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Summary

Summary

Jordan homomorphisms between two associative algebras are linear maps which preserve
squares. This dissertation studies Jordan homomorphisms between structural matrix al-
gebras (SMAs), which are unital subalgebras of M, (the algebra of all complex square
matrices of order n) spanned by some set of matrix units. The first objective of the dis-
sertation is to completely describe the form of all Jordan embeddings between two SMAs
using concepts introduced by Coelho’s description of SMA automorphisms. Secondly,
continuing the work of Molnar and Semrl on rank-one preservers of the algebra of upper-
triangular matrices 7,,, it considers several natural linear preserver problems on SMAs and
puts them into the broader context of Jordan embeddings on SMAs. The third part of the
dissertation contains a full extension of the well-known nonlinear preserver results of Petek
and Semrl (on M, and 7,) in the context of SMAs. More precisely, a characterization of
SMAs A C M, is obtained with the property that all injective continuous commutativity
and spectrum preserving map A — M, are necessarily Jordan embeddings.

Keywords: Jordan homomorphism, structural matrix algebra, rank preserver, spec-
trum preserver, commutativity preserver



Sazetak

Sazetak

Jordanovi homomorfizmi izmedu dviju asocijativnih algebri su linearna preslikavanja koja
¢uvaju kvadrate. U ovoj disertaciji se proucavaju Jordanovi homomorfizmi izmedu struk-
turnih matri¢nih algebri (SMA), tj. unitalnih podalgebri od M,, (algebre svih komplek-
snih kvadratnih matrica reda n) razapetih nekim skupom matri¢nih jedinica. Prvi cilj
disertacije je u potpunosti opisati formu svih Jordanovih ulaganja izmedu dviju SMA
koristeé¢i koncepte uvedene u Coelhinom opisu automorfizama SMA. Nastavljajuéi rad
Molnara i Semrla na preserverima ranga jedan algebre gornjetrokutastih matrica 7,, u
drugom dijelu disertacije se promatra nekoliko prirodnih linearnih preservera na SMA
i stavlja ih se u Siri kontekst Jordanovih ulaganja na SMA. Trec¢i dio disertacije sadrzi
potpuno prosirenje dobro poznatog preserverskog rezultata Petek i Semrla u kontekstu
SMA. Preiznije, dobivena je karakterizacija SMA A C M, takvih da su sva injektivna
neprekidna preslikavanja A — M, koja ¢uvaju komutativnost i spektar nuzno Jordanova
ulaganja.

Kljuéne rijeci: Jordanov homomorfizam, strukturna matri¢na algebra, preserver
ranga, preserver spektra, preserver komutativnosti
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Chapter 1. Introduction

CHAPTER 1

Introduction

1.1 General introduction

The theory of preserver problems is an active research area in linear algebra and functional
analysis, in particular matrix and operator theory. The problems concern maps between
spaces of matrices or linear operators on a vector space (esp. Hilbert or Banach space),
having certain properties which usually include preserving some of the algebraic, analytical
or topological structure of the spaces they act on. The objective is to shed light on the
general form of such maps and provide a characterization in terms of simpler properties, if
possible. The resulting theorems often have a particularly elegant, simple and attractive
form.

First relevant results appeared as early as the turn of the 20th century, in the area
of linear preserver problems, in particular those concerning linear maps between matrix
algebras preserving some basic matrix properties. Frobenius [21]| proved that every linear
endomorphism ¢ : M, — M, (where M, stands for the algebra of all n x n complex
matrices) which preserves the determinant (i.e. satisfies det ¢(X) = det X for all matrices
A € M,) is necessarily of the form X — MXN or X — MX'N where M, N € M, are
invertible matrices satisfying det(MN) = 1 and X* stands for the transpose of X. The
statement of this theorem is in some sense typical as it characterizes linear preservers (in
this case determinant preservers) in terms of a simple class of maps (in this case left and
right multiplications by some invertible matrices and their compositions with the trans-
position map). Many other theorems feature a similar class of maps; we present some of
them in Chapter 2. Among the most studied linear preserver problems are those dealing
with spectrum preservers (more generally, invertibility preservers) and commutativity pre-
servers, which are particularly interesting for their connection with Lie homomorphisms.
Starting with the seminal theorem of Frobenius, linear preserver theory distinguishes itself
by especially elegant results. Furthermore, even relatively deep results are often proved by
surprisingly elementary techniques which are cleverly combined and modified depending
on the particularities of each problem. Linear preserver theory has considerable applica-
tions even outside pure mathematics: Wigner-Uhlhorn theorem (see e.g. [49]) and related
results form a cornerstone of the mathematical foundation of quantum mechanics (|54]).

The study of linear spectrum preservers leads to another interesting class of maps called
Jordan homomorphisms which originate from ring theory. Jordan homomorphisms are de-
fined as linear maps between algebras which preserve squares (i.e. satisfy ¢(a?) = ¢(a)?
for all elements a). A similar definition exists for Jordan homomorphisms between rings.
Jordan homomorphisms also serve as morphisms in the category of Jordan algebras, a
class of nonassociative algebras analogous to Lie algebras with a commutative product



Chapter 1. Introduction

instead of an anticommutative one. Jordan algebras are frequently encountered through-
out physics, in particular in quantum mechanics. A result of Herstein [30] from 1957,
later refined in [51], states that surjective Jordan homomorphisms onto a prime ring are
necessarily multiplicative or antimultiplicative. In the particular case of Jordan homo-
morphisms on M,,, this yields the result that nonzero Jordan homomorphisms M, — M,
are implemented as X — TXT~! or X — TX!T~! for some invertible matrix 7' € M,,.
A similar conclusion for Jordan embeddings holds for the algebra 7, of upper-triangular
matrices [43, Corollary 4].

Moving on from M,, and 7,, it is natural to consider unital subalgebras of M,, which
are spanned by some set of matrix units £j;;. Such algebras were first introduced in the
literature by Van Wyk in [57| under the name structural matriz algebras (abbreviated
as SMAs). Incidentally, a simple argument (see Proposition 3.1.1) shows that structural
matrix algebras are precisely the subalgebras of M, which contain all diagonal matri-
ces.SMAs, and somewhat more general incidence algebras, have been studied in many
papers, such as |2, 3, 4, 14, 15, 12, 13, 17, 18, 22, 23, 50, 57|. The automorphisms of
SMAs are completely described in Coelho’s important paper [17| from 1993, which also
supplies necessary and sufficient conditions on SMAs such that all automorphisms are in-
ner. The paper cleverly combines the methods of abstract algebra, such as the semidirect
product of groups and Wedderburn’s principal theorem, with the purely combinatorial
techniques of graph theory. It serves as both the model and the main inspiration for an
important part of this dissertation. The later paper |2] reproduces the aforementioned
automorphism description using a different approach. This newer proof is based on the
useful observation that every SMA can be conjugated by a permutation matrix to obtain
a subalgebra of a block upper-triangular algebra. These block upper-triangular algebras
are also known as parabolic algebras for reasons related to Lie group theory, and appear
in papers such as [1, 56].

Regarding Jordan homomorphisms of SMAs, the most important result is again due
to Akkurt et. al. |3, Case 2| which states that for any SMA A which is, up to permutation
similarity, contained in a parabolic algebra where each diagonal block has size larger than
1, and an arbitrary ring B, we have that a Jordan homomorphism ¢ : A — B is necessarily
a sum of a homomorphism and an antihomomorphism. Furthermore, [3, Case 1| extends
the previous result of Benkovi¢ 8, Theorem 4.1] which describes Jordan homomorphisms
of triangular algebras.

Circling back to preserver problems, many attempts have been made to characterize
Jordan homomorphisms via preserving properties, especially on matrix algebras. By the
famous Gleason-Kahane-Zelazko theorem [28, 34] a linear functional on a unital complex
Banach algebra A is a character (i.e. a nonzero algebra homomorphism) if and only if
it maps every element to a complex number belonging to its spectrum. It is also easily
shown that a linear functional is a character if and only if it preserves squares. Inspired by
these results, Kaplansky in his famous lecture notes [35] in 1970 formulated the following
problem (known as Kaplansky problem): If ¢ : A — B is a linear unital map between
complex unital Banach algebras which shrinks spectrum, i.e. it satisfies o(¢(a)) C ¢(a)
for all a € A, is ¢ necessarily a Jordan homomorphism? It is widely known (and stated by
Kaplansky himself) that this problem has a negative answer (see e.g. [7]), so the true form
of his question was what additional conditions should be imposed onto the algebras A,
B and the map ¢ to force a positive answer. For example, Aupetit famously conjectured
that the Kaplansky problem has a positive answer under additional assumptions that the
Banach algebras A and B are semisimple and that ¢ is surjective. This problem is still
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widely open, surprisingly even for C*-algebras [11].

