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SUMMARY

In this dissertation, we study the asymptotic behavior of the convex hull generated by

several mutually independent random walks. In the first chapter, we show that the convex

hull, appropriately scaled, almost surely converges to the convex hull generated by the

corresponding drift vectors and the origin. Then, by applying the continuous mapping

theorem, we also demonstrate almost sure convergence of all intrinsic volumes, which

implies almost sure convergence of the perimeter. Using a similar argument, we obtain

almost sure convergence of the diameter process.

In the next chapter, we move on to explore the distributional limit of the perimeter pro-

cess. To successfully control the variance, we use the technique of martingale difference

sequences and Cauchy’s formula. In the end, we obtain a very interesting and intuitive

L2 approximation for the deviation of the perimeter process. Under certain assumptions

about the drift vectors of the random walks, we determine the asymptotic behavior of the

variance of the perimeter. We can establish a normal distributional limit if this asymptotic

variance is positive.

Following this, we focus on the diameter process, where it becomes crucial to note that

the mapping that assigns diametral segments to polygons with the unique diametral seg-

ment is continuous. Finally, with the additional assumption about the set of drift vectors,

we achieve results analogous to those for the perimeter process.

In the final chapter, we will study the convex hull of centroids generated by a single

random walk. We open a discussion on generalizing the assumptions made for the ob-

served random walks and provide a detailed simulation study to explore what happens

when these assumptions are not satisfied.

Keywords: random walk, central limit theorem, strong law of large numbers, convex

hull, perimeter length, diameter
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SAŽETAK

U ovoj disertaciji istražujemo granično ponašanje konveksne ljuske definirane pomoću

nezavisnih slučajnih šetnji. U prvom poglavlju dokazujemo da konveksna ljuska, prik-

ladno skalirana, gotovo sigurno konvergira prema konveksnoj ljusci definiranoj pripadnim

drift vektorima i nulom. Primjenom teorema o neprekidnom preslikavanju, dokazujemo

gotovo sigurnu konvergenciju svih intrinzičnih volumena, što implicira gotovo sigurnu

konvergenciju opsega. Korištenjem slične argumentacije postiže se gotovo sigurna kon-

vergencija procesa dijametra.

U idućem poglavlju analiziramo distribucijski limes procesa opsega. Kako bismo us-

pješno kontrolirali varijancu, koristimo tehniku niza martingalnih razlika i Cauchyjevu

formulu. Na kraju, dobivamo izuzetno zanimljivu i intuitivnu L2 aproksimaciju za devi-

jaciju procesa opsega. Pod odredenim pretpostavkama o drift vektorima slučajnih šetnji,

odredujemo granično ponašanje varijance opsega, te ako je ta granična varijanca pozi-

tivna, možemo zaključiti normalni distribucijski limes.

Nakon toga, usmjeravamo se na proces dijametra, gdje se uz prethodno spomenute

alate ključnom pokazuje činjenica da je preslikavanje koje poligonima pridružuje dijame-

tralne segmente neprekidno. Na kraju, uz dodatnu pretpostavku o skupu drift vektora,

postižu se analogni rezultati kao i za proces opsega.

U završnom poglavlju, promatramo konveksnu ljusku generiranu s centrima mase

jedne planarne slučajne šetnje. Nakon toga, otvaramo diskusiju o poopćavanju pret-

postavki koje smo postavili za promatrane slučajne šetnje i pružamo simulacijsku studiju

koja istražuje posljedice napuštanja tih pretpostavki. Time se osvjetljavaju otvoreni prob-

lemi koji proizlaze iz ove disertacije.

Ključne riječi: slučajna šetnja, centralni granični teorem, jaki zakon velikih brojeva,

konveksna ljuska, duljina opsega, dijametar
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INTRODUCTION

The concept of random walks is undeniably relevant. Consider fields like the stock mar-

ket, disease transmission, political campaigns, and wildlife tracking. In these areas, you

might observe changes in values like stock prices, infection rates, public support, or ge-

ographical locations as random increments. By modeling the named phenomena with

random walks, we can predict many key metrics.

We shall pay attention to convex hulls for the following explicit reason — we often

do not need the detailed distribution of steps in random walks. Instead, we simplify the

problem to more manageable concepts. Convex hulls are an extension of this approach to

simplification. By understanding the shape and size of a convex hull, we can estimate the

range and scope of random walks.

On the other hand, limit theorems are also quite important. Considering the infinite

nature of natural numbers, it becomes pretty intuitive to explore limits to infinity. Take

any repeated process and associate it with this concept of infinity. Often, observing these

processes for a sufficient duration reveals their limiting behavior.

We will look at existing studies related to random walks and convex hulls and how

these two areas intersect. The field of random walks is broad, and it is impossible to

cover everything. Therefore, we will focus on a specific segment, notably the fluctuation

theory, which seamlessly connects to our study of convex hulls. Later, we will explore

how convex hulls and random walks apply in various scientific fields.

The structure of the introduction section is simple: We start with a broad literature

overview, consider some possible applications of our theory, and outline the rest of the

thesis. The introduction is extensive because it provides a comprehensive background and

lays a solid foundation for our results, many of which rely on general or technical aspects

of random walk theory that are essential for understanding the main content.

1



Introduction Literature Overview

0.1. LITERATURE OVERVIEW

Karl Pearson introduced the concept of a random walk in 1905 through a letter published

in Nature, where he asked for help from the journal’s readers [Pea05, p. 294]. Pearson

described a scenario involving a man who walks a distance of m yards, then changes

direction randomly and continues walking another m yards. This pattern is repeated n

times. Pearson was curious about the likelihood of the man ending up within a certain

distance from where he started.

Lord Rayleigh answered Pearson’s question [Rei05] by mentioning that he had been

thinking about a similar issue years earlier in a study on sound wave vibrations [Ray80].

In that study the magnitude was consistent, but the phase could change. In a later edition

of Nature, Pearson shared Rayleigh’s findings [Pea05, p. 342] and made a humorous

comparison, saying it was like trying to find a drunk man who, despite being drunk,

would not wander far from where he started.

Louis Bachelier made a connection between these stochastic processes and mathemat-

ical finance [Bac00], while Albert Einstein provided a framework for understanding the

fluctuating motion of particles in a fluid, later known as Brownian motion [Ein05,Bro28].

The establishment of this theory led to widespread research internationally. This in-

cluded exploring the differences between recurrence and transience in random walks —

essentially, whether a state will eventually be revisited indefinitely or only a finite number

of times. One notable example was Shizuo Kakutani, who humorously referenced Pear-

son while exploring a particularly simple random walk [Dur19, p. 191] that a drunk man

will eventually find his way home, but a drunk bird may get lost forever. More precisely

— while the process tends to be recurrent in two dimensions, it turns out to be transient

in three dimensions, where it may not necessarily return to its starting point.

This thesis focuses on the convex hull of random walks, a topic well-explored in

previous research. However, discussions about the highest values of random walks, which

are closely connected to the idea of the convex hull, came before the formal introduction

of this term in the field. These discussions and current understandings can be linked using

Cauchy’s surface area formula for convex shapes. This formula calculates the surface area

by integrating the lengths projected over various angles; see [TV16].

2



Introduction Literature Overview

We might also wonder how often a one-dimensional random walk stays on the positive

side of its starting point. We express the position of the walk at time n as Sn, and Tn

represents the percentage of time spent on the positive side up to that point. A key paper

by Lévy, titled Sur certains processus stochastiques homogènes [Lév40], had a big impact

on this area of study, known as fluctuation theory. Lévy demonstrated a principle known

as the arcsine law for Tn, where the walk followed a simple symmetric pattern:

P(Sn+1 −Sn = 1) = P(Sn+1 −Sn =−1) =
1

2
,

and the changes (Sn+1 − Sn)ng1 were independent, starting from S0 = 0. The equation

summarizes his findings:

lim
n→∞

P(Tn < x) =
2

π
arcsin

√
x,

for x ∈ (0,1). This means that over time, the walk is more likely to mostly stay on one

side of the starting point rather than spending equal time on both sides. In fact, the chance

of the walk spending roughly half the time on each side is the least probable outcome.

Significant advancements were made in studying random walks afterward. Initially,

Erdős and Kac expanded earlier findings to include walks where the increments had a

mean of 0 and a variance of 1 [EK47]. Following this, Sparre Andersen published two

papers [And49, And50] that widened the scope further by introducing symmetry condi-

tions. These conditions allowed for the independence of increments to be less strict.

Later, Maruyama and Udagawa independently loosened these conditions even more

[Mar51,Uda52]. They only required a central limit theorem to apply to the walks, simpli-

fying the criteria for the previously established generalizations.

More recently, Kabluchko, Vysotsky, and Zaporozhets [KVZ16] have taken Sparre

Andersen’s theories about symmetric increments and extended them into higher dimen-

sions. This change required redefining what counts as the positive side of a walk. In their

research, they analyze cases where the origin is included within the convex hull. This is

very similar to the work done by Bingham and Doney in 1988 [BD88]. They looked at

arcsine laws for Brownian motion across multiple dimensions, defining the positive side

as scenarios where all components are positive.

3
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Earlier results often relied on combinatorial methods in the study of arcsine laws.

However 1949, Chung and Feller introduced generating functions, a more complex ana-

lytical tool [CF49]. They used this approach to verify Erdős and Kac’s findings regarding

the simple symmetric random walk. They also explored further, deriving a remarkable

result that offered a different perspective from those proposed by Lévy. They considered

a 2n-step random walk and defined N2n as the count of steps where the position before or

after the step is positive — or possibly both. They discovered that if the walk returns to the

origin after 2n steps, then the probability that exactly 2r of those steps (for r = 0, . . . ,n)

had the walk on the positive side is given by:

P(N2n = 2r | S2n = 0) =
1

n+1
.

This result is interesting because it differs from the traditional interpretation of the arcsine

law. It suggests that the likelihood of spending any particular portion of time on the

positive side is uniform for a walk that returns to its starting point. This means that the

probability of having exactly half of the steps on the positive side is the same as the

probability of having all or none of the steps on that side.

Lipschutz expanded on Lévy’s findings in 1952, adapting the theorem to random

walks with a mean equal to 0 and a variance equal to 1 under the condition that they

had a finite fourth moment [Lip52]. Shortly after, Baxter introduced his work on Wiener

process distributions related to the arcsine law type, acknowledging Erdős and Kac’s con-

tributions and including the uniform distribution results from Chung and Feller.

Feller’s influential book, first published in 1950, included a comprehensive discussion

on coin tossing fluctuations and incorporated this theorem [F+71, pp. 67-97]. A bit later,

there was renewed interest in Chung and Feller’s original paper. One important reference

involved a study that used similar combinatorial methods as Sparre Andersen to look into

the maximum values in random walks [HW16].

During the fifties, a more unified approach to studying these mathematical topics

began. Feller’s book was published, and Chung and Erdős were improving the Borel-

Cantelli lemma to apply it to the zeros and positive terms in simple symmetric random

walks [CE52]. Around the same time, Darling studied random walks with symmetric in-

4



Introduction Literature Overview

crements and established a theorem discussing the order of walk points. This helped de-

fine the distribution for the maximum point and the count of positive walk points [Dar51].

Sparre Andersen explored the dynamics of random walks in two significant papers.

The first paper, published in 1953, discussed the initial occurrence of a walk reaching its

maximum, the final occurrence of reaching its minimum, and the count of positive steps

in the walk [And53]. The following year, Andersen published another paper studying a

random walk’s convex hull, specifically the convex minorant. This work was part of a

broader investigation into random walks’ behaviors, or fluctuations [And54].

Research on random walks has greatly developed since the early studies, especially

regarding their convex hulls. A key figure in this area is Satya Majumdar, who has written

many papers, several of which focus on random walks and, specifically, their convex

hulls. Some of his notable works, created with collaborators Mounaix and Schehr, focus

on analyzing the first and second maxima of random walks [MMS13, MMS14, MSM16].

Additionally, Majumdar and Schehr revisited similar statistical methods used by Darling

six decades earlier to analyze order statistics [SM12].

If we talk about the history of analysis of convex hulls, the fascination with con-

vex shapes and hulls is deeply rooted in history, going back to the ancient works of

Archimedes. References to his important work can be found in The Works of Archimedes,

edited by Heath [H+02], and in Stephen Hawking’s God Created the Integers, which in-

cludes detailed commentary on these topics [Haw07]. Additionally, Gruber notes that

Archimedes may have been the first to formally define convexity through the axioms pre-

sented in On the Sphere and the Cylinder [Gru07, p. 41].

Convex sets are not just theoretical constructs but have practical applications across

various science fields, including mathematics. For instance, the convex analysis and op-

timization field, which extensively uses convex sets and functions, plays a crucial role

in solving complex problems like those found in the simplex method of operations re-

search [Roc70,FP93,Sai97]. Beyond mathematics, convex sets are also important in other

disciplines. In economics, they help describe equilibrium in consumption [NS08, p. 94],

and in ecology, they are used to model species competition [ML64].

Research on the convex hulls of random points in mathematics has seen significant

progress over the past century, often driven by seemingly simple problems. One such

5
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problem was introduced by Erdős and Szekeres in 1935 [ES35], questioning the minimum

number of points required on a plane, arranged so no three are collinear, to ensure a subset

forms a convex n-gon. The initial solution to this problem, especially for quadrilaterals

and their generalization to n points, was provided by Esther Klein [Bed18], named happy

ending problem.

Another interesting challenge from this study area is Sylvester’s four-point problem,

first posed in 1864 in the Educational Times by Sylvester [Syl64] and later elaborated

on by Pfiefer in 1989 [Pfi89]. The problem involves showing that the probability that

four randomly chosen points on a plane will form a non-convex polygon is 1/4. This

problem’s solutions vary based on how the points are randomly selected. However, it has

been resolved under conditions where points are uniformly chosen from a finite convex

shape, like a circle or a specified polygon. The solution ensures that the probability a

point falls within a subset is proportional to that subset’s area coverage [Wat65, Woo67].

Rogers raised a question in 1978 about whether two groups of points on a plane could

have convex hulls that do not overlap [Rog78]. Following this, Jewell and Romano ex-

plored a related problem, focusing on the probability that several arcs of a fixed length,

when randomly positioned on a circle, could completely cover it [JR82]. Reitzner revis-

ited Rogers’ problem, but with the additional constraint that the sets of points must be

within a convex shape [Rei00]. Similarly, Groeneboom tackled a problem related to the

one studied by Rényi and Sulanke, discussing the number of vertices on the convex hull

of n points, but this time within a convex polygon [Gro12].

Another aspect of convex geometry is the study of the limit shapes of convex poly-

gons, highlighted by the Bárány-Vershik-Sinai results. These researchers independently

discovered similar findings [Bár95, Ver94, Sin94]. As it was discussed by Bogachev and

Zarbaliev [BZ11], these results deal with the limit shape of a typical convex curve from

some set of convex curves. Bárány’s initial theorem evaluates the expected shape of con-

vex polygons within the square [−1,1]2 with vertices positioned on the lattice n−1
Z

2 as

n approaches infinity. If we consider a point x in [−1,1]2, and calculate at each step n,

the percentage of convex polygons that contain x inside them, denoted by ρn(x), there is

a defined shape L such that ρn(x)→ 1 if x is inside L, and ρn(x)→ 0 if x is outside L. The

6
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defined shape L is the convex set given by:

L =
{

(x,y) ∈ R
2 :
»

1−|x|+
»

1−|y| g 1
}

.

However, our focus will primarily investigate deeper into convex hulls generated by

random walks. Our exploration of convex hulls spanned by random walks begins by revis-

iting Sparre Andersen’s work from 1954 [And54]. In this foundational paper, referenced

by Majumdar et al. in their comprehensive survey [MCRF10], Andersen lays out some

of the first rigorous investigations into the structure of these mathematical constructs.

While Lévy had previously offered insights into the shape of the curve of Brownian mo-

tion, hinting at its convex hull [Lév48], Andersen was the pioneer in providing concrete

results.

In his paper, Andersen considers several topics, including the behavior of random

variables, such as the time needed to reach a maximum value. However, his significant

contribution is the presentation of findings on the number Nn, which represents the count

of indices i from 1 to n− 1 such that Si matches the largest convex minorant of the one-

dimensional random walk S0, . . . ,Sn.

Andersen defines the convex minorant in terms of number sequences. A sequence

x0, . . . ,xn is considered convex if its differences x1 − x0,x2 − x1, . . . ,xn − xn−1 are non-

decreasing. He explains that a sequence a0, . . . ,an has a unique, largest convex minorant

sequence x0, . . . ,xn, where x0 = a0 and xn = an, and intermediate values xi either equal ai

or are interpolated based on the values of a in the following way:

xi =
(k− i)a j +(i− j)ak

k− j
,

where k is the smallest index greater than i such that xk = ak and j is the greatest index

smaller than i such that x j = a j. In Figure 1, we give the insight of the idea. One can

observe that x3 = a3 and x7 = a7, with, for example, x5 derived as the interpolated value

between a3 and a7.

Sparre Andersen explains how Nn (which counts how many points from a random

walk lie on the lowest path that still touches all the peaks) is distributed when the steps of

the walk (increments) are independent and follow a continuous distribution. He illustrates

7
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Figure 1: The convex minorant of the time-space diagram of a random walk

this concept using the generating function:

Gn(t) :=
n−1

∑
m=0

P(Nn = m) tm = n−1
n−1

∏
m=1

Ä

1+m−1t
ä

.

This formula is the same as the one used for the sum of n−1 Bernoulli random variables,

where each variable has a value of 1 with a probability of 1/(i+1). Using this formula,

Andersen calculates the average number and the variance of points lying on the path:

E(Nn) =
n−1

∑
i=1

1

i+1
∼ logn, Var(Nn) =

n−1

∑
i=1

i

(i+1)2
.

These calculations suggest that, on average, about logn points from the walk will end

up on the convex minorant. Due to the symmetry, the concave majorant should also have

logn points on the highest path on average. Since the convex hull is made by joining these

two paths, it is expected to have around 2logn points.

Research on convex minorants continued after Andersen’s pivotal contributions, fo-

cusing primarily on combinatorial methods. Spitzer introduced an innovative approach

using cyclic permutations to link the characteristic function of the maximum value in a

sequence S0, . . . ,Sn to the sum of the characteristic functions for each max(0,Si) [Spi56].

Brunk later expanded this concept in 1964 [Bru64].

Expanding on these ideas, Goldie studied the convex minorant of a one-dimensional

8
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random walk in 1989 [Gol89], using the conditions established by Andersen. Goldie’s

analysis introduced a new concept where an increment Zi is considered part of the jth

side of the largest convex minorant if exactly j points from S0 to Si−1 match their convex

minorant (as described earlier) at all indices from 0 to i−1. In this framework, Goldie dis-

covered that the probability of the ith smallest increment starting a new side of the convex

minorant is 1/i, with these events being independent for i = 1, . . . ,n. However, contrast-

ing these findings, Qiao and Steele in 2002 demonstrated that the concave majorant of a

random walk reduces to a single line infinitely often [QS05]. This insight suggests a dif-

ference from both Goldie’s and Andersen’s predictions of approximately logn faces for a

given length of the walk.

Following the work of Andersen and Spitzer, Baxter contributed to the field with his

paper on A combinatorial lemma for complex numbers [Bax61]. Baxter’s focus was on

a two-dimensional random walk. He analyzed the scenario where no two vectors, each

formed by combining a non-empty sequence of consecutive increments, are parallel. This

condition is typically met when the increments are drawn from a continuous distribution.

Baxter identified a unique cyclic permutation of the increments Z1, . . . ,Zn that ensures the

random walk remains entirely positive.

Additionally, Baxter studied the structure of the convex hull, noting that any side of

the hull is formed by the cumulative addition of a specific subset A of increments. If

this subset A contains m increments, then the resulting side of the hull appears in pre-

cisely 2(m− 1)!(n−m)! of the possible permutations of increments, not just the cyclic

ones. From these observations, Baxter deduced that typically only two of the increments

Z1, . . . ,Zn contribute directly as edges of the hull. He also confirmed Andersen’s ex-

pectation of approximately 2logn faces on the hull. Furthermore, Baxter validated the

Spitzer-Widom formula, which calculates the expected perimeter length of the convex

hull. In a subsequent collaboration 1963 with Barndorff-Nielsen, Baxter extended these

findings to higher dimensional spaces [BNB63].

Around the same time, Spitzer and Widom collaborated on studying the expected

perimeter length of the convex hull spanned by a planar random walk [SW61]. They

framed their exploration using a playful analogy from a later work of Wade and Xu

[WX15a]: Imagine a drunken gardener who drops a seed with each of his n wobbly steps.

9
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Once the flowers have bloomed, how much fencing would be needed to enclose all the

flowers? Spitzer and Widom tackled this question using their solid combinatorial skills

combined with Cauchy’s surface area formula for convex shapes, which helps calculate

the perimeter, L, of any convex shape as:

L =
∫ π

0
D(θ)dθ , (1)

where D(θ) represents the projection length of the shape along a line at angle θ . Specifi-

cally for a random walk, the shape in question is the convex hull, and the projection length

can be expressed as:

D(θ) = max
0fifn

Si · eθ − min
0fifn

Si · eθ ,

with eθ being the unit vector in the direction of θ . To derive this, they used a lemma

initially attributed to Kac [Kac54], which Dyson had proven. This lemma involves ana-

lyzing all permutations of the n increments in a one-dimensional sequence. Let π denote

such a permutation of 1, . . . ,n to π1, . . . ,πn. The lemma states that:

∑
π

Å

max
0fifn

Sπi
− min

0fifn
Sπi

ã

= ∑
π

n

∑
i=1

1

i
∥Sπi

∥

Here, the notation ∑π indicates summation over all permutations. Spitzer and Widom

extended this into the two-dimensional space to link the convex hull’s perimeter length

under each permutation π , denoted Lπ
n , to Kac’s lemma by modifying the formula to:

∑
π

Lπ
n = 2∑

π

n

∑
i=1

1

i
∥Sπi

∥

This adaptation leads to a remarkable result regarding the expected perimeter length of

the convex hull, expressed as:

ELn = 2
n

∑
i=1

1

i
E∥Si∥ .

After the significant findings presented by Spitzer and Widom, there was not much further

exploration into the perimeter length Ln of convex hulls until Snyder and Steele revisited

the topic in 1993 [SS93]. They managed to establish an upper limit for its variance,

10
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particularly stating:

Var(Ln)f
π2n

2

Ä

E

Ä

∥Z∥2
ä

−∥µ∥2
ä

,

assuming that the steps Z1, . . . ,Zn of the random walk are independent and identically

distributed as Z. Additionally, they demonstrated that if E∥Z∥2 is finite, then the average

perimeter normalized by n converges almost surely to 2∥µ∥:

n−1Ln
a.s.−−→ 2∥µ∥ as n → ∞. (2)

They also set bounds for the tail probabilities for Ln −ELn but limited this to scenarios

where the increments are bounded. Furthermore, they employed Baxter’s combinatorial

lemma to reconfirm several established results. They introduced new findings. For exam-

ple, if we denote with L
(2)
n the sum of the squares of the face lengths of the convex hull,

the expected value of that variable is:

EL
(2)
n = 2n

Ä

E

Ä

∥Z∥2
ä

−∥µ∥2
ä

.

