYTHIA 8 with Monash
2013 tuning [48], and PYTHIA 8 with Rope shoving [55–58]. (Appendix B). The predictions are
obtained for pp collisions at

√
s = 13 TeV, based on INEL > 0 events.

√
s = 13 TeV. The increasing trend of the dN/dy of Σ(1385)± and Ξ(1530)0 with increasing

⟨dNch/dη⟩ for pp collisions is qualitatively reproduced by the different event generator models.
However, PYTHIA 8 with Monash 2013 tuning (green dashed curve) predicts a much milder
increase for both resonances, whereas EPOS-LHC (blue solid curve) and PYTHIA 8 with
Rope shoving (purple dotted curve, see details of the tune settings in appendix B) describe the
measured dN/dy of both resonances within the uncertainties, with possibly a small tension
between the EPOS-LHC prediction and the Ξ(1530)0 data in the highest multiplicity interval.

Figure 8 shows the mean transverse momentum ⟨pT⟩ for Σ(1385)± and Ξ(1530)0 as a
function of the charged-particle pseudorapidity density. The values obtained in pp collisions
at

√
s = 7 TeV [32] and in p-Pb collisions at √

sNN = 5.02 TeV [33] are reported in the
same figure. The increasing trend of the ⟨pT⟩ as a function of multiplicity in pp collisions
is steeper than the one in p-Pb collisions for both Σ(1385)± and Ξ(1530)0, consistent with
what is observed for unidentified charged particles in pp collisions at

√
s = 7 TeV and p-Pb

collisions at √
sNN = 5.02 TeV [60]. The increasing trend and the measured values are well

described by EPOS-LHC. Both PYTHIA 8 with Monash 2013 tuning and PYTHIA 8 with
Rope shoving predict an increasing trend, however, they underestimate the data in the full
range of the pp measurements.

The ratios of the pT-integrated yields of Σ(1385)± and Ξ(1530)0 hyperons to those of
pions are shown in figure 9 as a function of the charged-particle pseudorapidity density
and they are compared with the ratios measured in pp collisions at

√
s = 7 TeV and p-Pb

collisions at √
sNN = 5.02 TeV [32, 33, 43, 53]. They provide insight into the evolution of

strangeness production with increasing multiplicity. The results show a smooth increasing
trend as a function of multiplicity without energy and collision system dependence. The yields
of Σ(1385)± and Ξ(1530)0 relative to those of pions increase by 60% and 120%, respectively,
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Figure 9. Ratio of the resonance to pion pT-integrated yield as a function of the charged-particle
pseudorapidity density for Σ(1385)± (left) and Ξ(1530)0 (right). The open and shaded boxes represent
the total and multiplicity-uncorrelated systematic uncertainties, respectively. The measured points are
compared with predictions from different event generators, namely EPOS-LHC [54], PYTHIA 8 with
Monash 2013 tuning [48], and PYTHIA 8 with Rope shoving [55–58]. (Appendix B). The predictions
are obtained for pp collisions at

√
s = 13 TeV, based on INEL > 0 events.
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Figure 10. Yield ratio of the resonances to the ground states having the same quark content as a
function of the charged-particle pseudorapidity density for Σ(1385)± (left) and Ξ(1530)0 (right). The
open and shaded boxes represent the total and multiplicity-uncorrelated systematic uncertainties,
respectively. The measured points are compared with predictions from different event generators,
namely EPOS-LHC [54], PYTHIA 8 with Monash 2013 tuning [48], and PYTHIA 8 with Rope
shoving [55–58]. (Appendix B). The predictions are obtained for pp collisions at

√
s = 13 TeV, based

on INEL > 0 events.

from the lowest to highest multiplicity pp collisions considered in this work. The increase
depends on the strangeness content (S) of the resonance; with Σ∗± having S=1 and Ξ∗0 having
S=2. These results are consistent with previous measurements of ground-state hyperons
to pion ratios with ALICE [42]. EPOS-LHC and PYTHIA 8 with Rope shoving predict an
increasing trend with multiplicity for both resonances. EPOS-LHC describes fairly well the
measured Σ(1385)±/π ratios, while PYTHIA 8 Rope overestimates them. Both EPOS-LHC
and PYTHIA 8 Rope tend to overestimate the increasing trend of Ξ(1530)0/π ratios.
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The integrated yield ratios of excited to ground-state hyperons [32, 33, 42] with the same
strangeness content are shown in figure 10. They are drawn for different collision systems
and centre-of-mass energies as a function of ⟨dNch/dη⟩. The measured Σ(1385)±/Λ and
Ξ(1530)0/Ξ− ratios are compatible either with a flat behaviour as a function of multiplicity or
with a mild multiplicity dependence, even though no firm conclusion can be drawn considering
the magnitude of the systematic uncertainties and the fact that they are partly uncorrelated
across multiplicity intervals. The EPOS-LHC and PYTHIA 8 with Rope shoving predict
a slight increase of the Σ(1385)±/Λ and Ξ(1530)0/Ξ− ratios with increasing multiplicity
at low multiplicities. They describe the data within the experimental uncertainties. The
PYTHIA 8 Monash 2013 prediction exhibits a flat behaviour and it underestimates the overall
magnitude of the ratios by about a factor of two. Note that a decreasing trend was observed
in the EPOS-LHC model prediction for the K∗/K ratio (cτ (K∗) = 4.16 fm/c [45]), apparently
describing the measurements in pp and p-Pb collisions [31, 61]. Despite similar lifetimes, K∗

and Σ(1385)± exhibit different yield trends in pp collisions, hinting at the nuanced interplay of
rescattering and regeneration effects within a potential hadronic stage. While the decreasing
yield of K∗ could be attributed to decay product rescattering, the stable yield of Σ(1385)±

might suggest a more pronounced regeneration effect. Conversely, the longer-lived Ξ(1530)0,
seemingly unaffected by these hadronic stage effects, provides a contrasting reference.

