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Abstract: Measurements of inclusive charged-particle jet production in pp and p-Pb col-
lisions at center-of-mass energy per nucleon-nucleon collision √

sNN = 5.02 TeV and the
corresponding nuclear modification factor Rch jet

pPb are presented, using data collected with the
ALICE detector at the LHC. Jets are reconstructed in the central rapidity region |ηjet| < 0.5
from charged particles using the anti-kT algorithm with resolution parameters R = 0.2, 0.3,
and 0.4. The pT-differential inclusive production cross section of charged-particle jets, as well
as the corresponding cross section ratios, are reported for pp and p-Pb collisions in the trans-
verse momentum range 10 < pch

T,jet < 140 GeV/c and 10 < pch
T,jet < 160 GeV/c, respectively,

together with the nuclear modification factor Rch jet
pPb in the range 10 < pch

T,jet < 140 GeV/c.
The analysis extends the pT range of the previously-reported charged-particle jet measure-
ments by the ALICE Collaboration. The nuclear modification factor is found to be consistent
with one and independent of the jet resolution parameter with the improved precision of this
study, indicating that the possible influence of cold nuclear matter effects on the production
cross section of charged-particle jets in p-Pb collisions at √

sNN = 5.02 TeV is smaller than
the current precision. The obtained results are in agreement with other minimum bias jet
measurements available for RHIC and LHC energies, and are well reproduced by the NLO
perturbative QCD Powheg calculations with parton shower provided by Pythia8 as well
as by Jetscape simulations.
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1 Introduction

In high-energy hadronic collisions, scattering processes at very large momentum transfer
Q2 between quarks and gluons of the colliding nucleons produce parton showers, which
subsequently fragment into collimated sprays of hadrons called jets. Studies of jet production
in proton-proton (pp) collisions allow one to test the fixed-order perturbative quantum
chromodynamics (pQCD) calculations of the jet production in the TeV domain and tune the
higher order effects in QCD-based Monte Carlo (MC) event generators [1–4]. Furthermore,
such studies, especially at low pT, constrain the non-perturbative contributions, such as the
hadronization and underlying event effects, to the inclusive jet cross section. In addition,
measurements in pp collisions also provide the baseline for similar measurements in proton-
nucleus (pA) and nucleus-nucleus (AA) collisions. Comparing the jet production between
pp and pA collisions allows for an assessment of the effects related to the presence of bound
nucleons in the colliding system, denoted as cold nuclear matter (CNM) effects at the initial
state of the collisions, which can be described by partonic rescattering [5] and by modification
of parton distribution functions (PDFs) [6]. The study of these CNM effects is interesting
in its own right since it is necessary to decouple the CNM effects from those related to the
creation of the quark-gluon plasma (QGP), which is a hot and dense color-deconfined QCD
matter created in AA collisions [7, 8].

The production of the QGP in AA collisions is confirmed by many observations (see
in [9] and the references therein). One of the QGP signatures is the so-called jet quenching
phenomenon. It is manifested by the suppression of high-pT hadron and jet yields with
respect to those in pp collisions [10, 11]. One microscopic picture of this phenomenon
assumes that, while traversing through the QGP, the initial highly-energetic parton loses
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energy via medium-induced gluon radiations and elastic scatterings with constituents of the
hot and dense medium. A convenient observable to quantify these jet quenching effects is
the nuclear modification factor, defined as the ratio of the jet (or final-state hadron) yield
produced in AA or pA collisions to that in pp collisions, scaled by the average number of
nucleon-nucleon collisions ⟨Ncoll⟩ [12]. A deviation from one of this ratio at high pT indicates
the presence of nuclear effects.

Initially, the pA system was thought to be too small to create a QGP. However, recent
measurements show evidence of collective behavior in high-multiplicity pp and p-Pb collisions
at the LHC [13–16] and in light nucleus-Au collisions at RHIC [17, 18]. By contrast, jet
quenching phenomena have not yet been seen in small collision systems. The question of
possible QGP formation in small collision systems remains open and calls for further, more
precise jet quenching searches. The production of charged-particle jets and the corresponding
nuclear modification factor Rch jet

pPb in p-Pb collisions at center-of-mass energy per nucleon-
nucleon collision √

sNN = 5.02 TeV were previously reported by the ALICE Collaboration
based on Run 1 data [19]. The scaled pT-differential charged-particle jet production cross
section from pp collisions at