Steele continued to study combinatorial techniques, contributing to understanding vari-

ous characteristics of convex hulls. In 2002, he discussed the Bohnenblust-Spitzer algo-

rithm [Ste02], which led to further insights into the distribution of such functionals as the

number of faces of a convex hull, though not addressing the variance of the perimeter

length. In his paper, Steele also noted an interesting geometric relationship suggesting

that the expected length of the concave majorant approximates n
√

1+µ2 for large n,

linking it to the straight-line distance from (0,0) to (n,E(Sn)) = (n,nµ).

The investigation to refine the upper bound on the variance of Ln saw significant ad-

vancement through the work of Wade and Xu in 2015 [WX15a, WX15b]. They explored

cases with a drift (∥µ∥> 0), showing that:

n−1/2 |Ln −ELn −2(Sn −ESn) · µ̂| → 0, in L2,

where µ̂ is the normalized drift vector. This discovery led to an asymptotic expression for

11
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the variance:

lim
n→∞

n−1 VarLn = 4E
Ä

((Z −µ) · µ̂)2
ä

.

This implies that the order of convergence of the variance in that case is O(n). They

established a basis for a central limit theorem for Ln when there is variance in the direction

of the mean. When the upper limit equals zero, Wade and Xu conjectured that the order

of variance convergence is of the size O(logn). However, in [AKMV20], the authors

demonstrated that this conjecture is only partially correct. Specifically, it holds true when

E∥Z∥p < ∞ for p g 3, but if this condition is satisfied only for p ∈ [2,3), the variance may

grow polynomially.

In their second paper [WX15b], the authors analyzed how the convex hull of a random

walk aligns with that of Brownian motion by applying a continuous mapping technique

and Donsker’s theorem. If we additionally denote by An the area of the convex hull

spanned by a random walk, they demonstrated that for random walks without drift:

n−1/2Ln
D−→ L

Ä

Σ1/2h1

ä

, and n−1An
D−→ A

Ä

Σ1/2h1

ä

= a1

√
detΣ,

where L and A represent the perimeter length and area, respectively, Σ is the covariance

matrix of the increments, and h1 and a1 are the convex hull and area of a Brownian motion

over a unit time. From this, they established that the mean perimeter length in the zero

drift scenario converges to:

lim
n→∞

n−1/2
ELn = 4E∥Y∥,

with Y being a normally distributed vector N (0,Σ). They also determined that the mean

area converges to:

lim
n→∞

n−1
EAn =

π

2

√
detΣ.

In scenarios where there is a drift (∥µ∥ > 0), the hull does not align with that of two-

dimensional Brownian motion but rather with the convex hull formed in the space-time

diagram of one-dimensional Brownian motion, referred to as h̃1. They showed that if

E∥Z∥p < ∞ for some p > 2, and the variance in the direction perpendicular to the mean,

12
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σ2
µ§ , is positive, then the mean area’s rate of change is given by

lim
n→∞

n−3/2
EAn =

1

3
∥µ∥
»

2πσ2
µ§ .

The authors also analyzed the variance of these measurements, finding that as n increases,

the variance approaches that of the corresponding quantity for Brownian motion. Namely,

if µ = 0 and E∥Z∥p < ∞ for p > 2, then

lim
n→∞

n−1 VarLn = Var
Ä

L

Ä

Σ1/2h1

ää

,

if µ = 0 and E∥Z∥p < ∞ for p > 4, then

lim
n→∞

n−2 VarAn = Var(a1)detΣ,

and if ∥µ∥> 0 and E∥Z∥p < ∞ for p > 4, then

lim
n→∞

n−3 VarAn = Var
(

A
(

h̃1

))

∥µ∥2σ2
µ§ .

As previously discussed in the first paper, there was no omission in failing to include an

equivalent result for Ln when ∥µ∥ > 0. The critical aspect to understand here is that the

limiting scenario in such cases corresponds to the space-time diagram of one-dimensional

Brownian motion. This situation leads to scaling of n in the time dimension and n1/2 in

the spatial dimension, which is why we see n−3/2 in the calculations. Unfortunately, this

scaling complicates things because just knowing the length of a hull’s edge is not enough;

the angle of the edge also influences how the length scales. Thus, understanding the

perimeter length without additional information about the edge angles is insufficient.

Regarding the perimeter length, Akopyan and Vysotsky in 2016 [AV16] provided a

significant finding known as a large deviation result. They demonstrated that the probabil-

ity P(Ln g 2cn) for c > ∥µ∥ decreases exponentially, and a similar exponential decrease

occurs for deviations below this threshold. Furthermore, research on the perimeter length

and area under certain symmetry conditions and continuous increments has advanced.

Thus, in 2021 [AV21], they provided explicit upper and lower bounds for the rate func-

13
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tion of the perimeter based on the rate function of the increments for a broad class of

distributions, including Gaussian and rotationally invariant ones. For such distributions,

large deviations of the perimeter are achieved by trajectories that asymptotically align into

line segments, though these may not always be the optimal shape.

In [Vys23], the author demonstrated that the asymptotic shape of the most likely tra-

jectories leading to large deviations in the area of the convex hull of a planar random

walk is determined by solving an inhomogeneous anisotropic isoperimetric problem. For

increments with a finite Laplace transform, the optimal trajectories are smooth, con-

vex, and satisfy the Euler–Lagrange equation, similar to the isoperimetric problem in

the Minkowski plane as solved by Busemann [Bus47] in 1947.

In 2017, Grebenkov, Lanoiselée, and Majumdar [GLM17] explored these scenarios,

showing that if the increments have finite variance, the expansion of ELn beyond the n1/2

term remains constant. Conversely, if the variance is infinite, the order of expansion terms

depends on the finite highest moment in the increments’ density function. They also found

similar patterns for the expansion of EAn.

If we look in [DCHM16], the authors study, using simulations, the convex hulls

formed by the steps of n independent two-dimensional random walks. They analyze the

area and perimeter of these hulls. In [RFZ21], the authors derive explicit formulae for

the expected volume and the expected number of facets of the convex hull of multiple

multidimensional Gaussian random walks. In [RF12], an exact formula is established for

the average number of edges on the boundary of the global convex hull of n independent

Brownian paths in the plane.

Lo, McRedmond, and Wallace in [LMW18] investigated the asymptotic behavior of

functionals related to planar random walks. Their focus included the convex hull and

the center of mass process of these random walks. The authors derive several important

results under specific assumptions about the random walks. Firstly, they establish a func-

tional law of large numbers, demonstrating that the trajectories of the random walk, when

appropriately scaled, converge almost surely to a linear function of time:

Xn(t)→ µt a.s. in
Ä

C
d
0 ,ρ∞

ä

14
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for

Xn(t) =
1

n
S+nt,+

nt −+nt,
n

ξ+nt,+1,

where
(

C d
0 ,ρ∞

)

represents the space of continuous d-dimensional functions on the unit

interval with f (0) = 0, equipped with the supremum metric. A similar result was obtained

when they used a different method of interpolating:

X ′
n(t) := n−1S+nt,,

where they got

Xn(t)→ µt a.s. in
Ä

D
d
0 ,ρ∞

ä

,

where
(

Dd
0 ,ρ∞

)

is the space of right-continuous d-dimensional functions with left-hand

limits on the unit interval with f (0) = 0. The authors further study the maximum func-

tional in one dimension. They show that the maximum of the walk, scaled by n−1, con-

verges almost surely to the positive part of the drift µ:

1

n
max

0fkfn
Sk → µ+ a.s.

Additionally, they derive the central limit theorem for the maximum of the zero-drift

random walk in one dimension, establishing that the scaled maximum converges in dis-

tribution to the maximum of a standard Brownian motion:

1√
n

max
0fkfn

Sk
D→ σ sup

t∈[0,1]
b(t),

where b(t) denotes the standard Brownian motion and σ2 = Var(ξ1). For random walks

in higher dimensions, the authors generalize the arcsine law, showing that the proportion

of time a zero-drift random walk spends in a given subset of the unit sphere A converges

in distribution as follows:

πn(A)
D→
∫ 1

0
1{bΣ(t) ∈ A}dt,

15



Introduction Literature Overview

where

πn(A) =
1

n

n

∑
i=1

1{Si/∥Si∥ ∈ A},

and bΣ(t) represents the projection of a Brownian motion onto the sphere. The paper also

covers the almost sure convergence of points in the random walk:

n−1 {S0,S1, . . . ,Sn} −→ Iµ [0,1], a.s.,

and the weak convergence of points when the drift is zero:

n−1/2 {S0,S1, . . . ,Sn}⇒ Σ1/2bd[0,1].

For the diameter, they establish both almost sure convergence:

n−1Dn →∥µ∥, a.s.

and the central limit theorem for the diameter in the case µ = 0:

n−1/2Dn
D−→ diam

Ä

Σ1/2bd[0,1]
ä

.

In terms of the convex hull, the authors show almost sure convergence for random walks

with non-zero drift:

n−1 chull{S0,S1, . . . ,Sn} −→ Iµ [0,1], a.s.,

and weak convergence when the drift is zero:

n−1/2 chull{S0, . . . ,Sn}⇒ Σ1/2hd.

They also derive distributional limits for the mean width, surface area, and volume of the
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convex hull:

n−1/2
Wn

D−→ W

Ä

Σ1/2hd

ä

,

n−(d−1)/2
Sn

D−→ S

Ä

Σ1/2hd

ä

, and

n−d/2
Vn

D−→ V

Ä

Σ1/2hd
1

ä

= vd

»

det(Σ),

and confirmed the almost sure convergence of the perimeter, as it has been done in (2):

n−1
Ln −→ 2∥µ∥, a.s.

For the volume, they demonstrate almost sure convergence when ∥µ∥> 0:

n−(d+1)/2
Vn

D−→ ∥µ∥
»

detΣµ§ v̄d,

where ṽd is the volume of h̃d := chull b̄d[0,1] where b̃d[0,1] =
{

b̃d(t) : t ∈ [0,1]
}

with

b̃d(t) = (t,bd−1(t)) , for t ∈ [0,1], and Σµ§ is the covariance matrix of the increment writ-

ten in the orthonormal basis where the normed drift vector is the first vector.

Regarding the center of mass process:

Gn :=
1

n

n

∑
i=1

Si,

they prove almost sure convergence of the center of mass:

1

n
G+nt,

a.s.−−→ µt

2
,

and derive the distributional limit in case µ = 0 as:

1√
n

G+nt,
D−→ N

Å

0,
tΣ

3

ã

.

They also establish a functional law of large numbers for the center of mass process:

1

n

(

G+nt,
)

t∈[0,1]
a.s.−−→ 1

2
Iµ in

Ä

D
d
0 ,ρS

ä

,

where ρS is the Skorokhod metric and a functional central limit theorem for the same
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process:

1√
n

(

G+nt,
)

t∈[0,1] ⇒ GP(0,K),

where GP(0,K) is a Gaussian process with mean 0 and the symmetric covariance function

K defined by:

K (t1, t2) =



























t1Σ(3t2 − t1)/(6t2) , for 0 < t1 f t2;

t2Σ/3, for t1 = 0, t2 ̸= 0;

0, for t1 = t2 = 0.

In [MW18], McRedmond and Wade investigate the asymptotic properties of the convex

hull formed by the first n steps of planar random walks, focusing on the perimeter length

Ln, the diameter Dn, and the overall shape of the convex hull. They establish several key

results under various assumptions. For random walks with non-zero mean drift (µ ̸= 0),

they show that, with probability one, the ratio of the perimeter to the diameter converges

to 2:

Ln

Dn
→ 2 a.s.

This result assumes that E∥Z∥ < ∞. In the case of zero drift (µ = 0), they demonstrate

that the shape of the convex hull infinitely often approximates any unit-diameter compact

convex set K containing the origin:

liminf
n→∞

ρH

Ä

D−1
n Hn,K

ä

= 0 a.s.

This result requires the additional assumption that E∥Z∥2 < ∞ and that the covariance

matrix Σ is positive definite. For the zero-drift case, they also show that the ratio of the

perimeter to the diameter oscillates between 2 and π almost surely:

liminf
n→∞

Ln

Dn
= 2 and limsup

n→∞

Ln

Dn
= π a.s.

For a random walk with non-zero mean drift, they prove L2 convergence of the perimeter,

establishing that:

n−1/2 |Ln −2Sn · µ̂| → 0 in L2,
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Additionally, they find that the expected perimeter behaves asymptotically as n+ logn:

E[Ln] = 2∥µ∥n+
σ2

µ§

∥µ∥ logn+o(logn),

where σ2
µ§ = σ2 − σ2

µ and σ2
µ = E[(Z − µ) · µ̂]2. For the diameter Dn in the case of

non-zero drift, they prove L2 convergence:

n−1/2 |Dn −Sn · µ̂| → 0 in L2.

Furthermore, if µ ̸= 0, they establish a central limit theorem for the diameter in the regular

case σ2
µ > 0 as:

Dn −E[Dn]
√

Var(Dn)

D−→ N(0,1),

with the variance asymptotically behaving as Var(Dn) ∼ σ2
µn. In the degenerate case

where σ2
µ = 0, they show that the diameter’s variance converges to a constant, and the

errors Dn −∥µ∥n converge to a rescaled square of a normal distribution:

Dn −∥µ∥n
D−→

σ2
µ§ζ 2

2∥µ∥ ,

where ζ ∼ N(0,1). This result assumes higher moment conditions, specifically E∥Z∥p <

∞ for some p > 2. If p > 4, they proved the variance asymptotic in this case as:

lim
n→∞

VarDn =
σ4

µ§

2∥µ∥2
.

The study of other various properties and functionals related to the convex hulls of ran-

dom walks has been a fruitful area of research. Kabluchko, Vysotsky, and Zaporozhets

have contributed significantly to this field. In one of their studies [KVZ17b], they fo-

cused on calculating the expected number of faces on the convex hull formed by random

walks. Previously, Vysotsky and Zaporozhets investigated the probability that a multi-

dimensional random walk with symmetric increments around the center would contain

the origin within its hull [VZ18]. Although their initial findings applied only to two-

dimensional cases, they later expanded their proofs to multiple dimensions using a dif-

19



Introduction Literature Overview

ferent approach in collaboration with Kabluchko [KVZ17a]. Their techniques provided a

robust extension of the Spitzer-Widom formula to higher dimensions.

Prior research has also been done on other characteristics of convex hulls. Khosh-

nevisan’s work [Kho92], for instance, explored a broad range of functionals, Ψ, of the

convex hull that sticks to a monotone relationship with respect to the convex hull set and

maintained an affine scaling property. He established a law of the iterated logarithm for

these functionals, demonstrating that:

limsup
n→∞

Ψ(Hn)

(2n log logn)α/2
= cΨ a.s.

where cΨ is a constant dependent on the functional chosen, and Hn is the convex hull

spanned by a zero-drift random walk. Furthermore, he proved a corresponding lower

bound:

liminf
n→∞

Å

log logn

n

ãα/2

Ψ(Hn) = c′Ψ a.s.

where α and Ψ remain consistent with the previous definition, but c′Ψ is a different deter-

ministic constant. Additionally, Kuelbs and Ledoux [KL98] primarily focused on convex

hulls related to Brownian motion. Their work also addressed some refinements in the

context of random walks, particularly clarifying certain complex scenarios that were not

fully resolved by Khoshnevisan’s earlier proofs.

In [CSŠW24], the authors discussed the asymptotic properties of geometric function-

als associated with the convex hull of a d-dimensional random walk, assuming a non-zero

drift (µ ̸= 0). They established that there exists a constant

Λ(d,k,LZ)

depending on the dimension d, a chosen functional dimension k (where k ∈ {1,2, . . . ,d}),

and the law LZ of the random steps Z. This constant characterizes the almost-sure limit

superior of the scaled k-dimensional volume functional Vk(Hn) of the convex hull Hn of

the first n steps of the walk:

limsup
n→∞

Vk (Hn)
√

2k−1nk+1(log logn)k−1
= Λ(d,k,LZ), a.s.
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The authors emphasize that, for a genuinely d-dimensional random walk, Λ(d,k,LZ)> 0.

While the case d = 1 recovers known results, the primary interest lies in dimensions d g 2.

The authors note that an explicit form for Λ(d,k,LZ) is generally unavailable, except

in the case k = d (the volume functional), where it admits a variational characterization

similar to classical isoperimetric problems. They present this formulation:

Λ(d,d,LZ) = λd · ∥µ∥ ·
»

detΣµ§ ,

where λd is defined by the variational formula:

λd := sup
f∈Ud−1

Vd(H( f )),

where H( f ) denotes the convex hull of a space-time path. Notably, for d = 2, λd takes

the explicit value λ2 =
√

3/6. Additionally, the authors provide a simplified expression

in the case k = 1, stating that:

Λ(d,1,LZ) = ∥µ∥.

The authors also showed similar results for the convex hull of centroids. They showed

that if the covariance matrix is the identity matrix, and µ ̸= 0, then:

limsup
n→∞

A(Gn)

n3/2
√

log logn
= ϑ∥µ∥, a.s.,

where ϑ ∈ (0,∞), and A(Gn) is the area of the convex hull spanned by the centroids of a

two-dimensional planar random walk.

In [CSŠ22], the authors investigate the convex hulls of a random walk whose steps are

in the domain of attraction of a stable law in R
d . The main result is the convergence of

the convex hull of appropriately scaled points towards the convex hull of the path of the

limiting stable Lévy process X :

chull{S0 −a0, . . . ,Sn −an}
bn

⇒ chullX [0,1].

The convergence is proven in the space of all convex and compact subsets of Rd , equipped

with the Hausdorff distance. As an application, the authors also showed the convergence
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of the (expected) intrinsic volumes of these convex hulls:

Vm (chull{S0 −a0, . . . ,Sn −an})
bm

n

D→Vm(chullX [0,1])

under mild moment conditions on the random walk, as well as for the Steiner point:

p(chull{S0 −a0, . . . ,Sn −an})
bm

n

D→ p(chullX [0,1]).
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0.2. POSSIBLE APPLICATIONS

Convex hulls of random walks have many uses across different fields. One common use is

in ecology, where they help study the home ranges of animals, as shown in research from

the late 20th century [Wor87, Wor95]. Luković, Geisel, and Eule [GLM17] expanded

on this by looking at convex hulls generated by continuous random walks, comparing

these paths to the hunting strategies of Mediterranean seabirds and other predators. Their

study also looked at how convex hulls relate to bridges — random walks that return to

the starting point — and multiple walks, which model how animals or groups move and

return to a fixed spot each night, as discussed in other works [LGE13].

In statistics, a method called convex hull peeling, also known as the onion layer prob-

lem, is used to find the centrality of data points. This involves creating a convex hull

around a dataset, removing the outermost points that are least central, and repeating the

process to sort the data points. Researchers like Brozius [Edd82] and Eddy [Bro89] have

studied this technique in depth, focusing on how understanding convex hulls can improve

this method’s effectiveness. Convex hulls also play a key role in technology and image

processing, where algorithms are used to detect the convex hull of objects in images,

speeding up computing tasks. This field has seen many important contributions over the

years [AT78, MT85, Hus88, Ye95].

In biology and medicine, convex hulls are important for approximating protein sur-

faces, which helps identify possible uses for specific proteins [Ye95]. Convex hull-based

classification algorithms are also used to recognize different proteins [MAH+95] and even

to predict the onset of psychosis [BCC+15]. These examples show how useful convex

hulls are in many practical applications, suggesting that further study, especially of con-

vex hulls from random walks, could lead to even more discoveries beyond just ecological

studies of animal movements.
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0.3. THESIS OUTLINE

This dissertation explores the limiting behavior of geometric functionals of convex hulls

generated by random walks. We begin by studying the first-order convergence properties

of the convex hulls of random walks in Chapter 2. This chapter sets the stage by defin-

ing the specific problem of studying the convex hulls of random walks and outlining the

mathematical framework used in our analysis. We show that the convex hull, appropri-

ately scaled, almost surely converges to the convex hull generated by the corresponding

drift vectors and the origin. This result is fundamental as it provides the basis for further

analysis of the geometric functionals of the convex hull.

In Chapter 3, we focus on the perimeter of the convex hull generated by the random

walk. By applying martingale difference sequences and Cauchy’s formula, we success-

fully control the variance and derive an L2 approximation for the deviation of the perime-

ter process. Under certain assumptions about the drift vectors of the random walks, we

determine the asymptotic behavior of the variance of the perimeter. If this asymptotic

variance is positive, we can establish a normal distributional limit for the perimeter. The

chapter also explores the implications of these results and discusses the conditions under

which they hold.

Following the perimeter analysis, we shift our attention to the diameter of the convex

hull in Chapter 4. It is crucial to note that, loosely speaking, the mapping that assigns

diametral segments to polygons is continuous. This continuity allows us to apply similar

techniques used for the perimeter to the diameter process. With additional assumptions

about the set of drift vectors, we achieve results analogous to those for the perimeter

process. We establish both almost sure convergence and central limit theorems for the

diameter under different scenarios. The chapter includes detailed proofs and discussions

of the conditions under which these results hold, emphasizing the geometric and proba-

bilistic aspects of the diameter process.

In the final chapter, we study a single random walk’s convex hull of centroids and

prove the analog results for the perimeter and diameter of such an object. We discuss

the generalization of the assumptions made throughout the dissertation and provide a de-

tailed simulation study to explore the consequences of relaxing these assumptions. This
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simulation study helps us understand the robustness of our results and highlights open

problems for future research. We discuss potential generalizations and provide a com-

prehensive analysis of the simulation results. This chapter serves to open a window to

possible extensions of this work.
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1. MATHEMATICAL PREREQUISITES

Let’s review some essential math topics before starting the central part of this thesis. We

will need to understand concepts like measures, metrics, and convexity. We will also touch

on some basic probability theory to help us along. For those who want to dive deeper,

there are some great books to check out. For metric spaces, you can read [Mag22]. If you

are interested in convexity, take a look at [Gru07]. And for a detailed look at probability

theory, [Dur19, Gut06] are good choices.

1.1. METRIC SPACES

Firstly, let’s recall the definition of a general metric space. Afterward, we will review

some important examples of metric spaces and metrics.

Definition 1.1.1. A metric space is a pair (M ,d), consisting of a set M and a function

d : M ×M → [0,+∞) called a metric. The metric d calculates the distance between any

two points in M satisfying the following properties:

• For any x and y in M , d(x,y) = 0 if and only if x = y.

• (Symmetry) For any x and y in M , d(x,y) = d(y,x).

• (Triangle Inequality) For any x, y, and z in M , we have

d(x,z)f d(x,y)+d(y,z).

Defining the concepts of open and closed balls is crucial in the theory of metric spaces.
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An open ball around a point x ∈ M with radius ε is the subset

B(x,ε) := {y ∈ M : d(x,y)< ε}.

A closed ball around a point x ∈ M with radius ε is the subset

B̄(x,ε) := {y ∈ M : d(x,y)f ε}.

We can quickly induce a topology on a metric space using open balls. Specifically, we

say that a subset A ¦ M is an open set if for every x ∈ A, there exists ε > 0 such that

B(x,ε) ¦ A. On the other hand, we say that A ¦ M is a closed set if M \A is an open

set. The family of open subsets form a topological space (see [Mag22, p. 39]). Using

that result and De Morgan’s laws [Fol99, p. 3], it can be easily shown that an arbitrary

intersection of closed sets is a closed set. Therefore, the following objects are well-

defined.

Definition 1.1.2. Let (M ,d) be a metric space. Let A ¢ M . The interior of A, denoted

by Int(A), is the union of all open sets U such that U ¦ A:

Int(A) =
⋃

{U ¦ M : U is open and U ¦ A}.