Only much more recently the first results on non-linear preserver problems appeared
in the literature. A particularly important result in this line of research is due to Pe-
tek and Semrl [45, 47] who characterize Jordan homomorphisms on M, (n > 3) as (not
necessarily linear) continuous spectrum and commutativity preservers. In particular, this
result and the techniques used to prove it serve as the main starting point for a large
portion of research pertaining to this dissertation. Petek went further and made a com-
plete description of continuous spectrum and commutativity preservers 7, — T, (where
T, C M, is the subalgebra of all upper-triangular matrices). If one additionally assumes
injectivity, the result is precisely a characterization of Jordan embeddings 7, — 7,.

1.2 Our results

Now we circle back to the novel results which we intend to present in this dissertation.

In Chapter 3 after defining structural matrix algebras, we present a preparatory orig-
inal result on intrinsic simultaneous diagonalization of a commuting family of diagonal-
izable matrices within an SMA, which will be used at several occasions throughout the
dissertation.

Chapter 4 presents our first major result, Theorem 4.2.4, which provides a complete
description of Jordan embeddings A — M,, where A C M,, is a structural matrix algebra.
This result easily implies Corollary 4.2.14, which describes Jordan automorphisms of
SMA and thus directly expands on the already mentioned Coelho’s description of Aut(.A)
where A is an SMA. The statement of Theorem 4.2.4 itself heavily relies on the concept of
transitive maps, a term introduced by [17] and referenced later by [2]. However, methods
used are much more elementary than in [17], and are more reminiscent of some of the
older papers on Jordan homomorphisms such as [30].

Chapter 5 deals with several simple linear preserver problems on structural matrix
algebras. Namely, now being aware of the general form of Jordan embeddings A —
M, where A C M, is a SMA from Chapter 3, we were able to formulate two linear
preserver problems whose conclusions make use of the given description. Theorem 5.1.7
regards rank-one preserving unital linear maps A — M, where A C M, is a SMA
and proves that these maps are necessarily Jordan embeddings. The converse is false in
general, but the same theorem states an algebraic condition for when exactly are Jordan
embeddings rank-one preserving. The unitality condition might seem innocuous but is
actually an essential ingredient in the result. In contrast with the case when A = M,, or
T.., linear rank-one preserving maps A — M,, are not necessarily rank-preserving, even
when assuming injectivity. In view of this, Theorem 5.2.5 and Corollary 5.2.7 provide a
complete description of rank preservers A — M, and place them in the broader context
of Jordan embeddings which were described before. The proof of this result builds heavily
on the rank-one result and hence fits in nicely with all previous results. This chapter ends
with a few simple remarks about linear determinant preservers A — M,, where A C M,
is a SMA.

Chapter 6 contains the final part of the dissertation which concerns nonlinear preserver
problems. More specifically, it builds on the already mentioned Petek and Semr!’s result
[44, 45, 47| as well as its continuation [24| by Gogi¢, Petek and the author, concerning block
upper-triangular matrices. We extend this result in Theorem 6.2.2: we obtain a complete
characterization of SMAs A C M,, such that all injective continuous commutativity and
spectrum preserving map A — M,, are necessarily Jordan embeddings. We had to add
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the injectivity assumption, as it turns out it is necessary unless the algebra A is not
semisimple.

Original results from Chapters 3-5 are taken mostly from the preprint [25]|, while
Chapter 6 is sourced from the preprint [26]. Following the author’s personal preferences,
the dissertation was written with the aim of keeping the text firmly within the scope of
linear algebra. Moreover, this was also done with hopes of fitting into the broader style
of papers from the area of linear preservers, which prides itself on the aesthetic value of
its results along with a minimalist and elegant exposition of proofs.

1.3 Acknowledgements

Firstly, the author like to thank his advisor Prof. [lja Gogi¢ for suggesting the topic of this
dissertation. This dissertation would not exist without his continuous support throughout
the author’s doctoral studies, as well as his expert guidance. Secondly, the author thanks
his advisor Prof. Peter Semrl for introducing him to the area of preserver problems and
for providing valuable advice along the way. Finally, the author thanks Prof. Ljiljana
Arambasi¢ for her help in the initial phase of his doctorate.



Chapter 2. Preliminaries

CHAPTER 2

Preliminaries

2.1

Notation

We begin this section by introducing some general notation and terminology. Let A be
an algebra.

If A is unital, then 14 denotes the unity in A and A* denotes set of all invertible
elements of A.

e [a,b] = ab — ba denotes the commutator of a,b € A.
e For a,b € A by a <> b we denote the fact that ¢ and b commute, i.e. ab = ba.
e Fora,b e Abya L bwedenote the fact that a and b are orthogonal, i.e. ab = ba = 0.

In this sense, for S C A, by St we denote the set {a € A:a L x, for all x € S}.

e Z(A) denotes the centre of A.
e For SC A by 8 ={a € A:ax = za, for all x € S} we denote the commutant of

S in A.
Aut(A) denotes the set of all automorphisms of \A.

o If S C Aandae€ A, then aS denotes the set {az : € S}. Other expressions such

as Sa, aSa, aSb for b € A and so on are defined similarly.

Let n € N.

As usual, by M,, := M,(C) we denote the set of all n x n complex matrices and
by My, (m € N) the set of all m x n complex matrices. More generally, M,, ,.(5)
denotes the set of all m x n matrices with entries in the set S.

T, and D, denote the sets of all upper-triangular and diagonal matrices of M,
respectively.

Following [24], for p, ky, ..., k, € Nsuch that ky +---+k, =n, Ay,
corresponding block upper-triangular subalgebra of M, i.e.

. denotes the
D

.....

Mkl,kn Mk1,k2 e Mkl:kp
(2.1.1) Ay by = : k;%k2 - k:%kp
0 0 Mkp7kp

For A, B € M,, we denote by A <+ B the fact that A and B commute, i.e. AB = BA.
For A, B € M, we say that A and B are orthogonal (and write A L B) if AB =
BA=0.

For A € M, and 1 <14, j <n, by A;; € C we denote the element of A at the position
(4,7). We also write this fact as A = [Ay]i<ijcn = [Ag]} =1

For A € M,, by 0(A) we denote the spectrum of A. Unless stated otherwise, the
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spectrum is considered as a set, not a multiset.

e For A € M, by r(A) we denote the rank of A.

e For A € M,, by R(A) we denote the image of A, while by N(A) we denote the
nullspace of A.

e For A € M, by ka(x) = det(z] — A) we denote the characteristic polynomial of A,
while by m4(x) we denote the minimal polynomial of A.

e We denote by A, the full diagonal relation {(i,7) : 1 <i <n} on [1,n].

e We denote by diag(A,...,\,) € D, the diagonal matrix with complex numbers
A1, ..., A, on the diagonal, in this order. We also extend this notation to block-
diagonal matrices i.e. diag( X1, ..., X) denotes the matrix with matrices X, ..., Xy
as blocks on the diagonal, in that order, and zeroes elsewhere. Furthermore, it can
also denote subalgebras of the matrix algebra. For example, diag(My, M3) stands
for the subalgebra of Ms consisting of all matrices of the form diag(A, B) where
AEMQaIldBEMg.

e For 1 < 4,57 < n we denote by E;; € M, the standard matrix unit with 1 at the
position (7, 7) and 0 elsewhere.

e For vectors u,v € C" by u || v we denote the statement that the set {u, v} is linearly
dependent. Similar notation is used for matrices.

e For any permutation 7 € S,, (where, as usual, S,, denotes the symmetric group), by

(2.1.2) R, = Z Elr(r)
=1

we denote the permutation matrix in M,, associated to .

When describing the action of certain functions, sometimes we shall omit the argument
entirely. For example, we will denote the matrix transposition by (-)* and for A, B € M,
the matrix multiplication function X +— AX B will be denoted by A(-)B.

Following [37], if P is a logical expression, by [P] we denote its Iverson bracket, which
is defined as 1 if P is true and 0 if P is false.

2.2 Algebras

In the context of this dissertation, by an algebra we shall refer to an associative algebra
over C, unless explicitly stated otherwise. To reiterate what was said in the introduction,
consequentially some definitions and theorems which hold for algebras over other fields (or
even for rings) will thus be stated more restrictively than is necessary, but this will have
little bearing on the new results themselves. On the positive side, this will also streamline
the prerequisites slightly in order to remain within of the scope of the new results. In a
similar vein, an ideal of an algebra refers exclusively to two-sided ideals.
We start with a few elementary definitions from [9]. An algebra A is said to be
(i) simple if it possesses no proper ideals.
(ii) prime if all a,b € A satisfy the implication a.Ab =0 = a =0 or b = 0.
(iii) semiprime if all a € A satisfy the implication aAda =0 = a = 0.
Note that (i) = (11) = (ii9).
The unit of a unital algebra A will be denoted by 14 by default. For a unital algebra
A, we define the centre of A as

Z(A) :={a € A:ax = za, for all z € A}.
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We say that a unital algebra A is central if Z(A) = Cl 4.

For algebras A and B, by A @ B we refer to their external direct sum, as defined in
9, p. xxviii].

An automorphism ¢ € Aut(A) of a unital algebra A is said to be inner if there exists
a € A* such that ¢(z) = aza™ for all z € A. Otherwise, ¢ is said to be an outer
automorphism.