√
s = 7 TeV was adopted for calculating the Rch jet

pPb in this
study, and results show that the Rch jet

pPb is consistent with one within uncertainties. The
measurement of full jet production in p-Pb collisions at √

sNN = 5.02 TeV has been presented
by the ATLAS [20] and CMS Collaborations [21] at the LHC, and in d-Au collisions at
√

sNN = 200 GeV by the PHENIX Collaboration [22] at RHIC.
In this article, we revisit previous ALICE analyses by measuring the charged-particle

jet production in the larger Run 2 datasets of pp and p-Pb collisions at √
sNN = 5.02 TeV,

exploiting the excellent tracking capabilities of ALICE [23, 24]. These large data samples
enable higher precision measurement of the charged-particle jet production over a broader
pch

T,jet interval compared to the previous one [19], extending pch
T,jet down to 10 GeV/c and

up to 140 GeV/c. Furthermore, in contrast to the results from Run 1, the reported Rch jet
pPb

from Run 2 utilizes a pp reference measured at the same collision energy. Therefore, when
constructing the nuclear modification factor, there is no need to rely on an interpolation
between collision energies; instead, a more direct comparison can be made at the same
√

sNN. This reduces the normalization uncertainty by a factor of about 2.7 as compared to
the previously published results. Data from Pb-Pb collisions are also available at the same
energy [25, 26] and thus the results from this p-Pb analysis can provide a baseline for the
Pb-Pb data. These measurements can also be used to constrain the nuclear-modified parton
distribution functions (nPDFs) [27–30] and the strong coupling constant αs [31].

This article reports the measurement of charged-particle jet production both in pp and
p-Pb collisions at √

sNN = 5.02 TeV and the corresponding nuclear modification factor
for jet resolution parameters R = 0.2, 0.3, and 0.4. The inclusive jet cross section is used
to evaluate ratios of jet yields obtained for different resolution parameters. These ratios
provide insight into the interplay between perturbative and non-perturbative effects on jet
transverse momentum scales [1, 32–34].

The paper is organized as follows. Section 2 describes the ALICE detector and the
dataset. Jet reconstruction approach, correction for detector and acceptance efficiency, and
systematic uncertainty assessment are discussed in section 3. Section 4 presents the results
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and compares them to theoretical predictions and other experimental measurements. The
conclusion is given in section 5.

2 Experimental setup and datasets

The ALICE detector is a general-purpose heavy-ion experiment at the LHC [24, 35]. The
pp dataset used in this analysis was collected in 2017 at

√
s = 5.02 TeV, while the p-Pb

dataset was collected in 2016 at √
sNN = 5.02 TeV, during the LHC Run 2. The analyzed

data samples were collected with a minimum bias (MB) trigger and consist of 968 × 106 MB
events for pp collisions, corresponding to an integrated luminosity Lpp = 18.9± 0.4 nb−1 [36],
and 624 × 106 MB events for p-Pb collisions, corresponding to LpPb = 298 ± 11 µb−1 [37]. In
p-Pb collisions, a rapidity shift ∆y = 0.465 is needed in the direction of the proton beam to
transform from the ALICE laboratory frame to the nucleon-nucleon center-of-mass frame
due to the asymmetry of the colliding beam energies; protons at 4 TeV energy are collided
into fully stripped 208

82 Pb ions at 1.58 TeV per nucleon energy [38].
Events were triggered using the V0 detector [39], which consists of two scintillator

arrays located at forward and backward rapidity. It covers the pseudorapidity regions
−3.7 < η < −1.7 (V0C) and 2.8 < η < 5.1 (V0A). To select the MB trigger, coincident
signals are required in both the V0A and V0C detectors. Beam-induced background events,
such as beam-gas interactions or out-of-bunch pileup within the V0 detector readout time,
are rejected offline by using the timing information from the V0 detectors and the number
of reconstructed points and track segments in the Silicon Pixel Detector (SPD), which are
expected to be uncorrelated for background events. The SPD equips the two innermost
layers of the Inner Tracking System (ITS), a silicon tracker with six layers, and covers
the pseudorapidity interval |η| < 1.4 around midrapidity. In-bunch pileup events, where
multiple interactions occur in the same bunch crossing, are rejected by requiring that only a
single primary vertex is reconstructed with the SPD in the event [24]. For the data samples
considered in this paper, pileup events amount to less than 1% of the event sample both in
pp and p-Pb collisions [40]. Accepted events are required to have the reconstructed primary
vertex position along the beam axis within 10 cm from the center of the detector [24].

Charged-particle jets are reconstructed using tracks of primary-charged-particle candi-
dates produced in the collision. Primary charged particles are defined as all particles with
a mean proper lifetime τ > 1 cm/c which are either produced directly in the interaction or
from decays of particles with a mean proper lifetime τ < 1 cm/c. This excludes particles
produced in interactions with the detector material and products of weak decays [41]. The
charged-particle trajectories are reconstructed using information from the ITS [23] and the
Time Projection Chamber (TPC) [42]. These detectors are located inside a large solenoidal
magnet that provides a uniform magnetic field of B = 0.5 T. Tracks were selected with
transverse momenta pT,track > 0.15 GeV/c and in a pseudorapidity range |η| < 0.9 over
the full azimuth 0 < φ < 2π.