The closure of A, denoted by Cl(A), is the intersection of all closed sets V such that A¦V :

Cl(A) =
⋂

{V ¦ M : V is closed and A ¦V}.

The boundary of A, denoted by ∂A, is the set difference Cl(A)\ Int(A):

∂A = Cl(A)\ Int(A).

Consider two metric spaces (MX ,dX) and (MY ,dY ). Let f : MX → MY and let a ∈
MX . We say that f is (pointwise) continuous at the point a if the following condition is

satisfied:

∀ε > 0,∃δ > 0 such that ∀x ∈ MX ,dX(x,a)< δ =⇒ dY ( f (x), f (a))< ε .
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We can also describe the condition for continuity at a using open balls, making our rea-

soning more efficient without losing clarity [Mag22, p. 52]:

∀ε > 0,∃δ > 0 such that f (B(a,δ ))¢ B( f (a),ε).

A mapping f : MX → MY is said to be continuous if it is continuous at each a ∈ MX .

Consider the sequence (xn)
∞
n=1 in the metric space (M ,d). A point a ∈ M is called

the limit of the sequence (xn)
∞
n=1 if for every ε > 0, there exists a number N ∈N such that

xn ∈ B(a,ε) for all n g N. We denote this by:

lim
n→∞

xn = a

or, more informally, by xn → a. We say that the sequence (xn)
∞
n=1 converges in M if it has

a limit. If the limit exists, it is unique [Mag22, p. 39], so the definite article ’the’ makes

sense. We can define the limit limx→a f (x) as follows. For a given b ∈ MY , we say that f

has the limit b at the point a, and we write

lim
x→a

f (x) = b

if the following condition holds:

∀ε > 0,∃δ > 0 such that ∀x ∈ MX ,0 < dX(x,a)< δ =⇒ dY ( f (x),b)< ε.

Using the upper definition of a limit, we easily characterize the continuity as follows

[Mag22, Prop. 2.24].

Proposition 1.1.3. Function f is continuous at a if and only if:

lim
x→a

f (x) = f (a).

Finally, the following proposition relates the continuity with the limits of sequences

[Mag22, Prop. 2.29].

Proposition 1.1.4. Let f : MX → MY . The following conditions are equivalent:
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(1) f is continuous.

(2) For every x ∈ MX , and for every sequence (an)
∞
n=1 in MX such that limn→∞ an = x,

we have limn→∞ f (an) = f (x).

An open covering of M is a family (Ui)i∈I of sets, each of which is an open set in M ,

such that:

M =
⋃

i∈I

Ui.

A metric space (M ,d) is called compact if for every open covering of M , there exists

a finite subcovering. In other words, if (Ui)i∈I is a collection of open sets such that

M =
⋃

i∈I Ui, then there must be a finite subset {i1, . . . , in} ¢ I such that M =
⋃n

k=1Uik .

We say that M ¦M is a compact subset if it is a compact space with respect to the relative

topology.

We will work with specific metric space types and use special notations for each.

Starting with the Euclidean metric on R - the metric is the absolute value of the difference

between any two real numbers. For any x,y ∈ R, this distance is expressed as d(x,y) =

ρ(x,y) := |x− y|, where |x| represents the absolute value of a number.

The concept extends to vector distances for spaces of higher dimensions, specifically

R
d . In this context, if we have a vector x = (x1,x2, . . . ,xd)

¦ ∈R
d , we define its Euclidean

norm as ∥x∥ :=
»

x2
1 + . . .+ x2

d . Given two vectors x,y ∈ R
d , the Euclidean distance be-

tween them is calculated as d(x,y) = ρE(x,y) := ∥x− y∥. The proof of the following

proposition can be found in [Mag22, Prop. 4.15]

Proposition 1.1.5. A subset A ¦ R
d is a compact set if and only if it is bounded and

closed, and if and only if for every sequence (xn)
∞
n=1 ¦ A there exists a convergent subse-

quence.

Let’s introduce two sets of notation that will be useful to us. For the unit sphere in R
d ,

we will use the symbol Sd−1. This set is defined as:

S
d−1 :=

¶

x ∈ R
d : ∥x∥= 1

©

.
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Additionally, for the unit ball in R
d , we will denote it by B

d . The set gives the unit ball:

B
d :=
¶

x ∈ R
d : ∥x∥ f 1

©

.

Finally, we often need to expand set A by an arbitrary ε . This set will be denoted as:

Aε :=
¶

x ∈ R
d : ρE(x,A)f ε

©

.

We explore the concept of Euclidean distance between a point and a set. For a single

point x and a set A, the distance is the smallest possible distance between x and any point

y within A, expressed as:

d(x,A) = ρE(x,A) := inf
y∈A

d(x,y).
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1.2. CONVEX SETS

We begin this section by defining a convex set in R
d . Simply put, a set is convex if it

contains every line segment connecting two points within the set.

Definition 1.2.1. A subset A ¦ R
d is called convex if it meets the following criterion:

for any points x and y in A, and any real number t in the interval 0 f t f 1, the point

(1− t)x+ ty is also in A.

One can easily show that if (Ai)i∈I is a collection of convex sets, then
⋂

i∈I Ai is also a

convex set [Sol19, Thm. 3.8]. Given a set A in R
d , its convex hull, chull(A), is defined as

the intersection of all convex sets in R
d that contain A. Since the intersection of convex

sets is always convex, chull(A) is convex, and it is the smallest convex set in R
d with

respect to set inclusion that contains A. For the study of convex hulls, we need the fol-

lowing concept: Let x1, . . . ,xn ∈R
d . Any point x of the form x = λ1x1+ · · ·+λnxn, where

λ1, . . . ,λn g 0 and λ1 + · · ·+ λn = 1, is called a convex combination of x1, . . . ,xn. The

following result is a simple consequence of Carathéodory’s theorem (see [Gru07, Thm.

3. 1]).

Proposition 1.2.2. Let A ¦ R
d be compact. Then chull(A) is compact.

Let K d denote the collection of all compact and convex subsets of Rd . Similarly, let

K d
0 represent the collection of all compact and convex subsets of Rd that contains the

origin. We define a polygon as the convex hull of a finite set of points whose interior is

non-empty. If A is a polygon, we denote by V (A) the set of vertices - the smallest possible

set of points such that the convex hull of these points coincides with A. Let Pd ¦ K d

and Pd
0 ¦ K d

0 denote the collections of polygons within the respective collections of

compact and convex sets.

The support function of A ¦ K d is function hA : Rd → R, defined by:

hA(u) = sup{u · y : y ∈ A} for u ∈ R
d.

We need to establish the appropriate metric to construct the metric spaces from these
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collections. The Hausdorff metric ρd
H on K d is defined as follows:

ρd
H(A,B) = max

ß

max
x∈A

min
y∈B

∥x− y∥,max
y∈B

min
x∈A

∥x− y∥
™

for A,B ∈ K
d.

There are equivalent definitions of the Hausdorff metric, which are given in the following

proposition (see [Gru07, Prop 6.3]).

Proposition 1.2.3. Let A,B ∈ K . Then:

• ρd
H(A,B) = inf

¶

δ g 0 : A ¦ Bδ ,B ¦ Aδ
©

.

• ρd
H(A,B) = max

{

|hA(u)−hB(u)| : u ∈ S
d−1
}

.

• ρd
H(A,B) is the maximum distance a point in one of the bodies A or B can have from

the other body.

Finally, we have the following metric space.

Proposition 1.2.4. (K d,ρd
H), (K

d
0 ,ρd

H), (P
d,ρd

H), and (Pd
0 ,ρ

d
H) are metric spaces.

In the following discussion, we may focus only on the case where d = 2. If that is the

case, we will omit the notation for dimension and simply write K ,K0,P , and P0. The

perimeter of a set A ∈ K is defined as:

Per(A) := lim
ε→0+

Å

λ2 (A
ε)−λ2(A)

ε

ã

,

where λ2 is the two-dimensional Lebesgue measure (see Example 1.3.1). The existence

of this limit is assured by Steiner’s formula (1.1), which represents λ2 (A
ε) as a quadratic

polynomial in ε , with coefficients derived from the intrinsic volumes of A:

λ2 (A
ε) = λ2(A)+ ε Per(A)+O

Ä

ε2
ä

as ε → 0+.

On the other hand, the diameter of A ∈ K is defined as:

diam(A) = sup
x,y∈A

∥x− y∥.
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Working with the general definitions of perimeter and diameter is quite inconvenient.

Hence, we use the Cauchy surface formula, which relates the projections of the convex

sets to the perimeter and diameter. Cauchy’s surface area formula is a remarkable and

well-known result in integral geometry. It states that the average area of a convex body’s

projections corresponds to the body’s surface area, multiplied by a constant that depends

on the dimension. For a convex body A ∈ K d and u ∈ S
d−1, we denote by A | u§ the

projection of A onto the (d −1)-dimensional subspace of Rd perpendicular to u.

Theorem 1.2.5 (Cauchy’s surface area formula). Let A ∈ K d be a convex and compact

set. Then

S(A) =
1

λd−1

(

Bd−1
)

∫

Sd−1
λd−1

Ä

A | u§
ä

du.

where S(A) denotes the volume of the surface of A, and λd represents the d-dimensional

Lebesgue measure described in Example 1.3.1.

Cauchy’s surface area formula was initially demonstrated by Cauchy for dimensions

n = 2 and n = 3 in 1841 and 1850, respectively [Cau41, Cau50]. We refer the reader

to [TV16] for detailed proof of this assertion, but we find this result so important that we

include the proof in the Appendix. If d = 2, Cauchy’s surface area formula reduces to the

following.

Corollary 1.2.6. Let A ∈ K0 be a convex and compact set. Then:

Per(A) =
1

2π

∫

S1
λ1 (A | u)du =

∫ π

0

Å

max
x∈A

(x · eθ )−min
x∈A

(x · eθ )

ã

dθ =
∫ 2π

0
hA(eθ )dθ ,

where eθ is a unit vector directed by an angle θ .

Proof. The first equality follows because, in two-dimensional space, orthogonal sub-

spaces are one-dimensional. The second equality follows because:

λ1(A|u) = max
x∈A

(x · eθ )−min
x∈A

(x · eθ ),

where θ ∈ [0,2π) is such that u = eθ . With the appropriate parametrization of S1 (the
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bijection u ∈ S
1 ´ θ ∈ [0,2π]), we have πdθ = du and:

1

2π

∫

S1
λ1 (A | u)du =

1

2

∫ 2π

0

Å

max
x∈A

(x · eθ )−min
x∈A

(x · eθ )

ã

dθ .

Since

max
x∈A

(x · eθ )−min
x∈A

(x · eθ ) =−(max
x∈A

(x · eθ+π)−min
x∈A

(x · eθ+π)),

we have that:

1

2

∫ 2π

0

Å

max
x∈A

(x · eθ )−min
x∈A

(x · eθ )

ã

dθ =
∫ π

0

Å

max
x∈A

(x · eθ )−min
x∈A

(x · eθ )

ã

dθ .

The third equality follows from the fact that for θ ∈ [π,2π], maxx∈A(x ·eθ ) =−minx∈A(x ·
eθ ), and recall that maxx∈A(x · eθ ) is precisely hA(eθ ). □

For the diameter, the situation is somewhat simpler. Specifically, the diameter can be

obtained as the length of the maximum possible projection of a convex and compact set in

the direction of a unit vector eθ . The following theorem gives the result for the diameter.

Theorem 1.2.7. Let A ∈ K be a convex and compact set. Then

diam(A) = sup
0fθfπ

Å

max
x∈A

(x · eθ )−min
x∈A

(x · eθ )

ã

.

Proof. Since A is compact, for each θ there exist points x,y ∈ A such that

max
x∈A

(x · eθ )−min
x∈A

(x · eθ ) = x · eθ − y · eθ = (x− y) · eθ f ∥x− y∥.

Thus,

sup
0fθfπ

Å

max
x∈A

(x · eθ )−min
x∈A

(x · eθ )

ã

f sup
x,y∈A

∥x− y∥= diam(A).

It remains to show that

sup
0fθfπ

Å

max
x∈A

(x · eθ )−min
x∈A

(x · eθ )

ã

g diam(A).

This is clearly true if A consists of a single point, so let us assume that A contains at least

two points. Suppose that the diameter of A is achieved by points x,y ∈ A such that x ̸= y,
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x

y

θ

Figure 1.1: Illustration of the Cauchy formula for the diameter.

and let z = y− x such that ẑ := z/∥z∥= eθ0
for some θ0 ∈ [0,π]. Then,

sup
0fθfπ

Å

max
x∈A

(x · eθ )−min
x∈A

(x · eθ )

ã

g max
x∈A

(x · eθ0
)−min

x∈A
(x · eθ0

)

g y · eθ0
− x · eθ0

= z · ẑ = ∥z∥= diam(A),

as required. □

The mean width and Steiner point of a set A ∈ K d are defined as follows:

w(A) =
2

ϖd

∫

Sd−1
sA(θ)σ(dθ) and p(A) =

1

κd

∫

Sd−1
sA(θ)θσ(dθ),

where σ(dθ) represents the surface measure on the unit sphere S
d−1, ϖd = σ

(

S
d−1
)

denotes the total surface measure of Sd−1, and sA(θ) := hA(eθ ). The term κd = λd

(

B
d
)

is the d-dimensional volume of the unit ball Bd . These quantities are given by κd =

πd/2/Γ(1+d/2) and ϖd = dκd .

The outer parallel body of A at a distance ρ g 0 is defined as A+ρBd (see Minkowski

sum in (A.6)). The classical Steiner formula [Gru07][Thm. 6.6, Prop. 6.7] expresses the

d-dimensional Lebesgue measure of a set A expanded by a ball of radius ρ as a polyno-
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mial of degree at most d, with coefficients that are significant geometric quantities. The

formula is given by:

λd

Ä

A+ρBd
ä

=
d

∑
m=0

ρd−mκd−mVm(A), (1.1)

where V0(A), . . . ,Vd(A) are known as the intrinsic volumes of the set A. It is established

that V0(A) = 1 and V1(A) is proportional to the mean width of A, specifically:

V1(A) =
dκd

2κd−1

w(A). (1.2)

For d = 2, V1(A) corresponds to half the mean width of A. Additionally, Vd−1(A) equals

half the surface area of A, and Vd(A) is the d-dimensional volume of A. It is worth noting

that the mappings A 7→ Vm(A) for m ∈ {0,1, . . . ,d} and A 7→ p(A) are continuous with

respect to the Hausdorff distance on compact convex sets, as detailed in [BBS07, Theorem

III.1.1] and [Sch13, Lemma 1.8.14].

36



Mathematical Prerequisites Probability theory

1.3. PROBABILITY THEORY

Let Ω be a non-empty set. We assume that F is a σ -field (or σ -algebra), meaning it is a

non-empty collection of subsets of Ω that satisfies the following properties:

(i) If A ∈ F , then Ac ∈ F .

(ii) If {Ai} is a countable sequence of sets in F , then
⋃

i Ai ∈ F .

Since ∩iAi = (∪iA
c
i )

c, it follows that a σ -field is also closed under countable intersections.

The pair (Ω,F ) is referred to as a measurable space, which is a structure where we can

define a measure. A measure is a nonnegative, countably additive set function µ : F →
[0,+∞] that satisfies:

(i) µ(A)g 0 and µ( /0) = 0 for all A ∈ F .

(ii) If {Ai} is a countable sequence of disjoint sets in F , then

µ

Ç

⋃

i

Ai

å

= ∑
i

µ (Ai) .

If µ(Ω) = 1, then µ is called a probability measure. We denote probability measures by

P. A probability space is defined as a triple (Ω,F ,P).

Example 1.3.1 (Lebesgue measure on R). It follows immediately from the definition

that if Fi, for i ∈ I, are σ -fields, then
⋂

i∈I Fi is also a σ -field. From this, we have that

if we have a set Ω and a collection A of subsets of Ω, there exists a smallest σ -field

containing A . This is known as the σ -field generated by A and is denoted by σ(A ).

Let Rd denote the Borel sets, which are the smallest σ -field containing the open sets

in R
d . Measures on (R,R1) are defined by providing a Stieltjes measure function with

the following properties:

(i) F is non-decreasing.

(ii) F is right-continuous, meaning limy→x+ F(y) = F(x).
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Associated with each Stieltjes measure function F , there is a unique measure µ on (R,R1)

such that µ((a,b]) = F(b)−F(a). When F(x) = x, the resulting measure (after compe-

tition and expanding the σ -field to Lebesgue measurable sets) is known as the Lebesgue

measure, denoted by λ1. The proof of this statement can be read in [Dur19, Theorem

1.1.4]. This measure can be easily extended to R
d , and we denote it with λd (see [Sar02,

Note 9.4]). If the dimension is known from the context, we will simply write λ .

A function X : Ω → S is called a random mapping from measurable space (Ω,F ) to

measurable space (S,S ) if for every B ∈ S :

X−1(B) := {ω ∈ Ω : X(ω) ∈ B} ∈ F .

If (S,S ) = (Rd,Rd) and d > 1, then X is referred to as a random vector. When d = 1,

X is called a random variable. If X g 0 is a random variable on (Ω,F ,P), its expected

value is defined as

E[X ] =
∫

X(ω)dP(ω),

which always exists but may be infinite. To extend this definition to the general case,

consider the positive part x+ =max{x,0} and the negative part x− =max{−x,0} of x. We

say that E[X ] exists and set E[X ] =E[X+]−E[X−] whenever this difference is meaningful,

i.e., when either E[X+] < ∞ or E[X−] < ∞. The expected value E[X ] is often called the

mean of X and denoted by µ . Since E[X ] is defined by integrating X , it inherits all

the properties of integrals. If X is a random vector, we say that X is integrable if each

component of X is integrable in the upper sense. In this case, the expected vector is called

the drift vector.

If k is a positive integer, then E[Xk] is referred to as the kth moment of random variable

X . If E[X2]< ∞, the variance of X is defined as Var(X) = E[(X −µ)2], where µ = E[X ].

One can observe that Var(X) g 0. The covariance matrix of a d-dimensional random

vector X is given by:

Cov(X) := E [(X −E[X ])(X −E[X ])⊺] ,

where we understand X as a column vector. The usual representation of the covariance
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matrix is the following:

Cov(X) =

















Var(X1) Cov(X1,X2) . . . Cov(X1,Xd)

Cov(X2,X1) Var(X2) . . . Cov(X2,Xd)
...

...
. . .

...

Cov(Xd,X1) Cov(Xd,X2) · · · Var(Xd)

















,

where Xi is the i-th coordinate of X , and the covariance between two random variables is

defined as:

Cov(Xi,X j) := E[(Xi −E[Xi])(X j −E[X j])].

Thus, Cov(X) is a symmetric, positive-semidefinite matrix [Sar02, p. 317-318], since

Cov(Xi,X j) = Cov(X j,Xi).

If a variable has a finite k-th moment, then all its lower moments are also finite (see

[Ash14, Lem. 5.10.5]). For a nonnegative random variable X and any positive number a,

the probability that X is at least a is at most the expectation of X divided by a:

P(X g a)f E[X ]

a
.

This result is known as the Markov inequality (see [Gut06, Thm. 1.1]). A direct conse-

quence of the Markov inequality is the Chebyshev inequality (see [Gut06, Thm. 1.4]). It

states that if X is a random variable with a finite mean µ and finite variance σ2, and k is

a positive real number, then:

P(|X −µ| g k)f σ2

k2
.

Finally, for any two random variables X and Y , the following inequality holds:

|E[XY ]| f
»

E[X2]E[Y 2],

with equality if and only if X = αY for some constant α ∈ R. This result is known as the

Cauchy-Schwarz inequality (see [Gut06, Thm. 3.1]).

In probability theory, several types of convergence of random variables are consid-
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ered. Unless otherwise specified, we assume that all random variables are defined on the

same probability space (Ω,F ,P). We say that a sequence of random variables (Xn)
∞
n=1

converges almost surely (a.s.) to a random variable X if:

P

({

ω ∈ Ω : X(ω) = lim
n→∞

Xn(ω)
})

= 1.

We denote this by Xn
a.s.−−→X . Note that this definition is extendable to any metric space, not

just R. Such a limit is almost surely unique. We can observe that the above definition can

be generalized to the case of a sequence of random elements mapping into a metric space

equipped with the Borel σ -field. We say that a sequence of random variables (Xn)
∞
n=1

converges in probability to a random variable X if for every ε > 0 it holds that:

lim
n→∞

P({|Xn −X | g ε}) = 0.

We denote this by Xn
P−→ X . Such a limit is also almost surely unique. Let 1 f p < ∞

and suppose that Xn and X have finite p-th moments. We say that a sequence (Xn)
∞
n=1

converges in the Lp norm to X if:

lim
n→∞

E(|Xn −X |p) = 0.

We denote this by Xn
Lp

−→ X . Finally, a sequence (Xn)
∞
n=1 of real-valued random variables,

with cumulative distribution functions (Fn)
∞
n=1, is said to converge in distribution to a

random variable X with cumulative distribution function F if:

lim
n→∞

Fn(x) = F(x),

for every number x ∈R at which F is continuous. We denote this by Xn
D−→ X . Finally, let

µ,µ1,µ2, . . . be probability measures on R
d . We say that the sequence (µn)

∞
n=1 converges

weakly to µ if the following holds:

lim
n→∞

∫

Rd
gdµn =

∫

Rd
gdµ
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for all continuous and bounded functions g : Rd →R. When these measures are generated

by random variables, this concept of weak convergence is equivalent to convergence in

distribution (see [Sar02, Thm 13. 13]). We denote it with µn ⇒ µ , or Xn ⇒ X if we have

the associated random variables/vectors. We have the following relationship between

these types of convergence (see [Sar02, Thm. 10.12, Prop 10.21]).

Theorem 1.3.2. The following implications hold:

(i) Xn
a.s.−−→ X ⇒ Xn

P−→ X .

(ii) Xn
Lp

−→ X ⇒ Xn
P−→ X for 1 f p < ∞.

(iii) Xn
P−→ X ⇒ Xn

D−→ X , where the implication is an equivalence if X is a constant

almost surely.

If we have a sequence of random variables (Xn)
∞
n=1 that converges almost surely to

a variable X , under certain conditions, we can also achieve convergence of their corre-

sponding expectations. The Monotone Convergence Theorem (see [Dur19, Thm. 1.5.7])

states that if Xn g 0 are random variables and Xn ↑ X , then

E[Xn] ↑ E[X ].

The Dominated Convergence Theorem (see [Dur19, Thm. 1.5.8]) states that if Xn → X

almost surely, |Xn| f Y for all n, and Y is integrable, then

E[Xn]→ E[X ].

Lastly, consider sequences of random variables (Xn)
∞
n=1, (Yn)

∞
n=1, and (Zn)

∞
n=1 that are

P-integrable, and suppose that we have almost sure convergence:

X := lim
n→∞

Xn, Y := lim
n→∞

Yn, Z := lim
n→∞

Zn.

Assume that Y and Z are integrable random variables. Additionally, suppose that for all

ω ∈ Ω and n ∈ N:

Yn(ω)f Xn(ω)f Zn(ω).

41



Mathematical Prerequisites Probability theory

Finally, if the following conditions hold:

lim
n→∞

E[Yn] = E[Y ] and lim
n→∞

E[Zn] = E[Z],

then:

lim
n→∞

E[Xn] = E[X ],

and the latter expectation is finite. This result is known as Pratt’s lemma (see [Gut06,

Thm. 5.5]). Another important convergence result that we will use is Slutsky’s theorem

(see [Gut06, Thm. 11.4]). This theorem does not connect different types of convergence

directly but allows us to consider sums of two random variables and pass the sum through

the limit in a specific way.

