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SUMMARY

In the thesis evolution equations of second order in ¢ are studied. Some standard results
regarding the existence, uniqueness, and well-posedness of the semilinear wave equation
are revisited in the first part and generalised to the case where the coefficients have only
bounded variation with respect to time.

The second part begins with an introduction to the theory of pseudodifferential oper-
ators and microlocal analysis tools, with an emphasis on the notion of H-measures and
their main properties. The theory is then applied to both linear and semilinear wave equa-
tions. The results in this part generalize the work of Francfort and Murat, allowing the
coefficients of the equation to depend on the time variable as well.

Keywords: H-measures, pseudodifferential operators, semilinear wave equation
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SAZETAK

Disertacija se bavi proucavanjem evolucijskih jednadzbi drugog reda u . U prvom dijelu
disertacije revidiraju se i generaliziraju standardni rezultati o postojanju i jedinstvenosti
rjesenja, te dobroj postavljenosti polulinearne valne jednadzbe na slucaj kada koeficijenti
imaju samo ograni¢enu varijaciju s obzirom na vremensku varijablu.

Drugi dio disertacije zapoCinje uvodom u teoriju pseudodiferencijalnih operatora i
alata mikrolokalne analize, s naglaskom na pojam H-mjera i njihovih glavnih svojstava.
Zatim se teorija primjenjuje na slucajeve linearne i polulinearne valne jednadzbe. Rezul-
tati u ovom dijelu generaliziraju rad Francforta 1 Murata, omogucujuci da koeficijenti
jednadzbe takoder ovise o vremenskoj varijabli.

Kljuéne rijeci: H-mjere, pseudodiferencijalni operatori, polulinearna valna jednadzba
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INTRODUCTION

The thesis is divided into two parts, connected by the common theme of studying evo-
lution equations. First part is contained in Chapter 1, and it is devoted to the study of

semilinear wave equation, which in its simplest form is given by
U —Au+F(u) =0, (0.1)

where F represents the nonlinear part of the equation. Most common cases include non-
linearities of the form F' (1) = u|u|? for some (integer) exponent p. Existence, smoothness
and even uniqueness of solutions has in early work been known only under severe growth
restrictions on F and its derivatives, for instance, if F is Lipschitz continuous (v. [67] and
references therein). Starting as early as in 1970., Strauss showed the existence of the weak
solution of (0.1) coupled with initial conditions #(0) = u° € H! and #/(0) = u' € L2. The
nonlinear part F was assumed to be a continuous function satisfying the sign condition,
meaning that F () has the same sign as u, alongside the integrability of G(u°), where G
is the primitive function of F' satisfying G(0) = 0. These assumptions will be the basis
for our further work.

On the other hand, Casado-Diaz et al. dealt in their work on homogenisation for the

wave equation [25] with linear wave equation of the more general form
(pu')' —div(AVu) = f, (0.2)

but instead of classical assumptions that required coefficients to be Lipschitz-continuous
in time, they considered a more general case involving coefficents which are functions of
bounded variation in time.

For the wave equation one assumes that A takes values in the space of positively

definite symmetric matrices. However, there are physically relevant situations (e.g. related
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to the Hall effect [24]), as well as some man-made materials that have recently been
constructed [55, 56], where the corresponding coefficients are not symmetric any more.
This prompted our study of more general wave-like evolution equations.

The main result of the first chapter consists in combining these earlier approaches in
order to obtain the existence and uniqueness results for the initial value problem for the
equation

(pu') —div (AVu) + F(u) = 0. (0.3)

The second part of the thesis begins with Chapter 2, an introduction to the theory of H-
measures, which was independently introduced by Tartar in [71] and Gérard in [36]. The
difference in their approach lies mainly in the regularity assumptions of the framework.
For this matter, appropriate classes of symbols and associated pseudodifferential operators
are being introduced beforehand.

Since the main application of H-measures was in connection to sequences of solutions
of certain partial differential equations motivated by continuum physics, Tartar wanted to
minimise the regularity hypotheses when introducing the pseudodifferential calculus, in
order to better capture the real-life needs for coefficients which do not need to be smooth.
However, even though this appears as an obvious advantage to the approach, the main
setback lies in the fact that the mentioned pseudodifferential calculus had to be reinvented
for his cause, since the majority of the known results at the time were done for operators
associated with smooth symbols. This is precisely the framework Gérard uses in his
introduction of H-measures, which allows for definition of H-measures on more abstract
spaces. However, as it has already been mentioned, this restricts the PDE framework only
to those having smooth coefficients.

After the overview of these two approaches, we give some final remarks and consid-
erations about pseudodifferential operators with symbols that can be considered as spatial
pseudodifferential operators with time as parameter. This will serve as an addition to al-
ready known pseudodifferential calculus in order to carry out the proof of the main result
of Chapter 3.

The third, and final chapter, is devoted to the study of transport properties of H-
measures associated to the wave equation. More precisely, we are considering the linear

wave equation, with variable time-dependent coefficients, coupled with an oscillating se-
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quence of initial data (u,(0),u,(0)) = (gn,hn), weakly converging in H' (RY) x L?(R?).
Associated with the sequence of gradients of solutions is an H-measure u, which, due
to the fact that it arises from a gradient, has a specific form that allows its study to be
reduced to a certain scalar Radon measure v. The main part then consists in answering

the following three questions:
(a) can we obtain the transport equation for the measure v?
(b) can the trace of the measure at time ¢ = 0 be defined in some sense?

(c) can the trace of v at t = 0 be computed only through knowledge of initial data g,

and h,?

The (positive) answer to all of these question was already given by Francfort and Murat
in [34] for the linear wave equation with smooth coefficients depending only on x variable.
Their approach has its basis in the work done by Tartar in regard to the first order equation
in [71]. However, a step-up from first to second order equation would, as it seems at
this point, require some additional reinvention of the pseudodifferential calculus for non-
smooth symbols. For that reason, we will only take smooth coefficients into consideration,
and mostly follow Gérard’s approach.

We then generalise the aforementioned result of Francfort and Murat to the case of
the linear wave equation with coefficients that depend on both ¢ and x. Finally, we draw
some comparision with the semilinear wave equation studied in Chapter 1. We are mainly
motivated by the work of Gérard in [37], which studied the three-dimensional semilinear
wave equation (with constant coefficients and) with smooth nonlinearity satisfying the
growth conditions |F ) (u)| < C(1+ |u|)?~/ for 1 < p <5 and j € Ny (i.e. up to the
critical exponent). Since the study of strong solutions and their behaviour is not of our
focus here, we consider the corresponding case in general dimension d where p < ﬁ,
and observe whether these types of nonlinearities contribute to the energy densities in the

case with variable coefficients.



1. SEMILINEAR WAVE-LIKE EQUATION

1.1. PRELIMINARIES

1.1.1. Function spaces

First and foremost, let us state that the reader is expected to be familiar with all the stan-
dard spaces that will appear not only in this chapter but throughout the entire thesis, as
well as with the basics of theory of distributions (see [65], [23], [84]). Below, we briefly

introduce the notation used for the spaces of interest:

* Space of all k-times (strongly) differentiable functions on © C R? denoted by
CH(Q), k € NgU {eo}.

* Space of test functions denoted by C°(2) (or sometimes Z(Q) as well), consisting

of all compactly supported functions in C*(Q).

o Lebesgue spaces LP(Q) with Q C R (underlying measure is understood to be stan-
dard Lebesgue measure) equipped with respective norms

1
(fg |u(x)\pdx)P , 1<p<o
lullLr@) =
ess supu(x), p = oo.
xX€Q
* Sobolev spaces for nonnegative integer k defined as spaces of L” functions whose
weak derivatives of order less than or equal k belong to L” and denoted by W (Q),

equipped with respective norms

==

u| (Z|0‘|SkHaa”HLP(Q)> , 1< p<oo
Ullwkr(q) —
B maxgeiess suplo“ (), p =
T xeQ
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In particular, we write H*(Q) instead of W*?(Q).
* Spaces Wg’p (Q) defined as the closure of the space C=*(Q) in W5/ (Q).

« Spaces W57 (Q) defined as the duals of the corresponding Wg’p () space, where

p’ denotes the conjugate exponent of p.

* Bochner spaces LP(I;X), for an interval I C R and a Banach space X, defined as
the set of all Bochner measurable functions u : I — X such that the corresponding
norms are finite:

1
(i lu@)lxdr)? 1<p<eo

H”HLP(I;X) =

[ull=(rx) = ess sup [lu(t)[lx, p = ee.
tel

* Bochner-Sobolev spaces WP (I;X) defined analogously as the set of all Bochner
measurable functions whose derivatives of order less than or equal to k belong to
L?(I;X), and have finite norms:

||u”wkvp(];x): Z ||aa”||L"(I;X)'

|a|<k

The most common case will be when I = (0,7) for some T > 0, in which case we

write W57 (0, T'; X) instead of W5P((0,T); X).

One can find detailed discussion on properties of the Sobolev spaces in [32, Chapter
5] or [23]. It is also worth noting that the Bochner (and Bochner—Sobolev) spaces, which
can be viewed as the vector-valued versions of the corresponding Lebesgue and Sobolev
spaces, share many similarities with them, but there are still some important differences
one must take into account. Although there are plenty of sources one may look upon in
order to go into further details ( [22], [23], [32] among others), we will refer the reader

to [50] for a very detailed and self-sufficient overview of this topic.

1.1.2. Preparatory remarks

We now proceed to introduce the necessary ingredients in order to state the main problems

and results of this chapter.
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Let Q be a bounded open subset of RY with a smooth boundary. Denote H = L?(Q)
and V = H}(Q), with V < H being continous dense injection which is compact due to the
Rellich-Kondrachov theorem [2, Theorem 6.3]. The dual of V is given by V/ = H~!(Q).
By further identifying H with its dual H' we get

VesH=H <V,

where the second inclusion is also a continuous dense injection. The triple (V,H,V') is
often called the Gelfand triple [86, Chapter 17.1].

The scalar product in H will be denoted by (+,-)y = (-, ) and the dual pairing between
V and V' by y/(-,-)y = (-,-). All the spaces in this chapter are considered to be real.

Let T > 0 be fixed. We now introduce families of operators R(z), Ao(¢) and A (¢) for

t € [0, 7], satisfying properties that follow. For R we assume

ReW>(0,7;.2(H)) (1.1)
(R(#)u,v) = (R(t)v,u), u,ve H,t €[0,T] (1.2)
(R()u,u) > ol|ul|F, ue H,te|0,T], (1.3)

while for Ay we assume

Ao e WHL0,T;.2(V, V")) (1.4)
(Ao(t)u,vy = (Ao(t)v,u), u,ve Vit €10,T] (1.5)
(Ao(Du,u) > o|ull?,  ueV,rel0,T). (1.6)

Finally, for A| we assume

A e WhH0, T, .2(V,H)). (1.7)

Remark 1.1.1.  (a) Given the continuous inclusion W1(0, 7; X) < C(]0, T]; X) is valid
for each Banach space X, (1.1) and (1.4) allow us to deduce that R belongs to
the space C'([0,T];-Z(H)), Ao belongs to the space C!([0,T];.Z(V,V')) and we

deduce the existence of constant § > 0 such that

HRHWI""’(QT;Q@(H)) <p (1.8)

1Aollwi=0.7,2(v,yr)) =B - (1.9)
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(b)

(©

When there is enough regularity in functions u € H and v € V, standard formulae
for the (weak) derivative of products Ru and Agv hold, where we denote (Ru)(z) =

R(#)u(t) (analogously for Ay).

Namely, if u belongs additionally to W1(0,T;H), (a) implies R'u and Ru/’ €
L'(0,T;H) and consequently we have Ru € W1 (0, T; H) with

(Ru) =R'u+Ru.
while for v € WH1(0,7;V) we have Agv € W'1(0,T;V’) with
(Agv) = Agv+Agv.

Of course, higher order derivatives are obtained inductively when there is more

regularity in both of the factors.
Symmetric operators R(z), t € [0, T] satisfy
ol <R(r) <1,

and as such are invertible symmetric operators on H, with symmetric inverse R(z) -1,

For each ¢ € [0, T] one has for the inverses
BI<R(E) '<all (1.10)
hence they are bounded. Observing the operator identity valid in .2 (H)

R(t+h)"' —R(t)"" =R(t+h) "' [R(t) ~R(t+h)|R() ",

we first note that the first and the last term are bounded in norm by o~

, Whereas the
middle term tends to 0 as 4 — 0. Therefore, after denoting R™! the map ¢ — R(¢) !,
we see that R™! is continuous. Additionally, from the very same operator identity

we obtain after dividing by 4 and letting 7 — 0

% (R()™") =—R'OR' ()R (1).

Hence, we deduce that R~ € C!([0,T];.-Z(H)), where we now denote by R! the

map ¢ — R(z)~ 1.
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(d) If we denote A = Ag+A; € W' (0,7;.2(V,V")), we can think of Ag as a sym-
metric and coercive part of an operator A, while A represents a possible non-

symmetric part.

(e) Finally, let us mention a slight change of notation which will be used throught
the first chapter. For brevity, we will occasionally ommit O, 7 when writing corre-
sponding Bochner spaces and respective components, and write W*? (X ) instead of

WEP(0,T:X).
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1.2. LIPSCHITZ NONLINEARITY WITH SIGN

CONDITION

We begin by studying the initial-boundary value problem in (0,7) x Q

(Ru') + (Ao +Au+F(u) = f+g
u(0) = u® (L.11)
' (0) = u'.

Here, the we are given u’ € V, u' € H, f € lel(O,T;H) and g € Wzvl(O,T;V’), while
the non-linear part of the equation arises from the function F : R — R, and is given by
F(u)(t,x) = F(u(t,x)). We will also sometimes use F(u(t)) or F(u)(z) to denote the
function x — F(u(t,x)) for fixed ¢.

We will now procede with stating our assumptions on the functions involved in a
problem. Higher regularity in the coefficients is assumed here in order to obtain the
solution of higher regularity, one which will be used in order to find approximate solutions
of the problems considered in the following sections. However, we do first start with
usual, more restrictive assumption on F. Assume that F is Lipschitz continuous with

constant denoted by Lip(F ), that is
F(z) — F(w)| <Lip(F)|z—w|, zweR. (1.12)

Consider its primitive function

7F(z) >0, z€R. (1.13)
Note that the sign condition (1.13) also gives

G(z) >0, 7€R, (1.14)

and together with the continuity of F we have as well that F(0) = 0. Hence, from (1.12)

we have the bound

[F()| <Lip(F)lz|,  z€R,
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which in turn implies

|F(u)l|m < Lip(F)|lulln, u€H, (1.15)
as well as .
< Lip(F
G(z) S/ |F(w)|dw < %IZP, zeR. (1.16)
0

Now we are ready to prove the existence result given by the next theorem.

Theorem 1.2.1. Consider R satisfying (1.1)—(1.3), A satisfying (1.4)—(1.6), A satis-
fying (1.7), F satisfying (1.12) and (1.13). Let u®,u! € V, f € WI1(0,7;H) and g €
W21(0,T;V’), with Ag(0)u® — g(0) € H. Then there exists a solution u € W'*=(0,T;V) N
W2>(0,T;H) with G(u) € L=(0,T;L'(Q) satisfying

(Re') + (Ag+A))u+Fu)=f+g in L2(0,T;V") (1.17)

with initial conditions

Remark 1.2.2.  (a) Note that the initial condition u(0) = u® makes sense for such a
solution u; the Aubin-Lions compactness lemma [79, Lecture 24] gives us u €

Cc([0,T];V).

(b) Since u’ € WH=(0,T;H), it follows in the same manner that ' € C([0,T];H).

Hence the initial condition #'(0) = u! makes sense at least in the sense of H.

1.2.1. Galérkin approximations

In order to prove the existence of such a solution, we employ the standard Galérkin
method, with slightly changed orthogonal basis. We form orthonormal basis (wy) for

V in the following way: in case u®,u' # 0 first let

u® ul by

Wi = Wy = Woik = 77—
[l ’ [t Iy’ T Il

where (by) is an orthonormal basis for H (and therefore orthogonal for V) consisting

of, for example, eigenvectors of —A (which are additionally of class C*(Q) due to the

10
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elliptic regularity), and then apply Gram-Schmidt’s orthonormalization process to obtain
the desired basis. If u' is already proportional to u”, skip W5, and in case u® = 0 skip W,
(obviously skip both in case both u® = u! = 0).

For any m € N, m > 2, denote V,, = span {wy,...,w,,}. Note that u°,u' € V,,, m > 2.

We first show that there exists u,, € W>!(0,T;V,,) which solves the projected problem

(RO, (£)) ) + (Ao(t)utm (£), W)+

(A1 (O)um(t),w)) + (Fun (1)), wi) = (f(0),w)) +(g(t),w)), 1<j<m

U (0) = u°
\ u, (0) = u'
(1.18)
We seek a solution u,, of the projected problem in the form
um(t) =Y dj(t)w;. (1.19)
j=1
This leads to the following system of ODEs
d
E[C(t)d’(t)] +M(r)d(r) +H(d(r)) = v(1), (1.20)

where

Note that C(¢) is the the matrix representation of R(z) in the basis (wy)7" ;. Hence, it
is invertible for each 7 € [0,T]. Moreover, because of (1.1) we have that r — C(¢) is in
W21(0,T;R™™), and since C(¢)~! is just a matrix representation of R(¢)~!, we deduce
the same for C(r)~!. Next, we easily see that M € W1 (0, 7;R"™*™), and similarly that

v e Wh1(0,T;R™). Finally, since F is Lipschitz, we have after denoting a = (ay,...,a,),

11
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b= (b1,...,bw) ER™ w=(wy,...,wy) € H)(Q;R™) and using the fact that the compo-

nents of w are unit vectors in V, and therefore ||w||z < I, we obtain
[H(a—b)| = |(F((a—b) -w),w)[ <[[F((a—b) w)|u|[w|lz <Lip(F)|a —bl..