In order to achieve a uniform azimuthal angle distribution and the high-quality momentum
resolution required for jet reconstruction, the charged track selection utilized a hybrid selection
technique that compensates for local inefficiencies in the SPD. Two distinct classes of tracks
are combined in the hybrid approach [43]. The first class consists of tracks that have at least
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one hit in the SPD. The second class contains tracks without hits in the SPD, in which case
the primary interaction vertex is used to constrain the trajectory in the track fit to improve
the determination of their transverse momentum. The charged track momentum resolution
σ(pT)/pT is estimated using the covariance matrix of the track fit [24] and is approximately
0.8% at pT,track = 1 GeV/c and 4% at pT,track = 50 GeV/c.

Data corrections on instrumental effects were based on Monte Carlo (MC) simulations,
which included a detailed description of the detector geometry and response, using the Geant3
package [44]. The simulations were performed using the Pythia8 event generator [45] with the
Monash 2013 tune [46] for pp collisions and the Pythia6 [47] with the Perugia 2011 tune [48]
for p-Pb collisions. The simulated data were analyzed in the same way as the real data.

3 Data analysis

3.1 Jet reconstruction

The strategy for the jet reconstruction closely followed the procedures used by the ALICE
Collaboration in the Run 1 analysis, including the background density estimation [19]. Jet
finding was performed using the FastJet 3.2.1 [49] package. Signal jets were reconstructed from
charged-particle tracks using the anti-kT sequential clustering algorithm [50] with resolution
parameters R = 0.2, 0.3, and 0.4. The four-momenta of the jet constituents were combined
using the boost-invariant pT recombination scheme, treating the jet constituents as massless.
To ensure that jets were well contained in the TPC acceptance, the pseudorapidity coverage
of the reconstructed jets was constrained to |ηjet| < 0.5 for all jet resolution parameters. The
area of the jet was required to be Ajet > 0.6πR2 to suppress the contribution from pure
background jet clusters [26]. Jets which contained tracks with pT larger than 100 GeV/c

were rejected, in order to suppress contamination by fake tracks and ensure good momentum
resolution. This selection rejects less than 1% of jets in the considered kinematic region,
and the impact on the raw jet spectrum is minor.

Reconstructed jets from the hard process are always accompanied by soft background
that does not originate from the hard process, known as the underlying event. The transverse
momentum of selected signal jets in p-Pb collisions was subsequently corrected for the average
underlying event contribution [51] according to the formula

pch
T,jet = pch raw

T,jet − ρch × Ajet, (3.1)

where the transverse momentum density ρch of particles produced by the underlying event
in p-Pb collisions was estimated on an event-by-event basis using the so-called improved
CMS method [52]

ρch = median

pkT
T,jet

AkT
jet

 × C. (3.2)

Here AkT
jet and pkT

T,jet are the area and the transverse momentum of the jet clusters found using
the kT algorithm. The kT jets had the same resolution parameter as the anti-kT jets, and
the pseudorapidity range of the reconstructed kT jets spanned |ηjet| < 0.9. The jet active
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area [53] was estimated by distributing ghost particles into the η–φ acceptance. The ghost
particle density is 200 per unit area and corresponds to 0.005 area per ghost particle. The
two highest-pT jets in the event were excluded from the estimation of the background in
order to suppress impact of physical jets on ρch [54]. The scaling factor C is used to account
for regions without particles. It is defined as

C =
∑

j Aj

Aacc
. (3.3)

Here Aj is the area of each kT jet with at least one real track (i.e. excluding ghosts), and Aacc
is the area of charged-particle acceptance. In pp collisions, the underlying event constitutes
approximately pT = 1 GeV/c per jet, and was not subtracted from the raw jet spectrum [55].

3.2 Corrections

The measured jet spectrum is distorted predominantly due to the finite detector resolution
and local background fluctuations with respect to the mean underlying event density. A
correction procedure known as unfolding was used to correct for these effects [56, 57]. The
response matrices for these two effects are determined separately and combined by making
a product of the two [58].

The response matrix describing jet momentum smearing due to instrumental effects
was determined from the Pythia MC simulation. Detector-level jets were reconstructed
by transporting the generated particles through a full simulation of the ALICE detector
using the Geant3 transport model [59]. These jets were geometrically matched to the
corresponding particle-level jets on a jet-by-jet basis by requiring that the angular distance
∆R =

√
(∆η)2 + (∆φ)2 < 0.6R, where ∆η and ∆φ are the differences in pseudorapidity and

azimuthal angle between the detector-level and particle-level jets. The particle-level jets
were reconstructed without imposing any selection on the constituents. Consequently, during
the unfolding process, the reconstructed jets are corrected to a constituent-charged-particle
momentum of 0 GeV/c.