Theorem 1.3.3 (Slutsky). Let (Zn)
∞
n=1 and (Yn)

∞
n=1 be sequences of random variables

such that Zn
D−→ Z as n → ∞ and Yn

P−→ c as n → ∞ for some constant c. Then Zn +Yn
D−→

Z + c as n → ∞.

A random walk is defined as the sequence of partial sums of a series of random vari-

ables, (Zn)
∞
n=1, which are typically assumed to be independent and identically distributed.

These random variables are referred to as increments in this context. Below is the formal

definition we will use.

Definition 1.3.4 (Random walk). Let d ∈ N, and suppose that Z and (Zn)
∞
n=1 are i.i.d.

random vectors in R
d . A random walk (Sn)

∞
n=0 is the sequence of partial sums Sn :=

∑
n
i=1 Zi with S0 := 0.

If we assume that E∥Z∥ < ∞, we denote the drift vector of the walk by EZ = µµµ ,

and we will represent this assumption with (W(µµµ)). If we additionally require that the

increments have a finite second moment, E∥Z∥2 < ∞, we denote the covariance matrix of

the increment Z by Σ, and we will represent this assumption with (W(µµµ,Σ)).

We will frequently use several classical results of random walks. One fundamental

result is Kolmogorov’s Strong Law of Large Numbers (see [Gut06, Thm. 7.1]), which

asserts that the average of the steps in a random walk converges almost surely to the drift

vector.
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Theorem 1.3.5 (Strong Law of Large Numbers). For a random walk characterized by

(W(µµµ)), we have:

Sn

n

a.s.−−→ µµµ.

Additionally, if f : Rd → (M ,d) is a continuous mapping from R
d to a metric space

(M ,d), then:

f

Å

Sn

n

ã

a.s.−−→ f (µµµ).

We denote by Z ∼ N
(

µ,σ2
)

the normal distribution with mean µ ∈ R and variance

σ2 > 0. This means Z is a random variable on R with the probability density function:

f (x) =
1√

2πσ2
e
− (x−µ)2

2σ2 .

In this context, E[Z] = µ and Var(Z) = σ2. The standard normal distribution, denoted by

ζ , is the special case where µ = 0 and σ2 = 1. The multivariate normal distribution in d

dimensions is denoted by Z ∼ Nd(µ,Σ), where µ is the d-dimensional drift vector, and Σ

is the covariance matrix. When the determinant of the covariance matrix det(Σ) > 0, the

normal distribution is defined by the density function:

f (x) =
1

(2π)d/2
√

det(Σ)
exp

Å

−1

2
(x−µ)¦Σ−1(x−µ)

ã

,

where x is also a d-dimensional vector. The standard d-dimensional normal random vari-

able has a covariance matrix Id , the d-dimensional identity matrix, and a mean vector of

0. In the degenerate case where Σ is a d ×d matrix of zeros, the point mass at µ defines

the multivariate normal distribution.

Under the condition (W(µµµ,Σ)), the central limit theorem provides a quantification of

the error size as the average step converges (see [Dur19, Thm. 3.4.1]).

Theorem 1.3.6 (Lévy Central Limit Theorem). Given the random walk as defined in

Definition 1.3.4 with condition (W(µµµ,Σ)), the central limit theorem states that

1√
n
(Sn −nµµµ)

D−→ Z,

where Z ∼ N (0,Σ) is a d-dimensional normal random variable.
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The following corollary provides the Central Limit Theorem for the case where we

consider functions of random variables. The proof of this theorem can be found in [Dur19,

Theorem 3.2.10].

Corollary 1.3.7 (Continuous Mapping Theorem). Let f be a measurable function and let

D f = {x : f is discontinuous at x}. If Xn
D−→ X and P(X ∈ D f ) = 0, then f (Xn)

D−→ f (X).

Additionally, if f is bounded, then E[ f (Xn)]→ E[ f (X)].

The following version of the Central Limit Theorem covers the case when the incre-

ments in the random walk are not identically distributed (see [Dur19, Thm. 3.4.10]).

Theorem 1.3.8 (Lindeberg-Feller Central Limit Theorem). Consider a sequence of in-

dependent random variables Xn,m for each n, where 1 f m f n and E[Xn,m] = 0. Assume

the following conditions hold:

(i) The sum of the variances converges to a positive constant:

n

∑
m=1

E

Ä

X2
n,m

ä

→ σ2 > 0.

(ii) For any ε > 0, the sum of the expected values of squared variables, conditioned on

exceeding ε , approaches zero:

lim
n→∞

n

∑
m=1

E

Ä

|Xn,m|2 ·1({|Xn,m|> ε})
ä

= 0.

Under these conditions, the sum Sn = Xn,1 + · · ·+Xn,n converges in distribution to σ χ as

n → ∞, where χ ∼ N (0,1).

Given are a probability space (Ω,F ,P), a σ -field F0 ¢ F , and a random variable

X ∈ F with E|X | < ∞. We define the conditional expectation of X given F0, noted as

E[X | F0], to be any random variable Y that has

(i) Y ∈ F0, i.e., is F0 measurable

(ii) for all A ∈ F0,
∫

A XdP=
∫

AY dP
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Any Y satisfying (i) and (ii) is said to be a version of E[X | F0]. The conditional expec-

tation exists and is almost certainly unique (see [Dur19, Section 4.1]). Let F = (Fn)
∞
n=0

be a filtration, which is an increasing sequence of σ -fields. A sequence (Xn)
∞
n=0 is con-

sidered adapted to F if each Xn is measurable with respect to Fn for all n g 0. If the

sequence (Xn)
∞
n=0 satisfies the following conditions:

(i) E |Xn|< ∞,

(ii) (Xn)
∞
n=0 is adapted to F,

(iii) E [Xn+1 | Fn] = Xn for all n g 0,

then X is called a martingale with respect to the filtration F. Consider an adapted sequence

(Yn)
∞
n=0 on a filtered space (Ω,F ,P,F). The sequence (Yn)

∞
n=0 is called a martingale

difference sequence if it meets the following criteria for all n:

(i) E |Yn|< ∞, and

(ii) E [Yn | Fn−1] = 0, almost surely.

By definition, if Xn is a martingale, then the sequence defined by Yn = Xn−Xn−1 will form

a martingale difference sequence. This explains the terminology used. A one-dimensional

Brownian motion is a real-valued process (Bt)
∞
t=0 that possesses the following properties:

(i) For any sequence of times t0 < t1 < .. . < tn, the random variables Bt0 , Bt1 −Bt0 , . . .,

Btn −Btn−1
are independent.

(ii) For any s, t g 0, the distribution of B(s+ t)−B(s) is given by

P(Bs+t −Bs ∈ A) =
∫

A

1√
2πt

exp

Ç

−x2

2t

å

dx,

for any Borel set A.

(iii) The function t 7→ Bt is continuous with probability one.

The final theorem we will present is Donsker’s theorem, which is the functional equiv-

alent of the Central Limit Theorem. Let

S(u) =







Sk if u = k ∈ N

linear on [k,k+1] for k ∈ N

45



Mathematical Prerequisites Probability theory

Essentially, it states that a properly scaled random walk behaves like Brownian motion in

the limit. The proof of this statement can be found in [Dur19, Thm. 8.1.4].

Theorem 1.3.9 (Donsker). Let X1,X2, . . . be i.i.d. with a distribution F , which has mean

0 and variance 1, and let Sn = X1 + · · ·+Xn. Then:

S(n·)√
n

⇒ B·,

i.e., the associated measures on C[0,1] (endowed with the uniform norm topology) con-

verge weakly.
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2. FIRST-ORDER CONVERGENCE

This chapter examines the geometric properties of sets of points created by random walks,

focusing on understanding first-order convergence. Knowing these properties helps us

better understand how different systems that use random walks behave. Afterward, using

the continuity of intrinsic volume operators, we show the law of large numbers for these

processes.

2.1. SETTING OF THE PROBLEM

Let (Z
(k)
i )∞

i=1 be m sequences of independent and identically distributed planar random

vectors, which are mutually independent, but not necessarily identically distributed, for

k = 1, . . . ,m. Let also (S
(k)
n )∞

n=0 be the corresponding random walks:

S
(k)
0 := 0, S

(k)
n :=

n

∑
i=1

Z
(k)
i , k = 1, . . . ,m.

The main objects we focus on in this thesis are the perimeter process

Ln := Per
Ä

chull
¶

S
(k)
j : 0 f j f n, k = 1, . . . ,m

©ä

, n g 0,

and the diameter process

Dn := diam
Ä

chull
¶

S
(k)
j : 0 f j f n, k = 1, . . . ,m

©ä

, n g 0.

Here, Per(A), diam(A), and chull(A) stand, respectively, for the perimeter, the diameter,

and the convex hull of the set A ¦ R
2. Notice that the set chull{S

(k)
j : 0 f j f n, k =

1, . . . ,m} is a.s. a polygon.
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2.2. LAW OF LARGE NUMBERS

Our first main result is the strong law of large numbers for the set chull{S
(k)
j : 0 f j f

n, k = 1, . . . ,m}. Assuming that sequences (Z
(k)
i )∞

i=1, k ∈ {1, . . . ,m}, have finite first

moment, and denoting the drift vector of the k-th random walk by µµµ(k) =E[Z
(k)
1 ], we have

the following result.

Theorem 2.2.1. In the metric space of convex and compact planar sets endowed with

the Hausdorff metric, it holds that

n−1 chull
¶

S
(k)
j : 0 f j f n, k = 1, . . . ,m

©

a.s.−−−→
n→∞

chull{000,µµµ(1), . . . ,µµµ(m)}.

Due to continuity of the perimeter and the diameter functionals (see [LMW18, Lemma

5.7 and Lemma 6.7]), from Theorem 2.2.1 it immediately follows that the processes

(Ln)
∞
n=0 and (Dn)

∞
n=0 converge a.s. to the perimeter, respectively, the diameter of the (pos-

sibly degenerate) polygon spanned by 0,µµµ(1), . . . ,µµµ(m), that is,

Ln

n

a.s.−−−→
n→∞

Per
Ä

chull{0,µµµ(1), . . . ,µµµ(m)}
ä

, (2.1)

and,

Dn

n

a.s.−−−→
n→∞

diam
Ä

chull{0,µµµ(1), . . . ,µµµ(m)}
ä

. (2.2)

Proof of Theorem 2.2.1. Observe first that for sequences (A
(k)
n )∞

n=0, k ∈ {1, . . . ,m}, of

(closed) subsets in R
d that converge, respectively, to (closed) sets A(k) (for k = 1, . . . ,m),

their union converges to the union of the limiting subsets (with respect to ρd
H). Namely, it

is sufficient to prove that

ρd
H

(

m
⋃

k=1

A
(k)
n ,

m
⋃

k=1

A(k)

)

f max
k∈{1,...,m}

ρd
H

Ä

A
(k)
n ,A(k)

ä

. (2.3)

Let

ε = max
k∈{1,...,m}

ρd
H(A

(k)
n ,A(k)).

From the definition of the Hausdorff metric, we have that A
(k)
n ¦ (A(k))ε and A(k) ¦ (A

(k)
n )ε
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holds for all k ∈ {1, . . . ,m}. Consequently,

(

m
⋃

k=1

A(k)

)ε

= (A(1))ε ∪ (A(2))ε ∪ . . .∪ (A(m))ε

§ A
(1)
n ∪A

(2)
n ∪ . . .∪A

(m)
n

=
m
⋃

k=1

A
(k)
n .

Analogously, we deduce

(

m
⋃

k=1

A
(k)
n

)ε

§
m
⋃

k=1

A(k).

Thus,

ρd
H

(

m
⋃

k=1

A
(k)
n ,

m
⋃

k=1

A(k)

)

f ε,

which thereby proves (2.3). Next, in [LMW18, Theorem 5.4] it is established that for a

single random walk (Sn)
∞
n=0 with drift µµµ ,

n−1 {S0,S1, . . . ,Sn} a.s.−−−→
n→∞

{tµµµ : t ∈ [0,1]} .

Hence,

n−1
¶

S
(k)
j : 0 f j f n

©

a.s.−−−→
n→∞

¶

tµµµ(k) : t ∈ [0,1]
©

,

for k ∈ {1, . . . ,m}, and, by applying (2.3), we establish

n−1
¶

S
(k)
j : 0 f j f n, k = 1, . . . ,m

©

a.s.−−−→
n→∞

¶

tµµµ(k) : t ∈ [0,1], k = 1, . . . ,m
©

.

Finally, using [LMW18, Lemma 6.1] the result follows. □

Recall that intrinsic volumes V1, . . . ,Vd are the classical geometric functionals of d-

dimensional convex and compact sets. It is known that V1 is proportional to the mean

width of the set, Vd−1 equals one-half of the surface area of the set, while Vd is the volume

of the set. Furthermore, recall that all these functionals are continuous mappings (with

respect to the Hausdorff metric), and the ℓ-th intrinsic volume Vℓ is homogeneous of
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degree ℓ, that is, Vℓ(cA) = cℓVℓ(A), for any c g 0. As a consequence of Theorem 2.2.1,

we now conclude

Vℓ

Ä

chull
¶

S
(k)
j : 0 f j f n, k = 1, . . . ,m

©ä

nℓ

a.s.−−−→
n→∞

Vℓ

Ä

chull
¶

{0}∪
¶

µ(k) : k = 1, . . . ,m
©©ä

.

Observe that the above limit is non-trivial if, and only if, there are at least ℓ linearly

independent vectors in the set {µ(k) : k = 1, . . . ,m}. From this, we conclude that in the

planar case, we cannot expect a non-trivial limit for the area functional of the convex hull

of a single random walk under n2 scaling.
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3. PERIMETER PROCESS

In this chapter, we explore the limiting behavior of the perimeter process. Our proofs use

martingale difference sequences and the Cauchy formula for the perimeter. To simplify

the technical details, we focus only on the case of two random walks (m = 2). However,

we will discuss later how the results change if we generalize this to any number of random

walks.

We now introduce some notation that will be used throughout this and the following

chapter. For θ ∈ [0,2π), we let eθ = (cosθ ,sinθ) be the unit vector pointing in the

direction corresponding to this angle. When the sequences (Z
(k)
i )∞

i=1, k ∈ {1,2}, have

finite second moment, the associated covariance matrices are denoted by ΣΣΣ(k) = E[(Z
(k)
1 −

µµµ(k))(Z
(k)
1 −µµµ(k))T ]. Expressing drift vectors µµµ(k), k ∈ {1,2}, in polar coordinates, we

have

µµµ(k) = µ(k)eθ (k) ,

where θ (k) ∈ [0,2π) represents the angle between the drift vector and the positive part of

the x-axis, and µ(k) g 0 stands for the length of the vector µµµ(k). Let θ (0) ∈ [0,2π) be an

angle satisfying the condition

µµµ(1) · eθ (0) = µµµ(2) · eθ (0) .

In an intuitive sense, θ (0) is the direction along which the projections of the drift vectors

are equal. We also define e§
θ (0) , the unit vector perpendicular to this common projection

line, subject to the constraint that e§
θ (0) · eθ (1) g 0.

Before stating our remaining main results, we introduce and discuss an assumption
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that we impose on the drift vectors µµµ(1) and µµµ(2):

000 /∈ {µµµ(1),µµµ(2),µµµ(1)−µµµ(2)}. (A1)

In the case of a single planar zero-drift random walk, in [WX15b] it has been shown that

the process (Ln)
∞
n=0 (with the classical central limit theorem centering and scaling) has

a non-Gaussian distributional limit. Analogously, in the case of two independent planar

random walks, we conjecture that if the assumption (A1) is not satisfied, we can again

expect a non-Gaussian distributional limit.

3.1. MARTINGALE DIFFERENCE SEQUENCE

Let F0 = { /0,Ω}, and

Fn = σ
Ä

S
(k)
j : 0 f j f n, k = 1,2

ä

, n g 1,

be the information about both random walks up to time n. Further, let (Z̃
(1)
i )∞

i=1 and

(Z̃
(2)
i )∞

i=1 be independent copies of (Z
(1)
i )∞

i=1 and (Z
(2)
i )∞

i=1, which are also mutually inde-

pendent. For a fixed i g 1 the resampled random walk at time i is defined by

S
(k,i)
j :=







S
(k)
j , j < i,

S
(k)
j −Z

(k)
i + Z̃

(k)
i , j g i.

(3.1)

The corresponding perimeter processes are given as before,

L
(i)
n := Per

Ä

chull
¶

S
(k,i)
j : 0 f j f n, k = 1,2

©ä

.

In the following lemma we show that

Ln,i := E

î

Ln −L
(i)
n | Fi

ó

, 1 f i f n,

is a martingale difference sequence (see [BW21, p. 124]).

Lemma 3.1.1. Let n ∈ N. Then,
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(i) Ln −E [Ln] = ∑
n
i=1 Ln,i,

(ii) Var [Ln] = ∑
n
i=1E

î

L 2
n,i

ó

, whenever the latter sum is finite.

Proof. Observe that L
(i)
n is independent of Z

(k)
i for both k ∈ {1,2}, so that

E[L
(i)
n | Fi] = E[L

(i)
n | Fi−1] = E [Ln | Fi−1] .

Hence, Ln,i can be expressed as

Ln,i = E [Ln | Fi]−E [Ln | Fi−1] .

Summing over 1 f i f n, we conclude ∑
n
i=1 Ln,i =E [Ln | Fn]−E [Ln | F0] = Ln−E[Ln],

which gives (i). The claim in (ii) follows from the martingale difference property of the

sequence (Ln,i)
n
i=1. □
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3.2. CAUCHY FORMULA FOR PERIMETER

One of the most important contributions to convex analysis is the Cauchy formula for the

perimeter (Corollary 1.2.6). For θ ∈ [0,π], let us define

Mn(θ) := max
0f jfn
k=1,2

Ä

S
(k)
j · eθ

ä

, mn(θ) := min
0f jfn
k=1,2

Ä

S
(k)
j · eθ

ä

.

For a given angle θ , the terms Mn(θ) and mn(θ) denote the maximal and minimal projec-

tions, respectively, of the convex hull onto a line passing through the origin and directed

by the unit vector eθ . Since S
(k)
0 = 0, it is clear that Mn(θ) g 0 and mn(θ) f 0 a.s. The

Cauchy formula expresses the perimeter of the convex set in terms of Mn(θ) and mn(θ):

Ln =
∫ π

0
(Mn(θ)−mn(θ))dθ =

∫ π

0
Rn(θ)dθ ,

where Rn(θ) := Mn(θ)−mn(θ) g 0 is called the parametrized range function. Notice

that the Cauchy formula for the perimeter can be equivalently stated as

Ln =
∫ 2π

0
Mn(θ)dθ . (3.2)

We similarly have that

L
(i)
n =

∫ π

0

Ä

M
(i)
n (θ)−m

(i)
n (θ)

ä

dθ =
∫ π

0
R
(i)
n (θ)dθ

with R
(i)
n (θ) = M

(i)
n (θ)−m

(i)
n (θ) and

M
(i)
n (θ) := max

0f jfn
k=1,2

Ä

S
(k,i)
j · eθ

ä

, m
(i)
n (θ) := min

0f jfn
k=1,2

Ä

S
(k,i)
j · eθ

ä

.

We consider the following difference

Ln −L
(i)
n =

∫ π

0

Ä

Rn(θ)−R
(i)
n (θ)

ä

dθ =
∫ π

0
∆
(i)
n (θ)dθ ,

where ∆
(i)
n (θ) := Rn(θ)−R

(i)
n (θ).

54



Perimeter process Cauchy formula for perimeter

We define two random variables for an angle θ ∈ [0,π]. The first random variable

represents the last time at which the minimal projections of both the first and the second

random walk are achieved. Conversely, the second random variable denotes the first time

at which the maximal projections of both random walks are attained. Formally:

Jn,k(θ) := max

®

argmin
0f jfn

Ä

S
(k)
j · eθ

ä

´

,

and,

Jn,k(θ) := min

®

argmax
0f jfn

Ä

S
(k)
j · eθ

ä

´

.

Notice that we record these time instances for each walk individually. For the resampled

walks, we analogously define variables J
(i)
n,k(θ) and J

(i)
n,k(θ). We further introduce the

random variables I n(θ) and I n(θ), which denote the indices of the random walks (k =

1, or k = 2) where the minimum and maximum projections are reached, respectively. In

the event of a tie, the default choice is k = 1. Analogously, we define the variables I
(i)
n (θ)

and I
(i)
n (θ). Throughout the subsequent proofs, we frequently require that the variable

∆
(i)
n (θ) is dominated by an integrable random variable.

Lemma 3.2.1. For any 1 f i f n, we have that

sup
θ∈[0,π]

|∆(i)
n (θ)| f 2

Ä

∥Z
(1)
i ∥+∥Z̃

(1)
i ∥+∥Z

(2)
i ∥+∥Z̃

(2)
i ∥
ä

.

Proof. Take an arbitrary θ ∈ [0,π]. By definition, we have that

Mn(θ) = S
(I n)

Jn,I n
(θ)

· eθ .

Thus,

M
(i)
n (θ)g S

(I n,i)

Jn,I n
(θ)

· eθ .

If Jn,I n
(θ) < i, then S

(I n,i)

Jn,I n
(θ)

= S
(I n)

Jn,I n
(θ)

, so M
(i)
n (θ) g Mn(θ). On the other hand, if
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Jn,I n
(θ)g i, we have that

S
(I n,i)

Jn,I n
(θ)

= S
(I n)

Jn,I n
(θ)

− (Z
(I n)
i − Z̃

(I n)
i ),

so taking a projection in the direction of θ gives us

M
(i)
n (θ)g S

(I n)

Jn,I n
(θ)

· eθ − (Z
(I n)
i − Z̃

(I n)
i ) · eθ

g Mn(θ)−
Ä

∥Z
(1)
i ∥+∥Z̃

(1)
i ∥+∥Z

(2)
i ∥+∥Z̃

(2)
i ∥
ä

.

In both cases, we have the lower bound on M
(i)
n (θ) as follows

M
(i)
n (θ)g Mn(θ)−

Ä

∥Z
(1)
i ∥+∥Z̃

(1)
i ∥+∥Z

(2)
i ∥+∥Z̃

(2)
i ∥
ä

.

Similar arguments can be applied when the original and resampled maximal projections

are interchanged, thereby demonstrating that

|M(i)
n (θ)−Mn(θ)| f ∥Z

(1)
i ∥+∥Z̃

(1)
i ∥+∥Z

(2)
i ∥+∥Z̃

(2)
i ∥.

The same approach can be employed to establish an analogous upper bound on |m(i)
n (θ)−

mn(θ)|. With this, the assertion of the lemma is verified. □

Before moving on, we show that the convergence in the strong law of large numbers

for the perimeter process, presented in (2.1) and (2.2), also holds in L1 sense.

Corollary 3.2.2. Under the assumptions of Theorem 2.2.1, we have

Ln

n

L1

−−−→
n→∞

Per
Ä

chull{000,µµµ(1),µµµ(2)}
ä

.