The following elementary result is crucial for motivating much of our work on Jordan
homomorphisms:

Theorem 2.2.1 (Skolem-Noether, [9, Theorem 1.30]). Every automorphism of a finite
dimensional central simple algebra is inner.

In particular, every automorphism of the full matrix algebra M, is inner. This fact
can also be shown directly; for a very short and elegant argument see [48, Theorem 1.1].

If A is finite-dimensional, the set A* is path-connected in A. Namely, for every
A € A* by finiteness of the spectrum we can take an appropriate branch of the logarithm
to conclude that A = exp B for some B € A. Then t — exp(tB) is a (continuous) path
from I to A within A.

Let A be a finite-dimensional unital algebra. Recall that for a fixed a € A, the
evaluation

Clzl = A [ [fla)

is an algebra homomorphism and there exists a unique monic polynomial m, € C[z] (called
that minimal polynomial) of minimal degree which annihilates a. One easily shows that
f(a) = 0 for some f € C[z] if and only if m, | f.

Lemma 2.2.2. Let A be a finite-dimensional unital algebra. The zeroes of m, are pre-
cisely the elements of o(a).

Proof. Fix A € C and notice that A is a zero of the polynomial m,(z) — m4(A) € C|x].
Therefore, there exists g € C[x] such that

Ma(z) —ma(A) = (z — A)g(z).
Evaluation at a yields
—mg(AN)1 = (a — Al)g(a).

From here we conclude my(\) =0 <= a — Al ¢ A*. Indeed:
e If m,(\) # 0, then it immediately follows a — A1 € A*.
o If my(\) = 0 but a — A\l € A%, then it would follow that g(a) = 0, which is a
contradiction since deg g < degm,.
[

If the minimal polynomial of an element a € A splits into distinct linear factors (i.e.
Ma(2) = [[ep() (¢ —A) by Lemma 2.2.2), then the evaluation satisfies this property:

f’a(a) = g|0'(a) — f(a) = g(a)7 for all fvg € C[$]

Indeed, it suffices to show that f|o(a) = 0 is equivalent to f(a) = 0. This follows from
Lemma 2.2.2 since

flo@ =0 <= (x=A)| f,YA€0(a) &= m,|f < f(a)=0.
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Lemma 2.2.3. Let A be a finite-dimensional unital algebra. For an element a € A it is
equivalent:
(i) The minimal polynomial of a splits into distinct linear factors.
(i1) There exists a nonempty family P C A of nonzero mutually orthogonal idempotents
such that a € spanP.

Proof. | (i) = (ii)| By Lemma 2.2.2, the minimal polynomial of a is equal to

ma(z) = [] (@-N).

A€o (a)

For each A € o(a) let f\ € Clz| be the unique polynomial of degree < |o(a)| with the
property that fy(u) = [A = p for all u € o(a). For A\, u € o(a), the relations

N#EO Dfu=A=plf

hold true on o(a), which implies that { fi(a), ..., fr(a)} is a family of mutually orthogonal
nonzero idempotents. Furthermore, we have

Z h=1

Aea(a

on o(a), 80 Y \c,(a) fr(a) = 1. Finally, for each A € o(a) we have (z — A) fu(2)|sa) = 0 s0

0={(a—A)fala) = afa(a) = Afi(a).

Y Aha) =Y afila) =

A€o (a) A€o (a)

Therefore, we have

which completes the proof.
(11) = (i) | Suppose that a = Zle Aip; where py,...,pp are pairwise orthogonal

nonzero idempotents. One easily shows that for each polynomial f € C[z] we have

= > )

1€[1,k]

In particular, if we consider g(z) = [[_,(z — A;) € Clz], then g(a) = 0 so m, | ¢, which
implies that m, splits into linear factors. O

Lemma 2.2.4. Let V be a complex vector space. Then each nonempty set S C V' possesses
a finite subset Sy C S such that span Sy = span S.

Proof. Let {vy,...,v,} C spanS be a basis for spanS. By definition of the linear span,
for each 1 < j < n, there exists a finite subset S; C S such that v; € span S;. We claim
that

So=J s;¢8

1<j<n

spans span S. Indeed, span Sy C span S is clear, while the converse inclusion follows from
the fact that span Sy contains a basis {vy,...,v,} for span S. ]
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Lemma 2.2.5. Let A be a finite-dimensional unital algebra. Suppose that F C A is a
family such that m, splits into distinct linear factors for all a € F. It is equivalent:
(i) F is a commutative family.
(i1) There exists a nonempty family P C A of nonzero mutually orthogonal idempotents
such that F C spanP.

Proof. | (i) = (ii) | Suppose first that F is a finite family, i.e. F = {ay,...,ar}. For
each1 < j <kand\ € o(a;), let f;» € C[z] be the unique polynomial of degree < |o(a;)]
such that f;(u) = [p = A] for all p € o(a;). For each (Ay,..., \p) € o(a1) X -+ x o(ay)
define

PO, = Jia(ar) - fua(ar) € A
For each 1 < j <k, from the proof of Lemma 2.2.3 we know that

{fin(as) 2 A € o(ay)}

is a set of mutually orthogonal nonzero idempotents which sum up to 1. By the commu-
tativity of {aq,...,ax}, it follows directly that

P = {p()q,-..,)\k) : ()\1, .. ,)\k) c 0’(&1) X e X U(Clk)} \ {0}

is a family of mutually orthogonal nonzero idempotents which sum up to 1. Furthermore,
also from the proof of Lemma 2.2.2 we conclude that for each 1 < j < kand (A\y,..., ;) €
o(ay) X -+ x o(ay) we obtain

(a - )‘j)p(A1,~..,>\k) =0.
Therefore, for each 1 < j < k we have
a; = Z PO, = Z AT k)
(/\1,...,)\k)€d(a1)X---Xo(ak) ()\1,...,)\]9)6(7(0,1)X---XU(ak)

which proves the claim.

Now, let F be an infinite family. By Lemma 2.2.4 we can choose a finite subset Fy C F
such that span F; = span F. By the finite case, J; satisfies (ii). Since the property (ii)
remains true when passing to the linear span, we conclude that span F; = span F also
satisfies (ii), so F does as well.

(11) = (i) | Follows from the fact that P is itself a commutative family. O

Remark 2.2.6. If A = M,,, the properties (z) and (i7) are also equivalent to the fact that
the family F is simultaneously diagonalizable, i.e. that there exists S € M, such that
F C SD,S7!. Indeed, if F is contained in the span of some nonempty family of mutually
orthogonal nonzero idempotents P, then one easily shows that

C' = 4 R(P)

pep

is a direct sum and that each R(P) is contained in an eigenspace of some ) € P. This
yields a simultaneous eigenbasis for the entire P, and hence for the entire F as well.

This argument essentially proves the following classical result:
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Theorem 2.2.7 (|31, Theorem 1.3.21]). Let F C M,, be a family of diagonalizable ma-
trices. Then F is simultaneously diagonalizable if and only if F is a commuting family.

2.3 Matrices

As usual, we will frequently identify vectors x = (z1,...,z,) € C" as column-matrices
I
xr = :
mn
and ' = [z, --- ,] as row-matrices.
As any matrix A = (A;;);; € M, can be understood as amap {1,...,n}* = C, (i,5) —

A;j, we consider its support supp A as the set of all indices (,7) € {1,...,n}? such that
A;; # 0. We also say that A is supported in a set S C {1,...,n}* if supp A C S.

Recall that every rank-one matrix A € M, can be written in the form A = wv* =
[4;U7]1<i j<n for some nonzero vectors u,v € C". The converse is clearly true as well;
every such matrix is rank-one. This decomposition is unique up to scalar multiplica-
tion. Namely, we have R(A) = span{u} and N(A)* = span{v}. For nonzero vectors
U1, Ug, V1, Vg € C™ it follows that

U] = ugvy = uy || uz and vy || va.

Furthermore, a rank-one matrix A = wv* is idempotent if and only if (u,v) = 1 and
nilpotent if and only if v L v (in this case we clearly have A? = 0).

The characteristic polynomial of a rank-one matrix A = wv* is of the form ks(z) =
z" '(x — A) where A = Tr A = (u,v). The minimal polynomial is m4(z) = z(z — \),
which implies that every non-nilpotent rank-one matrix is diagonalizable.

To say a few words about some concrete rank-one matrices, for a vector v € C* and
1 <1 < n, the matrix e;v! is a matrix having the vector v as its i-th row and having all
other rows equal to zero. Similarly, ve! is a matrix having the vector v as its i-th column
and having all other columns equal to zero.

Lemma 2.3.1. Suppose that D € D,, has distinct elements on the diagonal. Then {D}' =
D,.

Proof. Clearly D,, C {D}'. Conversely, suppose that A € M, commutes with D. For
each 1 <i +# 57 <n we have

k=1 k=1

Since D;; # Dj;, it follows that A;; = 0. We conclude A € D,,. O

Throughout the dissertation we will freely use all results regarding block-matrix opera-
tions, as nicely laid out in [53, Section 2].
Let A € M, and S C [1,n].
e When S # [1,n], denote by A* € M,,_ s the matrix obtained from A by deleting
all rows i and columns j where i,j € S. We also formally allow A" = A.