The probability of a particle-level jet not matching any detector-level jet is considered as
the jet reconstruction efficiency, is applied to correct the unfolded jet spectrum. Its value is
about 80% at jet pT ≈ 10 GeV/c and increases to 99% for jets with pT > 30 GeV/c in the
considered kinematic region. Additionally, the probability that a detector-level jet is falsely
matched to a non-corresponding particle-level jet is called the jet reconstruction purity. The
jet reconstruction purity is found to be above 99% in the measured kinematic range. Hence,
the raw jet spectrum was not corrected for the reconstruction purity.

The performance of the jet reconstruction was assessed using the MC simulation.
Two variables are evaluated: the shift of the mean jet energy scale (JES) ∆JES =〈

(pch det
T,jet − pch truth

T,jet )/pch truth
T,jet

〉
and the jet energy resolution JER = σ(pch det

T,jet )/pch truth
T,jet , where

pch det
T,jet and pch truth

T,jet are the transverse momenta of the measured jet and the corresponding
truth jet, and σ(pch det

T,jet ) denotes the width of the pch det
T,jet − pch truth

T,jet distribution as a function
of pch truth

T,jet . The ∆JES distribution is asymmetric and has a long negative tail due to the
reconstruction inefficiency and a sharp peak centered around pch truth

T,jet = pch det
T,jet . The most

probable scenario is that the measured pch
T,jet is close to the jet pT at particle level. The ∆JES
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distribution has a mean value of −15% (−20%) and −27% (−30%) for the pch truth
T,jet interval

20 < pch truth
T,jet < 30 GeV/c and 100 < pch truth

T,jet < 120 GeV/c, respectively, for pp (p-Pb)
collisions. The value of the JER varies from 23% (20%) to 27% (38%) in pp (p-Pb) collisions
at pch truth

T,jet = 20 GeV/c and pch truth
T,jet = 150 GeV/c, respectively. Both ∆JES and JER exhibit

a weak R dependence.
The response matrix which accounts for the smearing due to local background fluctuations,

was obtained with the random cone (RC) method [60]. Cones with a resolution parameter
Rcone equal to that of the jet were placed randomly in the η − φ space in each event, within
the ITS and TPC acceptance. The background fluctuations were evaluated by comparing
the sum of the pT of tracks inside the cone, pRC

T , with the expected average contribution
due to the underlying event as follows:

δpRC
T = pRC

T − ρchπR2
cone. (3.4)

In this study, two definitions for the random cone were considered. First, the random cones
were required not to overlap with the leading and subleading jets in an event. Second,
the cones were placed in a perpendicular direction to the leading jet in an event. These
two approaches yield a consistent result and their difference was considered as a source
of systematic uncertainty. The nominal result used the δpRC

T matrix obtained by the first
approach. The corresponding δpRC

T distribution has a width of σRC = 2.01 GeV/c for R = 0.2,
3.01 GeV/c for R = 0.3, and 4.01 GeV/c for R = 0.4. The response matrix for the local
background fluctuations was constructed row-by-row by taking the δpRC

T distribution and
shifting it along the pch det

T,jet axis by the amount pch truth
T,jet corresponding to each row [58]. In pp

collisions, no correction for the background fluctuations was applied, and the raw spectrum
was corrected for the instrumental effects only.

In our case the use of an unregularized unfolding method led to a non-physically behaving
solution, which wildly oscillated due to statistical fluctuations of the measured spectrum.
To suppress these fluctuations, unfolding algorithms which impose a smoothness criterion
were used in this analysis. The regularization procedure introduces additional systematic
uncertainties on the unfolded spectrum, as discussed in section 3.3.2. The singular value
decomposition (SVD-) based method [61] was used to perform the unfolding correction for
the primary analysis. The optimum regularization parameter, kreg, was chosen such that
it corresponds to the point at which statistically significant components of the d-vector
distribution change to noise. The values of kreg = 4 and 6 are adopted for pp and p-Pb
collisions, respectively. The unfolding was also performed using the iterative Bayesian
method [62]. For the regularization of the Bayesian unfolding, convergence was determined
by the stability of the unfolded solution to successive iterations, while minimizing the
statistical uncertainties [63]. The convergence was achieved after the second iteration for
both pp and p-Pb collisions. These unfolding algorithms are implemented in the RooUnfold
framework [64]. The difference between the two unfolding methods was assigned as a source
of systematic uncertainty. Input to the unfolding was the raw jet spectrum measured in
the range 10 < pch

T,jet < 140 GeV/c for pp collisions and 10 < pch
T,jet < 160 GeV/c for p-Pb

collisions. The fraction of particle-level jets that are reconstructed outside the measured
range, referred as the kinematic efficiency, is applied to the unfolded spectrum in addition

– 6 –



J
H
E
P
0
5
(
2
0
2
4
)
0
4
1

to the jet reconstruction efficiency correction. The kinematic efficiency is above 80% in the
measured range. The unfolding correction required a prior spectrum as the starting point of
the algorithm. In this analysis, by default the prior spectrum was defined by the particle-level
distribution generated using the Pythia simulation. The unfolding correction of the raw
jet spectrum ranges from 30% to 60% across the analyzed pT range.