Therefore, H is also a Lipschitz function.

By introducing a new variable e = d’, (1.20) can be rewritten as an equivalent first

order system of ODEs
I 0| 4 |d 0 I d 0 0
J— — + R ,
0 C|a |e -M —C'| |e v H(d)

which, due to the previous remark about invertibility of C can further be written as

d|d I 0 o I ||a] |o 0
1 = +1] - : (1.21)
dt | e 0o C!'||-M —C||e| |v| [|H@)

subject to initial conditions

d(o)j = (u0> WJ)V

e(0); = (u',w)y.

Since the right-hand side of the system (1.21) is in LZ(O, T;R™), and Lipschitz continu-
ous in (d,e) (it consists of a linear part and a Lipschitz nonlinear part), Carathéodory’s
existence theorem hence yields a unique global absolutely continuous solution d,e €
WH1(0,T;R™). Since we also have d’ = e, it follows that d € W21 (0, T; R™).

From the second equation of the system (1.21)
¢ =—C 'Md-C !Ce+v—H(d)

we also deduce that ¢’ € WH1(0, T;R™). Since the product of two W11(0, T) elements is
once again W"!(0,T), we have that the first two factors, consisting of product of three
matrices in W!'!, belong to W!1(0, 7;R™) due to remarks that precede the introduction
of the system (1.21). For the last term, we have used the fact that H is Lipschitz contin-
uous (and hence differentiable almost everywhere) so that the composition H(d) satisfies

(H(d))' =H'(d)d’ € L'(0,T;R™). Hence, e € W>1(0,T;R™).

12
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We may now return to the first equation in (1.21) given by
d=e,

that yields d’ € W>! (0,7;R™), and subsequently, d € w3l (0,T;R™).
Finally, this implies that u,,, being defined in (1.19), is in w3l (0,T;V,,) and indeed a
solution of (1.18).

As a consequence, we also obtain

Ru, e W»'(0,T;H), Aou, € W»'(0,7;V') and Aju, € WHI(0,T:H) . (1.22)

1.2.2. A priori estimates

We now proceed with obtaining some a priori estimates of the sequence of solutions ().

Multiplying (1.18); by d}(r) and summing in j we obtain

(Ruty, )", 14, ) + (Aottm, tp,) + (A gty 1t,) + (F ) 103,) = (f10,) +(g,10). (1.23)

We make use of the following identities, which are valid because of the smoothness as-

sumptions on R, Ay, as well as (1.22):

(Ru,,)',u,) =

< (Ru,,,u,, (R'u%,u%))
Agum ity = 5 (5

1

2

% AOum;um <A0um’um>>
d

(Fam)otin) = G 1G ) ig)

Note that we have used G > 0 in the last equality, so the L! norm of G is in fact equal to

the integral of G without the absolute sign. After denoting the energy at time ¢ by

(R(t)ufn(t),uin(t))+%<Ao(t)um(t),um(t)>+HG(um(t))HLl(Q)v (1.24)

we rewrite equation (1.23) in the form
(t) o 1( /.1 / 1 A/ A / / / 1 25
m - _5 um?”m)+§< Oum7um>_< luinaum)+<f,um)+<g7um>' (1.25)

We now proceed with obtaining the estimates of the terms on the right hand side of (1.25).

Beforehand, let us emphasise the following relation between the energy E,,(f) and the

13
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norms ||u,(¢)||y and ||u),(z)||z: due to coercivity properties (1.3) and (1.6) of R and Ag

respectively, we have
o
En(t) 2 5 (1Ol + ()7 ) (1.26)
Using this inequality, we obtain

IR (4) |2 (a1)
o/2

460w
(Aduon (1), (1)) < 14000) vyl (1) < ==L 1)

(R ()1t (1), 13 (1)) < IR ()] )0y (1) [ < Ep(t)

(A1 ()t ) < N AT v, ety (O 1+ N1t (017

_ A0 Lz
- o/2

(F(0), 1 (0)) < SO Nl () < O a2 (14 [l (1) [)

LF ()l
o2 En(t) .

From (1.27) it follows that foreach 0 <¢ < T

(1.27)
En(1)

<|f@)lla+

Ep(t) < 9 (0)En(t) + 1)l + (2(0), 1, (1)),
where
0(6) = = (IR'0) L)+ 160) L + 1AV OL vy +10) 1) € L0, )
Integrating from O to  we obtain
En(0) < En(0)+ [ 0)Es+ [ 16 s+ [ Ge(o) (51
To estimate the term [, (g, u,,), we first perform integration by parts to obtain
[ 4609, = ()0 (0) — 60V (0) — [ (€5l

Recall the continuous inclusion W' (0,T:V') < C([0,T]; V"), and deduce that for each

s € [0,T] we have the estimate

1
(8(s),ttm(s)) < 8()lvrlleem () lv < gl vy lum(S) v < KllglI§yr ) + 7= m ()7

14
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where kK > 0 is an arbitrary constant. We can now apply this inequality for the first two

terms, where K is chosen large enough so that ﬁM < %
t t
/0 (5(5), 1y (5))ls = (g(0), (1)) — (5(0),tm(0)) — /0 (8 (5), tm(5))ds
< 2k]|g|? +i<|\u (O + lum (01
= WI’I(V/) 41( m V m V

t
T /0 18 () vt (s) vl

1 1
S Enlt) + 5 —En(0) (1.28)

<
2K||g||w11 V’)+ 2K

¥ /0 1/l 1+ ain(5) )l

2 ~ .
< ZKHgHWI,I vy F 18Iy + 5 En(0)

llg"()lv
/ a2 En(s)ds
We thus obtain the inequahty
) 0= (14 5)
1—-— E,t) < |1+— | E,0
< 2Ko (1) = +21<oc ()

—|—2KH8H%V1A,1(V,) + ||g/HL1(V/) —+ Hf”Ll(H) (129)

+ /0 O(s)En(s)ds

where @(s) = ¢(s) + Z||g'(s)[ly» € L'(0,T). At this point we can choose k such that
1> 2m > % For the initial term

3 (R, (0),16,(0)) + 5

we first recall (1.8), (1.9) and initial conditions (1.18) to obtain

Ep(0) = (Aotum(0),um(0)) + |G (um(0)) |1 g
(Ruj, (0),14,(0)) < Blluy, (0)[F < Bl |17, (1.30)
(Aotm(0),um(0)) < Bllum(0)[5 < Blu®]7- (1.31)

Next, we recall (1.16) in order to estimate

1G (um(0)) 1) < Lip(F)||u’l[f < Lip(F)[u°[[§-

Putting the pieces together yields the inequality of the form

E,(t)<C <1 +/Ot¢;(s)Em(s)ds> )

15
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where the constant C depends on respective norms ||u||y, [lu' ||z, | R ||y (ZL(H))*

[Aollwr 2 vyny [ALlwi 2w mys 1L @y 8llwr vy, o and Lip(F). Finally, we ap-

ply Gronwall’s inequality once more to obtain the estimate

t
) < Cenp ([ §(5)ds) < Cexpllfl o
which gives the uniform bound on E,,(¢). Consequently, we have obtained

Up, is bounded in L*(0,7;V)
(1.32)
u,, is bounded in L*(0,T; H).

To obtain further a priori estimates on the sequence (u,, ), we return to the approximate

equation

((Ruty,)',v) + (Aott, v) + (A g, v) + (F(um),v) = (f,v) +(8:v) , (1.33)

valid for every v € V,,,, differentiate it with respect to ¢ (there is enough smoothness for
this to be valid due to (1.22) as well as our initial assumptions) and insert v = u/, (¢). Thus

we obtain foreach0 <t <T

(Ruty,)" a) + ((Aottm) s tt) + (Aram)'s 1) + (B (utm)) s 16,) = (s 10) + (8 10,) -

(1.34)
Some of the terms that appear can be transformed in the following way
((Rutp,)" ty) = (Rt 13) + 2(R 1t 13) + (Rt 14 )
1d 3
— 5 R+ 5 (R ) + (Rt 0)
<(A()Ltm)/, u:;z> <A0u'7l7 m> <A0um7 m>
| d (1.35)
= EE(AOM;W m> 2<A mo m> <A0um= H)

16
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we are able to rewrite (1.34) as

- d1 d1
E,(t) = EE(R“%“Z) + E§<A0u;n7u:n>

3
= ((Ruty)" t) = 5 (Rt 1) — (Rt 0,)
1
+((Aottm)"s ) + 5 (Aot th) — (Agtms )

= (f's 1) + (&' 10) = (Avutm)'10,) = (F(utm))', 10,)

(1.36)
3 /i ! ./ ! 1 ! / / !
- E(R um?”m) - (R um?”m) + §< Ourmum) - <A0um7um>
= (f' ) + (&' 1)
3

1
= SR ) = (R 1)+ 5 (At ) = (At )

— (Attyy, ) — (At tty) — (F (1)t 18,
It remains to estimate the terms appearing on the right hand side of (1.36). Let us begin

by noting that the energy E,, satisfies the inequality similar to (1.26)

- a
En(t) > = (Nl (0) [+ ()17 - (1.37)
We now proceed to estimate the aforementioned terms in (1.34) as follows

F00) <17 Olln (1+ 5 755000

R’ .
(R (1) (1)1, (1)) < %Emm

(R (1)t (0),16(6)) < IR ()| oy (11 (1) 12+ () 1)

R//
- IR ()l a1

- o/2 Enl(1)
(Ao(t)id, (1),ul, (1)) < ”AO(Z”E YYD £ () (1.38)

A _
(A0 1) < LI

(AL () (1)1 (1)) < AT v,y et (NG + ot (1) 170)

A’ -
< 14 @)z 1(2%%(‘/’[{) (En(t) +En(t))

(F ni0).05(0)) < E 0y Bl

17
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Combining estimates in (1.38) and recalling the uniform bound E,,(¢) < Cg obtained in

the previous step, we reduce (1. 36) to
. 1 .
E, (1) < a/2¢( VEn(t) +— 5 |AL () | vy + L () 1+ (&) — (At ),

(1.39)

/2

where ¢ is given by
¢ (1) =R (1) | ey + IR" ()| a1y + | A0 ()| 2w

+lIAL O 2(vm) + IAL(0) | 2vm) +Lip(F) € L'(0, ).

Integrating from O to < 7 we obtain

~ ~ 1 ro
Eatt) < Enl0)+ 5 [ 86001+ o5 [ 1410 vamds
(1.40)

17O s+ [ 161ty 0ds— [ Wo(shunts)t ().

The last two terms are transformed via integration by parts:

/0 (¢ (5), s (s))ds = — /0 (8" (5), it (5))ds

+ (8 (), up (1)) — (8(0), 14, (0))

< [ 16y (1+ 5 5Bt as

1+a
T Hg lelvl +

(1.41)

lEm(t) -

: n(0),

1
2

— (AH(0)um(0),1,,(0)) (1.42)
< oz [ IO Lty (o) En) s

1 .
+ [ 1otz (14 5 73800 s

I+a 1.

1.
+ 20 ||AOHW1 1 CZAD) + ZEm(t) + EEm(O) .

18
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Next we need an estimate of the term

En(0) = 5 (R(O)4(0),144(0)) + 5 (Ao(0)i (0), 1, (0)

1 1
< SR sy [ O+ 5 Aol vy [ O3,
which obviously boils down to estimating the term ||/’ (0) ||z, since u/, (0) = u! is trivially

bounded in V. In order to do so, we return back to (1.33), take t = 0 and insert v = uﬁ,’i(O),

thus obtaining
(R(0)14;,(0), 45, (0)) = (£(0), 4, (0)) + (2(0) — Ao (0)uu (0), 4, (0))
— (R(0)u}, (0),41,(0)) — (A1 (0)tn (0), 14, (0)) (1.43)

- (F(”m(O)) ) ”Zz(O))

We have the following estimates

(£0),1(0)) < Clf sy + g N O)

o
(R'(0)1,(0),143(0)) < CIR s 16O + 5 1 (0)
(1.44)

a
(A1 (00 (0).14(0)) < CAW 11 gy 1 O+ 2 )
. (04
(F(un(0)),1,(0)) < CLip(F)* 1t (0)][7 + 15 (0)
Recalling the assumption Ag(0)u,,(0) — g(0) = Ag(0)u® — g(0) € H, we also have
a
(8(0) = Ao(0)un(0), 1 (0)) < Cl[A0(0)u” = g(O)lfy + G e O)[Fr- (1.45)

Collecting (1.44)—(1.45) we obtain the estimate
1 1

- (R(0);,(0),13,(0))

< I sy + IRy !+ 180 (0 — g O) i (1.46)

7 (O) 1

IN

. 5
A1 I+ Lin(F ) + 2 i (O)]

from where we deduce that
l|uy (0) ||z is uniformly bounded. (1.47)

This allows us to finally obtain the uniform bound on E,,, via an application of the Gron-

wall’s inequality to (1.40) after taking into account estimates given by (1.41)—(1.47).
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1.2.3. Solution

We are now in a position to prove the existence of a solution to (1.17). Let u,, be a
solution of the projected problem (1.18). According to the a priori estimates, we have that

the sequence of solutions (u,,) satisfies the following:

() is bounded in L™(0,T;V) (1.48)
(u),) is bounded in L™(0,T;V) (1.49)
(u)]) is bounded in L™ (0, T; H). (1.50)

We can then extract a subsequence (which we still denote by (u,,)) which satisfies (as

the derivative is a continuous operator on 2")

*

Uy — U inL*(0,T;V)
WA inLR(0,T:V) (151)

ul Su”  inL¥(0,T:H).

Additionally, we have

Ru, = R« inL™(0,T:H) (1.52)
(Ru,) = (Rd)  inL=(0,T;H) (1.53)
Aoty = Agu  inL™(0,T;V) (1.54)
A, = A inL=(0,T;H). (1.55)

Lastly, we examine the convergence of the nonlinear part, F(u,,). First we deduce for all
t€0,7]

|[E (un(2)) = F (u(t)) |ln < Lip(F) ||t (2) = u(t)|lr — 0,
which gives

F(un) — F(u)  inL=(0,T;H). (1.56)

Take n € N and v,, € V,,, and let m > n. Since u,, is a solution of projected problem

(1.18) on V,,, which contains V,,, we have for each t € [0, T]

(R(2)td (1)), vn) + (Ao ()t (), V) + (A1 (£)ttm(2), V) (1.57)
+ (F (1)), vn) = (F(£),vn) + (& (t), )
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Multiplying (1.57) by ¥ € 2(0,T) and integrating over [0, 7| we obtain for vy, := 3 Xv,

T T
/0 (Rl i)+ (Aot W)+ (At i)+ (F(t) i) it = /0 (Fy) + (0 W),

(1.58)
We then pass to the limit m — oo, while using (1.51), (1.52), (1.53), (1.54), (1.55) and
(1.56) to obtain

T T
/0 (R i)+ (Aot i) + (At yi) + (F(u), i) i = /0 (F. vi) + (g, ).

(1.59)
Since span{2(0,T)XJ,V,} is dense in L>(0,T;V), we can now deduce that
T

T
/0 (R )+ (Ao, W)+ (A, ) + (F(u), ) di = /0 (f.w) + (g, v

holds for each y € L?(0,7;V), that is, the equality
(Ru') + (Ao +Ay)u+F(u) =f+g

holds in the sense of 2’(0,T;V’). From here, due to the density of functions of the form
2(0,T;V) in L?(0,T;V) which is a predual of L?(0,7;V’), we deduce (1.17).
The fact that G(u) € L=(0,T;L!(Q)) follows from (1.16) and (1.51), giving

IG(u()|lz < Lip(F)[u@)lg<C,  re[0,T].

It remains to be shown that u satisfies initial conditions. First we check that '(0) = u'.

Take ¢ € C*([0,7]) such that ¢(0) = 1 and ¢(7') = 0 and let v € V,, for some m. Choose
vy =¢oXveC”([0,T];V) and insert it into (1.59), thus obtaining
T T
[ R )+ B )+ (A () = [ (f
After integrating by parts in the first term it follows
T

/O (R )+ (Ao, W)+ (A, )+ (F(u), w)di -+ (Ril 0), y(0) = /0 (f.w)dr.

On the other hand, by inserting ¥ into (1.58) and once again integrating by parts we get

T T
/O (Ruy) ¥+ (Aot W)+ (At W)+ (F(ut), ) i+ (Ru (0), w(0)) = /0 (f.w)dr.
(1.60)
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Now recall that /,(0) = u', and take into account (1.52), (1.54), (1.55) and (1.56), in

order to obtain

T

T
R () (1 )+ (B )+ (RO w(0) = [ (F
(1.61)
Comparing (1.60) and (1.61) we deduce

(Ri/(0),v) = (R(0)u",v).
Since m and v € V,, were arbitrary, we conclude that

R(0)(u/(0) —u') = 0.,

and since R(0) is an isomorphism, we conclude u'(0) = u'. In order to prove u(0) = u°,

we additionally assume ¢’(0) = 1 and ¢’(T) = 0 and integrate by parts once more in first

terms of both (1.60) and (1.61), while using symmetricity of R to obtain

/ (R, ')t = / (u, (R )dt — (u(0), Ry (0)),
0 0

T T
/ (Ru,’n,l[/’)dt:—/ U, (RY))dt — (u,,(0), Ryr(0)).
0 0

Recalling that u,(0) = u® and (1.52) we get by comparison
(u(0),R(0)v) = (u, R(0)v).