Proof. Using the Cauchy formula from (3.2) we have

Ln =
∫ 2π

0
Mn(θ)dθ f 2π max

0f jfn
k=1,2

∥S
(k)
j ∥

f 2π max
k=1,2

n

∑
j=0

∥Z
(k)
j ∥ f 2π

n

∑
j=0

Ä

∥Z
(1)
j ∥+∥Z

(2)
j ∥
ä

.
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Since (Z
(1)
j )∞

j=1 and (Z
(2)
j )∞

j=1 are sequences of i.i.d. random variables, from strong law

we have that a.s.,

n−1
n

∑
j=1

(∥Z
(1)
j ∥+∥Z

(2)
j ∥)→ E[∥Z

(1)
1 ∥+∥Z

(2)
1 ∥]< ∞,

and clearly

E[n−1
n

∑
j=1

(∥Z
(1)
j ∥+∥Z

(2)
j ∥)] = E[∥Z

(1)
1 ∥+∥Z

(2)
1 ∥].

Hence, Pratt’s lemma implies the claim. □
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3.3. CONTROL OF EXTREMA

To make the geometric analysis of the problem a little bit more convenient, we may re-

strict our attention to θ (1),θ (2) ∈ [0,π] such that the projections of their corresponding

drift vectors onto the y-axis are equal. This simplification is justifiable due to the geomet-

ric properties of the convex hull, which remain unchanged under rotation and reflection

operations. After performing these coordinate transformations, we find that we are left

with two mutually exclusive scenarios:

(i) The first drift vector lies in the first quadrant, while the second is in the second

quadrant. The y-axis effectively separates the two vectors.

(ii) Both drift vectors lie in the first quadrant, with the first vector displaying a smaller

angular displacement from the x-axis than the second one.

The described scenarios are illustrated in Figure 3.1. It should be emphasized that

while our mathematical manipulations are made to address the first scenario, they are

not restrained to it. Transitioning to the second scenario does not demand substantially

altering the framework.

µµµ(1)µµµ(2)

Scenario 1

µµµ(2) µµµ(1)

Scenario 2

Figure 3.1: Possible positions of the drift vectors.

Observe that (S
(k)
j ·eθ )

n
j=0, k ∈ {1,2}, are one-dimensional random walks with means

µµµ(k) · eθ = µ(k) cos(θ (k)−θ).
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For an arbitrary ε > 0, define the following subset of angles θ ∈ [0,π]:

Θε
(1>2>0) =

¶

θ ∈ [0,π] : µµµ(1) · eθ −µµµ(2) · eθ > ε, µµµ(2) · eθ > ε
©

,

Θε
(2>1>0) =

¶

θ ∈ [0,π] : µµµ(2) · eθ −µµµ(1) · eθ > ε, µµµ(1) · eθ > ε
©

,

Θε
(1>0>2) =

¶

θ ∈ [0,π] : µµµ(1) · eθ > ε, µµµ(2) · eθ <−ε
©

,

Θε
(2>0>1) =

¶

θ ∈ [0,π] : µµµ(2) · eθ > ε, µµµ(1) · eθ <−ε
©

,

Θε
(0>2>1) =

¶

θ ∈ [0,π] : µµµ(2) · eθ −µµµ(1) · eθ > ε, µµµ(2) · eθ <−ε
©

.

(3.3)

We define these sets in order to divide our domain into segments where we have an infor-

mation about the dominating drift vector, and positivity or negativity of the projections.

In other words, we determine whether we contribute to the minimum or maximum of the

projected line with each walk in each region. The subscripts in the set notations indicate

what happens in each specific region.

For example, Θε
(1>2>0) is the set of angles on which both drift vectors have a strictly

positive projection (greater than some chosen ε > 0), and the first vector has a projection

that is larger for at least ε than the projection of the second drift vector. On this set, with

high probability, the first walk will contribute to the maximum, and the minimum will be

achieved early enough. Similar reasoning can be applied to the rest of the subsets. The

Figure 3.2 illustrates this division.

Because of the earlier discussion about rotations and reflections, we do not need to

consider the set of angles in [0,π] such that the projection of both walks have sufficiently

negatively oriented drifts, and the projection of the first walk is sufficiently greater than

the projection of the second walk. We write

Θε
I := Θε

(1>2>0)∪Θε
(2>1>0), Θε

II := Θε
(1>0>2)∪Θε

(2>0>1), Θε
III := Θε

(0>2>1),

and with Θε we denote the union of these three sets. For γ ∈ (0,1/2) and ε > 0 define the

event En,i(ε,γ) with the following:

• for all θ ∈ Θε
I , Jn,I n(θ)

(θ)< γn, Jn,I n(θ)
(θ)> (1− γ)n, J

(i)

n,I
(i)
n (θ)

(θ)< γn, and

J
(i)

n,I
(i)
n (θ)

(θ)> (1− γ)n,
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µµµ(1)µµµ(2)

Θε
(1>2>0)Θε

(2>1>0)

Θε
(2>0>1)

Θε
(1>0>2)

Figure 3.2: Division of angles from [0,π].

• for all θ ∈ Θε
II, Jn,I n(θ)

(θ) > (1− γ)n, Jn,I n(θ)
(θ) > (1− γ)n, J

(i)

n,I
(i)
n (θ)

(θ) >

(1− γ)n, and J
(i)

n,I
(i)
n (θ)

(θ)> (1− γ)n,

• for all θ ∈Θε
III, Jn,I n(θ)

(θ)> (1−γ)n, Jn,I n(θ)
(θ)< γn, J

(i)

n,I
(i)
n (θ)

(θ)> (1−γ)n,

and J
(i)

n,I
(i)
n (θ)

(θ)< γn,

• for all θ ∈ Θε
(1>2>0), I n(θ) = I

(i)
n (θ) = 1,

• for all θ ∈ Θε
(2>1>0), I n(θ) = I

(i)
n (θ) = 2,

• for all θ ∈ Θε
(1>0>2), I n(θ) = I

(i)
n (θ) = 1, and I n(θ) = I

(i)
n (θ) = 2,

• for all θ ∈ Θε
(2>0>1), I n(θ) = I

(i)
n (θ) = 2, and I n(θ) = I

(i)
n (θ) = 1,

• for all θ ∈ Θε
(0>2>1), I n(θ) = I

(i)
n (θ) = 1.

The idea behind event En,i(ε,γ) is that it occurs with very high probability and that

we have a good control of ∆
(i)
n (θ) on that event, namely, for each region, we condition

how early or late and on which of the walks the minima and maxima of projections will

be achieved. The following proposition establishes our assertion.

Proposition 3.3.1. For any γ ∈ (0,1/2), and any ε > 0, the following hold.

60



Perimeter process Control of extrema

(i) If i ∈ In,γ = {1, . . . ,n}∩ [γn,(1− γ)n], then, a.s., for any θ ∈ Θε
I ,

∆
(i)
n (θ)1(En,i(ε,γ)) =

(

Z
(I n(θ))
i − Z̃

(I n(θ))
i

)

· eθ 1(En,i(ε,γ)) ;

for any θ ∈ Θε
II we have

∆
(i)
n (θ)1(En,i(ε,γ))

=
((

Z
(I n(θ))
i − Z̃

(I n(θ))
i

)

−
Ä

Z
(I n(θ))
i − Z̃

(I n(θ))
i

ä

)

· eθ 1(En,i(ε,γ)) ;

while for any θ ∈ Θε
III we have

∆
(i)
n (θ)1(En,i(ε,γ)) =−

Ä

Z
(I n(θ))
i − Z̃

(I n(θ))
i

ä

· eθ 1(En,i(ε,γ)) .

(ii) If E[∥Z
(k)
1 ∥]< ∞ for both k ∈ {1,2}, and (A1) holds, then

lim
n→∞

min
1fifn

P [En,i(ε,γ)] = 1.

Proof. (i) Suppose that i ∈ In,γ , so γn f i f (1− γ)n. Also, suppose that θ ∈ Θε
I . On

En,i(ε,γ), we have that Jn,I n(θ)
(θ)< i< Jn,I n(θ)

(θ) and J
(i)

n,I
(i)
n (θ)

(θ)< i< J
(i)

n,I
(i)
n (θ)

(θ).

Therefore, from the definition of the resampled processes (3.1), we can see that it has to

be Jn,I n(θ)
(θ) = J

(i)

n,I
(i)
n (θ)

(θ) and moreover I n(θ) = I
(i)
n (θ). Thus, it implies that

Jn,I n(θ)
(θ) = J

(i)
n,I n(θ)

(θ). Hence mn(θ) = m
(i)
n (θ). Further, on the event En,i(ε,γ), it

holds that I n(θ) = I
(i)
n (θ). Thus, we can express

M
(i)
n (θ) = Mn(θ)+(Z̃

(I n(θ))
i −Z

(I n(θ))
i ) · eθ .

Therefore, the first equality of (i) follows. For the second equality, take an angle θ ∈ Θε
II.

On En,i(ε,γ), we have that I n(θ) = I
(i)
n (θ) and I n(θ) = I

(i)
n (θ). Hence, similarly as

earlier, we obtain that

M
(i)
n (θ) = Mn(θ)+(Z̃

(I n(θ))
i −Z

(I n(θ))
i ) · eθ ,

61



Perimeter process Control of extrema

and similarly

m
(i)
n (θ) = mn(θ)+(Z̃

(I n(θ))
i −Z

(I n(θ))
i ) · eθ ,

so the claim follows. The third equality (for θ ∈ Θε
III) is shown similarly.

(ii) The idea behind the proof of this claim is to show that the probabilities for all

eight items in the definition of En,i(γ,ε) tend to 1 as n → ∞, no matter which i ∈ In,γ we

choose. Let us prove the claim for the first item. The key idea is to simultaneously use the

strong law of large numbers (Theorem 1.3.5) for both walks. Take an arbitrary ε1 such

that 0 < ε1 < ε . There exists a random variable N := N(ε1) such that N is finite almost

surely and

n g N =⇒
∥

∥

∥

∥

∥

S
(k)
n

n
−µµµ(k)

∥

∥

∥

∥

∥

< ε1

for both k ∈ {1,2}. This implies that, for θ ∈ Θε
I , if n g N, then

∣

∣

∣

∣

∣

S
(k)
n

n
· eθ −µµµ(k) · eθ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

S
(k)
n

n
· eθ −µ(k) cos(θ (k)−θ)

∣

∣

∣

∣

∣

f
∥

∥

∥

∥

∥

S
(k)
n

n
−µµµ(k)

∥

∥

∥

∥

∥

< ε1. (3.4)

For n g N, we have that

S
(k)
n · eθ > (µ(k) cos(θ (k)−θ)− ε1)n > (ε − ε1)n.

The last term is strictly positive because of the choice of ε1. Therefore, for any θ ∈ Θε
I ,

we have that S
(k)
n · eθ > 0 for both k ∈ {1,2} and n g N. But, recall that S

(k)
0 · eθ = 0, so it

gives us that Jn,I n(θ)
(θ)< N for all θ ∈ Θε

I . Hence,

1 g lim
n
P

Ñ

⋂

θ∈Θε
I

{Jn,I n(θ)
(θ)< γn}

é

g lim
n
P(N f γn) = 1,

since N is a.s. finite. Considering the second event, Jn,I n(θ)
(θ)> (1− γ)n, we have that

max
0f jf(1−γ)n

S
(I n(θ))
j · eθ f max

®

max
0f jfN

S
(I n(θ))
j · eθ , max

Nf jf(1−γ)n
S
(I n(θ))
j · eθ

´

. (3.5)
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For the last term, (3.4) yields

max
Nf jf(1−γ)n

S
(I n(θ))
j · eθ f max

0f jf(1−γ)n

Ä

µ(I n(θ)) cos(θ (I n(θ))−θ)+ ε1

ä

j

f
Ä

µ(I n(θ)) cos(θ (I n(θ))−θ)+ ε1

ä

(1− γ)n.

Once again, if n g N, the inequality (3.4) gives us

S
(I n(θ))
n · eθ >

Ä

µ(I n(θ)) cos(θ (I n(θ))−θ)− ε1

ä

n.

The inequality

Ä

µ(I n(θ)) cos(θ (I n(θ))−θ)− ε1

ä

g
Ä

µ(I n(θ)) cos(θ (I n(θ))−θ)+ ε1

ä

(1− γ)

holds a.s. if, and only if,

ε1 f
γµ(I n(θ)) cos(θ (I n(θ))−θ)

2− γ

holds a.s. Therefore, we can additionally require that ε1 > 0 has been taken such that

ε1 <
γε

2

for the preceding inequality to hold. In that case, for any θ ∈ Θε
I , we have that

S
(I n(θ))
n · eθ > max

Nf jf(1−γ)n
S
(I n(θ))
j · eθ a.s.

Hence, by (3.5), we have that

P





⋂

θ∈Θε
I

¶

Jn,I n(θ)
(θ)> (1− γ)n

©



g P





⋂

θ∈Θε
I

®

S
(I n(θ))
n · eθ > max

0f jf(1−γ)n
S
(I n(θ))
j · eθ

´





g P



N f n,
⋂

θ∈Θε
I

ß

S
(I n(θ))
n · eθ > max

0f jfN
S
(I n(θ))
j · eθ

™



 .
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Additionally, for n g N, we have that

S
(I n(θ))
n eθ > (µ(I n(θ)) cos(θ (I n(θ))−θ)− ε1)n > (ε − γε

2
)n = εn

(

1− γ

2

)

,

so we get

P





⋂

θ∈Θε
I

¶

Jn,I n(θ)
(θ)> (1− γ)n

©



g P



N f n, max
0f jfN
k=1,2

∥S
(k)
j ∥ f εn

(

1− γ

2

)



 .

But, since N is finite a.s., we have that P(N > n)→ 0 and

lim
n→∞

P



 max
0f jfN
k=1,2

∥S
(k)
j ∥> εn

(

1− γ

2

)



= 0.

Therefore, we have that

lim
n→∞

P



N f n, max
0f jfN
k=1,2

∥S
(k)
j ∥ f εn

(

1− γ

2

)



= 1,

so it gives us

lim
n→∞

P





⋂

θ∈Θε
I

¶

Jn,I n(θ)
(θ)> (1− γ)n

©



= 1.

This shows the asymptotic probability of the first statement in the first item point of the

definition of the set En,i(ε,γ). Note that the statement of the first item corresponding to

the resampled walks can be shown in the same way, given that resampling preserves the

underlying distribution. The proofs for the second and third item points are omitted, as

they proceed in a completely analogous way as the first item point.

We now proceed with the the fourth item. We focus on the angles belonging to

Θε
(1>2>0). It should be noted that the reasoning deployed here can be easily adapted
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to other cases. We aim to establish that

lim
n→∞

P

Ñ

⋂

θ∈Θε
(1>2>0)

{I n(θ) = I
(i)
n (θ) = 1}

é

= 1.

Since I
(i)
n (θ) is identically distributed as I n(θ), it is sufficient to prove that

lim
n→∞

P

Ñ

⋂

θ∈Θε
(1>2>0)

{I n(θ) = 1}

é

= 1.

Choose ε1 > 0 such that 2ε1 < µµµ(1) · eθ −µµµ(2) · eθ , and µµµ(2) · eθ − ε1 > 0 for all θ ∈
Θε
(1>2>0), which is possible because of the definition of Θε

(1>2>0). For this collection of

one-dimensional walks, we have that

n g N =⇒
∣

∣

∣

∣

∣

S
(k)
n

n
· eθ −µµµ(k) · eθ

∣

∣

∣

∣

∣

f
∥

∥

∥

∥

∥

S
(k)
n

n
−µµµ(k)

∥

∥

∥

∥

∥

< ε1

for k ∈ {1,2}. Hence, we have the following

P

Ñ

⋂

θ∈Θε
(1>2>0)

{I n(θ) = 1}

é

g P

Ñ

N f n,
⋂

θ∈Θε
(1>2>0)

{I n(θ) = 1}

é

g P

Ñ

N f n,
⋂

θ∈Θε
(1>2>0)

max
0f jfn

S
(1)
j · eθ g max

0f jfn
S
(2)
j · eθ

é

= P

Ñ

N f n,
⋂

θ∈Θε
(1>2>0)

max
0f jfn

S
(1)
j · eθ

n
g max

0f jfn

S
(2)
j · eθ

n

é

= P

Ñ

N f n,
⋂

θ∈Θε
(1>2>0)

max







max
0f jfN

S
(1)
j · eθ

n
, max

N< jfn

S
(1)
j · eθ

n







g

max







max
0f jfN

S
(2)
j · eθ

n
, max

N< jfn

S
(2)
j · eθ

n







é

g P

Ñ

N f n,
⋂

θ∈Θε
(1>2>0)

max







max
0f jfN

S
(1)
j · eθ

n
, max

N< jfn

j

n
(µµµ(1) · eθ − ε1)







g
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max







max
0f jfN

S
(2)
j · eθ

n
, max

N< jfn

j

n
(µµµ(2) · eθ + ε1)







é

,

where our selection of ε1 justifies the last inequality. By the dominated convergence

theorem, it becomes clear that the final term converges to 1 as n → ∞. Thus, we have

proved the asymptotic probability for the fourth item point in the definition of En,i(ε,γ).

The same idea is applied to prove the statements for the remaining four items. Combining

all the results, we get (ii). □

Remark 3.3.2. Notice that in the case when the drift vectors are co-linear, see Figure

3.3, the situation is slightly different than the one shown in Figure 3.1. The proof of

Proposition 3.3.1 remains the same, the only difference being that some of the subsets

of angles θ ∈ [0,π] that were introduced in (3.3) are empty. In the case when both drift

vectors have the same direction, the sets Θε
(1>0>2) and Θε

(2>0>1) are empty, while in the

case when drift vectors have opposite directions the sets Θε
(1>2>0), Θε

(2>1>0) and Θε
(0>2>1)

are empty. The case when both vectors have the same magnitude and the same orienta-

tion is excluded by the assumption (A1). This case is discussed further in Chapter 5.3.

Somewhat surprisingly, simulation results suggest that we lose the normality of the distri-

butional limit in this case. We offer a possible explanation for this phenomenon, but the

formal proof remains out of our reach. The efforts to extend our results in this direction

are currently underway.

µµµ(1)µµµ(2)

Same direction

µµµ(1)µµµ(2)

Opposite directions

Figure 3.3: Allowed positions of the co-linear drift vectors.
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3.4. APPROXIMATION LEMMA FOR PERIMETER

In the following lemma, we compare Ln,i with appropriately centered and projected i-th

steps of the walks. The proof of the lemma depends on our earlier assumptions regarding

the spatial orientation of the drift vectors relative to the y-axis. Irrespective of the scenario

chosen, the outcome remains the same - the only distinction lies in the specific angular

regions under consideration and the sequencing of integrals. For clarity, we will explain

only the case where the y-axis is situated between the drift vectors.

Lemma 3.4.1. Assume (A1) and E[∥Z
(k)
1 ∥] < ∞ for both k ∈ {1,2}. Then, for any γ ∈

(0,1/2), ε > 0, and i ∈ In,γ , we have

∣

∣

∣
Ln,i −

ÄÄ

Z
(1)
i −µµµ(1)

ä

· (e§
θ (0) + eθ (1))+

Ä

Z
(2)
i −µµµ(2)

ä

· (eθ (2) − e§
θ (0))
ä

∣

∣

∣
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where λ is Lebesgue measure on [0,π] and (Θε)c is the complement of the set Θε in [0,π].

Proof. Start from Ln −L
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For the second term in (3.6), we have

∣

∣

∣

∣

∫ π

0
E

î

∆
(i)
n (θ)1

(

Ec
n,i(ε,γ)

)

| Fi

ó

dθ

∣

∣

∣

∣

f
∫ π

0
E

[∣

∣

∣∆
(i)
n (θ)

∣

∣

∣1
(

Ec
n,i(ε,γ)

)

| Fi

]

dθ , (3.7)

67



Perimeter process Approximation lemma for perimeter

and apply the upper bound obtained in Lemma 3.2.1 to get
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Let us decompose the first integral in (3.6). It can be written as the following sum
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Denote these integrals with I1, I2, I3 and I4, respectively. Let us calculate the first integral.
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where the complement (Θε
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By Proposition 3.3.1, we have that the first integral in (3.9) can be rewritten as
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while on En,i(ε,γ) we have that I n(θ) = 1 and I n(θ) = 2 for these choices of angles.
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Thus, the previous integral is equal to
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Similarly as before, we conclude analogous bounds for I2, I3 and I4, again by replacing
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Recall that θ (0) is π/2. To calculate the former integrals, use the following notation
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respectively. It is now straightforward to check equality (3.10), which finishes the proof.

□

Remark 3.4.2. Notice that the only changes in the case of co-linear (but not equal) drift
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This implies that
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ä

.

almost surely. Taking the expectations of both sides, we get

E[W 2
n,i]fC3B2

1E[(1+∥Z
(1)
i ∥+∥Z

(2)
i ∥+E∥Z

(1)
1 ∥+E∥Z

(2)
1 ∥)2

P[Ec
n,i(ε,γ) | Fi]]

+C3λ ((Θε)c)2
E[(1+∥Z

(1)
i ∥+∥Z

(2)
i ∥+E∥Z

(1)
1 ∥+E∥Z

(2)
1 ∥)2].

Since E[∥Z
(k)
i ∥2]< ∞, there exist a constant C4 > 0 such that

C3λ ((Θε)c)2
E[(1+∥Z

(1)
i ∥+∥Z

(2)
i ∥+E∥Z

(1)
1 ∥+E∥Z

(2)
1 ∥)2]fC4λ ((Θε)c)2.

Fix ε > 0 sufficiently small such that C4λ ((Θε)c)2 < ε1. This is possible since

lim
ε→0

λ ((Θε)c) = 0.
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Note that this choice also fixes B1. Thus

E[W 2
n,i]fC3B2

1E[(1+∥Z
(1)
i ∥+∥Z

(2)
i ∥+E∥Z

(1)
1 ∥+E∥Z

(2)
1 ∥)2

P[Ec
n,i(ε,γ) | Fi]]+ ε1.

To deal with the first term, for B2 > 0 we have that

(1+∥Z
(1)
i ∥+∥Z

(2)
i ∥+E∥Z

(1)
1 ∥+E∥Z

(2)
1 ∥)2

P[Ec
n,i(ε,γ) | Fi]

f (1+2B2 +E∥Z
(1)
1 ∥+E∥Z

(2)
1 ∥)2

P[Ec
n,i(ε,γ) | Fi]

+ (1+∥Z
(1)
i ∥+∥Z

(2)
i ∥+E∥Z

(1)
1 ∥+E∥Z

(2)
1 ∥)2 ·1

Ä

{∥Z
(1)
i ∥> B2}∪{∥Z

(2)
i ∥> B2}

ä

.

Once again, because E[∥Z
(k)
i ∥2] < ∞, the dominated convergence theorem gives us the

existence of B2 = B2(ε1) such that

C3B2
1E

î

(1+∥Z
(1)
i ∥+∥Z

(2)
i ∥+E∥Z

(1)
1 ∥+E∥Z

(2)
1 ∥)2

·1
Ä

{∥Z
(1)
i ∥> B2}∪{∥Z

(2)
i ∥> B2}

äó

< ε1.

Therefore,

E[W 2
n,i]f 2ε1 +C3B2

1(1+2B2 +E∥Z
(1)
1 ∥+E∥Z

(2)
1 ∥)2

P[Ec
n,i(ε,γ)].

Finally, by Proposition 3.3.1, we may find n0 ∈ N sufficiently large such that

n g n0 =⇒ C3B2
1(1+2B2 +E∥Z

(1)
1 ∥+E∥Z

(2)
1 ∥)2

P[Ec
n,i(ε,γ)]< ε1.