6 Conclusions

In this article, the pT-differential yields of Σ(1385)± and Ξ(1530)0 in inelastic pp collisions at√
s = 13 TeV are reported and compared with previous ALICE measurements in pp collisions

at
√

s = 7 TeV, revealing a hardening of the pT spectra as the collision energy increases.
The hardening is more pronounced for pT > 2 GeV/c. Going from low to high multiplicity
events in pp collisions at

√
s = 13 TeV, a clear hardening is observed that affects the shape

of the lowest pT part of the spectra.
The pT-integrated yield, dN/dy of Σ(1385)±, and Ξ(1530)0 is found to increase with

charged-particle pseudorapidity density, with a trend that does not depend on collision energy
and is the same for pp and p-Pb collisions. This is consistent with previous findings at
the LHC [42], highlighting the fact that the mechanisms of particle production are related
primarily to the conditions that determine multiplicity. On the other hand, the increasing
trend of the ⟨pT⟩ as a function of ⟨dNch/dη⟩ in pp collisions is slightly steeper than the
one in p-Pb collisions for both Σ(1385)± and Ξ(1530)0, as observed for charged particles
and other light-flavour hadrons in pp collisions at different energies and in p-Pb collisions
at √

sNN = 5.02 TeV.
An increasing trend with multiplicity is found for the Σ(1385)±/π± and Ξ(1530)0/π±

ratios. The enhancement is more pronounced for Ξ(1530)0 (S=2) than Σ(1385)± (S=1),
confirming that strangeness enhancement predominantly depends on the strangeness content,
rather than on the hyperon mass [20]. The integrated yields of Σ(1385)± and Ξ(1530)0

show a scaling with multiplicity consistent within uncertainties with that of the ground-state
hyperons with the same strangeness content, indicating that the strange-baryon resonance
production and its ground state have a similar increase on multiplicity. These results, when
combined with other resonance studies in small systems, can provide valuable contributions to
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our understanding of a possible hadronic stage in pp collisions and on the role of rescattering
and regeneration effects in such stage.
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A Fitting functions used in this paper

pT exponential function.

d2N

dpTdy
= ApTe−pT/T , (A.1)

with normalisation factor A and temperature T as fit parameters.

mT exponential function.

d2N

dpTdy
= ApTe−mT/T , (A.2)

where mT =
√

p2
T + m2

0 while m0 is the rest mass of the particle. The normalisation factor
A and temperature T are the fit parameters.

Fermi-Dirac function [62].

d2N

dpTdy
= pTA

1
e(
√

pT2 +m2 /T) + 1
, (A.3)

with A and T as fit parameters and m the mass of the particle under study.
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Boltzmann distribution [62].

d2N

dpTdy
= ApTmTe−mT/T , (A.4)

where mT is
√

p2
T + m2

0 while m0 is the rest mass of the particle. The normalisation factor
A and temperature T are the fit parameters.

Lévy-Tsallis distribution [53].

d2N

dpTdy
= pTN ′ (n − 1)(n − 2)

nC [nC + m0(n − 2)]

[
1 + mT − m0

nC

]−n

, (A.5)

where mT =
√

p2
T + m2

0 while m0 is the rest mass of the particle, and n, C and the
integrated yield N ′ are free parameters of the fit.

Blast-wave distribution [63].

1
pT

d2N

dpTdy
∝

∫ R

0
rmTI0

(
pT sinh ρ

Tkin

)
K1

(
mT cosh ρ

Tkin

)
dr, (A.6)

where I0 and K1 are the modified Bessel functions, r is the distance from the centre of the
expanding system, R is the limiting radius of the system expansion, Tkin is the temperature
of the kinetic freeze-out and ρ = arctanh β defines the velocity profile.

B PYTHIA8 rope shoving parameters

Parameters below are additional parameters to the default Monash tune 2013 (Tune ID
= 14 in v8.243).

MultiPartonInteractions:pT0Ref = 2.15
BeamRemnants:remnantMode = 1
BeamRemnants:saturation = 5
ColourReconnection:mode = 1
ColourReconnection:allowDoubleJunRem = off
ColourReconnection:m0 = 0.3
ColourReconnection:allowJunctions = on
ColourReconnection:junctionCorrection = 1.2
ColourReconnection:timeDilationMode = 2
ColourReconnection:timeDilationPar = 0.18
Ropewalk:RopeHadronization = on
Ropewalk:doShoving = on
Ropewalk:tInit = 1.5
Ropewalk:deltat = 0.05
Ropewalk:tShove 0.1
Ropewalk:gAmplitude = 0.
Ropewalk:doFlavour = on
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Ropewalk:r0 = 0.5
Ropewalk:m0 = 0.2
Ropewalk:beta = 0.1
PartonVertex:setVertex = on
PartonVertex:protonRadius = 0.7
PartonVertex:emissionWidth = 0.1

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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