10
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e Denote by A ¢ M, 4|5 the matrix obtained from A by adding zero rows and
columns so that (A*)"S = A,
By using block-matrix multiplication, it is not difficult to verify that (-)** : M, — M, s
and (,)ﬁs : M,, — M5 are algebra homomorphisms. We also extend this notation to
sets of matrices by applying the respective operation elementwise.

Proposition 2.3.2. Suppose that A € T, is a matriz with distinct elements \q,..., \,
on the diagonal (in that order). Then there exists a unique S € T with only ones on the
diagonal such that A = Sdiag(\y,..., \,)S™L.

Proof. Define S € T * explicitly as

Sii:l’ Sij = 14 k1 k2 sJ , 1< <
D e Y TR RF v MRS

>0 i<k;<---<ks<j

(note that the s = 0 case corresponds to the summand )\?_”/\i ). Let us verify that the above

S satisfies A = SDStie. AS = SD. Clearly AS and SD are both upper triangular and
their diagonals are Aq,..., \,. Fix 1 <7 < 7 <n. We have

(SD)Z] — Z S’I,](,‘Dk] - )\jSij-
k=1
On the other hand, we have
(AS)ij = Z Ak Skj
k=1

= Z A Skj

1<k<j
= A”S” + Z Azksk] + Aiijj

i<k<j

Airey Ak -+ Ak
— 0\ :
2 2 (A7 = A) (A = M) - (A = Ak,

520 i<k1<--<ks<j

AikAkkl Ak'lkz e Aks]
MDD DD (A = A) (A5 = M) (A = Ar) - (A = Awy)

i<k<j $>0 k<ki<--<ks<j

+ Aij

A Ay oo Ay
:(/\14_()\_)\1)) 14 k1 ke sJ
’ 5>Zli<k1<-Z<ks<j (A = A)Ag = Ay) - (N = Ak,)

A
N
AN TN T

Ay At -+ Ay AAy
:A 1 1K2 s] ] J
2 2 (A= AN = Ay) o (A = Awy) " Aj— A

s>1 i<k <---<ks<j

A A Ay
= \. 14 k1k2 sJ
’ gkkl;ksq (A = A)As = Ak) - (N = Ak)

= AjSij

11
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which proves the existence. Now we prove uniqueness. Suppose that
A= Tdiag(\,..., \)T 1
for some T" € 7. with ones on the diagonal. In particular, we have
Sdiag(Ay,..., \)S™t = Tdiag(Ay, ..., \)T ™ = T7'S < diag(Aq, ..., \n)

so by Lemma 2.3.1 it follows that 7715 is a diagonal matrix. But 7-! and S have both

only ones on the diagonal so their product 715 has so as well. Therefore T-'S = I so
T=S5. O

Remark 2.3.3. This explicit formula for S will come in handy later, but note that

the mere existence of S can also be shown with a simple inductive argument. Namely,

let z € C" be an eigenvector for A such that z, = 1. Note that such an eigenvector

certainly exists, since otherwise all eigenvectors for A would be contained in the subspace

span{ey,...,e,_1}, but this would be a contradiction with the fact that A possesses a

basis of eigenvectors by virtue of being diagonalizable. It is easy to show that Az = \,z.
Consider the invertible matrix

S = [61 e €Ep—1 ZL'] € 7;l><.
The inverse is given by
St=ler - e (—z+2e,)] €T

and we have S™'AS = diag(B, \,) where B € T,,_; is the upper left corner of the matrix
A. Now, B has distinct eigenvalues A{,...,\,_1 so we are able to apply the inductive
hypothesis to B and obtain an upper-triangular invertible matrix 7" € 7. such that
T~1BT = diag(\1, ..., A\_1). We conclude that

(S diag(T, 1)) " A(S diag(T, 1)) = diag(A1, ..., A\n)
N’
€Ty

which closes the proof.

Remark 2.3.4. Note also that if an upper-triangular matrix A € 7, diagonalizes in 7T,
as A =TDT™" for some T € 7,* and D € D, then D is precisely the diagonal of A. We
point out the contrast with the M, case, where for a diagonalizable matrix A € M, with
eigenvalues A1,...,\,, and an arbitrary permutation m € S, there exists an invertible
matrix S € M such that A = Sdiag(Arq1), ..., Arn))S ™

The algebra 7, is clearly not simple; for instance the set of all strictly-upper triangular
matrices is a nontrivial ideal. Even though Theorem 2.2.1 hence does not apply to 7,, it
nevertheless does hold true that all automorphisms of 7,, are inner ([36]).

Since transposition is not a well-defined antiautomorphism 7,, — 7,,, we consider the
matrix

00 --- 01
00 --- 10
J = : € M,
01 00
10 0 0]

12
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and the corresponding map
(2.3.1) ®: M, = M,  X°:=JX'J!

It is not difficult to see that X is obtained by mirroring the matrix X along its secondary
diagonal. Explicitly, for each 1 < 4,7 < n we have Eg = Fpi1-jni1-i- It follows that
the restriction of ® to 7, is an antiautomorphism of 7,,, and we will indeed use it as a
sort of a canonical antiautomorphism on 7,, in place of transposition. Also, for a block
upper-triangular algebra A C M,, we denote by A® C M,, the image of A under the map
X — X©. Then A® is the block upper-triangular algebra obtained from A by reversing
the sizes of the diagonal blocks.

We also state the following useful lemma concerning particular upper-triangular fam-
ilies of pairwise orthogonal rank-one idempotent matrices.

Lemma 2.3.5. Let S(y) := I + e1y' € Ty, wherey = Y ,y,e; € C". Then S(y)~™' =
S(—y) and

E1 + eryft, if 1 =1,
Ei; — yiEny, if1<i<n.

(2.3.2) S(y) ' EuS(y) = {

Proof. Tt is easy to check that S(y)~' = S(—y). The straightforward calculation
S(y) " EnS(y) = (S(=y)e)(€S(y)) = (e1 — (er)er)(er + )’
S(y) " EuS(y) = (S(=y)e) (€S (y)) = (e: — (Y'ener)es, i #1,

provides (2.3.2). O

The next class of algebras we consider are subalgebras A of M, which contain 7,. As
it turns out, these algebras are precisely the block upper-triangular subalgebras of M, (see
[56]). More specifically, any such algebra is of the form

Mk1,k1 Mk’l,kQ T Mkl,k’r
O Mk‘27k2 e Mkak"l‘

(233) Ak)l ----- ke = : : " .
0 0 e Mkfv‘,k'r

for some 7, kq, ..., k. € N such that k; + - -- + k., = n. These algebras also appear in the
literature under the name parabolic algebras (see e.g. [1, 56]), a term coming from the
theory of Lie groups. It is interesting to note that the block upper-triangular algebras
A1 and A,_;, are exactly (up to similarity) the unital strict subalgebras of M, of
maximal dimension (see [1]).

Lemma 2.3.6. The map

®|Ak1 ,,,, ko : Akl ----- kr — Akr ..... k1

,,,,,

15 a well-defined algebra antiisomorphism.

Proof. Tt suffices to show that JX'J € Ay, 4, for all X € Ag, k.. Indeed, for each

,,,,,

13
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0<s<r—11<i<k+---+4+ksggand ki +---+ks+1<j5<n we have

.....

since kb, +---+ki+1<n+1—i<nand 1 <n+1—7<k. .+ - +ks1. O

Remark 2.3.7. Consider the map k() : M, — Cc,[z] which maps a matrix A to its
characteristic polynomial k4. Then this map is continuous with respect to the standard
topologies on M,, and C<,,[z] as finite-dimensional complex vector spaces. It is not difficult
to check that a sequence of polynomials (p;)32; in C<p[z] converges to p € C<,[] (in the
standard topology of C<,[z]) if and only if p; — p pointwise.

Suppose A; — A in M,,. Then for each fixed x € C we have
ka,(2) = det(A; — 21) 2225 det(A — 1) = ka(z)

by the continuity of the determinant det : M, — C. It follows ks, — ka pointwise and
hence in C<,[z] as well.

2.4 Properties of general Jordan homomorphisms

If A is an algebra, for a,b € A we define their Jordan product as a o b := ab + ba. The
normalizing multiplicative factor of % is sometimes included in the definition, especially
when encountered in physics. It is not difficult to check that the vector space A equipped
with the above defined binary multiplication operation o : A* — A forms a nonassocia-
tive algebra, which we shall denote by (A, o). Furthermore, (A, o) is in fact a so-called
Jordan algebra ([33|). In general, a Jordan algebra 2l is a nonassociative algebra whose
multiplication satisfies these two properties:
e ab = ba for all a,b € A (commutativity),
e (ab)(aa) = a(b(aa)) for all a,b € A (Jordan identity).