To conclude, for given ε1 > 0, we can find n0 ∈ N such that for all n g n0 we have that

E[W 2
n,i]f 3ε1 for all i ∈ In,γ . Therefore

1

n
∑

i∈In,γ

E

î

W 2
n,i

ó

f 3ε1.

Combine the estimates for i ̸∈ In,γ and i ∈ In,γ to get

1

n

n

∑
i=1

E

î

W 2
n,i

ó

f 2γC0 +3ε1 f 4ε1
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for n g n0. Recall that ε1 was arbitrary, so this completes the proof. □
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3.5. CLT FOR PERIMETER

We are now in a position to state and prove the main results (for perimeter) of this thesis.

We start with the L2 approximation result.

Theorem 3.5.1. Assume (A1). Then,

n−1/2

∣

∣

∣

∣

∣

Ln −E [Ln]−
n

∑
i=1

î

(Z
(1)
i −µµµ(1)) · (e§

θ (0) + eθ (1))+(Z
(2)
i −µµµ(2)) · (eθ (2) − e§

θ (0))
ó

∣

∣

∣

∣

∣

converges to 0 in the L2 sense as n → ∞.

Intuitively, according to Theorem 2.2.1, the set chull{S
(k)
j : 0 f j f n, k = 1,2} can be

approximated (with respect to the Hausdorff metric) by the scaled (possibly degenerate)

triangle spanned by the drift vectors µµµ(1) and µµµ(2). Theorem 3.5.1 analyses the error of

this approximation, which is decomposed into three parts. The parts

n

∑
i=1

(Z
(k)
i −µµµ(k)) · eθ (k) , k ∈ {1,2},

represent the deviation in the direction of the corresponding drift vectors µµµ(k), and the

remaining expression,

n

∑
i=1

((Z
(1)
i −µµµ(1))− (Z

(2)
i −µµµ(2))) · e§

θ (0) ,

corresponds to the deviation along the third side of the triangle, the one connecting two

drift vectors.

Proof. Note that

E [Wn,i | Fi−1] = E [Ln,i | Fi−1]−E[Y
(1)
i +Y

(2)
i | Fi−1] =−E[Y

(1)
i +Y

(2)
i ],

since Ln,i is a martingale difference sequence and Y
(1)
i +Y

(2)
i is independent of Fi−1. By

definition, we have that E[Y
(k)
i ] = 0, for k ∈ {1,2}, thus Wn,i is also a martingale difference
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sequence. Using orthogonality, we have that

n−1
E

[

Ç

n

∑
i=1

Wn,i

å2
]

= n−1
n

∑
i=1

E

î

W 2
n,i

ó

,

which, by Lemma 3.4.3, converges to zero, as n → ∞. Hence, we have that

n−1/2
n

∑
i=1

Wn,i → 0

in L2. The assertion now follows from Lemma 3.1.1. □

In order to obtain the central limit theorem for the perimeter process, we first have to

determine the variance of the limiting normal law.

Theorem 3.5.2. Assume (A1). Then,

lim
n→∞

Var [Ln]

n
= σ2

L ∈ [0,∞),

where

σ2
L =E[((Z

(1)
1 −µµµ(1)) · eθ (1))

2]+E[((Z
(1)
1 −µµµ(1)) · e§

θ (0))
2]+2(ΣΣΣ(1)eθ (1)) · e§θ (0)

+E[((Z
(2)
1 −µµµ(2)) · eθ (2))

2]+E[((Z
(2)
1 −µµµ(2)) · e§

θ (0))
2]−2(ΣΣΣ(2)eθ (2)) · e§θ (0) .

It may be observed that σ2
L represents the variance of an individual term in the ap-

proximating sum presented in Theorem 3.5.1.

Proof. Denote with :

ξn =
Ln −E [Ln]√

n
, and ζn =

1√
n

n

∑
i=1

Ä

Y
(1)
i +Y

(2)
i

ä

.

Observe that Var[ζn] = σ2
L for all n. From Theorem 3.5.1, |ξn − ζn| vanishes in the L2

norm as n → ∞. Finally, by Cauchy-Schwarz inequality, we have that:

E [(ξn −ζn)ζn]f E

î

(ξn −ζn)
2
ó1/2

E

î

ζ 2
n

ó1/2
,
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which implies that:

lim
n→∞

Var [Ln]

n
= lim

n→∞

Ä

E

î

(ξn −ζn)
2
ó

+E

î

ζ 2
n

ó

+2E [(ξn −ζn)ζn]
ä

= σ2
L .

□

Finally, we state the Central Limit Theorem for the perimeter.

Theorem 3.5.3. Assume (A1), and σ2
L > 0. Then, for any x ∈ R,

lim
n→∞

P





Ln −E [Ln]
√

Var [Ln]
f x



= lim
n→∞

P





Ln −E [Ln]
»

σ2
Ln

f x



= Φ(x),

where Φ stands for the cummulative distribution function of the standard normal distribu-

tion.

Proof. We use the same notation as in the proof of Theorem 3.5.2. By the classical cen-

tral limit theorem for independent and identically distributed random variables (Theorem

1.3.6), we have that

lim
n→∞

P





ζn
»

σ2
L

f x



= Φ(x), x ∈ R,

where Φ denotes the cumulative distribution function of the standard normal distribution.

By Theorem 3.5.1, |ξn −ζn| → 0 in probability. Slutsky’s theorem (Theorem 1.3.3) now

implies

lim
n→∞

P





Ln −E [Ln]
»

σ2
Ln

f x



= lim
n→∞

P





ξn
»

σ2
L

f x



= Φ(x), x ∈ R.

Finally, again by Slutsky’s theorem, we have

P





Ln −E [Ln]
√

Var [Ln]
f x



= P





ξnαn
»

σ2
Ln

f x



 ,
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where

αn :=

 

σ2
Ln

Var [Ln]
→ 1,

as n → ∞, by Theorem 3.5.2. □

Remark 3.5.4. A natural question to ask is: under what conditions will σ2
L be strictly

positive? This occurs if and only if one of the following holds: either the variance of the

projection of the first random walk onto the vector e§
θ (0)+eθ (1) is non-zero, or the variance

of the projection of the second random walk onto the vector eθ (2) − e§
θ (0) is non-zero.
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4. DIAMETER PROCESS

We now turn our attention to the asymptotic behavior of the diameter process. First,

we will slightly adjust the methodology we have already established for the perimeter

process. Similarly, as in the previous chapter, we will develop the distributional limit

result only for the case m = 2. In the case of the diameter functional, in addition to

assumption (A1), we assume the following:

the set {∥µµµ(1)∥,∥µµµ(2)∥,∥µµµ(1)−µµµ(2)∥} has a unique maximal element. (A2)

Here, ∥x∥ represents the standard Euclidean norm of x ∈R
2. The assumption (A2) allows

us to identify the direction of the diameter of the set.

We can observe that assumption (A2) implies (A1). To prove that, suppose that (A1)

does not hold. This implies that 000 ∈ {µµµ(1),µµµ(2),µµµ(1)−µµµ(2)}. If µµµ(1) = 000, then we have

∥µµµ(1)−µµµ(2)∥= ∥−µµµ(2)∥= ∥µµµ(2)∥, so (A2) does not hold. We reach the same conclusion

if we assume µµµ(2) = 000. If instead we assume µµµ(1)−µµµ(2) = 000, then it follows that ∥µµµ(1)∥=
∥µµµ(2)∥, again leading to the same conclusion. Therefore, (A2) implies (A1).

We conjecture that, in the case of the diameter process, we again have a non-Gaussian

distributional limit in the case when assumption (A2) is not satisfied (see Section 5.3 for

a computer simulation study and discussion that support the conjecture).

4.1. MDS AND CF FOR DIAMETER

This section aims to develop similar tools using martingale difference sequences and the

Cauchy formula, but this time for the diameter process. Recall that the diameter process
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Diameter process MDS and CF for diameter

is defined as

Dn = diam
Ä

chull
¶

S
(k)
j : 0 f j f n, k = 1,2

©ä

.

Similarly, as earlier, we consider the diameter of the convex hull of the resampled pro-

cesses, and we denote it with

D
(i)
n := diam

Ä

chull
¶

S
(k,i)
j : 0 f j f n, k = 1,2

©ä

.

For 0 f i f n, define

Dn,i := E

î

Dn −D
(i)
n | Fi

ó

,

which can be interpreted as the expected change in the diameter length of the convex

hull, given Fi, on replacing the i-th increment in both random walks. Analogously as in

Lemma 3.1.1, we conclude the martingale difference sequence property of the diameter

process.

Lemma 4.1.1. Let n ∈ N. Then,

(i) Dn −E [Dn] = ∑
n
i=1 Dn,i,

(ii) Var [Dn] = ∑
n
i=1E

î

D2
n,i

ó

, whenever the latter sum is finite.

Denote by ρA(θ) the length of the set A when projected on the line specified by the

angle θ :

ρA(θ) = sup
x∈A

(x · eθ )− inf
x∈A

(x · eθ ).

The Cauchy formula for diameter (Theorem 1.2.7) is then given by

diam(A) = sup
θ∈[0,π]

ρA(θ).

Recall that Mn(θ) and mn(θ) denote the maximal and minimal projections, respectively,
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Diameter process MDS and CF for diameter

of our convex hull along the direction specified by eθ . Using this notation, we have

Dn = sup
0fθfπ

(Mn(θ)−mn(θ)) = sup
0fθfπ

Rn(θ). (4.1)

Similarly, we represent D
(i)
n . Once again, we can perform the same linear transformations

as for the perimeter case. So, in the further text, we again adopt the assumptions on the

positions of the drift vectors presented at the beginning of Section 3.3. Similarly, as in

the case of the perimeter process, we show that the convergence in the strong law of large

numbers for the diameter process, presented in (2.2), also holds in L1 sense.

Corollary 4.1.2. Under the assumptions of Theorem 2.2.1, we have

Dn

n

L1

−−−→
n→∞

diam
Ä

chull{000,µµµ(1),µµµ(2)}
ä

.

Proof. Using the Cauchy formula from (4.1) we have

Dn = sup
0fθfπ

Rn(θ)f 2 sup
0fθfπ

max
0f jfn
k=1,2

|S(k)j · eθ |

f 2 max
0f jfn
k=1,2

∥S
(k)
j ∥ f 2

n

∑
j=0

Ä

∥Z
(1)
j ∥+∥Z

(2)
j ∥
ä

.

Using identical arguments as in the proof of Corollary 3.2.2, the claim follows. □
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4.2. CONTROL OF EXTREMA

Assuming (A2) and that ∥µµµ(1)∥ is the maximum value among the set

{∥µµµ(1)∥,∥µµµ(2)∥,∥µµµ(1)−µµµ(2)∥},

which can be done without loss of generality; the diameter will stay close to the drift

direction of the first random walk. For δ > 0 and i ∈ {1, . . . ,n}, we define this event as

follows

An,i(δ ) :=

®

ρ1
H

Ç

¶

θ (1)
©

, argmax
0fθfπ

Rn(θ)

å

< δ

´

∩
®

ρ1
H

Ç

¶

θ (1)
©

, argmax
0fθfπ

R
(i)
n (θ)

å

< δ

´

.

The key observation is that, with high probability, the angle of the diametral segment of

the convex hull spanned by these two random walks is close to the angle of the longest

side of the triangle spanned by the corresponding drift vectors.

Theorem 4.2.1. Assume (A2), the maximal element of the set from the assumption (A2)

is ∥µµµ(1)∥, and E[∥Z
(k)
i ∥]< ∞ for both k ∈ {1,2}. Then, for arbitrary δ > 0,

lim
n→∞

min
1fifn

P(An,i(δ )) = 1.

Before proving Theorem 4.2.1, define (D ,ρ2
H)¦ (K ,ρ2

H) as the subset of convex and

compact sets where the diameter is manifested along a unique segment. More formally,

D2 contains all convex and compact sets A such that the set

argmax
0fθfπ

ρA(θ)

has exactly one element. For A ∈ P , by V(A) we denote the set of its vertices.

Proposition 4.2.2. The function A 7→ argmax
0fθfπ

ρA(θ) is point-wise continuous on (P2∩

D2,ρ2
H).
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Proof. On (P2∩D2,ρ2
H), we investigate a particular mapping that associates each poly-

gon within the space to the line segment where it attains its diameter. Formally, we focus

on the mapping given by

(P2 ∩D
2,ρ2

H) ∋ A 7→ ai1ai2 ∈ (K 2,ρ2
H),

where ai1 and ai2 represent the vertices defining the diameter. Our objective is to verify

the point-wise continuity of this mapping, that is, we aim to prove that for any given ε > 0,

there exists a corresponding δ = δ (ε,A)> 0 such that:

∀ B ∈ (P2 ∩D
2,ρ2

H) such that ρ2
H(A,B)< δ =⇒ ρ2

H

(

ai1ai2 ,b j1b j2

)

< ε.

Let ε > 0 and A ∈ (P2 ∩D2,ρ2
H) be arbitrarily selected. Observe first that if A is a

line segment, than the continuity easily follows from the triangle inequality by taking

δ = ε/3. In what follows we focus on polygons having at least three vertices. For such

a polygon, label the vertices as a1, . . . ,an arranged in counterclockwise order. At each

vertex, introduce u
(1)
i and u

(2)
i as the unit vectors oriented along the respective adjacent

edges, where u
(1)
i is directed towards ai−1 and u

(2)
i is directed towards ai+1 (considering

the indices modulo n). Furthermore, let ϕi denote the size of the angle between the vectors

u
(1)
i and u

(1)
i +u

(2)
i , or u

(2)
i and u

(1)
i +u

(2)
i , see Figure 4.1.

ai

ai+1 ai−1

u
(2)
i u

(1)
i

ϕiϕi

Figure 4.1: Vertex of a polygon with related vectors and angles.

Clearly,

ϕi ∈
(

0,
π

2

)

(4.2)
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for all i ∈ {1, . . . ,n}. Therefore, we have that

ϕ : = max{ϕi : i ∈ {1, . . . ,n}} ∈
(

0,
π

2

)

,

ϕ : = min {ϕi : i ∈ {1, . . . ,n}} ∈
(

0,
π

2

)

.

Recall that ai1 ,ai2 ∈ V(A) is the unique pair of vertices for which

diam(A) = ∥ai1 −ai2∥.

Therefore, the set

{∥x− y∥ : x,y ∈V (A)}

is finite, with a unique maximal value. Let ε0 > 0 be defined as the difference between

the two greatest values in this set. For δ > 0 small enough (to be specified later), select an

arbitrary polygon B ∈ (P2 ∩D2,ρ2
H) satisfying ρ2

H(A,B)< δ . Consequently, there exist

points b′i1 and b′i2 in ∂B such that

∥ai1 −b′i1∥< δ , and ∥ai2 −b′i2∥< δ .

However, it is worth noting that b′i1 and b′i2 are not necessarily vertices of B. To find

vertices of B that satisfy analogous relations (with modified right hand side) we proceed

as follows. Consider two distinct linear optimization problems

(OP)l =







(u
(1)
il

+u
(2)
il
)T b → min

b ∈ B

for l ∈ {1,2}. Given that B is a convex polygon and the objective function under consider-

ation is also convex, it follows that there exist bi1 ,bi2 ∈V (B) for which bil is the solution

to the l-th optimization problem, denoted as (OP)l . Furthermore, bil must be situated in a

right-angle triangle, one of whose catheti is the segment connecting

ail +δ ·
u
(1)
il

+u
(2)
il

∥u
(1)
il

+u
(2)
il
∥
, and ail −

δ

sinϕil

·
u
(1)
il

+u
(2)
il

∥u
(1)
il

+u
(2)
il
∥
.
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Figure 4.2 illustrates the reasoning. Hence, the maximal distance between ail and bil is

ail

ail+1 ail−1

δ

δ

sinϕ
(k)
il

Figure 4.2: Vertex of a polygon with related vectors and angles

bounded by the length of the hypotenuse of the left or right triangle. Therefore, it has to

be

∥bil −ail∥ f
δ + δ

sinϕil

cosϕil

f 2δ

cosϕil · sinϕil

f 2δ

cosϕ · sinϕ
. (4.3)

Consequently, by the triangle inequality, we establish a lower bound for the distance be-

tween bi1 and bi2 given by

∥bi1 −bi2∥ g ∥ai1 −ai2∥−
4δ

cosϕ · sinϕ
= diam(A)− 4δ

cosϕ · sinϕ
. (4.4)

Thus, it implies that

diam(B)g diam(A)− 4δ

cosϕ · sinϕ
. (4.5)

Next, consider the vertices b j1 and b j2 of B at which the polygon B attains its diameter.

Our objective is to demonstrate that one vertex is close to ai1 and the other is close to ai2 .

To this end, there must exist points a j1 ,a j2 ∈ ∂A (which are not necessarily vertices) such
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that

∥b jl −a jl∥< δ (4.6)

for both l ∈ {1,2}. We have the following lower bound on the distance between a j1 and

a j2

∥a j1 −a j2∥ g ∥b j1 −b j2∥−2δ = diam(B)−2δ ,

by the triangle inequality. Together with (4.5), we get

∥a j1 −a j2∥ g diam(A)−δ

Ç

4

cosϕ · sinϕ
+2

å

> diam(A)− ε0, (4.7)

where the second inequality holds if we choose

δ <
ε0

Ç

4

cosϕ · sinϕ
+2

å .

Consider the function f0 : ∂A× ∂A → R
+ defined by f0(x,y) = ∥x− y∥. This function

is continuous if the domain is equipped with the maximum of the relative norms. Since

A obtains its diameter at the unique segment, the relative maxima of f0 occur at pairs of

vertices, with the unique maximal value attained at the pairs (ai1 ,ai2) and (ai2 ,ai1). Given

that

diam(A)g f0(a j1 ,a j2)g diam(A)−δ

Ç

4

cosϕ · sinϕ
+2

å

> diam(A)− ε0 (4.8)

there exists some δ0 > 0 (which depends on δ ) such that the point (a j1 ,a j2) lies within

a δ0-neighborhood of either (ai1 ,ai2) or (ai2 ,ai1) in the relative topology. Without loss

of generality, we can assume that (a j1 ,a j2) is in a δ0-neighborhood of (ai1 ,ai2). Conse-

quently, we obtain that

∥a jl −ail∥< δ0,
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for both l ∈ {1,2}. Therefore, we get

∥b jl −ail∥ f ∥b jl −a jl∥+∥a jl −ail∥< δ +δ0

for both l ∈ {1,2}. As δ approaches zero, the quantity ∥a j1 − a j2∥ approaches diam(A),

as can be seen from the inequalities in (4.8). Also, as δ → 0+, one can see that δ0 → 0+.

Given this relationship, we require that δ > 0 is sufficiently small such that δ0 is also

sufficiently small such that δ +δ0 < ε . Hence, it follows that if b j1 and b j2 are the vertices

defining the diameter of B we have that

ρ2
H

(

ai1ai2 ,b j1b j2

)

< δ +δ0 < ε.

Therefore, we have successfully demonstrated that the mapping A 7→ ai1ai2 is point-wise

continuous. To complete the proof, note that the function

(P ∩D ,ρ2
H) ∋ A 7→ argmax

0fθfπ
ρA(θ) ∈ [0,π]

can be written as the composition of

(P ∩D ,ρ2
H) ∋ A 7→ ai1ai2 ∈

Ä

K ,ρ2
H

ä

,

and

Ä

K ,ρ2
H

ä

\
¶

ab : a,b ∈ R
2,a = b

©

∋ ai1ai2 7→ arctan

∣

∣

∣

∣

πy(ai2)−πy(ai1)

πx(ai2)−πx(ai1)

∣

∣

∣

∣

∈ [0,π],

where πx and πy are projections to the x and y axis, respectively, with the understanding

that the last expression equals π/2 if the denominator is zero. Both of these functions are

continuous, and therefore, their composition must also be continuous. □

In the following corollary, we show that the function A 7→ argmax0fθfπ ρA(θ) is

continuous at points from P ∩D in the space (P,ρ2
H). We first show the following

auxiliary lemma.

Lemma 4.2.3. The set P ∩D is dense in (P,ρ2
H).
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Proof. Let ε > 0. For an arbitrary polygon A ∈ (P,ρ2
H), let θ ′ be an element of

argmax0fθfπ ρA(θ).

Let the vertices of A be denoted by a1, . . . ,an in a counterclockwise orientation. Assume

that ai1 and ai2 are the vertices that correspond to the direction determined by θ ′. Note

that some of the points ail + εeθ ′ lie in a direction opposite to the interior of A. Without

loss of generality, assume that ai1 is such a point. Consequently, the polygon

Aε := chull{a1, . . . ,ai1−1,ai1 + εeθ ′ ,ai1+1, . . . ,an} ,

is an element of P∩D , and ρ2
H(A,Aε) = ε . The statement is proven given that ε > 0 was

chosen arbitrarily. □

Remark 4.2.4. Observe that

argmax
0fθfπ

ρAε (θ) = {θ ′},

where θ ′ corresponds to the angle arbitrarily selected from argmax0fθfπ ρA(θ). Thus,

Aε is an element from P ∩D whose unique diameter is attained in the θ ′ direction and

at an arbitrarily small Hausdorff distance from A.

Corollary 4.2.5. The function

A 7→ argmax
0fθfπ

ρA(θ),

is continuous at points from P ∩D in (P,ρ2
H).

Proof. Let A ∈ P ∩D and ε > 0 be arbitrary. By Proposition 4.2.2, there exists δ > 0

satisfying:

∀ B ∈ P ∩D such that ρ2
H(A,B)< δ̃ =⇒ |θA −θB|< ε, (4.9)

where θA is uniquely determined as {θA}= argmax0fθfπ ρA(θ) (the same applies to B).

Now, consider a polygon B ∈ P with ρ2
H(A,B)< δ/2, and let θB ∈ argmax0fθfπ ρB(θ)
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be arbitrary. According to Lemma 4.2.3 and Remark 4.2.4, we obtain the existence of a

polygon BθB
∈ P ∩D satisfying

argmax
0fθfπ

ρBθB
(θ) = {θB},

with ρ2
H(B,BθB

) = δ/2. It follows that

ρ2
H(A,BθB

)f ρ2
H(A,B)+ρ2

H(B,BθB
)< δ/2+δ/2 = δ .

Applying equation (4.9), it becomes evident that |θB −θA|< ε . As θB was selected arbi-

trarily, we deduce that

ρ1
H

Ç

θA,argmax
0fθfπ

ρB(θ)

å

= sup

®

|θA −θB| : θB ∈ argmax
0fθfπ

ρB(θ)

´

< ε,

thereby confirming the corollary. □

Remark 4.2.6. (i) The density of P in (K ,ρ2
H) (see [SW81]) suggests that the pre-

vious proof could be adapted to (K ,ρ2
H) as the domain of interest. Namely, every

convex and compact subset of R2 can be arbitrarily well approximated with the con-

vex polygon, and by Lemma 4.2.3 every convex polygon can be arbitrarily well ap-

proximated with the convex polygon with the unique diametrical segment. Hence,

if we apply the triangle inequality twice, we would obtain the claimed statement.

(ii) Furthermore, the preceding corollary does not offer insights into the continuity of

the mapping when applied to other polygons in P . In fact, it is possible to show

with relative ease that the function manifests discontinuities when evaluated on

polygons characterized by two or more diametrical segments.