The robustness of the unfolding procedure and the mathematical validity of the unfolded
solution were established through refolding and closure tests as done in the previous ALICE
jet measurements [63]. In the refolding test, the unfolded spectrum was multiplied by the
response matrix and the resulting distribution was compared to the raw jet spectrum. The
closure test involved the use of two statistically independent MC samples. The first sample
was utilized to construct the response matrix and provide the prior distribution. The second
one served to generate pseudo-data, which were obtained by resampling the central values
using Poissonian smearing. The pseudo-data was then unfolded in the same way as the real
data and compared to the particle-level distribution. Within statistical uncertainties, the
solutions from both tests were able to recover the input distribution.

Statistical uncertainties of the unfolded solutions were evaluated based on pseudo-random
experiments. In this approach, the bin contents of the input measured spectrum were smeared
according to given statistical uncertainties obtaining an ensemble of randomized spectra. The
unfolding was then applied to each of these spectra and the resulting statistical uncertainty in
each bin was obtained from a covariance matrix corresponding to the ensemble. To cross-check
the correlation of the statistical uncertainties of the bin contents of the jet spectrum, the
statistical uncertainties were also evaluated using the Bootstrap method [65, 66] and found
to be consistent with the pseudo-random experiments. When calculating the ratio of jet cross
sections, the spectra which appear in the numerator and denominator are from the same
input data. The degree of correlation between the same pT bins is nevertheless suppressed
since jets reconstructed with different R may fall in different pT bins. Thus the correlation
was not taken into account; the numerator and denominator are treated as independent,
which leads to a conservative estimate of the statistical uncertainties.

3.3 Systematic uncertainties

The systematic uncertainties of the pT-differential charged-particle jet cross section and
Rch jet

pPb are quantified by varying several parameters with respect to the primary analysis.
The uncertainties are categorized based on their point-to-point correlation into correlated
uncertainty, shape uncertainty, and normalization uncertainty. The correlated uncertainty is
positively correlated among all the pch

T,jet bins. It includes the uncertainty on the tracking
efficiency and the uncertainty on the jet momentum smearing due to local background
fluctuations. The shape uncertainty is the uncertainty which is anti-correlated between parts
of the unfolded spectrum, which affects the shape of the final pch

T,jet spectrum. It arises
mainly due to assumptions in the unfolding procedure. The normalization uncertainties on
the luminosity measurement, as described in section 2, were determined to be 2.34% [36]
and 3.7% [37] for pp and p-Pb collisions, respectively.

The influence of the statistical fluctuations on the systematic uncertainties of the raw
spectrum was suppressed by using pseudo-experiments as done in refs. [40, 63]. For each source
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of uncertainty, several randomized instances of the raw jet pch
T,jet spectrum were generated

by variations around the measured central value in each bin using a Gaussian distribution,
with σ taken to be the uncorrelated statistical error in the bin. Each randomized instance
was analyzed using (i) corrections for the primary analysis, and (ii) corrections that include
the systematic variation. For each randomized instance, the ratio of corrected jet pch

T,jet
spectra resulting from (ii) and (i) was formed. The systematic uncertainty in each pch

T,jet bin
was defined as the mean value of the distribution of ratios obtained from all randomized
instances. The uncertainties were taken as symmetric and the total uncertainty for each
category was obtained by making a quadratic sum of the uncertainties corresponding to
individual sources. The summary of the relative systematic uncertainties discussed in this
section is presented in table 1.

3.3.1 Correlated uncertainties

The main sources of correlated uncertainties are described below.

• Tracking efficiency: the dominant systematic uncertainty arises from the uncertainty on
the ALICE tracking efficiency, which composes of two parts. The first part was estimated
by simultaneously varying track selection criteria in the TPC in data and the MC
simulation. The second one was determined by the discrepancy in the TPC-ITS track
matching efficiency between data and simulations. The uncertainty on the inclusive
pT spectrum of charged particles was found to be 3% in pp collisions [67]. In p-Pb
collisions, the value was found to increase with pT from 1% at low pT (∼ 0.5 GeV/c)
up to 2.5% at high pT (∼ 14 GeV/c). To assess how this uncertainty impacts the
charged-particle jet spectrum, the unfolding was also performed with a response matrix
which accounted for the lower track reconstruction efficiency. The difference between
the jet spectrum obtained with the modified response matrix and the default one is
adopted as the uncertainty on tracking efficiency.