Both the definition of Jordan algebras and the aforementioned method of inducing a
Jordan algebra from an associative algebra immediately reminds one of Lie algebras. A
notable difference is worth pointing out: it is well-known that every Lie algebra can be
naturally embedded in a Lie algebra which arises from an associative algebra (namely,
this is the universal enveloping algebra construction). A similar result does not hold true
for Jordan algebras. In fact, those Jordan algebras which are embeddable into a Jordan
algebra which arises from an associative algebra are known in the literature as special
Jordan algebras, and have found considerable use in physics in the context of the Jordan
formalism of quantum mechanics (for a brief introduction see e.g. [42]). On the other
hand, those Jordan algebras which are not embeddable into an associative algebra in this
way are known as exceptional Jordan algebras. Their existence is commonly seen as a
drawback or even a fundamental flaw of the Jordan formalism. A well-known example is
the algebra H3(Q) of all 3 x 3 self-adjoint matrices over the octonions equipped with the
multiplication a o b := 1(ab+ ba), known as the Albert algebra [5].

Lemma 2.4.1. Let A be a simple algebra. Then (A, o) is a simple Jordan algebra.

Proof. Suppose that Z # {0}, A is a nontrivial ideal of (A,o). Fix a,b € Z. One easily

14
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verifies that for all x € A holds

l[aob,z] =[a,z]ob+ao b x| €.
—_— Y
€T €z

We also have a o b € 7 and then (aob) ox € Z. In particular, we have
2(aob)r =[aob,x]+ (aob)ox el

o (aob)x €T for all x € A.
For all z,y € A we have

T3 yo((aob)z) = ylaob)z + (ao by
€T

so it follows that y(a o b)x € Z. The simplicity of A implies that a o b = 0, as otherwise
A(a o b)A would be a nontrivial ideal of the algebra A.

Now let a € Z be arbitrary. By the above consideration we have 0 = a o a = 2a? so it
follows that a?> = 0. Furthermore, for all € A we have a oz € Z and hence

0=ao (aoz)=a’*x+ xd®+ 2aza = 2aza.

It follows that a.4a = {0}. Since A is simple, in particular it is semiprime so it follows
that @ = 0. Therefore Z = {0}, which is a contradiction. We conclude that (A,o) is
simple. O

A Jordan homomorphism between algebras A, B is a linear map ¢ : A — B such that

(2.4.1) ¢(aob) = ¢(a)o p(b), for all a,b € A.

Jordan homomorphisms between rings are defined as additive maps which satisfy the same
condition. In the case of algebras, Jordan homomorphisms A — B can be understood
as Jordan algebra homomorphisms (A, o) — (B, 0). Assuming linearity, the o-preserving
condition (2.4.1) is equivalent to a simpler condition

d(a®) = ¢(a)?, for all a € A.

(we say that ¢ preserves squares). Indeed, if a linear map ¢ : A — B preserves o, then
for all a € A we have

20(a”) = 6(2a°) = p(a o a) = ¢(a) © d(a) = 2¢(a) => ¢(a)” = é(a).

Conversely, if ¢ preserves squares, we have

a)® +2¢(a 0 b) + ¢(b)*

a®) + ¢(2(ab + ba)) + H(b%)

(a+b)?)

a+b)?

¢(a) + ¢(b))?

= ¢(a)* + 2(s(a)p(b) + ¢(b)¢(a)) + b (b)*

(
<b(
&(
&
=

15
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= ¢(a)” +26(a) 0 (b) + $(b)*

so ¢(a o b) = ¢(a) o ¢p(b). By analysing the proof, it is clear that the same equivalence
holds for Jordan homomorphisms between 2-torsion-free rings. Furthermore, the above
simple calculation is reminiscent of the fact that characters of a unital algebras are charac-
terised by unitality and the square-preserving property (see e.g. |27]). In contrast, Jordan
homomorphisms between unital algebras need not be unital.

We state a few basic properties of general Jordan homomorphisms, taken directly from
[25, Lemma 3.1], proofs of which are elementary and can be found in [32].

Lemma 2.4.2. Let ¢ : A — B be a Jordan homomorphism between algebras A and B.
We have:

(a) ¢(aba) = ¢(a)p(b)p(a) for all a,b € A.

(b) dlabe + cba) = H(a)d)B(C) + He)PB)o(a) for all a,bc € A

(¢) ¢(lla, b], c]) = [[¢(a), p(D)], ¢(c)], for all a,b,c € A.

(@) ¢(la, b]*) = [¢(a), 6(D)]? for all a,b € A.

(e) ¢(a*) = p(a)* for all a € A and k € N. In particular, ¢(p(a)) = p(¢(a)) for all
a € A and polynomials p € C[z] such that p(0) = 0.

(f) For every a € A and an idempotent p € A such that [p,a] = 0 we have ¢(pa) =
o(p)o(a) = d(a)d(p).

Proof.  (a) We have
ao (aob) = alab+ ba) + (ab+ ba)a = a®b + 2aba + ba® = 2aba + a® o b
so applying ¢ yields

26(0)0(D)(a) + 6(a)” 0 6(b) = B(a) o (6(a) 0 (b))
= d(ao (aob))
— 29(aba) + 6(a)’” 0 H().

It follows ¢(aba) = ¢(a)d(b)d(a).
(b) We have

(a + ¢)b(a + ¢) = aba + abc + cba + cbe
so applying ¢ yields
()p(b)¢(c) + d(c)o(b)d(a) + ¢(c)P(b)¢(c)
(¢(a) + ¢(c))p(b)(d(a) + o(c))
= ¢a+c)p(b)pla+c)
= ¢(aba) + ¢(abc + cba) + ¢(cbe).

It follows ¢(abc + cba) = ¢(a)p(b)o(c) + ¢(c)p(b)d(a).

(¢) One easily verifies
[a,b], ¢] = abc + cba — (bac + cab)

and hence

o([[a, b], c]) = ¢(abc + cba — (bac + cab))
= 0(a)9(b)d(c) + ¢(c)¢(b)d(a) = (¢(b)(a)d(c) + (c)p(a)p (D))

—~
=

16
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= [[¢(a), 9(0)], &(c)].

(d) Note that

[a,b]* = (ab — ba)* = a(bab) + (bab)a — ab*a — ba’b = a o (bab) — ab*a — ba’b
so we conclude

#(la, b]*) = d(a o (bab)) — ¢(ab’a) — ¢(ba’)
= ¢(a) o ¢(bab) — d(a)d(b)*¢(a) — ¢(b)d(a)’d (D)
= [6(a), o(b)]".

We prove the claim by induction on k. The claim is evidently true for k € {1,2}.
Suppose that for some k > 3 satisfies ¢(a?) = ¢(a)? for all 1 < j < k. Then for
k + 1 we have

O(a+) = o(aa"a) & o(@)o(a*)o(a) "L o(a)o () o(a)
= o(a)*

Clearly, ¢(p) is again an idempotent and we have

On the other hand, pa = ap implies
¢(p)p(a)o(p) = ¢(pap) = ¢(pa) = ¢(ap)

and hence ¢(pa) = ¢(p)p(a) = ¢(a)d(p).
]

Lemma 2.4.3. Let ¢ : A — B be a Jordan homomorphism of an algebra A to an
algebra B such that the image of ¢ has trivial commutant in B (meaning, every element
of p(A) is either zero or a scalar multiple of the unity 1g, if it exists). Then ¢ preserves
commutativity.

Proof. Suppose that a,b € A satisfy [a,b] = 0. Then for all z € A we have

Lemma 2.4.2 (c)

[[a,b],2] =0 = 0= ¢([[a, b], 2]) [[¢(a), (b)), d()].

It follows that [p(a), #(b)] € ¢(A)". If B is not unital, it immediately follows [¢(a), ¢(b)] =
0. Otherwise, this commutator is of the form [¢(a), ¢(b)] = Alg for some scalar A € C.

17
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On the other hand, we have

]2 Lemma:2‘4.2 (d)

N1 = [¢(a), ¢(a) (la, b]*) =0

so A = 0 and hence [¢(a), ¢(b)] = 0. O
Example 2.4.4 (|10, Example 7.21|). Consider the unital algebra

a b —c d
0 a 0 ¢
A= 00 a b ca,bye,de C p C M,
00 0 a
and the map

a b —c d a b —d c
0 a 0 c 0 a 0 d
oA A g 0w bl T oo a b
00 0 a 00 0 a

One easily verifies that ¢ is a unital Jordan homomorphism. However, ¢ does not preserve
commutativity. Namely, we have Ei5 + F34 | Ey4 but

O(Erz + E34)9(Ew) = (Biz + E34)(—Ei3 + Ea) = iy,
O(E14)p(Erz + Esy) = (—Eiz + Eoa)(Erp + E34) = —Eu.
Lemma 2.4.5 (|52, Prop. 1.3] and [20, Theorem 2.5|). Suppose A and B unital algebras.