Proof of Theorem 4.2.1. From Theorem 2.2.1, we have that

n−1 chull
¶

S
(k)
j : 0 f j f n,k = 1,2

©

a.s.−−−→
n→∞

chull
¶

000,µµµ(1),µµµ(2)
©

. (4.10)

Denote by A the right hand side in (4.10). Because of (A2), we have that A∈P∩D . Also,

since we assumed that ∥µµµ(1)∥ is the maximal element of the set from the assumption (A2),
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we find that

argmax
0fθfπ

ρA(θ) = {θ (1)}.

Furthermore, denote

An = n−1 chull
¶

S
(k)
j : 0 f j f n, k = 1,2

©

.

Using Corollary 4.2.5 with the continuous mapping theorem (Corollary 1.3.7) yields the

following

argmax
0fθfπ

ρAn
(θ)

a.s.−−−→
n→∞

θ (1).

It is worth noting that scaling does not impact the direction of the diametrical segment.

Consequently, it holds that

argmax
0fθfπ

ρAn
(θ) = argmax

0fθfπ
Rn(θ).

As a result, for a given δ > 0, there exists an almost surely finite random variable Nδ such

that:

n g Nδ =⇒ ρ1
H

Ç

¶

θ (1)
©

,argmax
0fθfπ

Rn(θ)

å

< δ .

Therefore, we get that

P

Ç

ρ1
H

Ç

¶

θ (1)
©

,argmax
0fθfπ

Rn(θ)

å

< δ

å

g P(n g Nδ )→ P(Nδ < ∞) = 1. (4.11)

It is important to observe that the distribution of

argmax
0fθfπ

R
(i)
n (θ)

coincides with the distribution of

argmax
0fθfπ

Rn(θ).
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Finally, we have that

min
1fifn

P(An,i(δ ))g 1−2P

Ç

ρ1
H

Ç

¶

θ (1)
©

,argmax
0fθfπ

Rn(θ)

å

g δ

å

,

which concludes the proof. □
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4.3. APPROXIMATION LEMMA FOR DIAMETER

The main goal of this subsection is to prove an analog of Lemma 3.4.1 for the diameter.

More precisely, we aim to compare Dn,i with appropriately centered and projected i-th

step of the walk with the dominating drift (this can be the first walk, second walk, or the

difference walk, but, without loss of generality, as before, we assume that this is the first

walk).

As in the case of the perimeter, the proof of the lemma depends on our earlier assump-

tions regarding the spatial orientation of the drift vectors relative to the y-axis. Again, we

only consider the case where the y-axis is situated between the drift vectors. Notice further

that the assumption that ∥µµµ(1)∥ is the maximal element of the set

{∥µµµ(1)∥,∥µµµ(2)∥,∥µµµ(1)−µµµ(2)∥}

positions the drift vector µµµ(1) in the region Θε
(1>2>0). Having in mind the previous discus-

sion, it is clear that for a given, sufficiently small, δ > 0, we can select and fix sufficiently

small ε = ε(δ ) such that

(θ (1)−δ ,θ (1)+δ )¦ Θε
(1>2>0).

In the following lemma, we describe the behavior of the parameterized range function at

this interval.

Lemma 4.3.1. Let γ ∈ (0,1/2). Then for δ > 0 and ε > 0 from the upper discussion,

and any i ∈ In,γ , on En,i(ε,γ),

∣

∣

∣

∣

∣

sup
|θ−θ (1)|fδ

Rn(θ)− sup
|θ−θ (1)|fδ

R
(i)
n (θ)−

Ä

Z
(1)
i − Z̃

(1)
i

ä

· eθ (1)

∣

∣

∣

∣

∣

f 2δ
∥

∥

∥
Z
(1)
i − Z̃

(1)
i

∥

∥

∥
.

Proof. We assert that for every i belonging to the set In,γ , and for any θ1 and θ2 within

the interval
Ä

θ (1)−δ ,θ (1)+δ
ä

satisfying θ1 < θ2, the following condition holds on the
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event En,i(ε,γ):

inf
θ1fθfθ2

Ä

Z
(1)
i − Z̃

(1)
i

ä

· eθ f sup
θ1fθfθ2

Rn(θ)− sup
θ1fθfθ2

R
(i)
n (θ)f sup

θ1fθfθ2

Ä

Z
(1)
i − Z̃

(1)
i

ä

· eθ .

(4.12)

Furthermore, it can be easily verified that for any x∈R
2, and any θ1,θ2 ∈R, the following

holds
∣

∣x · eθ1
− x · eθ2

∣

∣f ∥x∥ | θ1 −θ2 | .

From this, we have that

sup
θ1fθfθ2

Ä

Z
(1)
i − Z̃

(1)
i

ä

· eθ = sup
θ1fθfθ2

Ä

Z
(1)
i − Z̃

(1)
i

ä

· (eθ (1) + eθ − eθ (1))

f
Ä

Z
(1)
i − Z̃

(1)
i

ä

· eθ (1) +2δ
∥

∥

∥
Z
(1)
i − Z̃

(1)
i

∥

∥

∥
.

By analogous argumentation, we conclude

inf
θ1fθfθ2

Ä

Z
(1)
i − Z̃

(1)
i

ä

· eθ g
Ä

Z
(1)
i − Z̃

(1)
i

ä

· eθ (1) −2δ
∥

∥

∥
Z
(1)
i − Z̃

(1)
i

∥

∥

∥
.

The assertion of the lemma follows by taking θ1 = θ (1)− δ and θ2 = θ (1)+ δ . We are

left to prove (4.12). Observe that for functions f ,g : R→R, satisfying supθ∈I | f (θ)|< ∞

and supθ∈I |g(θ)|< ∞, for I ¦ R,

inf
θ∈I

( f (θ)−g(θ))f sup
θ∈I

f (θ)− sup
θ∈I

g(θ)f sup
θ∈I

( f (θ)−g(θ)).

In particular, if I = [θ1,θ2] with θ1,θ2 ∈ (θ (1)−δ ,θ (1)+δ ), we have that

inf
θ1fθfθ2

Ä

Rn(θ)−R
(i)
n (θ)

ä

f sup
θ1fθfθ2

Rn(θ)− sup
θ1fθfθ2

R
(i)
n (θ)

and

sup
θ1fθfθ2

Rn(θ)− sup
θ1fθfθ2

R
(i)
n (θ)f sup

θ1fθfθ2

Ä

Rn(θ)−R
(i)
n (θ)

ä

.

Moreover, on the event En,i(ε,γ), according to Proposition 3.3.1, for all θ ∈ [θ1,θ2] we
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have

Rn(θ)−R
(i)
n (θ) =

Ä

Z
(1)
i − Z̃

(1)
i

ä

· eθ .

This proves claim (4.12). □

We are now ready to prove the approximation result for Dn,i. First, let us denote

Bn,i(γ,δ ) := En,i(ε(δ ),γ)∩An,i(δ ).

Lemma 4.3.2. Assume that E[∥Z
(k)
1 ∥]< ∞ for both k ∈ {1,2}. Let γ ∈ (0,1/2), and let

ε and δ be as in the previous lemma. Then, for any i ∈ In,γ , the following inequality holds

a.s.

∣

∣

∣Dn,i − (Z
(1)
i −µµµ(1)) · eθ (1)

∣

∣

∣f 3
Ä

∥Z
(1)
i ∥+∥Z

(2)
i ∥
ä

P
(

Bc
n,i(γ,δ ) | Fi

)

+2δ
Ä

∥Z
(1)
i ∥+E∥Z

(1)
1 ∥
ä

+3E
îÄ

∥Z̃
(1)
i ∥+∥Z̃

(2)
i ∥
ä

1
(

Bc
n,i(γ,δ )

)

| Fi

ó

.

Proof. Given that the random variable Z
(1)
i is Fi-measurable and that Z̃

(1)
i is independent

of Fi, it follows that

Dn,i −
Ä

Z
(1)
i −µµµ(1)

ä

· eθ (1) = E

î

Dn −D
(i)
n −
Ä

Z
(1)
i − Z̃

(1)
i

ä

· eθ (1) | Fi

ó

,

from which it follows

∣

∣

∣Dn,i −
Ä

Z
(1)
i −µµµ(1)

ä

· eθ (1)

∣

∣

∣f E

[∣

∣

∣Dn −D
(i)
n −
Ä

Z
(1)
i − Z̃

(1)
i

ä

· eθ (1)

∣

∣

∣1(Bn,i(γ,δ )) | Fi

]

+E

[∣

∣

∣Dn −D
(i)
n −
Ä

Z
(1)
i − Z̃

(1)
i

ä

· eθ (1)

∣

∣

∣1
(

Bc
n,i(γ,δ )

)

| Fi

]

.

From Lemma 3.2.1, we next establish

E

[∣

∣

∣Dn −D
(i)
n −
Ä

Z
(1)
i − Z̃

(1)
i

ä

· eθ (1)

∣

∣

∣1
(

Bc
n,i(γ,δ )

)

| Fi

]

f E
[

S ·1
(

Bc
n,i(γ,δ )

)

| Fi

]

,

where

S = 3
(∥

∥

∥
Z
(1)
i

∥

∥

∥
+
∥

∥

∥
Z̃
(1)
i

∥

∥

∥

)

+2
(∥

∥

∥
Z
(2)
i

∥

∥

∥
+
∥

∥

∥
Z̃
(2)
i

∥

∥

∥

)

.
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Now, on the event An,i(δ ), we have that

Dn = sup
|θ−θ (1)|fδ

Rn(θ), and D
(i)
n = sup

|θ−θ (1)|fδ

R
(i)
n (θ),

and hence, by Lemma 4.3.1, on the event Bn,i(γ,δ ),

∣

∣

∣Dn −D
(i)
n −
Ä

Z
(1)
i − Z̃

(1)
i

ä

· eθ (1)

∣

∣

∣f 2δ
∥

∥

∥
Z
(1)
i − Z̃

(1)
i

∥

∥

∥
.

Consequently

E

[∣

∣

∣Dn −D
(i)
n −
Ä

Z
(1)
i − Z̃

(1)
i

ä

· eθ (1)

∣

∣

∣1(Bn,i(γ,δ )) | Fi

]

f 2δE
[∥

∥

∥
Z
(1)
i

∥

∥

∥
+
∥

∥

∥
Z̃
(1)
i

∥

∥

∥
| Fi

]

.

Combining all together, we get the required inequality. □

Let us denote Vi := (Z
(1)
i −µµµ(1)) · eθ (1) , and Un,i := Dn,i −Vi. In the following lemma

we show that the error term Un,i is L2-negligible under the scaling
√

n.

Lemma 4.3.3. Assume (A2) and that E[∥Z
(k)
1 ∥2]< ∞ for both k ∈ {1,2}. Then

lim
n→∞

1

n

n

∑
i=1

E

î

U2
n,i

ó

= 0.

Proof. For a given ε ∈ (0,1), let γ ∈ (0,1/2) and δ > 0 be sufficiently small, the specifics

of which will be clarified later. From Lemma 3.2.1, we have that

|Un,i| f 3
Ä

∥Z
(1)
i ∥+E∥Z

(1)
1 ∥+∥Z

(2)
i ∥+E∥Z

(2)
1 ∥
ä

.

Thus, E
Ä

U2
n,i

ä

fC0 for all n and all i, and for some constant C0 > 0 whose value depends

solely on the distributions of Z
(k)
i . Therefore, we can conclude that

1

n
∑

i/∈In,γ

E

Ä

U2
n,i

ä

f 2γC0.

We choose and fix γ > 0 sufficiently small to ensure that 2γC0 < ε . Now, for i ∈ In,γ ,

Lemma 4.3.2 provides an upper bound on |Un,i|. Note that for any constant C
(k)
1 > 0,
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given that Z̃
(k)
i is independent of Fi, we can conclude the following

E

î

∥Z̃
(k)
i ∥1

(

Bc
n,i(γ,δ )

)

| Fi

ó

f E

î

∥Z
(k)
i ∥1

Ä

∥Z
(k)
i ∥ gC

(k)
1

äó

+C
(k)
1 P

[

Bc
n,i(γ,δ ) | Fi

]

.

Given ε ∈ (0,1), we can select C1 =C1(ε)> 0 sufficiently large such that

E

î

∥Z
(k)
i ∥1

Ä

∥Z
(k)
i ∥ gC1

äó

< ε

for both k∈{1,2}. For the sake of convenience, we also choose C1 > 1 and C1 >E[∥Z
(k)
1 ∥]

for both k ∈ {1,2}. Consequently, by Lemma 4.3.2, we obtain that

|Un,i| f 3
Ä

∥Z
(1)
i ∥+∥Z

(2)
i ∥+2C1

ä

P
[

Bc
n,i(γ,δ ) | Fi

]

+6ε +2δ
Ä

∥Z
(1)
i ∥+E∥Z

(1)
1 ∥
ä

.

Using P

î

Bc
n,i(γ,δ ) | Fi

ó

f 1, ε f 1, δ f 1, and the elementary inequality (a+b+ c)2 f
3(a2 +b2 + c2) for positive a,b,c ∈ R, we conclude

U2
n,i f 27

Ä

∥Z
(1)
i ∥+∥Z

(2)
i ∥+2C1

ä2
P
[

Bc
n,i(γ,δ ) | Fi

]

+108ε +12δ
Ä

∥Z
(1)
i ∥+E∥Z

(1)
1 ∥
ä2

.

By assumption, for a given ε , there is δ small enough such that

12δ
Ä

∥Z
(1)
i ∥+E∥Z

(1)
1 ∥
ä2

< ε.

We shall fix such δ > 0 for the remainder of the discussion. We then have

E

Ä

U2
n,i

ä

f 27E

ï

Ä

∥Z
(1)
i ∥+∥Z

(2)
i ∥+2C1

ä2
P
[

Bc
n,i(γ,δ ) | Fi

]

ò

+109ε.

Next, for any C2 > 0, we have that

E

ï

Ä

∥Z
(1)
i ∥+∥Z

(2)
i ∥+2C1

ä2
P
[

Bc
n,i(γ,δ ) | Fi

]

ò

fC2
2P
(

Bc
n,i(γ,δ )

)

+E

ï

Ä

∥Z
(1)
i ∥+∥Z

(2)
i ∥+2C1

ä2
1
Ä

∥Z
(1)
i ∥+∥Z

(2)
i ∥+2C1 gC2

ä

ò

,

and using the dominated convergence theorem, it is possible to choose a value C2 suffi-
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ciently large such that the last term is less than ε/27. Consequently, with this choice of

C2, we have

E

Ä

U2
n,i

ä

f 110ε +27C2
2P
(

Bc
n,i(γ,δ )

)

.

By Theorem 4.2.1 and Proposition 3.3.1, we conclude

lim
n→∞

max
1fifn

P
(

Bc
n,i(γ,δ )

)

= 0,

so that, for given ε > 0 (and hence C1 and C2) we may select n0 ∈ N sufficiently large so

that maxi∈In,γ E

Ä

U2
n,i

ä

f 111ε , for n g n0. Consequently,

1

n
∑

i∈In,γ

E

Ä

U2
n,i

ä

f 111ε,

for all n g n0. Combining this with the earlier approximation for i /∈ In,γ , we arrive at

1

n

n

∑
i=1

E

Ä

U2
n,i

ä

f 112ε,

for all n g n0. Since ε > 0 was arbitrarily chosen, the conclusion follows. □
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4.4. CLT FOR DIAMETER

The proofs of the main results for the diameter in the largest part follow as in the perimeter

case. In the proof of Theorem 4.4.1 instead of using Lemma 3.1.1 and Lemma 3.4.3, we

employ Lemma 4.1.1 and Lemma 4.3.3.

Theorem 4.4.1. Assume (A2), and that the maximal element of the set from the assump-

tion (A2) is ∥µµµ(1)∥. Then,

n−1/2
∣

∣

∣
Dn −EDn −

Ä

S
(1)
n −ES

(1)
n

ä

· eθ (1)

∣

∣

∣

L2

−−−→
n→∞

0.

If the maximal element is ∥µµµ(2)∥, our proof follows in the same manner, only in-

terchanging first and second random walk, while in the third scenario we consider the

difference of the two walks and the angle θ (k) is replaced by the angle corresponding to

the direction of the vector µµµ(1)−µµµ(2), see Chapter 5.2 for details. The proof of Theorem

4.4.2 follows analogously as the proof of Theorem 3.5.2 with the only difference being in

the definition of the sequence (ζn)
∞
n=1:

ζn =
1√
n

n

∑
i=1

Ä

Z
(1)
i −µµµ(1)

ä

· eθ (1) . (4.13)

Theorem 4.4.2. Assume (A2) and that the maximal element of the set from assumption

(A2) is ∥µµµ(1)∥. Then,

lim
n→∞

Var [Dn]

n
= σ2

D ∈ [0,∞),

where

σ2
D = E

ï

ÄÄ

Z
(1)
1 −µµµ(1)

ä

· eθ (1)

ä2
ò

.

If the maximal element is not ∥µµµ(1)∥, σ2
D is modified as commented above. The proof

of the Central Limit Theorem presented in Theorem 4.4.3 remains the same by replacing

the constant σL with the constant σD.
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Theorem 4.4.3. Assume (A2) and σ2
D > 0. Then, for any x ∈ R,

lim
n→∞

P





Dn −E [Dn]
√

Var [Dn]
f x



= lim
n→∞

P





Dn −E [Dn]
»

σ2
Dn

f x



= Φ(x).

Remark 4.4.4. Let’s look once again at Theorem 4.4.3. Notice that for σ2
D to be strictly

positive, it is sufficient, and necessary, that the variance of the projection of the first

random walk onto the vector eθ (1) is non-zero. When this variance is zero, the walk is

characterized by deterministic (rather than random) behavior along this particular direc-

tion.
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5. DISCUSSION AND SIMULATIONS

STUDY

In this chapter, we address some questions that may arise for the reader after the previ-

ous chapters and extend the results obtained so far to some similar but very intriguing

problems. Therefore, in the first section, we examine the process of centroids and answer

whether comparable results can be obtained for the perimeter and diameter of the convex

hull generated by the centroids of a random walk.

In the second section, we discuss some assumptions we implicitly made in the previ-

ous discussions and also answer the question of what happens if the problem is extended

to more than two independent random walks in the plane.

Finally, in the third section, we conduct a simulation study in which we explore the

boundary cases, that is, cases not covered by the assumption (A1) for the perimeter or

by the assumption (A2) for the diameter. It is worth noting that this dissertation does not

include formal proof for the boundary cases, representing a potential direction for further

research related to this topic.

5.1. HULL OF CENTROIDS

Let Z,Z1,Z2, . . . be independent and identically distributed random vectors such that

E∥Z∥2 < ∞. In this case, we consider only one planar random walk generated by the

above increments:

S0 := 0, Sn :=
n

∑
i=1

Zi,
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thus omitting the walk index in the superscript as done previously (since we only have a

single random walk). We study the process of centroids, which is defined as follows:

G0 := 0, Gn :=
1

n+1

n

∑
i=1

Si.

With a very simple algebraic manipulation, we can derive that Gn can be expressed as

follows:

Gn =
1

n+1

n

∑
i=1

Si =
1

n+1

n

∑
i=1

i

∑
m=1

Zm

=
1

n+1

n

∑
m=1

n

∑
i=m

Zm =
1

n+1

n

∑
m=1

(n−m+1)Zm

=
n

∑
m=1

n−m+1

n+1
Zm =

n

∑
m=1

ωn,mZm,

where, for simplicity and ease of notation, we have introduced:

ωn,m :=
n−m+1

n+1
. (5.1)

Thus, we can observe that the process of centroids is nothing more than a weighted ran-

dom walk with the above-described weights. In this section, we aim to provide analogous

results for the perimeter and diameter of convex hulls generated by the centroids, specifi-

cally:

LG
n := Per

(

chull
{

G j : 0 f j f n
})

, n g 0,

and

DG
n := diam

(

chull
{

G j : 0 f j f n
})

, n g 0.

We introduce a simple lemma that describes the behavior of these weights to simplify the

later proof.

Lemma 5.1.1. Let the triangular array of weights (ωn,m)1fmfn be defined as above in

(5.1). Then the following holds:

(i) 0 < ωn,m < 1 for every n ∈ N and every 1 f m f n.

(ii)

lim
n→∞

1

n

n

∑
i=1

ω2
n,m =

1

3
.
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Proof. The first statement, (i), is evident. To prove the second statement, (ii), we proceed

as follows:

1

n

n

∑
i=1

ω2
n,m =

1

n

n

∑
i=1

Å

n−m+1

n+1

ã2

=
1

n(n+1)2

n

∑
i=1

(n−m+1)2

=
1

n(n+1)2

n

∑
i=1

m2

=
1

n(n+1)2
· n(n+1)(2n+1)

6
,

where, in the last equality, we used the formula for the sum of the first n squares. By

taking the limit as n → ∞, we obtain the desired result for statement (ii). □

Remark 5.1.2. In the following proof, we will focus on the specific weights that we

defined in (5.1) in order to examine exclusively the convex hull of the centroids. However,

it is important to note that the subsequent proof is valid for any choice of weights ωn,m

that satisfies the fundamental assumptions outlined in Lemma 5.1.1. Specifically, the only

requirements that this sequence must meet are that it is non-negative, uniformly bounded,

and that the sum of the squares, scaled by n, converges to some positive value.

The proof principle for the perimeter and diameter of the convex hull generated by the

centroids is very similar to the techniques used in the proofs for the perimeter and diameter

of the convex hull generated by the original points of a planar random walk (see [WX15a]

for the perimeter and [MW18] for the diameter). Without stepping into the details of

the analogous proofs, we can state in the following result the L2 approximations for the

deviations of the perimeter and diameter of the convex hull of the centroids. As earlier,

we denote by µµµ the drift vector of the increment, and by θ0 the angle corresponding to µµµ

in polar coordinates.

Theorem 5.1.3. Suppose that E[∥Z∥2]< ∞ and µµµ ̸= 0. Then, as n → ∞:

(i)

n−1/2

∣

∣

∣

∣

∣

LG
n −E

î

LG
n

ó

−
n

∑
m=1

2ωn,m (Zm −E [Z]) · eθ0

∣

∣

∣

∣

∣

→ 0, in L2, and
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(ii)

n−1/2

∣

∣

∣

∣

∣

DG
n −E

î

DG
n

ó

−
n

∑
m=1

ωn,m (Zm −E [Z]) · eθ0

∣

∣

∣

∣

∣

→ 0, in L2.

The key step and the fundamental difference compared to the proof of the Central

Limit Theorem for the perimeter and diameter processes of the hull generated by the

original points lies in demonstrating the Central Limit Theorem for the approximation

expressions in Theorem 5.1.3. Recall that in the proof for the perimeter and diameter of

the hull generated by the original points; the process was relatively straightforward - the

deviation of the perimeter and diameter was approximated by a sum of independent and

identically distributed random variables. By assuming these variables have a finite sec-

ond moment, we directly applied Lévy’s version of the Central Limit Theorem (Theorem

1.3.6). In the case of centroids, however, the variables are not identically distributed, so

we must consider the Lindeberg-Feller version of the Central Limit Theorem (Theorem

1.3.8).

Theorem 5.1.4. Suppose that E[∥Z1∥2]< ∞ and µµµ ̸= 0. Suppose that

σ2
µ := E

î

(

(Z −µµµ) · eθ0

)2
ó

> 0.