• Pythia fragmentation: the instrumental response matrix used in the unfolding cor-
rection was built using Pythia simulations. The impact of the hadronization model
in Pythia was assessed using the jet angularity observable. The jet angularity is
defined as g =

∑
i(pT,i × ri)/pch

T,jet, where pT,i is the pT of the ith constituent of the
charged-particle jet and ri =

√
∆η2

i + ∆φ2
i is the distance of the ith constituent from the

jet axis at the particle level. The angularity distribution was simulated using Pythia8
and Herwig7 [68, 69] simulations. The corresponding jet angularity distributions differ
up to about 30%. To assess the uncertainty associated with the detector effects on the
fragmentation model, the instrumental response matrix was re-weighted according to
the jet angularity. Specifically, the instrumental response matrix was re-weighted such
that the 50% largest angularity jets were weighted an additional ±30% relative to the
50% lowest angularity jets [26]. The modified response matrix was then used to unfold
the measured spectrum. The difference between the unfolded jet spectrum obtained
with the re-weighted response matrix and the default one is taken as the uncertainty.

• Background fluctuations: in p-Pb collisions, the δpT matrix was constructed with
cones perpendicular to the leading jet, as described in section 3.2. The uncertainty on
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background fluctuations is estimated by taking the difference between the resulting jet
spectrum and the default one.

3.3.2 Shape uncertainties

The main sources of the shape uncertainties are described below.

• Variation of the unfolding algorithm: the pch
T,jet spectrum was unfolded with the iterative

Bayesian unfolding method.

• Variation of the regularization parameter: the regularization parameter kreg in the
SVD-based unfolding was varied by ±1 with respect to the optimal value.

• Variation of the prior: the prior spectrum was changed to a pT spectrum of jets
calculated with Powheg+Pythia8 simulations.

• Variation of the lower pT spectrum cutoff: the minimum pT of the measured jet
spectrum used in the unfolding correction was required to be greater than σRC of the
δpRC

T distribution. The sensitivity of the unfolded result to combinatorial jets was
tested by varying the lower range of the measured jet spectrum by ±3 GeV/c.

The systematic uncertainties on the cross section ratios between jet spectra obtained
with different R values are determined using the same strategy as in previous ALICE
measurements [26]. The numerator and denominator were varied simultaneously and compared
to the default jet cross section ratio.

The shape uncertainties between the pp and p-Pb collision systems are considered
uncorrelated and are fully propagated to the Rch jet

pPb . Due to the partial correlation between
the tracking efficiency uncertainties in pp and p-Pb collisions [19], the tracking efficiency
uncertainty on the Rch jet

pPb is considered to be the maximum uncanceled part between the
two collision systems.

4 Results

4.1 Inclusive charged-particle jet production cross section in pp and p-Pb
collisions

The charged-particle jet cross sections are reported differentially in pch
T,jet and ηjet as

d2σ

dpch
T,jetdηjet

= 1
L

d2N

dpch
T,jetdηjet

, (4.1)

where d2N/dpch
T,jetdηjet is the fully corrected pT- and η-differential charged-particle jet yield.

The integrated luminosity for minimum bias events is denoted by L, see section 2.
The fully corrected charged-particle jet cross sections for R = 0.2, 0.3, and 0.4 in pp

and p-Pb collisions are shown in figures 1 and 2, respectively. The jet cross sections for
larger jet resolution parameters are scaled by arbitrary factors described in the legend for
better visibility. These results are compatible with the previous results from ALICE [19, 67]
and cover a wider pch

T,jet interval, and are consistent with the ALICE charged-particle jet
measurements [25]. The measurements are compared to two theoretical predictions:
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• Powheg+Pythia8: the matrix elements are computed at NLO accuracy with the
Powheg method [70, 71] using the dijet process [72] implemented in the Powheg Box
V2 framework [73]. The Powheg Box is interfaced with the Lhapdf6 package [74]
to supply different (n)PDF sets for describing the non-perturbative initial states, and
Pythia8 [45] tune A14 [75] for parton shower and fragmentation. The simulation
employs the CT14 NLO [76], TUJU21 NNLO [77], CTEQ6.1 NLO [78], and nNNPDF3.0
NLO [79] free-proton PDF sets. In the case of p-Pb collisions, the corresponding nPDF
sets EPPS16 NLO [80], nTUJU21 NNLO [77], nCTEQ15WZSIH NLO [81, 82], and
nNNPDF3.0 NLO [79] are used, accounting also for the shift in rapidity. The default
values of αs, renormalization, and factorization scales are adopted in the results shown
in this paper.