Let ¢ : A — B be a Jordan homomorphism such that 1z is in the image of ¢. Then ¢ is
unital and preserves inverses in the sense that for every a € A* we have ¢(a) € B* and

¢(a™t) = ¢(a)".
Proof. Suppose that ay € A satisfies ¢(ag) = 15. Then

21 = ¢(ap + ag) = ¢(la 0 ag) = ¢(1a) 0 d(ao) = #(14) 0 15 = 2¢(14)
which implies ¢(14) = 15 so ¢ is unital. Let a € A* be arbitrary. Then

Lemma 2.4.2 (a)

¢(a) = ¢(aa"a) = dla)p(a")o(a).

If we set p; := ¢(a)p(a™) and py := ¢(a™1)é(a), it is immediate that p; and p, are
idempotents in B. Furthermore, we have

pr+pr=0(a)od(a™) =2¢(aoat) =2¢(14) =215

and hence 2 - 1z — p; = po is idempotent as well. It follows that 2(p; — 15) = 0 so we
conclude p; = 15 and then p; = 15 as well. Therefore, ¢(a) is invertible in B, with the
inverse being equal to ¢(a™!). O

Remark 2.4.6. An immediate consequence of this lemma is that all linear unital Jordan
homomorphisms between unital algebras are spectrum preserving.

In any case, Jordan algebras gave rise to the study of Jordan homomorphisms in the
context of associative rings and algebras. Multiplicative and antimultiplicative maps are
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immediate examples of such maps. However, in general there are also other examples, for
instance consider

¢ My @® My — My @ Ma, ¢(A, B) = (A, B).

A general way for constructing Jordan homomorphisms is the following. Let A be an
algebra, p € A central idempotent, and ¥, : A — A a homomorphism and an antiho-
momorphism respectively. Then

A=Az pyx) + (1 -p)n(z)

is a Jordan homomorphism which in general is not multiplicative or antimultiplicative.
Still, this map does preserve commutativity (c.f. Lemma 2.4.3). One of the main prob-
lems in the theory of Jordan homomorphisms is determining under which assumptions
on algebras A and B can we conclude that every Jordan homomorphism ¢ : A — B
(possibly satisfying some extra conditions such as surjectivity) is either multiplicative
or antimultiplicative. More generally, the question is whether one can express all such
Jordan homomorphisms as a suitable combination of ring homomorphisms and antiho-
momorphisms. This question goes a long way back. We present a few of the early results
here. The results presented in the context of rings all assume that the rings in question are
2-torsion-free. We will apply the results in the case of algebras over C so this technicality
does not particularly concern us.

Theorem 2.4.7 (|32, Theorem 2|). Let ¢ : R — S be a Jordan homomorphism from a
ring R to an integral domain S. Then ¢ is a homomorphism or an antthomomorphism.

Theorem 2.4.8 ([32, Theorem 7|). Let M,,(R) be the ring of n X n matrices, n > 2, with
entries in some unital ring R. Let ¢ : M,(R) — S be a Jordan homomorphism to an
arbitrary ring S. Then ¢ is a sum of a homomorphism and an antthomomorphism.

Theorem 2.4.9 (|30, Theorem H]|, [51]). Let ¢ : R — S be a Jordan epimorphism from
a ring R to a prime ring S. Then ¢ is a homomorphism or an antthomomorphism.

By combining the aforementioned result of Herstein with the well-known fact that all
automorphisms of M,, are inner (Theorem 2.2.1), one obtains this fundamental result (see

e.g. [45]):

Theorem 2.4.10. All nonzero Jordan endomorphisms ¢ of M, are precisely maps of the
form

(2.4.2) () =T( )T or  ¢()=T() T
for some invertible matriz T' € M,*.

Proof. As an alternative to the above abstract argument, here we present an elementary
direct proof of this fact, which is in actuality a simpler variant of the proof of Lemma
4.2.3. Tt also showcases a few other techniques we shall encounter later. Firstly, ¢, being
a Jordan endomorphism of M, is in fact an endomorphism of the Jordan algebra (M,,, o).
Since M, is a simple algebra, by Lemma 2.4.1 the Jordan algebra (M,, o) is also simple.
It follows that ¢ is a bijective map.

We prove the theorem by induction on n. For n = 1 the statement is clear. So suppose
it holds for all k, 1 < k < n. Note that by Lemma 2.4.2 (f), {¢(E11), ..., ¢(Eu)} is a set
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of mutually orthogonal idempotents so by Theorem 2.2.7 there exists S € M, such that
By passing to the map S™'¢(-)S, without loss of generality we can assume that
¢(Ey) = Ey for all 1 <i <mn.
Lemma 2.4.2 (f), we have ¢({E1;}+) C {E;1}* so it makes sense to define a map
v A,_1 — M,_; with the relation

()l ] e

It is easy to show that 1 is a Jordan embedding so we apply the induction hypothesis
to conclude that there exists an invertible 7" € M,,_; such that either ¢(X) = TXT~!
for all X € A, or, ¥(X) = TX!T~! for all X € A, ;. We have ¢(Ey;) = Ej for all
1<i<n—1s0oT + {E;:1<i<n-—1} from where it follows that T is a diagonal
matrix.

By passing to the map diag(1,T)"'¢(-) diag(1,T'), we can further take T to be identity
matrix in M,_;. After that, by passing to the map ¢(-)" if necessary, we can assume that
¥ is the identity map on M,,.

Fix 1 <i # j # n. By Lemma 2.4.2 (b) we have

O(Eij) = 0(EiuEiEjj + Eji EijEii) = Eid(Ey) Ejj + Ej;(Eij) Eis.
Therefore, ¢(E;;) is supported in {(z, ), (j, )} so there exist scalars a;;, 5;; € C such that
O(Eij) = cujBij + Bij i
Furthermore, we have
0=¢(E}) = d(Ey)* = ayBij(Ei + Ej))

so exactly one of ;; and f;; is equal to zero 0 (not both because of injectivity).

We claim that ¢(E;) = aq,;E; for all 2 < j < n. If not, first suppose that ¢(Ey;) =
BBy for some 2 < k < n — 1. Then ¢(Ey o Ey,) = ¢(E1,) but ¢(Eqg) o ¢(Eyy) =
b1k Fk1 © Eg, = 0, a contradiction. Secondly, the case ¢p(Ei,) = 51, Fy1 can be eliminated
by comparing ¢(E1, 0 E1,-1) = 0 and ¢(E4,) 0 ¢(E1 1) = B1nEn1 © E1 -1 = B1nFnpn-1.
By a diagonal similarity implemented by diag(1, asa, ..., a1,) € D), we can achieve that
¢(E1,) = Ey; for every 2 < j < n.

For every 2 < j < n, we have that ¢(Ej0E;1) = Ey1+Ej;, so Eyjo(anEjn+piaEry) =
a;j1(E1+E;jj) gives aj; = 1 and hence ;1 = 0. By linearity it follows that ¢ is the identity
map which closes the proof. O

In view of the canonical automorphism of 7,, introduced in 2.3.1, Molnar and Semrl
arrived at the following description of Jordan automorphisms of 7,,.

Theorem 2.4.11 (|43, Corollary 4|). Every Jordan automorphism ¢ : T, — T, is of the
form

(24.3) 6() =TT or  ¢()=T()°T"

for some invertible matriz T € T,*.

20



Chapter 2. Preliminaries

Note that in contrast with the M, case, assuming injectivity here is crucial since there
exist nontrivial non-injective Jordan endomorphisms of 7,,. A typical example is the map

¢Z7:1—>7:“ gb(X):dl&g(Xn,,Xnn)

which maps an upper-triangular matrix X into its diagonal.

In view of Theorems 2.4.10 and 2.4.11, for an algebra A with a fixed antiautomorphism
f: A — A it makes sense to speak of inner Jordan automorphisms when referring to
maps from Aut(A) and their compositions with f. We can therefore say that all Jordan
automorphisms of M,, and 7,, are inner. The same will be true for block upper-triangular
algebras (a consequence of our Corollary 4.2.15), but not for general structural matrix
algebras.

2.5 Linear preserver theory

The theory started with the result of Frobenius [21] from 1897 which completely describes
linear determinant preservers of the algebra M, of n x n complex matrices:

Theorem 2.5.1 (Frobenius). Let ¢ : M,, — M, be a linear map which preserves deter-
minant. Then there exist invertible matrices A, B € M) satisfying det(AB) = 1 such
that

¢ = A(-)B, or ¢ = A(-)'B.

We now showcase a few more simple linear preserver problems on M,,, all taken from
the survey paper [38].

Theorem 2.5.2. (i) [19] Let ¢ : M,, — M, be a linear singularity preserver. Then
there exist invertible matrices A, B € M such that ¢ is of the form

o= A()B, or ¢ = A(-)'B.

(ii) [40, Theorem 2.1] Let ¢ : M,, — M, be a linear invertibility preserver. Then there
an invertible matrices A, B € M, such that ¢ is of the form

¢ = A(-)B, or = A()'B.