Then for any x ∈ R:

(i)

lim
n→∞

P





LG
n −E

[

LG
n

]

√

Var [LG
n ]

f x



= lim
n→∞

P





LG
n −E

[

LG
n

]

»

4
3
·σ2

µn
f x



= Φ(x), and

(ii)

lim
n→∞

P





DG
n −E

[

DG
n

]

√

Var [DG
n ]

f x



= lim
n→∞

P





DG
n −E

[

DG
n

]

»

1
3
·σ2

µn
f x



= Φ(x),

where Φ is the CDF of the standard normal distribution function.

Proof. In the proof, we will only show statement (i) because statement (ii) can be proven

in exactly the same way. Let us define:

Xn,m :=
1√
n

2ωn,m (Zm −EZ) · eθ0
.
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We observe that:

n

∑
m=1

EX2
n,m =

n

∑
m=1

Var

Å

1√
n

2ωn,m (Zm −EZ) · eθ0

ã

=
n

∑
m=1

1

n
·4 ·ω2

n,m ·Var
(

(Zm −EZ) · eθ0

)

=
4σ2

µ

n

n

∑
m=1

ω2
n,m.

By letting n → ∞ and using statement (ii) of Lemma 5.1.1, we obtain:

lim
n→∞

n

∑
m=1

EX2
n,m =

4

3
σ2

µ . (5.2)

Now, let ε > 0 be arbitrary. Then we have:

E

î

|Xn,m|2 ·1{|Xn,m|> ε}
ó

= E

ï

1

n
·4ω2

n,m ·
[

(Zm −EZ) · eθ0

]2 ·1
ß

1√
n
·2ωn,m ·

∣

∣(Zm −EZ) · eθ0

∣

∣> ε

™ò

,

which is equal to

4

n
ω2

n,mE

Å

[

(Z −EZ) · eθ0

]2 ·1
ß

∣

∣(Z −EZ) · eθ0

∣

∣> ε ·
√

n

2ωn,m

™ã

.

According to Lemma 5.1.1, statement (i), we know that 0 < ωn,m < 1, so we have:

4

n
ω2

n,mE

Å

[

(Z −EZ) · eθ0

]2 ·1
ß

∣

∣(Z −EZ) · eθ0

∣

∣> ε ·
√

n

2ωn,m

™ã

f 4

n
ω2

n,mE

Å

[

(Z −EZ) · eθ0

]2 ·1
ß

∣

∣(Z −EZ) · eθ0

∣

∣> ε ·
√

n

2

™ã

.

Thus, we have:

n

∑
m=1

E

î

|Xn,m|2 ·1{|Xn,m|> ε}
ó

f 4

n
E

Å

[

(Z −EZ) · eθ0

]2 ·1
ß

∣

∣(Z −EZ) · eθ0

∣

∣> ε ·
√

n

2

™ã n

∑
m=1

ω2
n,m,
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and again, using statement (ii) of Lemma 5.1.1, we obtain

4

n
E

Å

[

(Z −EZ) · eθ0

]2 ·1
ß

∣

∣(Z −EZ) · eθ0

∣

∣> ε ·
√

n

2

™ã n

∑
m=1

ω2
n,m

fC1 ·E
Å

[

(Z −EZ) · eθ0

]2 ·1
ß

∣

∣(Z −EZ) · eθ0

∣

∣> ε ·
√

n

2

™ã

,

where C1 <∞ is a positive constant which exists due to Lemma 5.1.1, statement (ii). Since

E([(Z −EZ) · eθ0
]2)< ∞, by the Dominated Convergence Theorem, we obtain:

lim
n→∞

n

∑
m=1

E

î

|Xn,m|2 ·1{|Xn,m|> ε}
ó

= 0. (5.3)

We notice that (5.2) and (5.3) are precisely the conditions of the Lindeberg-Feller Central

Limit Theorem (Theorem 1.3.8), so we have that:

n

∑
m=1

Xn,m
D−→ Z,

where Z ∼ N (0, 4
3
σ2

µ). Similarly, as in the proofs of Theorem 3.5.3 and Theorem 4.4.3,

by using Slutsky’s theorem (Theorem 1.3.3), we obtain the desired result. □
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5.2. DISCUSSION

This section focuses on specific situations that may have remained unexplained. To begin

with, an interesting question arises when we assume that ∥µµµ(1) − µµµ(2)∥ is the unique

maximal element of the set from the assumption (A2). Under this assumption, Theorem

4.4.1 should be restated in the following form:

n−1/2
∣

∣

∣Dn −EDn −
ÄÄ

S
(1)
n −ES

(1)
n

ä

−
Ä

S
(2)
n −ES

(2)
n

ää

· eθ

∣

∣

∣

L2

−−−→
n→∞

0.

Here, θ ∈ [0,π) denotes the angle corresponding to the direction of µµµ(1)−µµµ(2). Conse-

quently, both random walks under consideration contribute to the asymptotic behavior of

the diameter in this particular scenario.

Furthermore, the analysis of the diameter of the convex hull spanned by two ran-

dom walks can be adapted to the more general scenario involving m independent random

walks. The asymptotic behavior of the diameter is controlled by the geometric character-

istics of the set:
¶

∥x− y∥ : x,y ∈
¶

µµµ(k) : k = 0, . . . ,m
©©

,

where, for the sake of conventional notation, we have additionally introduced a degenerate

random walk (S
(0)
n )∞

n=0 whose increments are almost surely equal to zero. Namely, if this

set possesses a unique maximal element, it can be demonstrated that:

n−1/2
∣

∣

∣Dn −EDn −
ÄÄ

S
(k1)
n −ES

(k1)
n

ä

−
Ä

S
(k2)
n −ES

(k2)
n

ää

· eθ

∣

∣

∣

L2

−−−→
n→∞

0,

where k1,k2 ∈ {0, . . . ,m} are selected such that ∥µµµ(k1) −µµµ(k2)∥ is the (unique) largest

element in the set mentioned above, and θ keeps its role as the angle corresponding to

the direction µµµ(k1)−µµµ(k2). Similarly, the present discussion does not readily extend to

scenarios involving multiple maximal elements within the set.

On the other hand, the problem of the perimeter of the convex hull generated by mul-

tiple independent random walks is much more demanding. To more effectively handle

the extrema (Mn(θ) and mn(θ)), one might consider using an alternative version of the
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Cauchy formula for the perimeter, given by:

Ln =
∫ 2π

0
Mn(θ)dθ . (5.4)

Yet, the specific random walks contributing to this integral depend upon the geometric

properties of the convex hull formed by their respective drift vectors. If the convex hull of

these drift vectors coincides with the convex hull of a subset (of the original set) of drift

vectors where all are non-zero, the argument above can be adjusted to arrive at a Gaussian

limiting distribution. An example of such a setting is presented in Figure 5.1 on the right

graph.

To further clarify the idea behind the proof in this case, let’s assume for simplicity

that 0 lies in the interior of the convex hull of the drift vectors. Let M represent the

set of indices of the walks, counterclockwise ordered, that form the smallest subset of
¶

µµµ(k) : k = 1, . . . ,m
©

which generates chull
¶

µµµ(k) : k = 1, . . . ,m
©

, and reindex it so that it

corresponds to the set {1, . . . , |M|}. The idea is to introduce resampling, similar to the

case with two walks, and to break down the integral in (5.4) into several integrals. Within

each region, we know which walk dominates the others, meaning, more precisely, which

walk is most likely to provide the maximum projection for the observed angle θ . In that

case, the Cauchy formula can be approximated as follows:

n−1/2

∣

∣

∣

∣

∣

∫ 2π

0
Mn(θ)dθ −

|M|
∑
k=1

∫ θk+1

θk

M
(k)
n (θ)dθ

∣

∣

∣

∣

∣

L2

−−−→
n→∞

0,

where θk represents the angle that marks the boundary between two regions where we

can detect the dominant walk (with the additional note that θ|M|+1 := θ1). By introducing

resampling and evaluating the corresponding integral, we can obtain:

n−1/2

∣

∣

∣

∣

∣

Ln −ELn −
|M|
∑
k=1

n

∑
i=1

î

(Z
(k)
i −EZ

(k)
1 )(e§θk+1

− e§θk
)
ó

∣

∣

∣

∣

∣

L2

−−−→
n→∞

0, (5.5)

where the choice of e§θk
is such that {e§θk

,eθk
} forms a right-handed orthonormal basis for

R
2. The intuition is as follows: each walk whose drift vector contributes to the convex

hull of the drift vectors will appear twice in the approximation expression (5.5), once for
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x

y

x

y

Figure 5.1: Different positions of drift vectors

each adjacent side of the convex hull of the drift vectors.

On the other hand, if there exists a zero-drift random walk and the zero lies on the

boundary of the convex hull, a non-Gaussian limit can be expected. The reasoning behind

this is relatively straightforward. As we will see in the next section, it was shown in

[WX15b] that, in the case of a single random walk with zero drift, the perimeter process

has a non-Gaussian limit. If a zero-drift walk is involved and the zero vector is on the

edge of the convex hull of the drift vectors, it is likely that this walk will contribute a

non-Gaussian component to the overall limit, making the entire limit distribution non-

Gaussian. An example of this scenario is depicted in the left graph of Figure 5.1.
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5.3. SIMULATION STUDY

As we already mentioned, in [WX15b], it has been shown that for a single zero-drift

planar random walk, (Ln −E[Ln])/
√

n converges in distribution to a non-degenerate non-

Gaussian limit. We conjecture a similar phenomenon in the case of two planar random

walks when the assumption (A1) is not satisfied, that is,

000 ∈ {µµµ(1),µµµ(2),µµµ(1)−µµµ(2)}.

In the case when {µµµ(1),µµµ(2),µµµ(1) −µµµ(2)} = {000} this can be proved by completely the

same arguments as in [WX15b]. The limiting object can be expressed in terms of the

perimeter of the convex hull spanned by two independent planar Brownian motions.

More delicate situation arises when 000 ∈ {µµµ(1),µµµ(2),µµµ(1)−µµµ(2)} ̸= {000}. In what fol-

lows, we provide a simulation study that supports our conjecture, leaving the clarification

of our conjecture open. In the case when µµµ(1) ̸= µµµ(2) = 000, or µµµ(2) ̸= µµµ(1) = 000, our intu-

ition was that, since both walks contribute to the convex hull (see Figure 5.2), distribu-

tional limit will not be Gaussian. On one hand, a single (non-degenerate) planar random

walk with non-zero drift generates a convex hull whose perimeter has a Gaussian behav-

ior (see [WX15a, Theorem 1.2]). Still, a single zero-drift planar random walk generates a

convex hull whose perimeter does not have a Gaussian behavior (see [WX15b, Corollary

2.6 and Proposition 3.7]). This non-Gaussian part affects the convex hull generated by

both walks combined. We ran some simulations and the results are shown in Figure 5.3.

Figure 5.2: The convex hull of two independent planar random walks with parameters

µµµ(1)= (1.5,0) (blue), µµµ(2)= (0,0) (red), ΣΣΣ(1)=ΣΣΣ(2)= I2, where I2 is the two-dimensional

identity matrix.
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Figure 5.3: Simulation results for the perimeter process – µµµ(1) = (100,0), µµµ(2) = (0,0).

Since we were simulating two planar random walks, we had some freedom in the

design of our simulation study, but we kept everything as simple as possible. Namely,

covariance matrices were always multiples of the identity matrix, and the steps of random

walks were generated from multivariate normal distribution. To see what happens in the

scenario when one of the two walks has a non-zero drift and the other one has a zero drift

(illustrated in Figure 5.2), we set one drift vector to (100,0), and the other one, clearly, to

(0,0).

As mentioned, the covariance matrices of both walks were always of the shape σ I2

(where I2 is the two-dimensional identity matrix). We varied the value of σ across all

the elements from the set {0.1,0.5,1,5,10,50,100,500}. More precisely, for every com-

bination of σ1,σ2 ∈ {0.1,0.5,1,5,10,50,100,500} we simulated 103 random walks with

parameters µµµ(1) = (100,0), ΣΣΣ(1) = σ1I2 and µµµ(2) = (0,0), ΣΣΣ(2) = σ2I2. In each of those

103 simulations, we simulated 104 steps of both random walks, determined the convex

hull generated by the trajectories of both walks and then calculated the perimeter of the

resulting convex hull. Hence, for each combination of values of σ1 and σ2, we had 103

realizations of a random variable Ln, for n = 104. We then tested those 103 realizations

for normality and calculated the p-value. To gain additional stability of our simulations,

we repeated the procedure 5 times and averaged all the p-values obtained.
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Since we varied the values of σ1 and σ2 across 8 different values, we ended up with

8× 8 matrix of averaged p-values. We then transformed the matrix elements with the

mapping x 7→ − logx so that it is easier to present the results. After this transformation,

the values in the matrix that were less than or equal to 2 corresponded to p-values big

enough to suggest not rejecting the Gaussian distribution hypothesis. Bigger values in

the matrix correspond to smaller p-values and point in the direction of non-Gaussian

behavior. To stress this difference between values less than or equal to 2 and values

bigger than 2, we use different color palettes for those two ranges of values. In Figure

5.3, as in all the figures that follow, the color on the position (i, j) (starting from top left

corner) corresponds to the simulation in which σ1 is equal to the i-th value, and σ2 to the

j-th value from the set {0.1,0.5,1,5,10,50,100,500}.

As one can see in Figure 5.3, if the variability of the zero-drift random walk is smaller

than or equal to the variability of the random walk with the non-zero drift simulations

suggest not to reject the hypothesis of Gaussian distribution. However, we believe that, in

this case, the impact of the non-Gaussian part is too small for the test to detect. As soon

as the variance of the zero-drift random walk is bigger, the simulations clearly suggest

non-Gaussian behavior.

For illustration, we conduct the same experiment in the case when the assumption

(A1) is not violated. We can see in Figure 5.4 that the same design of the simulation

study as above captures the behavior proven in Theorem 3.5.3.

The last scenario in which assumption (A1) is not satisfied is the one where µµµ(1) =

µµµ(2) ̸= 000. It was clear to us that our approach to the proof of Theorem 3.5.3 cannot

cover this case, but our first impression was that the normality will still hold. Hence,

it was somewhat surprising to us when simulations suggested that in this case we again

do not have normal behavior (see Figure 5.5). These simulation results motivated the

formulation of the assumption (A1) in the present form. Possible justification is that one

has to consider the triangle spanned by the drift vectors, and as soon as one of the three

sides has length zero, the normality does not hold.

When it comes to the assumption (A2) in the diameter case, we have completely anal-

ogous situation as above. We repeated all the experiments as above and got analogous

results (see Figure 5.6 and Figure 5.7). In the central limit theorem for the diameter
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(a) µµµ(1) = (200,100), µµµ(2) = (−100,100) (b) µµµ(1) = (200,100), µµµ(2) = (100,100)

(c) µµµ(1) = (200,0), µµµ(2) = (−100,0) (d) µµµ(1) = (200,0), µµµ(2) = (100,0)

Figure 5.4: Simulation results (for the perimeter process) illustrating Theorem 3.5.3

(Theorem 4.4.3), if (A2) is not satisfied, our method of proof does not hold. Neverthe-

less, our intuition was that the normality should still hold if (A1) is still satisfied. We

were quite surprised to see that simulations suggest non-Gaussian behavior when the set

{∥µµµ(1)∥,∥µµµ(2)∥,∥µµµ(1)−µµµ(2)∥} does not have a unique maximal element. Those simula-

tion results are shown in Figure 5.7.

One thing that the simulations suggest is that the variability of the walks does not

change the limiting behavior of the studied processes (as long as σL > 0 and σD > 0), but

it has an effect on simulations. Therefore, it could be that because of a bad simulation

study design, we conjectured something that does not hold. Regardless of that, it seems
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Figure 5.5: Simulation results for the perimeter process – µµµ(1) = (100,0), µµµ(2) = (100,0).

that scenarios excluded with assumptions (A1) and (A2) require additional work and a

different approach, and the efforts to extend our results in this direction are currently

underway.
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(a) µµµ(1) = (100,0), µµµ(2) = (0,0) (b) µµµ(1) = (200,100), µµµ(2) = (−100,100)

(c) µµµ(1) = (200,100), µµµ(2) = (100,100) (d) µµµ(1) = (200,0), µµµ(2) = (−100,0)

(e) µµµ(1) = (200,0), µµµ(2) = (100,0) (f) µµµ(1) = (100,0), µµµ(2) = (100,0)

Figure 5.6: Simulation results for the diameter process in the same scenarios as the ones

analyzed in the context of the perimeter process.
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(a) µµµ(1) = (100,200), µµµ(2) = (−100,200) (b) µµµ(1) = (0,200), µµµ(2) = (200,100)

Figure 5.7: Simulation results (for the diameter process) in the case when assumption

(A2) is violated, but (A1) is satisfied.
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CONCLUSION

In this dissertation, we examined the convex hull spanned by m planar random walks and

analyzed its asymptotic behavior, as well as the asymptotic behavior of geometric func-

tionals. After the introduction, literature review, and the mathematical results used in this

work, in the second chapter, we proved that the convex hull generated by the first n steps

of m independent random walks, scaled by n−1, converges to the convex hull spanned by

the corresponding drift vectors. In this case, we made no additional assumptions on the

random walks. From this result, we can conclude that all continuous functionals of con-

vex sets (such as perimeter, diameter, area, and intrinsic volumes) almost surely converge

to the same functional value of the limit object.

In the continuation of the work, we restricted ourselves to the case when m = 2, and in

the third chapter, we examined the distributional limit for the perimeter process. The main

idea was to construct a sequence of martingale differences using the resampling technique.

In this way, we adequately described the approximation of the perimeter deviation, and by

applying the classical Levy’s Central Limit Theorem (CLT) and Slutsky’s Theorem, we

showed that, in the case when assumption (A1) is satisfied and when the limiting variance

is strictly positive, we obtain a central limit theorem for the perimeter process.

We used a very similar argumentation for the diameter process. The key detail in this

process was proving the pointwise continuity of the mapping that assigns to polygons with

unique diametrical segments (segments on which the diameter is achieved) that segment,

with respect to the Hausdorff metric. Similarly to the perimeter process, if assumption

(A2) is satisfied, and if the limiting variance is strictly positive, we obtained a CLT for the

diameter process.

In the final chapter, we proved analogous results for the distributional limits of the

perimeter and diameter processes of the convex hull spanned by the centroids of a single
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planar random walk. The main difference compared to the previous proofs was that,

instead of the classical Levy’s CLT, we had to use the Lindeberg-Feller version. We also

commented on possible generalizations of the results for more than two random walks.

We provided a simulation study to examine what happens if we abandon assumption

(A1) for the perimeter process and assumption (A2) for the diameter process. The study

showed that, in such a case, we do not expect a Gaussian distributional limit, which opens

a window for new scientific research in this area.
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APPENDIX

In this additional chapter, we will present the proofs of the auxiliary statements referenced

in the thesis, which are essential to our discussion. We begin with the proof of Cauchy’s

surface formula. The Minkowski sum of two sets A and B in R
d is defined as:

A+B = {a+b : a ∈ A,b ∈ B}. (A.6)

Then, the surface of K, S(K) is defined as:

S(K) = lim
ε→0+

λd

(

K + εBd
)

−λd(K)

ε
.

First, we give our definition, which uses the Minkowski sum of sets.

Definition A.1. Let u,P ¢ R
d . Define

Du (λd)(P) = lim
ε→0+

λd(P+ εu)−λd(P)

ε
.

The special case D
Bd (λd)(P) gives the surface volume:

D
Bd (λd)(P) = S(P). (A.7)

The foundation of our proof is Minkowski’s theorem on mixed volumes, which is dis-

cussed in Chapter 5 of [Sch13]. This theorem states that the volume of a Minkowski sum

of convex bodies can be expressed as a polynomial in the coefficients of the Minkowski

sum, with the polynomial’s coefficients depending solely on the convex bodies them-

selves.
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Theorem A.2. Consider convex bodies K1,K2, . . . ,Km in R
d . The volume of their Minkowski

sum can be expressed as:

λd (λ1K1 +λ2K2 + · · ·+λmKm) = ∑λi1λi2 · · ·λinV (Ki1 ,Ki2 , . . . ,Kin) .

Here, the left-hand side represents the Minkowski sum, while the right-hand side involves

a sum over all multisets of size n formed from the indices {1,2, . . . ,m}. The functions V

are nonnegative, symmetric, and depend only on the convex bodies Ki1 ,Ki2 , . . . ,Kin .

From Theorem A.2 it follows that if P and u are convex, then Du (λd)(P) is linear in

u.

Lemma A.3. Let P,u,v ¢ R
d be convex bodies, and let α,β ∈ R. Then we have the

following relationship:

Dαu+βv (λd)(P) = αDu (λd)(P)+βDv (λd)(P).

Proof. Let’s start with the definition:

Dαu+βv (λd)(P) = lim
ε→0+

λd(P+ ε(αu+βv))−λd(P)

ε

= lim
ε→0+

λd(P+ εαu+ εβv)−λd(P)

ε
.

According to Theorem A.2, we have:

Dαu+βv (λd)(P) = αV (P,P, . . . ,P,u)+βV (P,P, . . . ,P,v)

where P is repeated d − 1 times, and V is the function described in Theorem A.2. Simi-

larly, it follows that:

Du (λd)(P) =V (P,P, . . . ,P,u)

Dv (λd)(P) =V (P,P, . . . ,P,v),

which completes the proof of our Lemma. □

In what follows, we demonstrate that the derivative defined in Definition A.1 effec-

tively computes the projection of a convex body when u represents a line segment of
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length 1.

Lemma A.4. Consider u as a line segment of length 1 and let K ¢ R
d be a convex set.

Then, we have the relationship:

λd−1

Ä

K | u§
ä

= Du (λd)(K).

Proof. Let Lu represent the collection of lines that are parallel to u. It is important to note

that each line l in Lu corresponds to a unique point in the plane orthogonal to u, denoted

by l§. This means that Lu can be considered isomorphic to R
d−1, allowing us to define

the measure λd−1 on Lu. With this setup, we have:

λd(K) =
∫

l∈Lu

λ1(l ∩K)dλd−1.

Additionally, we can express:

λd−1

Ä

K | u§
ä

=
∫

l∩K ̸= /0
l∈Lu

1dλd−1.

For any ε > 0, the following holds:

λd(K + εu)−λd(K) =
∫

l∈Lu

(λ1(l ∩ (K + εu))−λ1(l ∩K)) dλd−1.

Due to the convexity of K, we know that:

λ1(l ∩ (K + εu))−λ1(l ∩K) = ε

for all lines l that intersect K, and the difference is zero for lines that do not intersect K.

Therefore, the integral simplifies to:

∫

l∩K ̸= /0
l∈Lu

ε dλd−1 = ελd−1

Ä

K | u§
ä

,

which leads to:

Du (λd)(K) = lim
ε→0+

λd(K + εu)−λd(K)

ε
= lim

ε→0+

ελd−1

(

K | u§
)

ε
= λd−1

Ä

K | u§
ä

.
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□

At this point, we are ready to show a concise yet thorough proof of Cauchy’s surface

area formula.

Proof of Theorem 1.2.5. By applying Lemma A.3, Lemma A.4, and Equation A.7, we

can derive the following:

∫

Sd−1
λd−1

Ä

K | u§
ä

du =
∫

Sd−1
D[0,u] (λd)(K)du

= D∫
Sd−1 [0,u]du (λd)(K)

= Dc(n)Bd (λd)(K)

= c(n)S(K).

We finish the proof by choosing K to be the unit ball Bd . □
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