• Jetscape: Pythia8 [45] is used to generate the initial hard scattering and the
underlying event. The intermediate shower is handled by the MATTER [83, 84] model
that includes parton virtuality. After parton shower, QCD strings are formed through
either a colored or a colorless hadronization scheme. The strings are subsequently fed
into Pythia8 for string fragmentation [85, 86]. The Jetscape configuration used in
this paper is referred to as the PP19 tune [87] as implemented in Jetscape V3.4.1 [88].
The predictions are only shown for pp collisions.

As shown in the right panels of figures 1 and 2, within the uncertainties of the data, the
Powheg+Pythia8 predictions describe the data well, except for the lowest pch

T,jet interval
10–20 GeV/c where a maximum discrepancy of ∼ 20% is observed in both pp and p-Pb
collisions. The Jetscape prediction in pp collisions overestimates the data by ∼ 50% at low
pT. The magnitude of the discrepancy depends on the jet pT and the resolution parameter R.
The low-pT region is sensitive to non-perturbative effects such as the initial state radiation
and multiparton interactions. It is not clear to which extent can these discrepancies be
explained by improper modelling of these effects.

The jet cross section ratios were evaluated by dividing the spectrum with R = 0.2
by those with other resolution parameters as shown in figure 3. The left panel is for pp
collisions, and the right panel is for p-Pb collisions. In both pp and p-Pb collisions, the data
are compared with the Powheg+Pythia8 predictions. General agreement between data
and Powheg+Pythia8 predictions is observed within uncertainties. In pp collisions, the
comparison between data and Jetscape predictions is also presented. Jetscape predictions
are consistent with data within uncertainties as well, but they show a difference from the
Powheg+Pythia8 predictions at low pch

T,jet in 20–40 GeV/c. The cross section ratio is
sensitive to the collimation of particles around the jet axis and serves as an indirect measure
of the jet structure [89]. Since the jet spectra in the numerator are always with a smaller jet
resolution parameter R, it is expected that QCD radiation reduces this ratio below one, and
that the effect decreases with the increasing collimation of jets at high pT [33]. The ratios
confirm the expected trend of increasing collimation with increasing transverse momentum
of jets, corroborated also by the theoretical predictions. Figure 4 shows the comparison of
the cross section ratios in pp collisions and p-Pb collisions. The comparison shows that the
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data. The correlated and shape systematic uncertainties on the ratio account for the data uncertainties
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energy in the jet cone distributed transverse to the jet axis in p-Pb collisions is consistent
with that in pp collisions. No sign of a modified jet structure is observed within uncertainties.

4.2 Nuclear modification factor Rch jet
pPb

The nuclear modification factor of charged-particle jets in minimum bias p-Pb collisions due
to nuclear matter effects is quantified by comparing the jet cross section in p-Pb collisions
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normalized by the number of nucleons of the Pb ion, A = 208, to the jet cross section in
pp collisions, known as the A-scaling hypothesis [12, 90],

Rch jet
pPb = 1

A

d2σpPb
dpch

T,jetdηjet

/
d2σpp

dpch
T,jetdηjet

. (4.2)

The jet cross sections are measured in the laboratory frame with |ηjet| < 0.5 in both pp and
p-Pb collisions. As mentioned above, the laboratory frame is shifted from the center-of-mass
frame in rapidity by ∆y = 0.465 in p-Pb collisions while it is not shifted for pp collisions, result-
ing in different jet rapidity acceptances in the center-of-mass frame between the two systems.
However, this effect on Rch jet

pPb is smaller than 5% [19], and it is not accounted in eq. (4.2).
Figure 5 depicts the nuclear modification factors Rch jet

pPb for jets with R = 0.2, 0.3, and
0.4 as a function of jet transverse momentum. The Rch jet

pPb is compatible with one within
uncertainties in the reported transverse momentum range 10 < pch

T,jet < 140 GeV/c, and it
is noted to be approximately independent of jet transverse momentum and jet resolution
parameter. The Rch jet

pPb presented in this article is in agreement with the Run 1 result [19]
within uncertainties. The results also indicate that jet quenching, if present, is below the
sensitivity of the current measurement. The Powheg+Pythia8 prediction calculated using
the nCTEQ15WZSIH is found to best describe the data within uncertainties. This shows
that the effects of nuclear-modified PDFs introduced by the nPDFs have minor impact on
jet production. The data from this measurement can provide an important constraint on
the global analysis of nPDFs.