Once again, using the fact R(0) is an isomorphism and m,v are arbitrary, we finally con-
clude

u(0) = u°.
Proposition 1.2.3. The solution of (1.11) is unique.

Proof. Assume u; and u, are two solutions of the problem, and denote u := u; —u. We

wish to prove that u = 0 is the only solution to the problem

Since ' € L2 (0,T;V), we can use it as a test function for the equation and obtain

(R ;o) + (Agu,u'y + (Au,u’) + (Fuy) — F(up),u’) =0, (1.62)

22



Semilinear wave-like equation Lipschitz nonlinearity with sign condition

which can then be rewritten as

%% (R(@)u' (1), (1)) + (Ao(t)u(t),u(t))) = (R'(t)u,ud (1)) + (Ap (£)u(t),u(r))

+2(A1 ()u(r),u' () + (F(uz(t)) = F(ur (2)),0d (1))
< IR @)zl (1) 171+ | AG (@] e [[V2
+2[| A1 () Lz vy 1) v ||’ () |2
+ (F(uz) = F(ur),u)
< C(llu' @) lf+ llu(@)[I7) + (F(uz) = F(ur), ),
where the constant C can be expressed via corresponding norms of ||R|| 2.1 (L (H))"
HA0|]W2,1($(V7V,)) and [|A; HW“(X(V,H))’ similarly as it was done for a priori estimates. It
remains to estimate the term involving nonlinearity, for which we have
(F(ur) — F) ) < Lip(F) s () — (o) 1 ()]
< Lip(F) ([lu(0) I, + |1’ (1) 1) -
Hence, using (1.26), we obtain the inequality of the form

%% ((Ru/,u’) 4+ (Aou,u>) <C ((Ru/,u/) + <A0u,u))

for constant C now depending on the norms of R, Ay, A and Lip(F'). Applying the Gron-

wall lemma, combined with the fact that u(0) = /(0) = 0, gives u = 0. [ |
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1.3. CONTINUOUS NONLINEARITY WITH SIGN

CONDITION

In this section, we wish to obtain similar existence results on the solution of the problem of
the same form as in the previous section, but with less regularity on the right hand side, the
initial conditions and the nonlinearity. Namely, we keep the same regularity assumptions
on R;A and A;, with addition of the following assumption on Ay(0): assume that it is
an isomorphism of V and V'. Let F : R — R only be a continuous function satisfying the

sign condition (1.13), with additional assumption
G°) e L(Q). (1.63)

Finally, assume f € L! (0,T;H), g € whl (0,7;V"), with initial conditions satisfying u® €
Vandu' € H.
We first state the following approximation lemma for the nonlinear part, the proof of

which can be found in [67, Lemma 2.2.].

Lemma 1.3.1. Continuous function F : R — R which satisfies the sign condition can
be locally uniformly approximated by a sequence of Lipschitz continuous functions that

satisfy the sign condition.

Denote the members of such a sequence by Fy, and analogously as before let us define
Gy by Gi(z) := [y Fx(w)dw. Then sequences (Fy) and (Gy) satisfy properties analogous
to (1.12)—(1.16) with constants Lip(Fy).

0

Next, since u” is not necessarily bounded, we approximate it by a sequence of func-

tions u? given by

u?(x) = ﬁj(uo(x)), ae xcQ,
where &; is defined by
(—J'» x<—j
§ix):=qx, |x|<j
i, x> J.
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Due to Corollary A.5. of [48], this sequence satisfies

0 0 .
uj —ru strongly in'V,

as well as

W) < )] and wj(x)u’() 20 foracxe Q. (169

Additionally, we can extract a subsequence (still dentoted by u(J)-) such that

u? —u° strongly in V and a.e. (1.65)

Furthermore, let the sequences of functions (1)), €V, (f,), € W0, T;H) and (g,), €
W21(0,T;V') be such that

1

u, —u strongly in H

1
P
h—=f strongly in L' (0,T;H) (1.66)

g —8 strongly in WH1(0, 73 V).

Finally, choose a sequence (ugp) » € V such that
ugp — u(} strongly in V (1.67)

and that Ao(O)u(])-p —gp(0) € H holds. Such a sequence can be obtained as follows. As
Ao(0) is an isomorphism of V and V', we have that Ag(0)~'H is dense in V. First,

choose a sequence (@) Ag(0)~'H such that ¢, — u? strongly in V. Then, for fixed

p € N, take sequence (g,x) in H such that g,z — g,(0) strongly in V’. Define ug?pk =

o ._,0

@ +A0(0) 1 (g,(0) — g,x), and finally take the diagonal sequence Uj, =uj,,.
For each ”9,77 u},, Jp,&p and Fy, Theorem 1.2.1 yields a solution u , satisfying

p

wjpr € L=(0,T;V)
i €L7(0,T3V)

2 .
Wl €L2(0,T:H)

| Gi(ujpi) €L7(0,T;L1(Q)),
of each of the approximate problems
(Ru)" + (Ao + An)ujpr + Felujp) = fp+ 8p
wjp(0) =ul, (1.68)

1
ip(0) =up,
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Using the same procedure as in obtaining a priori estimates in the previous section, we
first obtain, after denoting

1

1
5 (R tpge) 5 (Aot k) + |Gl jpi) [l ()

the following inequality

Ejpi(t) < 9O Ejpie(t) + 1fp(0) |1 + (8p (1), (1)), (1.69)

where

1
/2

Integrating from O to # < 7', we obtain

0(t) = — (IR () a1y + IAGO) Ly + 1AL (0L v,y + 1))

Ejnt) < Ejn0) + ol + | (6p(6).tuls / SOEn(s).  (170)

Since || f,|| converges strongly in L!(H), term || foll 1z is bounded by a constant inde-
pendent of j, p and k. The term involving g, can be integrated by parts, yielding in the

same manner as in (1.28)

[ a1t (s == [ (5) i) s + (856,10}~ (35(0)tze(0)
0 0
< 2r<|rng%V1.,l PRu AN +—21anpk<r>

||gp ||v'

First two terms are now bounded due to the convergence of g, in WhH(0,7;V). The
constant K is again chose so that > T K 7> 72 1 holds.

It remains to provide estimates on E;;(0), that is, to analyse the terms Hu v, Hup || e
and HGk(u?p)HL](Q). Since u}) converges strongly in H, it is obviously bounded. Fur-
thermore, from the construction of uO- it follows HuO-HV < ||u®||y for each j € N, and the
convergence of u , 10 u then implies boundedness of Hu || independent of j, p. Let us

now deal with the term ||Gy(u jp) ||L1 . Since for each j € N, " j 1s a bounded function,

Fr(u ) converges uniformly in Q to F( ) and hence we have

[Gi(u(x)) — G(uj (x))] <
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deducing

Gi(1?) =2 G inL(Q). (1.71)

As a consequence, since €2 is bounded, for each j € N we have

k—ro0

1G(F) = G () IL1(q) < 121Gk (uF) — G [[1=@) — 0.

Hence, we can extract a diagonal subsequence G j(u?) = Gy j)(u?-) of Gk(ug) (now de-

noted simply as G ) such that

/Q|G,-(u‘}) ~G(d)| 0.
Furthermore, since G is continuous, (1.65) gives
G(u?) — G(u°) ae.

Now, the sign condition on F implies that G is nonincreasing on (—oo,0) and nondecreas-
ing on (0,e0), which combined with (1.64) yields G (u}) < G(u°) a.e. Assumption (1.63)
therefore allows us to apply the Lebesgue dominated convergence theorem in order to
obtain

G(u})) — Gu’) inLY(Q).

Thus, we conclude
Gj(ug) — G(u®) strongly in L' (Q) as well as a.e.
Finally, from the elementary inequality valid for each j € N
Gj(22) — Gj(z1)| < Lip(Fj) (|21 + |22])|z2 — 211,

we have for each p € N

1Gj(fy) = Gl gy < Lip(Fy) (gl + Nl ) a5, — -
Therefore, for each j € N

G;(ul) Linsa G, inL'(Q).

We can then once again choose a subsequence of u?p denoted by u?- ; such that

G;(u);) — G’ inLY(Q). (1.72)
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As a consequence, we also get uniform boundedness of term |G j(u?) | (@)- Let us now
denote the (diagonal) subsequence of u(}p obtained above with ug = ugk and, accordingly,
denote by u; the sequence corresponding to uy. Taking previous remarks into considera-

tion, upon returning to (1.69), we obtain the inequality of the form

Edr) <C(1+ /0 (0(5) + [18'(5) lv) Ex(s)ds),

and a simple application of the Gronwall’s lemma yields the uniform bound of E;. Thus,

we have
(ux) is bounded in L™(0,T;V)

(u) is bounded in L*(0,T; H) (1.73)

Gy (uy) is bounded in L=(0,7; L' (Q)) .
Once again, we can extract a subsequence such that

*

ug — u inL=(0,7;V)
(1.74)
Wy >u' inL=(0,T;H).
Recall that u; satisfies
(Rup) + (Ao +Ap)ug +Fr(up) = fi+gx  inL*(0,T;V'). (1.75)

We now wish to test this equation against arbitrary v € 2((0,T) x Q) and pass to the
limit k — oo. In order to do that, it remains to check the convergence of the term Fy(uy) in

some sense. For this, we refer to [67, Theorem 1.1], now stated.

Theorem 1.3.2. Let Q be a finite measure space and X and Y Banach spaces. Let (uy)
be a sequence of strongly measurable functions from Q to X. Let (Fy) be a sequence of

functions from X to Y such that
(a) (Fy) is uniformly bounded in Y on B for any bounded subset B of X,

(b) Fy(ug(x)) is strongly measurable and

sgp/@ otz (o) |l || P (aag () ) [y dox < oo,

©) ||Fr(ur(x)) —v(x)||ly — O ae.

28



Semilinear wave-like equation Continuous nonlinearity with sign condition

Then v € L1(Q;Y), and

[ Fe(aie) = vl .9y = O-

We tend to apply this theorem to sequences (1) and (Fy) with Q = [0,7] x Q, X =
Y = R. In order to do so, we need to find a uniform bound (without the absolute value,

owing to the sign condition) of the term

/T(Fk(”k)a”k)dt7
0

and the corresponding almost-everywhere convergence.
Recalling the equation in (1.68), multiplying it by u; and integrating over [0,7] we

obtain

T T
/ (Fr(ug),up)dt = / (fsux) — ((Rua)"uge) — (Aouge, ue) — (Aquge, uy) dt.
0 0

After integrating by parts in the term involving R we get

T T
/0 (Fi (), )t = /0 (f ) + (g, )
T
- / (R ) + (Ao, ) + (Ayuugyde— (176)
0

+ (R (0),u(0)) — (Rut (), uk (T)),

it follows
! 2
/0(Fk(uk>7”k)dtSHfHLl(H)(l+HukHL“’(H))"i_HgHLzHukHL‘”(H)

+ Rle=(2(m)) ||u§<||iz(H) +lAoll=(2wvyr) ”“k“iz(v)
A=z vmy) k2 o) 1l 2
+ 2| [Ruty || =y k[ = (1) -
The uniform bound now follows directly from (1.73). Since F; converges to F pointwise,

we have

Fr(ur) — F(uy) a.e.in (0,7) x Q.

Because of compact injection V —> H, an application of the Aubin-Lions lemma yields
the strong convergence

up —u, inL2((0,T)xQ),
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which, after possibly extracting another subsequence, yields
up —u ae.in (0,7) x Q.

Since F is continuous, this also implies

F(u;) — F(u) ae.in (0,7) x Q.
Therefore, we conclude that

Fi(u;) — F(u) ae.in (0,T) x Q. (1.77)
We are now in a position to apply the aforementioned theorem to conclude

Fr(uz) — F(u) strongly in L'((0,7) x Q). (1.78)

Finally, we can now proceed by testing the equation (1.75) against an arbitrary y €

2((0,T) x Q. Using convergences (1.74), (1.77) and (1.66) we obtain
R+ (Ag+A))u+Fu)=f+g in2'((0,T) xQ),
and therefore
(R) 4+ (Ag+ANu+Fu)=f+g  inL'0,7;L1(Q)+V). (1.79)
We summarise the discussion in the following result.

Theorem 1.3.3. Consider R satisfying (1.1)—(1.3), Ag satisfying (1.4)—(1.6), A satis-
fying (1.7), F a continuous function satisfying (1.13) and (1.63), f € L'(0,7;H) and
g€ WI’I(V’). Let u® € V and u! € H. Then there exists a solution u € L*(0,T;V), with

u' € L(0,T;H) such that G(u) € L=(0,T;L(Q)), satisfying the equation
(Ru') + (Ag+A )u+F(u)=f+g inLY0,T; V' +LY(Q)), (1.80)

with initial conditions

As was the case in the first section, we can obtain uniqueness of the solution with

some additional assumptions.
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Proposition 1.3.4. In the case d > 3, assume additionally that A satisfies
A eLlo,1;.2(H,V), (1.81)
and F is a function of class C' satisfying growth condition
[F'(2)] < Clzl”, (1.82)
for some 0 < p < ﬁ. Then the solution of (1.80) is unique.

Proof. Once again assume uy,u; are solutions and denote u = u; — uy. Since there is not
enough regularity in «’ to use it as a test function, we circumvent this problem by using

the standard argument. Fix 0 < s < T and define

Then v € Wh=(0,T;V), so we get
/OS<(Ru’)’,v) + (Aou,v) + (Aju,v) + (F(u;) —F(up),v)dt = 0.
Since u/(0) = v(s) = 0, the integration by parts in the first term gives us
/OS — (R V) + (Agu,v) + (Au,v) + (F(u1) —F(up),v)dt = 0.
AsV = —ufor 0 <t < s, we can write
/Os(Ru',u) (A V) + (A v) + (F(y) — F(ua) v dt = 0.
It follows that

(R(s)u(s),u(s)) + (Ao(0)v

Il
o\\

(Ru,u) — (Agv, v>> dt

dl
d2

— (AQv,v) + (Aqu,v)
(F(uy) —F(up),v)dt.

The left hand side can then be estimated from below:

1

() [F + IV (O) I < 5 ((R(s)u(s),u(s)) + (Ao(0)v(0),v(0))). (1.83)
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For the right hand side, we first deal with the nonlinear part. Condition (1.82) and the

mean-value theorem yield the inequality
[F(z1) —F(z2)| < Cmax{|z1]”, |z2|"}z1 — z2].

Therefore, the extended Holder inequality applied for é + gll + % =1 gives

N

/O (F(uy) — F(us),v)dt <C /O (max{ it |7, w2l Yy — wa], V]l
<c /O ([P + 2P e — ] [v])
<c /O s ()17 + a2 1) 71 10y 900 1

Since g > 2, we have [|u(t)| s(q) < |[u(t)||n. Next, since dp < g = 24 the Sobolev

embedding theorem gives

O T O e [ O L N [ O L s

<C(lur ()15 + lua(0)II})

SC(H”IHPw(Q’T;m"{_Hu2||p°°((),T;V))'
Finally, we obtain
S
/0 Hur ()7 + 2 (1P| () (@) Loy [[v(2) | dt
S
< (Il )+ Wl ) | o) (Ol
S
§C<H”1||p°°(o,T;V)+||”2||p°°(o,T;V)>/O u()[[7+ [[v(2) I} dt.
Recalling (1.81), we further estimate
S
/ — (R'u,u) — (AGv,v) + (A1u,v)
0
S
S/O IR ()] sz ay a1 + A2 vy VO + I AL vy el [Vl
g / 2 2
< /0 (IR )2ty + 180 ()| vvny + [1AT O Lz virny ) (@) 1F+ @)1
Combining it all together yields

o)+ v(O) [ < € /0 B () B+ vl (1.84)
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where 8 denotes the (positive) function

B(t) = R ()l 2 (m) + [1A0(0) | 2 v,y + || A1 (2) | 2 v,y + Lip(F).

Note that we have 8 € L'(0, 7).

For 0 <t < T define

The inequality in (1.84) then becomes

()3 +Iw(s)} < € /O B () + Iw(s)—w)R) dr. (189

However
lw(e) =w()[[F < 2(Iw@)l[§ + w(s)[I7),

so (1.85) becomes

) I + (1= 2C1 Bl o) Iw(s)113 < € /0 B () + e (0)}) dr). (186)

Choose T such that (1 — 2CH[3||L1(0 Tl)) > % Then for each 0 < s < T} we have

o)+ i) < | BO (@R w@R) ). sy

Applying Gronwall’s inequality we get u =0 on [0,7}]. By using the same argument on

intervals [T7,2T1], [2T1,3T}], etc. we eventually get u =0 on [0, T]. [ |
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1.4. DISCONTINUOUS COEFFICIENTS WITH

LIPSCHITZ NONLINEARITY

1.4.1. Functions of bounded variation

We are interested in such functions defined on a segment I C R (i.e. a closed convex
subset of R), taking values in a Banach space X. As for our purposes this segment will
be the domain of time variable ¢ in the wave equation, we shall, more often than not, take
I[=[0,T], fora T > 0. At this point, we will introduce the notion of functions of bounded
variation and state some of the main properties which will be of use in this section. For
more details, one can refer to [22] or [41].