(i1i) [40] Let ¢ - M,, — M, be a linear spectrum preserver. Then there ezists an invertible
matriz A € M) such that ¢ is of the form

¢=A()A, or ¢=A()AT

() [41] Let ¢ : M,, — M, be a linear rank-one preserver. Then there exists invertible
matrices A, B € M such that ¢ is of the form

¢ = A(-)B, or ¢ = A(-)'B.

(v) [29] Let ¢ = M,, — M, be a linear similarity preserver. Then there exist an invertible
matriv A € M) and a,b € C such that

¢ = aA()A™ +b(Tr()), or ¢ =aA() A+ b(Tr())I
or there exists a fivred B € M, such that ¢ = (Tr(-))B.
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vi) Let ¢ . Mn — Mn be a linear map which preserves unitary matrices. Then there
Y
exist unitary matrices 1/, V e Mﬁ( such that

¢ =U()V, or  ¢=U()V.

(vii) Let ¢ : M, — M, be a linear map which preserves the spectral norm. Then there
exist unitary matrices U,V € M such that

o=U()V, or  ¢=U(")'V.

In particular, (ii) and (iii) imply that the unital linear rank (or rank-one) preservers
¢ : M, — M, are precisely the Jordan automorphisms of M,,. Analogous linear preserver
problems as above were considered in the case of the triangular algebra 7,,. We already
mentioned the important paper [43] by Semrl and Molnar in the context of Jordan au-
tomorphisms of 7,. The same paper also presents the following result in the context of
rank-one preservers, which we paraphrase here:

Theorem 2.5.3. [43, Theorem 1] Let ¢ : T, — M, be a linear rank-one preserver. Then
there exist invertible matrices A, B € M such that

¢=A()B, or  ¢=A()B

or there exists an antilinear map f : T, — C™ which is nonzero on every rank-one matrix,
and a nonzero vector x € C" such that

¢ =zf(),

or there exists a linear map f : T, — C" which is nonzero on every rank-one matriz, and
a nonzero vector y € C™ such that

o= f()y"

Such a map ¢ is clearly not necessarily a rank-preserver (as was the case for maps
M, — M,). However, this conclusion does follow if we additionally assume ¢ to be, for
instance, injective. Another possibility is to assume unitality, in which case we obtain
that ¢ is precisely a Jordan embedding 7,, — M,,.

Knowing this, and the structure of Jordan embeddings of SMAs, our goal was to
formulate a similar result regarding linear unital rank or rank-one preservers ¢ : A — M,
where A C M, is an SMA (see Chapter 3). In the case of rank-one preservers, unitality
indeed turned out to be an indispensable assumption since without it they can behave
strangely. For instance, consider the map

i1 0 @3 0 0 Z13
¢: A= A, ¢ 0 @y wa3| | = |0 Za T3
0 0 I33 0 0 T11 + T33

Then ¢ preserves rank-one matrices, but maps the identity matrix to a rank-two matrix.
Hence this map does not fit into any of the conclusions of Theorem 2.5.3. With unitality,
however, we obtained Theorem 5.1.7 which shows that linear unital rank-one preservers
¢ : A — M, are necessarily Jordan embeddings. In contrast with the case of 7, the
converse does not hold in general, although we managed find an algebraic condition which
characterizes those maps for which it does hold using an algebraic condition. The basic
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techniques used in the proof of Theorem 5.1.7 indeed bear some similarity to the ones
used by Semrl and Molnar in Theorem 2.5.3.

We also state again the Kaplansky problem, which was already mentioned in the
introduction:

Problem 2.5.4 ([35]). For which complex unital Banach algebras A and B is every linear
unital invertibility preserving map ¢ : A — B (perhaps under some extra assumptions)
necessarily a Jordan homomorphism?

Note that it is equivalent to assume that ¢ shrinks spectrum, i.e. that o(¢(a)) C ¢(a)
for all a € A. Theorem 2.5.2 (ii) precisely yields the positive answer for when A = B =
M,.

We state the Kaplansky problem because it serves as one of the main motivations for
our nonlinear preserver problems.

2.6 Nonlinear preserver theory

As already mentioned in the introduction,, we would like to distinguish the following
nonlinear preserver problem which elegantly characterizes Jordan automorphisms of M,:

Theorem 2.6.1 (Semrl). Let ¢ : M,, — M,,n > 3 be a continuous map which preserves
commutativity and spectrum. Then there exists an invertible matriz T € M, such that ¢
is of the form (2.4.2).

A precursor to this result was first formulated in [45] and it assumed its current optimal
form a decade later in [47], where it is shown by counterexamples that all assumptions are
indispensable. The paper [47] proved this result using a consequence of the Fundamental
theorem of projective geometry, while the initial paper [45] uses methods entirely within
the scope of elementary linear algebra. It is precisely this elementary approach which
served as a starting point for our results from Chapter 6.

Tatjana Petek continued her research on this problem by considering maps satisfying
the same assumptions as in Theorem 2.6.1 on the algebra of upper-triangular matrices 7,,,
hence arriving at the complete description of those maps [44, Theorem 1|. In particular,
when including surjectivity as an assumption, in |44, Corollary 3| she obtained a charac-
terization of Jordan automorphisms of the upper-triangular algebra 7,. It is easy to see
that the same holds true if instead of surjectivity one assumes injectivity, thus motivating
our assumptions in Chapter 6.
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CHAPTER 3

Structural matrix algebras

3.1 Definition and basic properties

By a quasi-order on [1,n] we mean a reflexive transitive relation p on [1,n|. We define
several auxiliary relations on [1,n] as

P =p\A  p={(y,2) (my)€ep},  pi=pnph

Obviously, p' is also a quasi-order on [1,n], which we refer to as the reverse quasi-order
of p. On the other hand, p is moreover an equivalence relation. For a quasi-order p we
define the subspace of M,, by

A, :={A e M, :supp A C p} =span{E;; : (i,j) € p}.

It is easy to see that A, is in fact a unital subalgebra of M,. Following [57|, we refer to
A, as a structural matriz algebra (SMA) defined by the quasi-order p.

The term "structural" can be intuitively interpreted in this sense: the only conditions
imposed on matrices X from a SMA A C M,, are of the form x;; = 0. No other nontrivial
relations are present, i.e. only the structure of X is proscribed.

Obviously, not all unital subalgebras of M, are SMAs. For example, one can consider
algebras of the form T AT~ where A C M, is an SMA and T' € M*. It is perhaps slightly
less obvious whether every unital subalgebra of M, can be always be conjugated to an
SMA. The answer is negative when n > 2, as it is easy to see that for every such algebra
B := TAT~!, the cardinality of a maximal set of mutually orthogonal idempotents of B
is precisely n. Namely, {TE;T~' : 1 < i < n} is an example of such a set, and a set
of mutually orthogonal idempotents of larger cardinality is impossible even in M,,. As a
consequence of this fact, here we discuss some concrete examples:

e Consider a nilpotent matrix N € M,,,n > 2 and the unital algebra

A :=span{N"*: k >0} C M,

generated by N. Then A is not conjugated to an SMA. Indeed, for every polynomial
p=> izt € Clz] we have

a(p(N)) = p(o(N)) = {ao}

so we conclude that the only nonzero idempotent of A is I.
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e Consider the unital algebra

x 00 0 O
x a b 00
A= 0 0 x 0 0f:a,beC ) C Ms.
0 0 b a *
0 00 0 =

Then A is a central algebra not conjugated to a SMA in Mjs. Indeed, it is easy to
verify that for all A € A the spectrum of A (as a multiset) is given by precisely the
diagonal elements of A, and that the product of diagonals of A, B € A can be cal-
culated elementwise. It follows that all possible diagonals of rank-one idempotents
in A are

(1,0,0,0,0), (0,0,1,0,0), (0,0,0,0, 1).

If P C A were a set of mutually orthogonal (rank-one) idempotents with cardinality
5, it would follow that at least two elements P, ) € P would have the same diagonal,
and hence couldn’t be orthogonal. It follows that the set

{F11, Eay + Ey4, E33, Es5}

is a maximal set of mutually orthogonal idempotents, and has cardinality 4.
On the other hand, A is (algebra) isomorphic to the SMA

S O ¥ %
o O *x O
S % ¥ O

via the isomorphism

T11 0 0 0 0

x 0 0 0
To1 Tz oz 0 0 M

0 ASB G| [0 0 mm 0 0= TR TS
0 0 x34 T2 Tss 0 0 0 =x
0 0 0 0 x5 55

which has the additional property ¢(A N Ds5) = Dy.

SMAs have a simple characterization within the class of all unital subalgebras of M,:

Proposition 3.1.1. Let A C M, be a unital subalgebra. The following statements are
equivalent:

(i) A is an SMA.

(i) A contains all diagonal matrices.

(i1i) A contains a diagonal matriz with distinct diagonal entries.

Proof. The implications (i) = (ii) = (¢ii) are trivial.
(1i1) = (i1) | Suppose that D € D, N A has distinct diagonal entries. Since the

minimal polynomial of D has degree n, it follows that the set {I,D,..., D" '} C A is
linearly independent, and hence a basis for D,,. Thus, D,, C A.
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i1) = (i) | Suppose that D, C A. Define a subset p C [1.n]|? as
(i) (i) | Supp n C p C [1,n]

p = U supp A.