The Rch jet
pPb result reported in this paper is compared to other published experimental

results currently available. Figure 6 shows the comparison to the measurement of full jets in
p-Pb collisions at √

sNN = 5.02 TeV by the ATLAS [20] and CMS Collaborations [21] at the
LHC, and d-Au collisions at √

sNN = 200 GeV by the PHENIX Collaboration [22] at RHIC.
Full jets are reconstructed with charged and neutral components. It is important to realize
that the energy scales of the ATLAS, CMS, PHENIX, and ALICE measurements are different
(jets measured by ALICE do not include neutral fragments) which complicates a direct
comparison between the measurements. The ATLAS and CMS measurements show a hint
of enhancement above one, but it has to be confirmed with higher precision measurements.
It is worth noticing that by assuming the final state particles are dominated by pions, one
can roughly estimate a scaling factor of around 1.5 between the energy of charged-particle
jets and that of full jets. In general, the ALICE measurement is in qualitative agreement
with those from ATLAS and CMS within the current experimental precision. The ALICE
results shown here extend the measurements down to a jet pT of 10 GeV/c and complement
the measurements of the ATLAS and CMS Collaborations.

5 Conclusion

The inclusive pT-differential charged-particle jet production cross sections in pp and p-Pb
collisions at √

sNN = 5.02 TeV were measured using the ALICE detector at the LHC. The
inclusive charged-particle jets were reconstructed with resolution parameters R = 0.2, 0.3, and
0.4. The measured charged-particle jet cross sections are corrected for experimental effects,

– 14 –



J
H
E
P
0
5
(
2
0
2
4
)
0
4
1

20 40 60 80 100 120 140

)  c (GeV/ ch

T,jet
p

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

  
 c

h
 j
e

t

p
P

b
R

 = 0.465y∆ = 5.02 TeV, 
NN

sPb −ALICE, p

| < 0.5
jet

η = 0.2,  |R, TkCharged-particle jets, anti-

| < 0.9
track

η|

c > 0.15 GeV/
T, track

p

20 40 60 80 100 120 140

)  c (GeV/ ch

T,jet
p

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 = 0.3R

Data

Correlated uncertainty

Shape uncertainty

20 40 60 80 100 120 140

)  c (GeV/ ch

T,jet
p

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

POWHEG+PYTHIA8 (Dijet)

EPPS16

nTUJU21

nCTEQ15WZSIH

nNNPDF3.0

 = 0.4R

Figure 5. The nuclear modification factor Rch jet
pPb of inclusive charged-particle jets as a function

of pch
T,jet at √

sNN = 5.02 TeV for R = 0.2, 0.3, and 0.4. The data measured are compared with
the Powheg+Pythia8 predictions calculated with various nPDFs. The bands on the predictions
represent statistical uncertainties. Systematic and statistical uncertainties of data are shown as boxes
and error bars, respectively. The normalization uncertainty of 4.37% is shown as a box around one.

20 30 100 200 1000

) c (GeV/
T,jet

p

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

  
d

A
u

R
, 

p
P

b
R

 = 0.4RALICE charged-particle jets,  

Correlated uncertainty

Shape uncertainty

 = 0.4  [PLB 748 (2015) 392-413]RATLAS (0-90%) full jets,  

 = 0.3  [EPJC 76 (2016) 372]RCMS full jets,  

 = 0.3  [PRL 116 122301 (2016)]RPHENIX full jets,  

 = 0.465y∆ = 5.02 TeV, 
NN

sPb  −ALICE, ATLAS, CMS p

 = 200 GeV
NN

sAu −PHENIX  d

Figure 6. Comparison of the nuclear modification factors of jets in p-Pb and d-Au measurements
at the LHC and RHIC, respectively. The boxes around the data points denote the systematic
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such as the finite detector resolution on the jet energy scale as well as the effects of the uncor-
related background and its fluctuations. The ratios of jet cross sections measured for different
values of R in pp collisions are consistent with those in p-Pb collisions within uncertainties,
indicating no sign of jet structure modification in p-Pb collisions within the current mea-
surement precision. Besides, the results confirm that the higher-pT jets are more collimated.
The cross section ratios also provide additional comparisons to theoretical predictions.

Within the current experimental precision and uncertainties, the nuclear modification
factor Rch jet

pPb is observed to be consistent with one, implying that the nuclear effects on jet
production in p-Pb collisions are below the resolution of the current measurement. The Rch jet

pPb
is also found to be approximately independent of the jet resolution parameter, and is consistent
with the measurements of full jets by the ATLAS, CMS, and PHENIX Collaborations within
the kinematic region of overlap among the different measurements. The ALICE results
reported in this paper extend the jet pT reach down to 10 GeV/c and are thus complementary
to those obtained with ATLAS and CMS.

The results are well described by NLO Powheg+Pythia8 predictions (for pp and
p-Pb collisions), while the Jetscape (for pp collisions) prediction agrees better with the
data at high pT. These results provide a constraint on initial- and final-state effects in
nuclear collisions, global analysis of nPDF, and provide a new baseline for the study of jet
production in heavy-ion collisions.
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