Following [52], we say that a (pointwisely defined) function f : [0,7] — X is of
bounded pointwise variation (BPV) if (0 =1 <t; < --- <t, =T being a partition of
[0,T])

n

sup £ (5) = Ftim1)|x < . (1.88)
1

O=ty<t) <+ <ty=T j=
This quantity will be denoted by Var(f, [0, T]), while the vector space of all such functions
we denote by BPV([0,T];X).
Of course, it is possible to extend the definition to a semi-closed or an open interval /,

possibly unbounded. For example, for I = (a,b), one can consider the quantity
n
a<t0<:l<lg<tn<b l; £ (&) = f (i) l|x

instead. In that case, we would denote it by Var(f, (a,b)), and the corresponding space
would be denoted by BPV((0,7);X).

The above definition can immediately be extended to a metric space (X,d), by replac-
ing the norm by a metric. This might be useful when considering different topologies on
the Banach space X.

Let us recall some immediate results on functions of bounded pointwise variation

(valued in metric spaces).

Proposition 1.4.1. [52,2.17] Any f € BPV((0,7T);X) with values in a complete metric

space X is continuous up to a countable subset of (0,7), and f has both left and right
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sided limits

FE) = lim f(s),  F(t) = lim £(s)

S—tT s—tt

atany ¢ € (0,7), and one-sided limits at the end points.

As a consequence of the previous proposition, we may always assume f € BPV((0,7);X)
is defined on the whole of [0, T] by extending it to the end points via f(0) := f(0") and
f(T):= f(T™). Of course, it holds

Var(f;(0,T)) = Var(f;[0,T]).

Proposition 1.4.2. [52, 2.12] Any function of bounded pointwise variation is bounded;

in fact d(f(t), f(t9)) < Var(f,[0,T]). For a normed space X this gives the estimate

1F@)llx < 1./ (0)llx + Var(f,[0,T7]).

Proposition 1.4.3. For any f € BPV(]0,T];X) we can define its indefinite pointwise vari-
ation @(t) := Var(f,[0,¢]). Then ¢ is non-decreasing, continuous in the same points of

(0,T) as f and defines a unique Stieltjes measure on [0, 7’| such that

t(la,b)) = @(b) — ¢(a) = Var(f,[a,b)), a,b€[0,T].

The vector space BPV(0,7;X) (here we have to assume that X is a Banach space) is

usually equipped with the norm

1 fllBpv(0,7:x) := £ (0)[|x + Var(£,[0,T]),

and then becomes a Banach space [52, 2.42].

However, this space is not separable (even for real functions, cf. [1]), but with a dif-
ferent norm the same vector space can be made separable.

The pointwise definition above also has an important drawback: one cannot define
weak derivatives of such functions. In order to overcome that, we define the space of
functions of bounded variation as a subspace of LI(O, T;X) (cf. [41]). The definition of
the latter space is clear for a Banach space X; however, if (X,d) is only a metric space, it
consists of equivalence classes of measurable functions in .#°(0,T;X).

First, we define the semimetric (possibly taking value +0) on .#°(0,T;X) by

T
p(frg) = /0 d(f(1).5(0))dr
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In order to make it a metric, we identify the functions having zero distance one from
another, and denote this equivalence relation by ~. We also choose a particular (constant)
xo € X, and identify it with a constant function on [0, 7] taking that value. Now we can

define the metric space
LY0,T:X) := {f e Z2%0,T:X) : p(xo, f) < 00}/ ~,

which is complete if X is such.

On that space we can define the essential pointwise variation by
epvarf := inf Varg ,
e~ f

and by BV(0,T;X) we denote the space of all (classes of) L! functions having essential
pointwise variation finite. The infimum above is actually a minimum: one can take repre-
sentative of f defined by either g(r) = f(¢7) or g(t) = f(¢*) ( [41] Propositions 2.2 and
2.3). It is worth noting here that the left and right limits are independent of the choice of
the representative.

As a consequence, we will further assume that for f € BV(0,7;X) we are taking its
representative f(-~) which is left continuous in (0, 7] and right continuous in 0 (due to
our previous correction of replacing f(0) with £(07)).

If X is a Banach space, BV(0,7;X) is a vector space, and equipped with the norm

1fIBv(0.rx) == Hf”L'(o,T;x) +epvarf

it is a Banach space.
Equivalently, the elements of the space BV(0,T;X) can also be defined as the func-
tions f € L] .(0,T;X) such that

(1) supy~q foT_h Hw

dt < oo,
X

@ sup { [(, f)dt : w € D((0,T):X"), |[Wli=orx) < 1} <o

In case of (1) and (2) the supremums coincide with Var(f;[0,7]). Note that the space
WH1(0,T;X) is included in BV(0,7;X) and it holds for each f € W!1(0,T;X)

b
Var(f:[0,T]) = / £ (1) Lx.
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1.4.2. Coefficients of bounded variation

We now reduce our assumptions on the coefficients of the equation to the following.

Assume that R € BV(0,7;.Z(H)) satisfies

(R(2)u,v) = (R(¢)v,u) u,veH, ae. t€(0,7T) (1.89)

(R()u,u) > aljul|fy u€H,ae. te(0,T). (1.90)
and A € BV(0,7;.Z(V,V’)) satisfies

(A(t)u,v) = (A(t)v,u) u,veV,ae. t€(0,T) (1.91)

(A@u,u) > aljul|p  ueV,ae re(0,T). (1.92)
For f and g we now assume
felY0,T;H), geBV(0,T;V). (1.93)

As remarked earlier, we can consider the corresponding representatives of R;A and g
which are left-continuous and extended to endpoints via corresponding one-sided limits.
Taking this consideration into account, we add the additional assumption of A(0) = A(0")

being an isomorphism of V and V. Let us state our main existence result.

Theorem 1.4.4. Let R A, f and g be as stated before the theorem. Let F € W!'(R)
satisfy sign condition and u® € V, u' € H. Then there exists unique u € L*(0,T;V), with
u' € L=(0,T;H) satisfying, in the sense of L! (0,T;V'"), the equation:

(R +Au+F(u) = f+g, (1.94)

with initial conditions

u(0)=u’ and u'(0)=u'.

The first step of the proof consists of approximating R, A, f and g with respective
sequences belonging to spaces of higher regularity in time.

In order to do that, let us extend R, A and f to the whole of R by defining

R(0%), <0 A0"), <0
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g(0"), <0
3 flt), 0<t<T
f(t)= . 8)=4g(t), 0<:<T
0, otherwise
g(T™), t>T

Obviously, R € BV(R;.Z(H)), A e BV(R;.Z(V,V'), f e L'(R;H) and § € BV(R;V’).

Next we define the standard molifier sequence: let y € Z(R) be such that

y >0,  suppy CI[0,1], /WZL
R

and put ¥, (t) = ny(nt). Define sequences R, € C*(R;.Z(H)),A, € C*(R;Z(V,V')),
fn€C?(R;H) and g, € C*(R;V’) by

RnZ:R*Wm AnZZA*Wm fn:f*‘l/m 8n = 8&* Yn.

The approximating sequence R,, now satisfies the following properties:

.

(R, (?)u,v) = (Ry(t)v,u) u,veH t >0
(Ry()u,u) > allu||lg ueH,t>0
R,(0)=R(07), R,(0)=0
(0) =R(07) (0) (1.95)
Ro)~ ROy =0 150

R, — RinLY(0,T;.Z(H))

IRAIL (0.1.20m)) < Var(R;(0,2)) t>0.
(0.6:.2(H))

\

The first property follows from the fact that R(¢) is symmetric for each ¢ € R by definition

and the identity

(Ry(t)u,v) = ((/Rli(t—s)pn(s)ds> u,v) = /R(R(t—s)u,v)pn(s)ds.

The second property follows from the identity above with v = u together with the coer-

civity property of R:

(R, (e)) = [

Rmmﬂmwmwmzmw@4m®m=mw@

It is important to note that the coercivity coefficient remained the same for each n € N. The

following two properties are obtained easily from the fact that mollification is performed
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from the left. Finally, in order to prove the last property we have the following inequalities

IR, HLl 042 (H) = = Var(Ry; (0,1)) < Var(Ry; (—eo,1))

< Var(R; (—o,1)) = Var(R; (0,1)).
The only nontrivial inequality is
Var(R,; (—o0,t)) < Var(R; (—o0,1)).

In order to prove it, take —oo < fy <1t; < --- <t <t. Then

k

Zi: Ru(tj-1)[.2(m) Z

[ (R =5) =R~ 5)pu(s)ds

= L(H)
/ Y IR0 =)~ R(1 )| (5
< Var(R; (—oo,1)).

In a similar fashion we can deduce that the following holds for the approximating se-

quence A,:
.
<An(t)”av> = <”7An(t)v> u,veVir>0
(An()u,u) > allully, ueVit>0
A, (0)=A(0"), A/(0)=0
n(0) =A(07), AL(0) (1.96)
|An(t) = AD)]| 2wy — 0 1>0
A, —AinLY0,T;2(V,V"))
\ 1AL (0. 2v ) < Var(A;(0,2)), £>0,
and for g,:
(
gn(0) =g(07), £,(0)=0
gn(t)—g)|lyr — 0 t>0
18n(t) — g(®)lv (1.97)

gn — gin L1(0,T;V")

L Hg;zHLl(oJ;v/) < Var(g;(0,2)), t>0.
Let us now return to the construction of the solution of (1.94) with given initial con-

ditions. According to Theorem 1.2.1, there exists the unique solution u, € WH=(0,7;V),
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with u! € L2(0,T;H) such that

(Rnu:;)/ +Auu, + F(”n) = fu+8&n,
u,(0) = u (1.98)

where the initial data u9,u) € V is chosen in such manner a that it holds

50wt ANl —g(0T) € H. (1.99)
If we denote
1 1
E,(t) = E(R"u;“ u,) + E<Anun,un),

we can multiply the equation in 1.98 by i/, (in the sense of duality of L?(0,7;V) and

LZ(O, TV’ )), and in the same manner as in the Subsection 1.2.2 obtain the inequality

1 ! ,
En(t) < 06_/2/0 On($)En(s) +En(0) + ||fn||L1(H) + ”gnHLl(V')

(1.100)
+ {8 (@) [lv/[[un (@) [lv + [|8n (0) [y [ (0) [|v
where
Pu(t) = [[Ru(0) | 2ty + 1A (|| 2vyry + | fn ()| + Lip(F)
is in L1(0,T) satisfying
t
/0 On(2) < IR[lL1 ) + AL o vy + 11 ) +Lip(F).
Note that for each 0 <t < T we have
t t
) =8a(0)+ [ gh(s)ds = g0")+ [ gl (5)ds (1.101)
0 0
from where it follows
1gn()llvr < llg(07) ||y + Var(g; (0,T)), (1.102)

and subsequently

1

Ign(®)llvllun(0)lv < 2€ ([l8(0") 13+ Var(g: (0,7))%) + 5 En(o).
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Hence, (1.100) becomes

2 t
Ey(t) < &/ On(8)En(s) + En(0) + [ fll 1 () + Var(g: (0,T))
0 (1.103)

+C (/I8(0+) 3+ Var(:(0,7))? ) +2£,(0).

For the term E,(0) we estimate

(R(0)u,(0), 14,(0))

(RO )1t 4) < RO | oyl

and similarly
(An(0)14n(0),1(0)) < |A(0F)[| oy luenl+
which are both bounded sequences due to (1.99). Hence, an application of the Gronwall’s

lemma allows us to deduce

up lies in a bounded set of L™(0,7;V)
u, lies in a bounded set of L*(0,7; H).
Hence, there exists u € L*(0,7;V) with ' € L*(0,T;H) such that
U, —~u inL=(0,7;V)
W, > inL<(0,T:H).
Recalling (1.95) we deduce

R, =R inLY(0,T;H). (1.104)

Indeed, for v € L=(0, T; H) we have using the dual product of L' (0, 7; H) and L*(0,T; H)

[ ot < [ 1R Ru) [0 —10)

< IR =Rl 1 oy Nunll =gy Vo)
F RVt gy [ty — [ ar)-

Since u), is a weakly convergent sequence in L=(0,7; H), it is bounded, so the first term
goes to 0. The second term goes to zero because of Ry € L! (0,7;H) and the weak-*

convergence of u, —u’ to 0 in L*(0,7T; H). Similar arguments show that
A, — Au  inLY(0,T;V). (1.105)
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Finally, we have
|1 () = F (@) |1 gy < Lip(F) [t — tl| 1 gy = O,

so we deduce that
F(u,) — F(u) inLY(0,T;H). (1.106)

) L(H) L'(v")
Using convergences (1.104), (1.105), (1.106), as well as f, — f and g, — g,

we deduce
(Ru') +Au+F(u)=f+g in 2'(0,T;V'),
and therefore
(R +Au+F(u)=f+g inL'(0,T;V"). (1.107)

Initial conditions can then be checked in the same manner as in the proof of Theorem
1.2.1.

Finally, let us prove the uniqueness of the solution. Assume uj,u; € L*(0,7;V) are
two solutions of the problem 1.94, and denote v := u; —u;. To begin with, we fix0 <s < T

and define

—fstu(r)dr, 0<r<s,
v(t) =

0, s<tr<T.

Note that v € W(0,T;V), and it satisfies v(s) = «/(0) = 0. Hence, using the fact that

1y and u, are both solutions of (1.94), we obtain
A
/ _ (R V) + (Auv) + (F(uy) — F(wa), v) di = .
0
AsV = —ufor 0 <t < s, we can write
A
/ (Ru',u) — (AV ) v) + (F(up) — F(uy),v)dt = 0.
0

Rewriting the previous equation as

/oS(Ru,’u) - /05((R_ RoJuds ) + /Os(Rn”'M)a (1.108)

we can now use the identity

d
E(Rnu, u) = 2Ryt ,u) + (R,u,u)
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in order to obtain
"Rty = [ (R- u ) — = s)u(s),u(s Lr uu
[ R = [(R=R )= SRu(5)0(5)) 5 [ Ry 1109
Analogously we can deduce that
vy = [ a- Vv 1 u(0),u Lr "V, v
| = [ A=AV )+ S A 00u(0)(0) 45 [ (Aw) (1110)
From the above it follows that
(Rp(s)u(s),u(s)) + (An(0)v(0),v(0)) =/Os((R—Rn)u',u) —((A=An),v)
+/O (Ryu,u) — (A,v,v) (1.111)
+/0 (F(up) —F(uy),v).

The left hand side can then be estimated from below:

lu()IE + [V O) 7 < é((Rn(S)u(S),u(S)) +(Ax(0)v(0),v(0))). (1.112)

To estimate the right hand side, we first obtain by using the Lipschitz property (1.12)

(F(u1) —F(uz),v) < Lip(F)|uy (£) — ua(6) | |1v(1) |lr < Lip(F) (J|ue(t) 17+ [[v(0)[[57)
Next we have obvious estimates

/0 (R, u)dr < /0 IR (1) ]| ) B
| e < [ 18501z v0)
o ’ . (1.113)
/0 (R— Ryl )t < [l o o /0 IR =R, (1) syt

RS g ey [ WGP
Hence we obtain
(o) + 1O < [ B,0) (o) -+ o)1)
il iy | IR=R)Ozandr 118
Wl ) [ 168 = DOl
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where 3, denotes the (positive) function

Bu(t) = IR, (1)l ) + AL ()| vy + Lip(F).

Recalling properties (1.95), (1.96) we note
/ Bo(t)dr < Var(R: (0,5)) + Var(A: (0,5)) + sLip(F) =: B(s).
0

Now let n — oo in (1.114). The terms involving R — R,, and A — A,, disappear, and we

deduce
lu(s) [l + [v(0) I} < CB(s) /Os (e |7+ [Iv(0) |17 it

For 0 <t < T define

The inequality in (1.84) then becomes

lu(s) 1§ + w(s) [ < CB(s) /0 () |[F+ [Iw(s) —w(@)[I} . (1.115)
However
Iw(t) =w(s)[[y < 2(w@)I[F + Iw(s)I),

so (1.115) becomes

Juts) -+ (1 =26BEN IR < [ i+ wilfar). .o

Finally, choose 7j small enough such that (1 —2CpB(71)) > 3. Then for each 0 < s < T

we have
()i + Iw(s)113 < ¢ /0 Jue() s+ (o) 13 ). (1.117)

Applying Gronwall’s inequality we get u =0 on [0,7}]. By using the same argument on

intervals [T7,2T1], [2T1,3T}], etc. we eventually get u =0 on [0, T].
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2. H-MEASURES

H-measures, also called microlocal defect measures, were introduced in the late eighties
independently by Tartar [71] and Gérard [36]. Since they first appeared in relation to
some homogenisation problems, Tartar called them H-measures, while Gérard’s scientific
background prompted the name microlocal defect measures, since they are a microlocal
refinement of (reduced) defect measures of DiPerna and Majda [27, 32] which encode
information about the extent to which strong convergence fails. In either case, they were
Radon measures designed to describe quadratic limits of weakly convergent L? sequences.
If one has a weakly convergent L? sequence u,, — u, it is natural to observe the bounded
L! sequence |u, — u|?. After possibly passing onto a subsequence, one obtains Radon
measure V, a defect measure of u,. However, this measure depends on the variable x only,
and it is not well suited to describe any effect which depends on a particular direction in
space, for example, for the study of propagation of oscillation effects. To demonstrate this

deficiency, we can observe the following example.

Example 2.0.1. Take ¢ € C>(R?) such that ||‘P||L2(Rd) =1, & € R?\ {0} and a real se-
quence &, — 0. Define sequence u,(x) = (p(x)e%. Then u,, L 0, and it can be easily
checked that the defect measure it defines is v = (pzl, where A denotes the Lebesgue
measure on RY. As we can see, the information about the direction of oscillations is lost,

since the defect measure obtained in this way is the same for any choice of &.

The remainder of this chapter is split into presentation of these two variant descriptions
of H-measures as well as making some comparison on the subject. At this point we
can note that the main difference in corresponding approaches is based on the regularity

assumptions in their framework. Accordingly, we will briefly introduce the preliminary
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requirements.

2.1. PRELIMINARIES

Before stating the existence result for H-measures, which will also serve as the defining
theorem, we will briefly recall some of the basic facts regarding the Fourier transform.
We adopt the following normalization: for u € .7 (R?) (the Schwartz space) let
(Fu)(&)=u() = / e 2 4 (x)dx.
R4
The Fourier transform is an isomorphism on .#(R?) equipped with standard Fréchet

topology [39,42], and its inverse is given by the inverse Fourier transform given by

(Fu)(x) = ii(x) 1= /R AT,

that is, for each u € .(R%) the Fourier inversion formula holds

u(x) = /]R PTER(E)ag.

Both operators .% and .% can be extended to unitary operators on L?(R¢) by density.
Additionally, they can also be extended by duality to operators acting on the space of tem-

pered distributions .’ (R?). More precisely, for u € ./ (RY) and ¢ € .7 (R?) we define
(8, 9) := (u, ), as well as (i, @) := (u, P).

We will not go into details about the elementary properties of Fourier transform,
proofs of which can be found in, for example [39, 42]. However, we shall emphasise
the following property which is important in connection with the theory of partial differ-
ential equations, and that is the fact that the Fourier transform turns differentiation in the
physical space into the multiplication by a polynomial in the phase space. Namely, we
have

(0%u)(&) = (2miE) A(E), ue S (RY), e N, 2.1)

Together with the Fourier transform, we introduce two basic operators acting on func-
tions in L2(RY). If a is a function in &, and b is a function in x, we consider linear

operators on functions defined in x:
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Operator A is called the (L?) Fourier multiplier [39, 2.5] associated with symbol a, while
the operator B is a simple multiplication by b (sometimes called the Sobolev multiplier
[54]). If we assume additionally that both functions a and b are in L™ (R?), it immediately
follows that operators A and B are bounded operators on L?(R¢). We will later deal with

operators of a more general form when dealing with Gérard’s approach to H-measures.
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2.2. TARTAR’S APPROACH

An H-measure is a Radon measure on the cospherical bundle S*Q over a domain Q in
consideration. If Q C R is an open set, then it is just a measure on the product Q x
S?-1, Since its definition requires the Fourier transform, which in turn requires concerned
functions to be defined on the whole of R¢, one can circumvent this issue by extending
functions by zero outside of the domain. We will therefore state the following results in
a manner that considers Q = R?. First in line is the existence theorem for H-measures
introduced by Tartar [71, Theorem 1.1] (see also [80, Theorem 28.5]), which also serves
as a definition.

Before stating the existence theorem, let us introduce some notation which will also
be of use in the latter sections of this chapter.

Let F =R or C. For two vectors u = (u;)%_;,v = (Vj)?zl € 4, we denote with u®v

the tensor product of u and v given by
uve My(F), (u®v)ij:u,-vj, 1<i,j<d.

For two functions f : FK - T, g : F/ — F, we denote with f X g the tensor product of f

and g given by

fRg:FH S F, (fRg)(xy) = f(x)g(y), xeFyeF.

With Cy(R?) we denote the closure of C°(R?) in C(R?) equipped with the standard
sup-norm.

The unit sphere in the d-dimensional space will be denoted by
T={xeR?: x| =1}
The existence theorem for H-measures is now introduced.

Theorem 2.2.1. (Existence of H-measures) If (1,) is a sequence in L>(R?;R"), such
2
that i, ~ 0 (weakly), then there exists a subsequence (u,/) and a complex matrix Radon

measure 4 on RY x S?~! such that for all ¢, @, € Co(R?) and w € C(S?~1):
i | Cprin) @ (gmnw (12 ) € = (. (o) @) @2)

14
= / o1(x) @ (x)y(E)du(x,§).  (2.3)
R4 xSd-1
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Measure u is called the H-measure associated to the (sub)sequence (u,y).

For simplicity, we will often denote the subsequence also by (u,) and refer to u as
the H-measure associated to the sequence (u,). Sequences for which the relation (2.2) is
valid without passing to a subsequence are called pure.

Remark 2.2.2. The definition of H-measures can also be extended to sequences converg-

2

1()C(]Rd). In that case, one has to change requirements for test

ing weakly to zero in L
functions to @y, @, € C.(R?). The resulting measure, however, is in general infinite (Ex-
ample 2.2.10 below). More precisely, we distinguish between bounded Radon measures
denoted by .#,(R¢ x S¥~1) = Cp(R¢ x S~!)" and unbounded ones .# (R? x S~ 1) =
C.(R? x S4-1Y.
Remark 2.2.3. The above definition of H-measures can be extended in various directions.
By changing the projection to the sphere one can get parabolic H-measures [11, 14,78],
adopted to equations with different order of derivatives in different variables (including
ultraparabolic H-measures [61], and fractional H-measures [28,29]). Another extension is
to one-scale H-measures [6,80], which at the same time extend the notion of semiclassical
measures [36], also known as Wigner measures.

If L2 is replaced by L” and L”/, one does not get Radon measures, but distributions
of higher, though still finite order, called H-distributions [7, 15], which are related [16]
to microlocal compactness forms [63], a generalisation o Young measures. Further gen-
eralisations involve L”/ L’ setting combined with different scales, leading to one-scale

H-distributions [5].

2.2.1. A class of symbols and associated operators

A simple application of the Plancherel theorem allows us to rewrite (2.2) in terms of the

aforementioned elementary operators as

lim | (AyBop,itn) © (Boyttn)dx = (1, 0177 K yr). (2.4)

Note that the H-measure, as defined by (2.2), is a trilinear form in ¢, ¢, and y.
However, the following commutation lemma [71, Lemma 1.7] (see also [17, 80]) allowed

rewriting 4 as a bilinear form which could, due to the Schwartz kernel theorem [7, 84],
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be represented as a distribution of order O, for which it is easy to check that it is positive,
thus making it a Radon measure. Tartar wanted to avoid using a sofisticated result as the

Kernel theorem, hence he used a construction relying on Hilbert-Schmidt operators.

Lemma 2.2.4. (First commutation lemma) If a € C(S?"!) and b € Cy(R?) then the
above defined operators belong to .Z(L?(R¢)), and their norms coincide with supremum
norms of a and b respectively. Moreover, the commutator C := [A,B] = AB—BA is a

compact operator on L?(R9).

As a consequence, a class of admissible symbols is now ready to be defined. A func-

tion p € C(R? x S?~1) is an admissible symbol if it can be written in the form of a series
p(x§) = Y be(x)ar(§), (2.5)
k

with a; € C(S?~!) and by € Co(R?), and such that the following boundedness condition
is satisfied: Y ||ag||oo||Dk||c0 < .

We then introduce standard operator S, € £(L*(R?)) associated with symbol p,
which is defined by

Sy = ;AkBk, (2.6)
where operators A and By are defined as above (the order of operations, first multiplica-
tion by by, and then the Fourier multiplier with a;, corresponds to the so called standard,
or Kohn-Nirenberg [49] quantisation). Of course, one needs to check that this object is
well-defined, namely, that S, does not depend upon the decomposition (2.5). Indeed, for
each decomposition (2.5) S, satisfies for each u € .7 (R?):

Spu(&) = zk:ak <|§—‘> /]Rd e 2Ty (x)u(x)dx = /]Rd e 2mE <x, é—,) u(x)dx.

Thus, S, does not depend on the choice of the representation for p.
Finally, an operator with symbol p is defined to be any operator L, € .Z(L*(R¢)) such
that L, = S, + K, where K € # (L?(R?)) is a compact operator. One such example can

be given by the operator (here the adjoint quantisation is applied)

L, =) BiA;, 2.7)
k
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that differs from the standard operator S, by an operator
L,—S, =Y BiAr—ABr =) [Bi, Arl,

k k
which is compact due to the first commutation lemma and the fact that it is the uniform
limit of compact operators.
Remark 2.2.5. Let us once again revisit the defining expression (2.2) for the H-measure
and its variant given by (2.4). Let ¢ € C(R?) and ¢; € C(R¥) be such that ¢; = 1 on
supp @, while y € C*(S9~1), and finally take p(x,&) = @(x)w(€). Then for u € .7 (R9):

lim | Lpu,-u,= lim/ Lpuy, - (Qru,) = (U, p). (2.8)
Rd n JRd

n

We will later use identity (2.8) in order to compare the defining results with Gérard’s

approach.

2.2.2. Immediate consequences and examples

Once the existence of H-measures has been proved, a few simple consequences can im-

mediately be obtained.

Corollary 2.2.6. H-measure u is hermitian and nonnegative:
p=p* and  (u,0R@)>0, ¢cCo(R:R).

Corollary 2.2.7. Let sequence (u,) define an H-measure u. If all the components u, - ¢;
have their supports in closed sets K; C RY respectively, then the support of the component
Ui is contained in (KiNnkK j) x §4-1, Specifically, if suppu, C K, for some closed K C R4,

then suppu C K x S 1.

Note that a strongly convergent sequence (u,) defines an H-measure y = 0. This is an

immediate consequence of the following corollary of Theorem 2.2.1.

Corollary 2.2.8. If u, ® u, converges weakly * (i.e. vaguely) to a measure Vv, then for

every ¢ € Co(R?) one has:
(v, @) = (1, pBa1).
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However, it is important to note that if a sequence defines an H-measure 0, we can
only deduce that it converges strongly in LIZOC(Rd ). An example which exhibits this effect
is given in [51, Example 1.3].

We can now showcase the difference in the information obtained by computing an
H-measure of a sequence as opposed to a defect measure of the same sequence. For that

matter, we recall Example 2.0.1.

Example 2.2.9. (Oscillation) Under the same assumptions as in Example 2.0.1, we have

L*(RY)

that u, — 0. Hence, it defines an H-measure . In this case it turns out that the

sequence is pure, and the (unique) H-measure is given by

= AXS &
%o
where 8¢, denotes the Dirac measure concentrated in é—g| on the unit sphere. As we

18]
can now see, the direction in which the oscillations occur is captured by the resulting

H-measure.

Example 2.2.10. (Concentration) Given u € L?(RY), xy € R? and a sequence &€ — 07,

X—X0

, ) It can easily be seen that u,

_d
observe the sequence (u,) defined by u,(x) = &, *u <
is bounded in L? (R9), and that it converges weakly to zero. This sequence is pure as well

and the H-measure it defines is given by
1= 6, XV,

where Vv is the measure which is absolutely continuous with respect to the surface measure

on the sphere with density N:

N(n) = /0 G e,

While Corollary 2.2.7 already gives some constraints on the support of the H-measure,
an even stronger result can be obtained by using the information contained in linear bal-
ance equations, thus providing a compactness by compensation result for variable coeffi-

cients.

Theorem 2.2.11. (Localisation principle) Let the sequence (u,,) define an H-measure L.

If it additionally satisfies, for some m € N:

—m d;(cq
Y, 0%(Aqun) Fhoe (RTE1), 0, 2.9)

|af<m
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for given Ay € C(RY; M, (C)), then

pu =0, (2.10)

where

px8) = Caif" T (2) Aalo)

is the principal symbol of the above differential operator.
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2.3. PSEUDODIFFERENTIAL OPERATORS

While Tartar’s approach has its obvious advantages in terms of lower regularity assump-
tions on symbols and functions, it also requires reinventing the pseudodifferential calculus
for the operators at stake, a theory that has been widely developed for more appropriate
classes of symbols. We will now introduce one of the most standard ones, the class of
Hormander’s symbols, and recall some of the basic calculus which will be of use. For
more details, the reader can refer to [3,43, 62, 64].

At this point we also remind the reader of the Sobolev spaces H® defined now only on

R?, but for arbitrary real number s. Namely, we denote by
H'(RY) = {ue ' (RY) : (§)*a(§) € L*(RY)}.

Here (-) denotes the japanese bracket given by (&) = (1 + |§|2)%, which serves as a
smooth version of the function & — |&].

For further details and properties of this spaces, as well as their relation with the
Sobolev spaces introduced in the beginning of the first chapter, the reader can refer to [64]
or [32]. However, it is worth noting that for Q = R? and k € Ny two spaces coincide

(topologically).

2.3.1. Class of Hormander’s symbols

As a consequence of the Fourier inversion formula and (2.1), we have the following im-

portant identity,

D%u(x) = /Rd PTG ECT(E)E ue.(RY (2.11)

where D denotes the reduced differential operator D = ZLm.a. If L =Yg <maa(x)D* is
a linear partial differential operator of order m, the linearity of the Fourier transform and

(2.11) allow us to rewrite its action as

Lu(x) = /R Pl £)i(E)dE, 2.12)

where a(x,8) = ¥ ¢|<m@a(x)§* denotes the symbol of operator L. In order to further

illustrate the connection between the operator and its symbol, it is customary to write
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a(x,D) for the operator defined by (2.12) with symbol a = a(x,&). The theory of pseu-
dodifferential operators investigates tools allowing for the definition of operators of the
form (2.12) for more general symbols a, in a class which will, at least aproximately, yield

the possiblity of inverting these operators.

Definition 2.3.1. For m € Z, the vector space S (R x R¥) of symbols of order m consists
of those functions a € C*(RY x RY) satisfying

sup 920 a(x,&)| < Cop(&)" P, a,peNG. (2.13)
(x,&)eRIxRE

When there is no risk of confusion, we will write " instead of $"(RY x R?) for
brevity. Since one obviously has §"* < S! form < I, we can additionally introduce S~ :=

NezS™ and S7° 1= U,,c78™.

Remark 2.3.2. The above definition covers a particular case of Hormander’s symbol Sg 50

where p =1 and 6 =0.
Denote with ||al|4 g the seminorm given by the smallest constant Cy, g for which (2.13)
holds, i.e.

lellap = sup  [O3galc0)](8) P (2.14)
x,6)ERI xR

The vector space S”* endowed with this (countable) family of seminorms (for &, 8 € N9)

becomes a Fréchet space.

Example 2.3.3.  (a) An obvious starting example of a symbol a € §”(R? x R?) is given

as above by

a(x,§)= Y an(x)&%

|a|<m

where ag € H?(R?) = Ny oH (RY).
(b) Another example of a symbol in §” is the japanese bracket (&)™ = (1+|&|?)7.

(c) The third example is related to functions a(x, &) which are compactly supported in
x, positively homogeneous of order m in & and of class C* outside some (small)
neighbourhood of & = 0. One can then choose a symbol b € " such that b(x, &) =
a(x,&) forall |£| > 1. Such b is uniquely determined modulo S~*. Indeed, one can

choose a smooth cut-off function y € C°(R?) such that y = 1 on B ! and supp y C
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By (here B, denotes the ball of radius r around the origin) and then define b(x,§) =
(1 —x(&))a(x,&). Note in particular that this modification does not expand the

support in the x variable.

Remark 2.3.4.  (a) It is not inherently important that there are as many x variables as
there are & variables; Definition 2.3.1 can be stated in the same manner for symbols
a € §° (R4 x R%), with obvious modifications. We will discuss this in more detail

later for the specific case of time dependent symbols.

(b) While the number of variables may differ, it is important to note that symbols cannot
in general be independent of some of the £ variables. That is the case if and only if
a is a polynomial in £. Indeed, assume that a(x,&) = a(x,&’), where & = (&', &).

From (2.13) it follows, for B = (8/,0) € N4 such that || > m, that

oPa(x,&')| < Cn((&, &))" P,

sup
(x,&")ERI xRd—1

By letting &; — o we get 9F'a = 0, hence a is a polynomial in &’

As it has already been noted at the beginning of this section, we will associate these
symbols to a certain class of operators. The main idea of developing the calculus for such
operators consists in transferring operations on operators to operations on their symbols.
In order to develop such calculus in a way that will also allow for certain approximations,
it is necessary to follow the notions such as the summation of a series. The following

lemma provides such a result (see [43, Proposition 18.1.4] or [64, Lemma 2.2]).

Proposition 2.3.5. Let aj € §", j € Ny and assume that m; — —oo as j — co. Set mj =

max ;> m;. Then there exists a € S™ such that suppa C U;suppa; and for every k

a—Y ajesm. (2.15)
j<k
The function a is uniquely determined modulo S~ and has the same property relative

to any rearrangement of the series ). ;a;; we write
an~ Za j-
J

As an example of such construction, we also mention a special case of symbols, called

polyhomogeneous symbols (sometimes also referred to as classical symbols).
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Definition 2.3.6. The set of all a € S such that

[e)
ar ) dn-j
J=0

where a,,— j is homogeneous of degree m — j, meaning that they satisfy
amfj(xvlg):Amijamfj(xﬁ)v 1§ =14 =1, (2.16)

will be called polyhomogeneous of degree m. The set of all polyhomogeneous symbols

of order m is denoted with S;”hg.

If a is a polyhomogeneous symbol of order m and (a,,— ;) j>0 as above, we will refer

to a,, as the principal symbol. Tt will often also be denoted by ¢ (a).

Remark 2.371.  (a) Note that the functions a; cannot at the same time be C* and ho-
mogeneous for every & # 0, unless they are polynomials in §. Nevertheless, this
does not pose any obstruction, since the construction of the asymptotic expansion

is based on the process described in Example 2.3.3 (c).

(b) The homogeneity condition immediately implies a,,—; € "~/ (R?).

2.3.2. Operator calculus

We are now in a position to define pseudodifferential operators associated to symbols
in Hormander’s class. The reader can find more details on results stated in this section

in [43, Chapter 18] or [64, Chapters 2-3].

Theorem 2.3.8. If a € §"(RY) and u € .7 (R?), then
a(x,D)u(x) = / T g (x, E)i(E)dE (2.17)
R4
defines a function a(x,D)u € .#, and the bilinear map (a,u) — a(x,D)u is continuous.

One calls a(x, D) a pseudodifferential operator of order m.

The space of all pseudodifferential operators of order m will be denoted by ¥ (R?),
or just ¥ when there is no fear of confusion. Since ¥ < W for m < 1, we will also
write ¥~ := N, " and ¥~ = U,,"". Morover, we will denoted by W!" the subspace of

W™ consisting of operators whose symbols are compactly supported functions in x.
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Remark 2.3.9. Note that for a(x,D) € W7, one has that a(x,D) maps . to C°. This

follows immediately from (2.17).

The basic operator calculus involves, of course, taking adjoints and composing opera-
tors. As usual, the usage of the adjoint operator also allows us to extend pseudodifferential

operators to continuous maps on .. Let us recall some basic results.

Theorem 2.3.10. (a) If a € §™, then the function a* defined as an oscillatory integral

a(x,§) = P Pea(x, §) = / / ANG(x—y, E —n)dydn  (2.18)
R4 JRd

belongs to §”'(RY) and has asymptotic expansion

1 o )Oo—
iyl % A5): (2.19)

a*(xag) ~ Z

d
oeNj

Moreover, it holds
(a(x,D)u,v) = (u,a*(x,D)v), u,ve.?,
and a(x,D) can be extended to a continuous map from .’ to ., as the adjoint of
a*(x,D).
(b) If a € " and b € S, then as operators in .# or .%"
a(x,D)b(x,D) = (a#b)(x,D),

where a#b € S is defined as an oscillatory integral

(a#b)(x,§) : = P Pra(xe,m)b(v,6)]
y=x,n=§

- / / FFNa(x — 3, E)b(y, & —n)dydn
Rd Rd

and has the asymptotic expansion

1
(2mi)lol !

(a#b)(xag) ~ Z

d
oeNG

Bga(x,§)8xab(x,§). (2.20)

When working with pseudodifferential operators, the importance of the commutator
has already been seen in Tartar’s approach, in view of being compact on L. The same

notation is adopted here: we define
la(x,D),b(x,D)] := a(x,D)b(x,D) — b(x,D)a(x,D), for a(x,D),b(x,D) € ¥
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It follows immediately from Theorem 2.3.10 (b) that fora € "', b € S! and their associated
operators a(x, D) and b(x, D), one has [a(x,D),b(x,D)] € y"*'. However, a consequence
of asymptotic expansion of its symbol also given by Theorem 2.3.10 (b) is that the com-
mutator is actually an operator of order m + [/ — 1, and its principal symbol is given by
Zim.{c(a), o(b)}, where {-,-} denotes the Poisson bracket of two functions f, g of (x,&)
given by

{f.g}=Vef -Vig—Vif-Veg.

2.3.3. Action on Lebesgue and Sobolev spaces

In this section we shall state some of the most important results regarding the action of

pseudodifferential operators on Lebesgue spaces, as well as Sobolev spaces.

Theorem 2.3.11. If a € S, then a(x,D) is a continuous operator from H® to H*™" for

every s € R.

Remark 2.3.12. As a consequence of Theorem 2.3.11, we have that symbols a € $™°°
define operators which map H™® into H”. Therefore, the operators in ¥~ are also

referred to as smoothing operators.

More on this topic was discovered recently in [9], where some results regarding con-
tinuity of pseudodifferential operators on mixed-norm Lebesgue and Sobolev spaces have
been obtained. For any p = (p1,...,pq) € [1,00)¢, LP(R?) denotes (with identification
of almost everywhere equal functions) the space of all measurable functions f on R¢ for

which we have

pa/p1 p3/p2 1/pa
1llp = / </ </ )P dx2> | <o
R R \JR
(2.21)
In other words, for j = 1,...,d the norms || - || »; in variable x; are computed in that

exact order. Simple adjustments extend this definition to the case when some p; = oo. For
p € [1,]? thus defined || - || is a norm on LP(R?), which becomes a Banach space.

Similarly, we can define mixed-norm Sobolev spaces: for k € Ng and p € (1,0)¢ let

WEPRY) = {ue.s: (VaeNg)|a| <k = 9%ueLP(R!)},
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with the norm

lellgyeo = 3 110%ullp-

la|<k
This definition can easily be extended to an open set Q@ C R¢, with derivatives being
understood in the sense of distributions.

Since our focus is not on general mixed-norm spaces, we will single out the one
specific case, which appears naturally in the study of evolution PDEs, and that is the case
of p=(p,2,...,2) € R4 where p € [1,c0]. In this case, the space LP(R?*!) obviously
coincides with the Bochner space L”(R;L?(R)) introduced above in Chapter 1.

We now state the main result on continuity of pseudodifferential operators on mixed-

norm Sobolev spaces [9, Corollary 1].

Theorem 2.3.13. Let a(x,D) be a pseudodifferential operator from ¥”. Then for any
p € (1,00) and any integer k > m € Ny the operator a(x,D) : WEP(R?) — Wk—"P(R?)

is bounded.
As a special case for k = m = 0 we get the following result.

Corollary 2.3.14. Pseudodifferential operators of class P are bounded on LP(R?), p €
(1,00).

Note also that forp = (p,...,p) € R the previous theorem can be restated as follows.
Theorem 2.3.15. If a € S°, then a(x, D) is a continuous operator on L, for 1 < p < oo,

These results will be used in the final chapter, as they will enable us to obtain better
estimates with respect to time, a feat that was beforehand a difficult task because of the

need to lower the regularity of the framework to L? in all of the variables.
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2.4. GERARD’S APPROACH

In this section, we will briefly introduce Gérard’s definition of microlocal defect measures.
To fully emphasise the difference in approaches, the existence theorem, which also serves
as a definition, is here stated in its full generality. For that purpose, we need to introduce
some additional components.

Let H be a separable Hilbert space. For a positive bounded operator A € .Z(H), the

trace of A is defined as
tr(A) = Z <A€k,€k>H,
k=1

where (e ) is an arbitrary orthonormal basis for H, and this quantity does not depend on
the choice of the orthonormal basis (e ) for H.

For A € .Z(H) not necessarily positive, we say it is of trace class if tr(v/A*A) < oo.
The space of all trace class operators is denoted with ! (H). With .#"(H) we denote the
space of all compact operators on H.

Next in line, with . (RY x S9~1; 1 (H)) is denoted the space of trace operator-
valued Radon measures on R? x =1 ie. the space of linear operators p : Co(R? x
S?1) — £1(H) satisfying the following boundedness condition: for any compact K C

R? x S9! there exists constant Cx > 0 such that

(Vo e Co(K))  [{1, 9} 21(ar) < Ckl[@]leo-

The subset of all positive elements of . (R? x S*~1; 1 (H)) is denoted by .4 (R x
S=1, 21 (H)). Finally, if u € ., (R? x S4=1; #'(H)), we denote by tr(u) the positive
scalar Radon measure defined by (tr(it), @) := tr ({11, 9)).

The existence theorem given by Gérard [36, Theorem 1] can now be stated.

Theorem 2.4.1. Let (4,) be a bounded sequence in Ly, (RY; H) (in the sense of locally
convex topological vector spaces) and assume u,, — 0. Then there exists a subsequence

(u,) and a measure u € ., (R? x S, £ (H)) such that, for any A € ¥O(R?, 7 (H))

lim [ Auwyitg = / tr <G(a)du>. (2.22)
R4 R4 xSd—1

n/
The case of our primary interest is H = R”. Since it is of finite dimension, measure

L can be identified with an r x r matrix valued Radon measure g on R x S?~!. Addi-
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tionally, the notion of the trace defined prior to the theorem obviously coincides with the
notion of the trace of a matrix. Taking these remarks into account, we see that (2.22) can
be rewritten in the same manner as (2.8).

Of course, the main difference now lies in the fact that the requirements on the class of
operators appear to be more strict here; one may think that the class of symbols introduced
in 2.2.1 generalizes the class WY, given its lesser restraints on regularity. However, it is
worth noting that it is not the case. The example we give now can also be found in [51].

Indeed, take a € C°(R) and b € C*(IR?) such that suppa C [0, 1] and suppb C [0,1]?,

with ||a|| = ||b|| = 1. Define sequences

(&) =%< ( ;%))
)

where 7 denotes the stereographic projection of the circle S! to the real line. The function
p defined by p(x,&) = ¥,,a,(&)b,(x) belongs to the space S, but on the other hand we
have ¥, [[anlo|bnloo = X 5 =

Hence, we see that the class of Hormander’s symbols S° and class of symbols used by

Tartar are in general position.

Remark 2.4.2. Although Tartar’s approach may be more practical and realistic when deal-
ing with the non-smooth nature of partial differential equations, we do not posses enough
information on pseudodifferential calculus (mostly related to higher order operators) to
apply that approach successfully in our further work. Therefore, in the following chapter
we will primarily rely on Gérard’s approach, and the theory of pseudodifferential opera-

tors presented throughout this chapter.
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2.5. FURTHER REMARKS ON

PSEUDODIFFERENTIAL OPERATORS

As the final part of this chapter, we will present some additional remarks regarding the
theory of pseudodifferential operators and the symbolic calculus presented in the last
section.

Firstly, let us observe that similarly to the way the Fourier transform was defined, one
can define partial Fourier transform with respect to subset of variables; for simplicity, we
can observe the case where x is split into x = (x',x”) with x' € R¥ x” € R?~* and define

for u € .7 (RY):

(Fou)(E) = (Fou) (£, E") = / ¢ 2 (M

Rk
It is straightforward to check that .#,.% = .%, and that .%, maps .7 (R?) into itself.

Since evolution equations are central to this disertation, the case we wish to emphasise
is the one that involves separating the time variable ¢ from the space variables x, and
performing partial Fourier transform only with respect to x variable; which will be denoted
by .

Next we turn back to the topic opened in 2.3.4 (a). As was mentioned there, it is
irrelevant for the definition of symbols for functions to have the same number of variables
in x and &. The definition of symbols remain the same with obvious adjustments.

Functions that belong to C*(R*! x R?), where one additional variable in the first
argument will correspond to time-dependence, will be of interest in the remainder of the
thesis. Here, (¢,x) will play the role of spatial variable in RY*!, while the covariable
will be & € RY. We would like to associate partial pseudodifferential operators with such
symbols, the ones that will act in a ”pseudodifferential way” on the spatial variable x,
with some additional dependence on ¢ in terms of multiplication. Remaining remarks
are mostly dedicated to comparing some basic results regarding boundedness of such
operators to those introduced in 2.3.2.

In what follows, we assume additionally that a = a(t,x,&) € C*(R¥+! x RY) satisfies

forall k € Ng, o, B € Ng and some constants Cy o g > 0
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sup  (&)PITm5faZaL alt,x,&)] < Ciap- (2.23)
(t,x,E)ERITI x R4

Then a is a symbol of order m; here denoted by S (R4+! x R¥) for clarity.
We first remark that the asymptotic expansion result given by Proposition 2.3.5 for

such symbols is still valid. For the sake of completeness, we reiterate the Proposition.

Proposition 2.5.1. Leta; € ™/ (R x RY), j € Ny and assume that m; — —co as j — oo.
Set m), = max ¢ m;. Then there exists a € §"0(R4+! x R?) such that suppa C U;suppa;

and for every k

a(t,x, &)~ Y aj(t,x,&) € S (R x RY). (2.24)
j<k

The function a is uniquely determined modulo S~ (R?*! x R¢) and has the same property

relative to any rearrangement of the series ). ;a;; we write
an~ Za j
J
We now associate with a € $°(RY*! x R?) a linear operator a(t;x, D) defined by

a(t;x,D)u(t,x) = /]Rd e (1, x, E)(Fu) (1, E)dE, uc .7 (R, (2.25)

As Z,u is again an element of .7 (RY*!), same arguments as in the proof of Theorem
2.3.8 (see [43]) show that this operator maps .7 (R*1) into .7 (R4*1). As a matter of
fact, the same proof yields the bound of the functions (t,x)“&,’@f a(t;x,D)u in terms of a
semi-norm of u in . (R%*1) and a seminorm of a € §"(R4*! x RY),

We would now like to deal with the question of boundedness of such operators, at
least of some mixed type in time and space, on Sobolev spaces. For that purpose, let us
consider for a € $°(RY*! x R) operator a(t;x, D) as an operator acting on R¢ with ¢ as
a parameter, i.e., we “freeze” the time variable. According to Theorem 2.3.11, there is a

constant C = C(t) > 0 such that for any s € R and u € . (R?*!) it holds:

la(es - D)u(t) [ gs-mgay < C(0)]|t) |35 ey (2.26)

Here we have implicitly used the fact that u € .7 (R¢*!) implies u(¢) € .7 (R¥) for each

t € R. The constant C(¢) can now be bounded via the proof of that very theorem (see [43],
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Theorem 18.1.11 and Theorem 18.1.13 and remarks following the proof of Theorem
18.1.11) by seminorms of a in S(R¥*! x R?). Consequently, constants C(¢) can be uni-

formly bounded in # due to (2.23), which yields the following bound:
Ha(, ~7D)M||Lw(R;Hs7m(Rd)) S CHMHLM(R;HS(Rd)), uc y(Rd_‘—l). (227)

If given two symbols a € §"(R4*T! x RY) and b € S'(R?*! x R?), composition
a(t;-,D)b(t;-,D) of corresponding operators is again an operator of the same type, and
asymptotic expansion of the form as in (2.20) holds for each ¢ € R. Finally, commutator

la(t;-,D),b(t;-,D)] is then an operator which satisfies
I[a(-;-,D),b(:; "D)]”HLN(R;HS*(Y"H*I)(Rd) < CH”HL""(R;HS(Rd)a ue y(Rd+l)= seR.

As a final remark, we will touch upon the composition of aforementioned operators
with standard operators in ¥*°(RY*!). One has to be careful here, as Remark 2.3.4 (b)
tells us that we cannot just consider partial operators with symbols in §*(RY*! x R?)
as operators from W>(R¢*1) that are independent of the covariable corresponding to ¢.
However, there is a way to circumvent this issue in order to have the composition of one
operator associated with symbol in §°(R¢*! x R?) with another associated to a symbol in
§%(RI*1 x R4+1) well defined. This is stated in the following theorem (see [43, Theorem

18.1.35]).

Theorem 2.5.2. Leta € S"(R¥H! x R4H1) b e 7 (RIH! x R?), and assume that for some

€ > 0 we have
. 1
a(x,§) = 0if [Eg41| <gand|§’| <el&as1l (2.28)

Then a(x,D)b(x,D’) and b(x,D')a(x,D) are in ¥+ (R4+1) "and the asymptotic expan-

sion of the symbols can be carried out in standard way.
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3. TRANSPORT PROPERTIES OF

H-MEASURES

3.1. WAVE EQUATION SETTING

Consider the Cauchy problem for the linear wave equation, with oscillating initial data

and smooth non-oscillating coefficients

(pul)’ — div (AVu,) =0,
un(0) = gn, (3.1
u,(0) = hy,.
We assume p € C*(R?TL;R) and A € C*(RYT; ME¥™), where ME™¥™ denotes the
space of all positive definite symmetric matrices of order d. Moreover, we assume all

corresponding derivatives to be bounded, that is,
1o ® =g, 19 Al =(gaggpom) < oo, k€ Noand a € Ng. (3.2)

Additionally, let p and A satisfy the following coercivity properties: for some o > 0 it
holds

p(t,x)>a>0,  A(t,x)>oal, (t,x)cR™ (3.3)

The initial conditions g, and h,, are both assumed to be C=*(R?) with a common compact
support K C R?. They further satisfy
g —0, inH'(RY),

(3.4)
h, —0, inL*(RY).
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Remark 3.1.1.  (a) Fort > 0 denote by R(r) € Z(H) and Ay(t) € £(V,V’) the opera-

tors given by

R(H)u(t,x) = p(t,x)u(t,x)
Ao(t)u(t,x) = —div (A(r,x)Vu(t,x)).

Due to (3.2) and (3.3), these are just a special case of operators denoted equally in
Chapter 1. Note that the operator norms here coincide with the sup-norms of p and A;

namely, we have

IR|le=(0,r.2(#)) = IPllL=((0,1)x Q) [A0l[L=(0.7:.2(vy) = [[AllL=((0.7) x mpom)-

Similar estimates follow for the time derivatives of R and A, which are obviously then

given by corresponding time derivatives of p and A.

(b) Owing to the regularity of coefficients, as well as the initial data, there exists a unique
smooth solution u,, to the corresponding Cauchy problem. Moreover, because of the fi-
nite speed of propagation for the wave equation (see [60, Theorem 6.10]), for each 7 > 0
we have that the projection of u,, to the spatial domain is compactly supported in some
K’ independent of n. Therefore, we may also interpret (3.1) as a Cauchy problem on
(0,T) x Q with the Dirichlet boundary condition, where Q is chosen such that K’ C Q.
This also allows us to interpret given functions as elements of H}(Q) and H'(R¢) inter-
changeably, enabling us to apply certain results regarding Sobolev spaces that hold true

only for bounded sets.

(c) Using energy estimates obtained in the first chapter, we deduce the bound of
up € L=(0,T;HY(RY)) nWH=(0, T;L3(RY))
in terms of respective norms of p, A (and their time derivatives), as well as the norms of
||gn||Hl(Rd) and ||hn||L2(Rd)-
Lemma 3.1.2. For each T > 0 the sequence of solutions u, to (3.1) satisfy

u, =0 inL=(0,7;H'(RY))
(3.5)
uh) 20 in L=(0,7;L2(RY)).
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Proof. Remarks preceding this lemma, together with the boundedness of initial data fol-
lowing from (3.4) yield boundedness of the sequence of solutions u, in given spaces.

Hence, there is an u € L=(0, T;H! (R?)) with «’ € L*(0,T;L?(R%)) such that

uy, —u in L™(0, T;Hl(Rd))
u, >’ in L0, T;L%(RY)).
In the same vein as in the first chapter, it can then be easily checked that u solves the
limit problem
(pu')' —div(AVu) =0
u(0)=0
u'(0) =0.
Uniqueness of the solution then implies u = 0, which concludes the proof of the
lemma.
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3.2. H-MEASURE ASSOCIATED TO THE

SEQUENCE OF SOLUTIONS

In order to apply the theory of H-measures, we need to ensure that we are in the L?
framework. In order to achieve that, time truncation is necessary. Let ¥ € CZ°(R) be a
time-cutoff function such that 0 < ¥ < 1 and ¥ =1 on [0, T] for some fixed T > 0. Set
v, = Yu, and

Vo = (V2 ViE) == (v, Vvp).
The convergence in (3.5) now implies

vp =0 inL®(R;H'(RY)) (3.6)

V, 20 inL2(R;L*(R%)), (3.7)
but the additional compactness of the support in time now also yields

V, =0 inL*(RIT. (3.8)

Therefore, V, defines (up to a subsequence) an H-measure pt. Note that v, satisfies the
equation
(pvy) —div (AVv,) = f,, (3.9)
where
fu=28"p'u, +'pu, + " pu, >0 in Lw(R;LZ(Rd)).
First, we can show that H-measure u associated to the (sub)sequence V), has a specific

form given by the following theorem.

Theorem 3.2.1. The H-measure u has the form
n=(r¢)®(rg))v (3.10)
where (7,&) € S? and v is a non-negative scalar-valued measure satisfying
Qv =0, (3.11)
with
01,3, 7,8) = 5p(1.0)7 — JA(0)E & (.12

being the principal symbol of the wave operator, up to a constant factor.
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The proof is essentially the same as in [4]; since the sequence V,, is in fact a (time-
space) gradient of a smooth function, it is first shown through symmetries of second order

partial derivatives that u is of the form (3.10). Then we use (3.9) to obtain

div, . (pV?,—AVY) = f, =0 strongly in H ! (R?),

loc

where the strong convergence of f, follows from the compact support (independent of
n) of f,, weak convergence of f, in L2(R4*!) and the fact that L>(R?*!) is compactly

embedded into ngi (R4*+1). The localization principle now yields (3.11).

Remark 3.2.2.  (a) As a consequence of Theorem 3.2.1 we have that the support of the

H-measure u is contained in the null set of Q.

(b) It is important to observe that (7,&) ¢ supp v in the neighbourhood of points where
T ==+1 or 0. This follows immediately from (3.11) and coercivity properties of p

and A.

Our main goal is to obtain the transport equation for scalar measure v, which will in
turn yield a transport equation for H-measure u, while also incorporating initial condi-
tions for u, by allowing test functions to be supported in # = 0. This will pave the way
to determination of v only from the H-measure associated to initial data without tedious

computations of the solution to (3.1).

Since the transport equation is first to be obtained for a suitable dense class of func-
tions, namely, those which are in the form of tensor products y(z) X ¢(x) X p(7,§), our
first step will be to associate p with a symbol of a pseudodifferential operator of order O
(hence, P is in fact a Fourier multiplier). For that purpose, let p = p(7,&) € C*(R%*!) be
a polyhomogenous symbol of order 0 independent of (z,x). Denote with P € WO(R?+1)
the pseudodifferential operator associated with p.

It is important to emphasise the fact that sequences v, and V,, are both contained in
CZ(R4*H1). Therefore, an application of standard pseudodifferential operators to either
one of them will ensure that there is still enough regularity (as a matter of fact, the result

will be a Schwartz function) so that the calculations that follow are indeed licit.

70



Transport properties of H-measures H-measure associated to the sequence of solutions

We now begin by applying P to equation (3.9). Since P is a Fourier multiplier, it

commutes with all the derivatives, so we obtain
(pPV) —div (APVY) —Pf,+K -V, =0, (3.13)
where K := (Kp, —Ky) is a pseudodifferential operator of order O defined by
Ko:=0d,0[P,p], K.=divo[PA]

Here we have also used the shortened notation PV, = V(Pv,). Next we multiply (3.13)

by PV, and take real parts. We make use of following elementary identities

— d1 1
Re(pPVyYPVD = =2 (pIPVIP) + 50" 1PV,

— d 1 1 —
Re (div(APV;)PVY) = — APV PV SAPVY PV 4 Re (div (APVPVY)),

in order to obtain

d (1 1 _ _
- <Ep\PVnO|2 + APV PV,f) —Re (div (APVPVD)) +Re ((K-V,)PV))
— (1 1
—RePf,PV) + <§p’|10v,1°|2 — EA’PV,f -PV,f) =0.

Now let @ € C(RY) be an arbitrary real-valued test function. We multiply the equality
above by @, integrate over RY and perform integration by parts of the divergence term.

Let us set
Ra(0):= [ (@PV) D)o,

where g denotes the positive quadratic form
q(vit,x) = %p|v0|2 + %Av’w’ v=(vp,V/) € CT
The resulting equation can then be written in the following form
R, +Re /RdP_V,?APV,f Vo

+Re/ ((K-Vn)P_\/,?)<p+/ Q’(PVn)(p—Re/ Pf,PVOp = 0.
R4 R4 R4

(3.14)
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Lemma 3.2.3. Up to an extraction of a subsequence, R, converges uniformly to some R

on compact intervals of R.

Proof. Let I C R be a compact interval. We aim to prove that R, is bounded in H'(I).
This will in turn imply the statement of the Lemma, since the inclusion H! (I) < C([) is

compact. Recalling (3.7), we have that
V,, is bounded in L= (R;L*(R)). (3.15)
In particular, because of the uniform in n compactness of the support of V,,, we have that
V,, is bounded in L*(R;L?(RY)). (3.16)
We now refer to the Corollary 2.3.14 to deduce
PV,, is bounded in L*(R; L?(R?)). (3.17)
From here, using (3.2) and the fact that g is a positive quadratic form, it follows that
q(PV,,) is bounded in L*(R; L' (R%)). (3.18)
Therefore
[Rull 2y < [4(PVa) ll 2 (ro ! (ety) 19| L=(me)
the last expression being bounded uniformly in n. Hence,
R, is bounded in L2(1).

Returning back to (3.14) we once again encounter expressions which are quadratic in PV,
for which the similar reasoning can be applied in order to deduce that R), is also bounded

in L2(I), and subsequently, R, is bounded in H' (). [ |

Remark 3.2.4. Note that the preceeding discussion does not depend on the choice of ¢.

This allows us to deduce that, for any compact K C R4 it holds
PV}, is bounded in L(0,T;L*(K)). (3.19)
Indeed, by taking ¢ > 0 with ¢ = 1 on K in the definition of R,,, we obtain for ¢ € [0, T]

Jaev)o < [ aevoe=ri)
K R4
Hence, t +— q(PV,)(t) is bounded in L!(K), uniformly in 7, and the positive quadratic

nature of g once again allows us to deduce (3.19).
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We now multiply (3.14) by an arbitrary real-valued y € C*([0,7T)) and perform inte-

gration by parts on [0, 7] in order to obtain

T T
—y(0)R,(0) — / R.(t)W'(t)dt + Re / (APV,;‘,PVnOqu)LZ(Rd) wdt
0 0
T 0 T
/
+Re /O (K Vi) PV @) o ) Wil + /O (Q'(PV2), ) 2oy Wt (3.20)

T
0 _
+ /O (Pfu, PV <p)L2(Rd) wdt = 0.
We now wish to pass to the limit in each of the terms in (3.20). As a direct consequence

of Lemma 3.2.3, we get for the limit of the first term
—y(0)R(0). (3.21)

The term involving P f, vanishes. Indeed, each of the terms in f; involves derivatives
of ¥, and can be treated in the same way, as we are going to show for the term ¥ pu,,. We
can rewrite it as

P(pd'u,) = 0'P(puy) + [P, '] (puj,).
Since ¥ =0 on [0, T], the first term does not contribute to the computations, while the sec-
ond term tends strongly to 0 in L?(0, T;R¢) since [P, '] is of order —1 and pu/, is bounded
in L2(0,T;R?). Hence, the sequence P(p¥'u,) converges strongly to 0 in L?(R4*1), and
as it has already been mentioned, the other terms can be treated in a similar fashion in
order to obtain
Pf, —0 strongly in L*>(0,T;L*(RY)).

As a product of one strongly convergent sequence converging to zero and one weakly

convergent sequence, the last term then vanishes, that is

T
. 0 o
lim /O (Pfa, PV (p>L2 (o) VT =0. (3.22)

For all of the remaining terms we wish to pass to the limit using their quadratic nature
and the definition of H-measure. In order to do so, we introduce a sequence of smooth

functions ¢,, = ¢ (m-) where ¢ is given by
(

0<¢<1,
o(t)=0, <3,
o(r)=1, r>1
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We showcase the process for the term fOT R,/’; the other terms can be treated in a similar

manner. We begin by rewriting

[ "Ry = /0 RV o+ / "R (1 0.

Since W', € C>((0,T) x R?), we may pass to the limit (in n, for a fixed ) in the first

term, which yields
1
(V.37 +AZ-)lpPovon)
Letting m — oo now yields
. 1
lim <v,§(pfz+A§ -é)lplzw’¢m> = (v.p?[pl* oy L)) -

In order to treat the first term above, we first note that (3.19) implies that z — R, /(1 — ¢,,)

is uniformly bounded in n, for

[ mw oo =[" [ araovon - oo

1
n 1
< 101V /0 | avvyw=c,.
supp ¢

with C independent of n and m. Letting m — oo we deduce that the second term tends to
zero.
With the notation ((v, D)) := <v, ¢]]-(O7oo)> , the limits of the remaining terms of (3.20)

can be written as

T
tim | (Q/(PVa), ) g Wit = ((v.(£- )P pw))
T 1 2
lim | Ry (t V.5 (pT +AE- )P oy
. ’ (3.23)
h,?l/o (APV’“ PVOVgo)L2 Re) vdt = <<v,r AE -Vo)yt|p° >>
! 0 0
h);ﬂ/o (K Vi) PV'0) Ly g Wt = (V. (& - K)Tp00y) ).
Collecting the results (3.21) to (3.23) together yields the equation
((v.{7®,0})) = y(0)R(0), (3.24)
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where ®(t,x,7,&) = w(t)o(x)|p(t,&)|%. Specifically, if we were to take ® € C} ((0,T) x
R x S9), a test function that is compactly supported away from ¢ = 0, the resulting equa-
tion would be

(v,{1®,0}) = 0. (3.25)

Furthermore, we can deduce that (3.25) holds if we replace T® by ®. Indeed, in view
of Remark 3.2.2, we can choose a smooth cut-off function 6 on the sphere that satisfies
6 = 0 in the neighbourhood of T =0 and 6 = 1 on the projection of suppVv to S?. By

setting @ = ®0 /7 we obtain

0=(v,{t®,0}) = (v,{®,0}) (3.26)

for all ® of the form ®(¢,x,7,E) = w(t)o(x)|p(t,&)|?. Since functions of this form are

dense in the space C!((0,T) x R? x S§7), the following result is valid.
Theorem 3.2.5. The measure v defined by Theorem 3.2.1 satisfies the equation
(v {®,0})=0, ®eC(0,T)xRYxS. (3.27)

However, we will now turn our attention back to the case where test functions are
allowed to have support in # = 0 as well, which will allow us to capture the initial value

of v.
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3.3. TRACE OF MEASURE

For the sake of simplicity, we introduce some additional notation. Let xg =7, x = (xg, X),
& =t and & = (&, &). Equation (3.25) is written in a weak formulation. To obtain the
first order equation for v, one must perform various integrations by parts to transform the

expression

vigeon= [ [ viaeo)

T T
=/ / éoV(Vgé-VxQ—VXCI>~V¢Q)+/ / (vQ")®.
0 JRIxSd 0 JRIxSI

Of course, this formulation makes sense when measure Vv is absolutely continuous with
respect to the product of the Lebesgue measure on R4*! and the surface measure on S,
with density v = v(x,&). The general case follows in the same manner, with operations
performed being made in the distributional sense. We state the result, a proof of which

can be found in [4].

Theorem 3.3.1. The measure v satisfies a first-order partial differential equation on (0,7") x

RY x §4:
{06V} +(Vx0- &) (Ve (ov) - &+ (d+2)(&v)) +Qv=0.  (328)

If we were to allow test functions ® € C} ([0, T) x RY x §7), as it was the case when we
inferred equation (3.24), the calculations which led to the transport equation for measure

v would yield

T
(viawon = [ [ awsocasyes [ (p0gv0)e0)

= [ (p0)5v(©) ()
R xSd

Since p (0)55 is strictly positive and bounded from below by a positive constant on supp v,

dySd

the last expression defines the trace of measure v at time ¢ = 0. Therefore, in view of
equation (3.24), in order to recover the trace of measure v at t = 0, it remains to compute
the quantity R(0). In addition, our goal is also to connect that quantity with sequences of
initial conditions g, and h,, and to prove that it is possible to recover that quantity solely

through them.
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3.4. CONNECTION WITH THE SEQUENCE OF

INITIAL CONDITIONS

From the very definition of H-measure v, it follows that the sequence R,, satisfies

1
lim / Ryydt = <v,§(pr2+Aé -5>lp|2<pw> : (3.29)
R

Our aim now is to find another sequence, R, such that (3.29) holds for R, in place of R,
with R, also converging uniformly (on some compact interval around 0). Of course, the
quantity R,(0) is intended to be computable solely based on the information given by the
initial conditions g, and A,. The main ingredient is the fact that we can factor the expres-
sion % (p T2+ AE- &) p|? into two first-order parts which will then in turn be connected

to V,(0) = (hn, Vgn).

Recall Remark 3.2.2 and the fact that points (7,&) = (41,0) are not in the projection
of suppv on S?. In the sequel, we will therefore assume that p additionally satisfies
p(t,E) = 0 on a neighbourhood of (+1,0), since the expression on the left hand side
of (3.24) does not depend on its behaviour there. More precisely, one could decompose

tensor product
yReNp=yRoKpo+yHeXp(l- o),

where ® (introduced shortly) is a conic cutoff in (7, &) such that @ = 1 on the projection
of suppv on S? and @ = 0 on aforementioned neighbourhoods of poles (&1,0) . Then
the left hand side of (3.24) reduces to the term ((v,{ty XX p,O})).

In order to construct such a symbol @, we proceed as follows. Consider a cone Cy, of
angle a and direction T = +1, & = 0 in R4*!, Then, if (1,&) € R4*! lies outside of Cq,
we have

— > tanaq,
7]

in which case

— L ina,

VISP
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For any small o we are at liberty to choose y to satisfy
I, [s] <sina,
0, |[s|>sin2a,

in which case

( €] >: I, (7,8) €Cq,

0, (Tag) ¢ Cra,
so that
o(t,) = TS (3.30)
1= (T=5> ¢ Coq-

Of course, o is then to be multiplied by a smooth cut-off around 0.

We now begin our process of computing the expression R(0) by introducing cut-off
function ¢ € C*(R¥*!) suchthat 0 < { < land { =1on [0,T] x K’, where K’ CR? is a
compact containing the joint support of spatial projections of v,, so that { = 1 on suppV,,,

and subsequently on supp v. Define

At x,&) = —2mil (1,%) (A(1,x)E - &)/ 2 (&),

where y is a smooth cutoff around & = 0, in order to have A € C*(R?*! x RY). Note
that A € S} (R¥+! x R?). Associated with it, we define time-dependent pseudodifferential
operator A = A(t,x,Dy) given by
A(t,x,Dy)u(t,x) :/ NG (t,x,E) Fru(t, E)dE. (3.31)
R4
We shall sometimes also write A(¢) = A(t,x,Dy).
Remark 3.4.1. (a) As it has already been noted in remarks following (2.25), A sends

(R4 into C°(R4*1), due to the compact support of ¢ in (¢,x).

(b) Since the time derivatives of symbol A are also bounded due to (3.2) and the co-
ercivity property of A, we can perform differentiation under the integral sign in
(3.31), thus obtaining

%A@u:NUW+A@M, (332)

where with A’(r) we denote the operator whose symbol is given with 4.
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(¢) Furthermore, due to (2.27), A satisfies

Sup | A(O)u(t, ) -1ty < Csup (e, ) e (3.33)
teR teR

Next we set
vie = &\/pV), & Av,. (3.34)
Previous remarks allow us to conclude that v:¥ € C*(RY*!) and
vEL0  in L®(R;L%(RY)). (3.35)

Moreover, we can recover the initial data of v;" as well, and they are given by formulae

v (0) = £(0)1/p(0)hy = A(0)gy. (3.36)
After denoting v:F(0) := v%, the compactness of the support of v:~ also yields
vE =0 inL*(RY). (3.37)

In turn, these sequences allow for extraction of associated H-measures, to which the ex-
pression R(0) will be connected. Note that the computation of these two H-measures

relies completely upon the initial conditions g, and A, which is our goal.

Since v, is compactly supported in R*!, we can rewrite it as
v = A" (divV), (3.38)

with A~! being an inverse of the Laplacian with Dirichlet boundary conditions on a do-
main large enough that it contains the spatial projection of the common support of v,,, K'.
Hence, we can rewrite v, as

v =CypVi+ AV, (3.39)

where A is given with

A=AoA odiv, (3.40)

and its symbol is then in turn given by

At x,E) = =8 (t,x)\/A(t,x)& - E2x(8). (3.41)
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Now, according to Theorem 2.5.2, PA is a well defined pseudodifferential operator in

WY(R*1). Hence, we can compute the limit of the expressions

+2
/R Pl ew

through H-measure of the sequence V,: we obtain

“,?‘/RM PiPow = (v, (VprF VAE-Ex) IpPov). (4

Recalling the fact that =1 on suppv and ¥ = 1 on S¢, we obtain the following

relation

: _ 1 1 +12 -2 : /
11£an_11r5nZ/Rd(|Pvn| +Pv P) e in 7'(R). (3.43)

For the next step, we notice that (3.35) allows us to determine, for an extracted sub-
sequence, H-measures v*. By introducing pseudodifferential operator Q € WO(R?+!)

whose symbol is given by @ defined in (3.30), we can rewrite v;© as
vE=C PV AQVI+ ¢\ /p(1 - Q)VO £ A(1 - Q)VE. (3.44)
Note that because of the choice of @ we have for every ¢ € C°(R+1)

lim |9 (1 = QV,|[F2 gasr) = (v, 9°(1 - 0)?) =0 (3.45)

Since A is a continuous operator on L?(R?*!) which includes cutoff { € C*(R*+!) in its
definition, it follows that
Ep(1—QVO+A(1-Q)V¥ — 0  strongly in L2 (R, (3.46)

+

Therefore, H-measures v* associated to sequences v

coincide with those of sequences
given by
¢\ /pQVY+AQVY, (3.47)

which allows us to express them in the following way

vE=2(? (\/ET:F\/A§-§)C>2V: (\/ﬁrﬂp \/Aé-é)zv, (3.48)

where the last equation follows from the fact that {, ¥ = 1 on suppv.
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Recalling the fact that suppv C {(¢,x,7,&) € R¥T! x Rt : p12 — A& - & =0}, it
follows from (3.48) that

supp vt C {(r,x,f,é) eRM xR =7 M} : (3.49)

p(,x)
As a consequence, we would now like to replace T in p(7,&) using (3.49). We therefore

introduce p* given with

pimxé>=p(¢ é%%§§§é>. (3.50)

Accordingly, we define operators P* whose symbols will be precisely p*; the operators

P~ are once again to be considered as spatial pseudodifferential operators dependent on

time parameter. Define

_ 1
R,(t) = Z/Rd <|P+V,J{|2+|P_v;|2> 0. (3.51)

Our goal now is to show that R,, is indeed the desired function mentioned in the introduc-
tion. First we show that it satisfies the limit equality similar to (3.43). It is sufficient to
show that

Pvi—PEE 50 strongly in L (RYT). (3.52)

We once again make use of the operator  in order to make PTQ a viable pseudodiffer-

ential operator on R?*! and to decompose (3.52) into

(P—PEQvy) vii — PE(1 - Q)vy. (3.53)

n

Multiplying by ¢ € C=°(R?*!) and taking L? norm gives

10 (P=vir = Pri) 2oy < 16 (P=PQ) virl| s 1|97 (1= @i [ 2oy -

(3.54)
Since supp v C supp v, the same argument as in (3.45) yields
(1-Q)vE —0 strongly in L3 (RY™). (3.55)
As P* are continuous on L2(R4*1), we deduce
OPE(1 —QWE| 5 sy — 0. (3.56)
L2(Rd+1)
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+.

For the first term in (3.54) we can compute the limit using H-measures of sequences v;;;

we obtain
tim | (P = Pvi) 6|2 o) = (V5,902 (p— p™@)?). (3.57)

Since @ = 1 on supp v*, and p = p™ on supp v* by construction, we conclude

im (P42~ Puz) 02 gt =0

)
Thus, we have proven (3.52). From here it easily follows that
limR, =limR, in Z'(R). (3.58)
n n

The final step is now devoted to showing that R, converges uniformly on compact time
intervals. Once we have shown that, we can compute quantity R(0) as the limit

1
limR,(0) = lim —

) "4 [ (1P v (0) 2+ [Py vy (0)) . (3.59)

As (3.37) holds, we can extract H-measures va—L associated with subsequences of v;f(O);

the previous expression can thus be computed as

(v 1P O)Pe) + (v lp (O)F0))
(3.60)

FN.

1 F o (M2 (v (M2 o —
limy [ (B OP 18 O)F) 0 =

Our goal now is to mimic the arguments which lead to concluding uniform conver-
gence of R, that is, we prove that R,, converges uniformly on compact intervals I C R by
proving it is a bounded sequence in H' (I). The fact that R, is bounded in L?(I) follows

immediately. In order to show the bound for the derivatives, first note that we can write

+

Vn

as

viE = (PO £ A)vn, (3.61)
and consequently

CVPOE) FAVE = (Ey/PO T A)E/BOh % Ay = £2pv] — A2y [£ /P, Ao,
(3.62)

To calculate the term A%v,, we note that the principal symbol of A2 is given by A2(¢,x,&) =
—47%L%AE - Ex?, hence we have
A2y, = A%+ T vy = (—4m2L2AE - £y — (AT2L2AE - E(1— 22))n+ T 1o,
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where 7_ is a time dependent spatial pseudodifferential operator that sends boundedly
H'(R?) into L?(R?), uniformly in time. Since the second term is associated with an op-
erator with smooth compactly supported kernel, the same conclusion applies. Therefore,
we can write

A%, = CPA V2, 41y, (3.63)

with 7, bounded in L=(R;L?(R%)). For the last term, note first that we do not consider
commmutator [§,/pd;, A] as an pseudodifferential operator on R?*1; it is merely a short-

ened notation. Writing out explicitly that term gives

[E\/P0, Alv = [E/P, AV, + E/PA v, (3.64)

First commutator is then viewed as a time dependent spatial pseudodifferential opera-
tor, which is now of order O, and therefore the first term on the right is bounded in
L=(R;L*(R)). The same holds for the second term, so we deduce that [{./pd;,A] is
bounded in L=(R;L?(R?)). Collecting previous conclusions allows us to rewrite (3.62)

as
EVP(vy) £ AV, =G (pv) — A Vi) 47y, (3.65)
with 7 bounded in L™ (R;L?(R?)). Finally, since the first term can be rewritten as
G ((pvy) —div (AVv,)) = 2 (p'v), — divA - Vvy),

we conclude that §/p(v)’ £ Avi is bounded in L*(R;L?(R%)). We will, for simplicity,

denote the entire right-hand side of (3.65) with rf, that 1s,
Ep(vEY £ AvE =1, (3.66)

with 7;* bounded in L*(R;L?(R%)).

Applying P* to (3.66) yields
CVP(PH vy ) FAP vy = Pry —[P§/Po F Alv, . (3.67)

Arguments similar to those used in the last step show that the right-hand side is bounded
in L= (R;L?(R%)), and we denote it with 7=. Multiplying (3.67) by @P*vi, taking real

parts and integrating over R? yields
1 d 5 - 3
5/ &\/p (d— Py | ) Q= / APEVEPEE @ —/ FEPEvTo. (3.68)
R4 t R4 R4
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The last term in (3.68) can be bounded as

/Rd P PEVir @ < [1QllLo () I (0|2 1P (0)vir (1) |2y < C-

The remaining term on the right-hand side of (3.68) can first be rewritten as

— 1
APEYEPEYEQ = 3 </

APEVE oPEvE + /
R4

y A(pPEvE) Piﬁ)

R4

1 R
+—/ [, A|PEvE PEyiE,
2 Rd

To treat the first term on the right, we note that A(¢) is an antihermitian operator for each
¢, up to an operator of order 0; this follows from the asymptotic expansion for the symbol
of adjoint, yielding o(A(t)*) = A(t) = —A(t). Therefore A(t) + A(t)* € WO(RY). The

second term is then bounded by ||P*v:F ”i‘” ( since [@, A] is of order 0. Therefore,

R;L2(R4))
we conclude that

d
/ VP (— ‘Piv,ﬂz) ¢ is bounded in R. (3.69)
R4 dt
Taking I = [0, T'] we can replace { with 1 and together with the coercivity property of /p
we conclude that R, is bounded on [0, 7], which proves the claim.

The same density argument used in conclusion of the proof of Theorem 3.2.5 now

yields the main result of this chapter given by the following theorem.

Theorem 3.4.2. The measure Vv defind in Theorem 3.2.1 satisfies for any ® € C} ([0, T) x
R? x §9):
1 o
(v, {1®,0})) = Z<<v0+,q>g>+<v0 ,q>o>). (3.70)

Here, CID(j)E denotes functions defined on R? x S?~! given by

_ AOXEE ' p(0,%) v
d’oi(x,ﬁ) =& (va>i <p(0,x)+A(0,X)§ 5) ’ <p(0,x)+A(O,X)§ 5) ) 7

and vg: are the H-measures defined by sequences

vio =51/ P(0)hy £ A(0) gy,

where { is a cut-off function that is equal to 1 on supp v, and A(0) denotes the element of

Pl (IRY) associated with symbol —27i¢ (A(0,x)E - £)'/2.
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3.5. SEMILINEAR WAVE EQUATION SETTING

Consider now the three-dimensional semilinear wave equation

(pu))) —div (AVu,) +F(u,) =0,
n(0) = @70

Here, we assume that p = p(¢,x) and A = A(¢,x) satisfy same smoothness, coercivity

u

and boundedness properties as in the linear case in Section 3.1. Initial data g, and 4, are
once again assumed to be compactly supported smooth functions with common support
K, converging weakly to zero in H' (R¢) and L?(R¢) respectively. Nonlinear function F :
R — R is assumed to be a smooth function satisfying sign condition (1.13), with primitive
function G such that G(0) = 0. Assume additionally that F satisfies the following growth
conditions:

‘FU)(Z)‘ <Cle727,  jeN,. (3.72)
As a consequnce, we have
¢ < d 2d—-2
G(z) =/ F(w)dw < C/ |w|a=2dw < Clz] 42 . (3.73)
0 0

Under these conditions, there exists a unique global smooth solution to the initial value
problem (3.71) ([37] and references therein). Owing to the finite speed of propagation, we
have that for any fixed time ¢, solutions u, are supported in the common compact subset of
R?*1 and we can once again look at (3.71) as a Cauchy problem with Dirichlet boundary
condition for Q large enough so that the spatial projection of the common compact support
of u,, up until time 7', is contained in Q.

Multiplying the equation (3.71) by u],, integrating over R¢ and performing integration
by parts in the divergence term we obtain for each ¢t > 0

4 / p(l)* +AVu, - Vi, +G(u,) = / p' () +A'Vu, - Vu,
dt Rd R
(3.74)

< 10" | (ma+ry + A [| (a1

- a /de(“;)z‘i‘AV“n'V”n‘i‘G(”n)-

An application of the Gronwall’s lemma yields the bound of the quantities ||u, |, - (0.7:H! (RY))

and [[up||y = (o 71.2(ra)) for each T > 0 in terms of norms ||g, |1 (ga) and [|An||; 2 ga), which
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are uniformly bounded in n due to their respective weak convergences. Note that we have
also used the estimate as in (3.73) to uniformly bound [|G(ut(0))]ly 1 ga) = |G (gn) [ 1 (@) <
Clignlly2a-2/@-2) < Cl[gnllyy1 (ga) due to continuous embedding of H' into L(2¢-2)/(d=2),

Therefore, we obtain the following

uy is bounded in W= (R; L2(R?)) L2 (R; H' (RY)). (3.75)

loc

We first prove the result analogous to that of 3.1.2.

Lemma 3.5.1. For each T > 0 the sequence of solutions u, to (3.71) satisfies

U, =0 in L=(0,T;H' (RY)) nWh=(0, T; L3 (RY)). (3.76)

1,00

loc

Proof. Given (3.75), there exists u € W/~ (R; L?(R?)) NL2 (R; H' (R?)) such that

U, —~u  in L=(0,7;H'(RY))
3.77)
uh) S’ in L=(0,T;L2(RY)).
Since the first convergence implies strong convergence in L2((0,7) x R?), we may as

well assume that u,, converges to u almost everywhere. Therefore, F(u,) — F(u) almost

everywhere. As

”F(”n)HLW(O,T;L?(Rd)) < CH“nHLm < C””nHLm(O,T;Hl(Rd))a

2d
(0,T:Ld-2 (R))
we deduce F(u,) converges weakly (after possibly extracting a subsequence) in L((0,T') x

R4), and the limit therefore must be F(x), that is
F(u,) = F(u)  inL?((0,T) xRY). (3.78)

Hence, as u, is a solution of (3.71), through (3.77) and (3.78) we obtain in the sense of
distributions

(pu')' —div(AVu) +F(u) = 0.

One then checks that u satisfies intital conditions #(0) = «’(0) = 0 in a standard way.

Since the solution is unique due to Proposition 1.3.4, the proof is completed. ]

For the sake of simplifying further discussion, we shall instead of applying a smooth

cut-off function in time, assume that u, is already a sequence of compactly supported
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functions in R4+ with a common compact support. Consequently, we can replace local
spaces with ordinary ones in the energy estimates stated above. Additionally, we now

have

U, — 0 in L*(R;H!(R?)),

(uly, Vup) =: U, =0 in L= (R;L*(RY)).

Sequence U, now defines an H-measure p. The localisation principle is once again ap-
plied in order to reduce the form of u: since the vector field U, has time-space curl equal
to zero, it is once again obtained that u is of the form pu = ((7,£) ® (7,£)) v for a positive

scalar Radon measure v. Furthermore, we have
div (pU?, —AUY) = —F(u,).

As we have already seen, F(u,) converges weakly to 0 in L>(R¢*1). Since we are working

on a fixed bounded set in R?*!, this implies F(u,) is relatively compact in Hl;i. Therefore,

1?)2 (Rd+1)

we have F(u,) —— 0. Another application of localization principle now yields that
the scalar measure Vv satisfies Qv = 0, where Q is defined as in previous section.

We now proceed to see the effect this added nonlinearity has on the transport equation.
In order to capture the effect, we observe instead the sequence (U, F(uy,)),, which is now
a sequence converging weakly to 0 in L?(R4*+!; R9+2). Denote the H-measure associated

to the subsequence by

- o
u= . )
()" M2
. . . T
where U is the aforementioned H-measure associated to Uy, and t = |fig 411 ... [gas1

and Uy = [iy41 441 are corresponding Radon measures. We now return to the equation in
(3.71), and mimic the procedure of the previous section; notation used will hereby follow
the pattern. Apply P € YO(R?*!) with symbol p = p(t,£) and multiply the resulting
equation by P_U,(l) and obtain

1d

5 7 (PIPULI +APU; - PU}) —Re (div(APUPU) ) +Re ((K - Uy)PUD)

— 1
+P(F(u,))PUY + 5 (p'|PU; — A'PU; - PU;) =0.
(3.79)
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We now multiply (3.79) by wX ¢ € C(0,7) XCZ(RY) and integrate over R4 *!,
Performing integration by parts in the first term (in the time variable) and the second term

(spatial variables) we obtain

T T T
/ / 4(PU) W o+ Re / / (APUZ-V@)PUDy + Re / / (K- Un)PUOwp
0 R4 d d
// F(u,) PUOI;/(p+/ / Q' (PU)wo =0.
R4

We now pass to the limit n — oo, and note that every term is treated in the same manner as

(3.80)

in the linear case, with the exception of the new term that appears including nonlinearity.

Using the definition of H-measure fi, we have

T —
| [ PEG)PORYe — (s velol)
Using density argument therefore yields the following result.

Corollary 3.5.2. The measure i satisfies the equation
(v,{®,0}) = (Refi; 411, ®), PcCH((0,T)xR!xS). (3.81)

Remark 3.5.3. If we were to assume an even stronger bound on the growth of F', namely
F(z)<C \zld%_g for some € > 0, then the sequence F(u,) turns out to be strongly con-
vergent in LZ(Rd“ ), due to the compact inclusion H! < L7 on bounded sets for g < dz—_dz

In that case, the nonlinear term in (3.80) converges strongly to 0, and we obtain the same

transport equation as for the linear case.
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CONCLUSION

This thesis studied evolution equations of second order in ¢, with emphasis on two exam-
ples: the linear wave equation, and the semilinear wave equation.

In the first part of the thesis, we first revisited some standard results regarding the
existence, uniqueness and well-posedness of semilinear wave equation with absolutely
continuous coefficients in time in the linear part. Afterwards, the standard approach to
obtaining weak solutions of such equations (for example, [67]) with the approach used
in [25], which allowed to lower the regularity assumptions on the coefficients in the linear
part to now only be of bounded variation in time.

In the second part, we introduce first the notion of H-measures in the penultimate
chapter, as it was done independently by Tartar [71] and Gerard [36], and draw some
comparisons between the approaches. A special part is dedicated to introducing the the-
ory of pseudodifferential operators with symbols in Hérmander classes, as well as some
preparatory remarks at the end of Chapter 2, targeted towards specific applications in the
last chapter.

The third, and final chapter, is then devoted to studying transport properties of H-
measures associated to the sequence of solutions of wave equations with oscillating initial
data. Here we generalise the result of Francfort and Murat [34], obtaining the initial-
value problem for the H-measure in the case of linear wave equation with varying, time-
dependent coefficients. Finally, we conclude the thesis with a discussion on a specific of
semilinear wave equation, with additional growth conditions on the nonlinear term. In this
case, we show that the added nonlinearity does not contribute to the microlocal properties
of the sequence of solutions in a certain case, thus extending the Gérard’s [37] result of

linearisability to the variable coefficient case.
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