AceA

One easily shows that p is a quasi-order. We claim that A = A,. Indeed, let (¢, 7) € p be
arbitrary. By definition, there exists A € A such that A;; # 0. We have

A> E”AEJJ = AijEij — Eij e A.

We conclude that 4, € A. On the other hand, for any A € A we have supp A C p and
hence A € A,. Therefore, A = A, is an SMA.
O

Let p,p C [1,n]? be quasi-orders. A permutation 7 € S, is said to be a (p, p)-
increasing if
(m(2),7(5)) € p', for all (i,7) € p.

Such a permutation 7 gives rise to an algebra embedding
(3.1.1) Ay = Ay, By Broey,  (6,7) € p.

—1 where R, € M, is the associated
permutation matrix (2.1.2). Moreover, for any permutation 7 € S,, from (3.1.1) it is
clear that the automorphism R, (-)R, ! of M, restricts to an embedding A, — A, if and
only if 7 is (p, p’)-increasing.

Furthermore, if |p| = |p/|, which is equivalent to dim A4, = dim A, a (p, p')-increasing
permutation 7 € S, is in fact a quasi-order isomorphism, i.e.

This map can be expressed precisely as R.(-)R.

(i,7) € p <= (7(i),7(y)) € 0, forall 1 <i,j <n.

Indeed, the above is equivalent to R A,R;" = A,, which follows from R, A,R.' C A,
and the equality of dimensions.

Lemma 3.1.2. Let p C [1,n)* be a quasi-order and 7 € S,. Then R, € A% if and only
of ™ fixes the equivalence classes of p.

Proof. Suppose that R, € A) and let 1 < i < n. We have (i,7(i)) € supp R, C p.
Furthermore, clearly R, = R € AX as well so (7(i),i) € supp Ry C p. We conclude
(i,m(i)) € p so m maps ¢ into an element of the same p-class.

Conversely, suppose that a permutation m € S, fixes the equivalence classes of p. This
precisely means that supp R, C p, but since p C p, it follows that R, € A;. O

Lemma 3.1.3. Let (X, <) be a poset of cardinality n € N. Then there ezists an increasing
bijection f: (X, =) — ({1,...,n},<). Then there exists a bijection f : X — {1,...,n}
such that for all z,y € X we have that x <y implies f(x) < f(y).

Proof. We prove the claim by induction on n. The claim is trivially true for n = 1. Assume
that the claim is true for some n € N and let (X, <) be a poset of cardinality n+1. Recall
that X necessarily possesses a <-maximal element zq € X. By the inductive hypothesis
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applied to X \ {zo}, there exists an increasing bijection f : (X \{z}, X) — ({1,...,n}, <).
Define a map

AT g@_{?(;)l’ ﬁiZi\{x}

Then g is clearly bijective, we claim that it is increasing. Fix z,y € X such that x < y; we
wish to show g(z) < g(y). If both z,y € X \ {z}, then this is true since f is increasing.
If © = x, then necessarily y = x¢ as well and hence g(z) = ¢(y). If y = zo, then
g(z) <n+1=g(z). O

Next, given a quasi-order p, we define the equivalence relation p on the set {1,...,n} as
.o _ def .o ..
(i,7) € p <= (i,]), (4, 1) € p-

We provide an explicit argument for the following fact, which can be deduced from |2, p.
432].

Lemma 3.1.4. Let A, C M,, be an SMA. There exists a permutation ™ € S,, such that

mem Mml,mz (K) T Mm1,mp (K)
_ 0 Mmz,mz T Mmz,mp (K)
(3.1.2) R AR = : : . :
0 0 o My,
for some p,mq,...,my, € N such that my + --- +m, = n, where for any 1 <1 < j < n,

M, m, (K) is either zero or My, m, .

Proof. On the quotient set [1,n]/p we define the relation < in the following way: for
1 <1,7 < n the corresponding p-classes satisfy

iy = [y < (i.5) € p.

Note that < is well-defined. Indeed, suppose that i € [i]; and j' € [j]; are arbitrary.
Then we claim that

(i,j) €p <= (I, 5) €p.
Supposing the former, by definition of p we obtain
(i,4), (i, 4), (4. J") € p = (i.]") € p.

The converse is similar. Further, one easily checks that < is in fact a partial order on the
quotient set [1,n]/p. Now let

[1,71]/ﬁ = {[rl]ﬁ7 AR [Tp]ﬁ}7 Tl Tp € [1,71]

be an ordering of the quotient set which respects the partial order < in the sense that
[7:]5 = [rj]7 implies ¢ < j (its existence can be easily shown by an inductive argument).
For each 1 < k < p denote the elements of the class [r;|; explicitly as

[Tk]ﬁ = {Tk,h e 77’k,mk}
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for some m; € N. Define a permutation 7 € S, by
T(rg;) =ma+ - +my_1 + 7, forl1<k<pand1<j<my

(here we formally set mg := 0). Define a new quasi-order p’ on [1,n| with the following
condition:

.. def, 1/ 1y -
(i,j) € p = (77(1),7'(5)) € p.
The permutation 7 is (p, p')-increasing by definition, so clearly A, = R, A,R* (as |p/| =
|p|). We now prove (3.1.2), which is equivalent to
(3.1.3) diag(My,, ..., Myn,) € Ay C Ay,

where A, m, is the block upper-triangular algebra (as defined in (2.3.3)). Let 1 <
k,l < p be arbitrary and let

(1,7) € (my+ -+ +mp_y,mq + - +my] X (Mg + - +my_1,mq + - +my|
be arbitrary. We have

(i,) €0 = (x (i), 7 '(j) € p <= [z X [rl5-
SN~ —
Elrlz  €lnls

The latter depends only on k£ and [, implies £ < [, and is certainly true when k£ = [. This
establishes both inclusions in (3.1.3).
m

Remark 3.1.5. Let p be a quasi-order on [1,n]. On the same set [1,n], we define a new
relation & := p U p. Explicitly:

i %y j <= ((i,4) € p or (j,i) € p).

Let & be the transitive closure of &y. Then & is an equivalence relation on [1,n] and one
easily checks that the centre of the SMA A, is given by

Z(A,) = {diag(A\1, ..., \n) € Dy s Ny = A for all (4,7) € p*}
= {diag(A1,...,\) €D, : (V1< i, <n)iRj = N\ =)}

Indeed, let D € Z(A,). In particular D <> D,, which implies D € D,, If we denote
D = diag(Aq, ..., \y), we have

Z%OJ — (i,j)Epor(j,i)Gp - DHE,»jorDHEﬁ

By transitivity of & we conclude i ¥ j = \; = A; as well.

Conversely, suppose that D = diag(\1,...,\,) € D, is constant on equivalence classes
of . We claim that D < A,. Clearly D < D,. Let (i,j) € p* be arbitrary. In
particular we have ¢ &y j so A\; = A;, which in turn implies D < E;;. We conclude that
D <« span{E;; : (i,7) € p} = A, which finishes the proof.

28



Chapter 3. Structural matrix algebras

Denote by Q (or Q,) the quotient set of the equivalence relation =, i.e.
(3.1.4) Q:=[l,n]/=.

Clearly, we have |Q| = dim Z(A,). For any equivalence class C' € Q we define an
idempotent

P = ZE” e D,.
ieC
Obviously, Tr Po = |C| and Po € Z(A,). In fact (Po)ceg is a basis for Z(A,). Further-
more, by definition of the quotient set, it follows that (Pg)ceco is a mutually orthogonal
family and » ..o Po = 1.
Next, for each C' € Q denote by m¢ : C' — {1,...,|C|} the unique strictly increasing
bijection and consider the quasi-order

po = A{(mc(i), 7o (j)) : (,5) € (Cx C)Np}

on {1,...,|C|}. Then A,, C M¢ is an SMA which is easily shown to be obtained from
A, by deleting all rows and columns not in C'. Therefore, A, = PcA,. Furthermore, each
A, is a central SMA (i.e. Z(A,.) consists only of the scalar multiples of the identity)
and there exists an algebra isomorphism

A, =P A,

ceQ

We refer to this fact as the central decomposition of A,.

Example 3.1.6. We illustrate the central decomposition on a concrete example. Consider
the quasi-order

p:=AU{(1,3),(1,6),(2,8),(2,9),(3,6),(4,3),(4,6),(5,7),(8,2),(8,9),(9,2),(9,8)}

on {1,...,9}. The respective SMA is given by

* 0« 00 « 0 00
0 0 00 0O

00 « 00 = 000
00 = = 0 %« 00O

A=10 0 0 0 « 0 * 0 0] C M,.

00 0O0O0OS=*=2000
0 000O0O0=x20020
0 000 0O

10 000 0O ]

Direct computation shows that its centre is three-dimensional and given by
Z(A) = {diag(a,c,a,a,b,a,b,c,¢) s a,b,c € C}.
The quotient set with respect to the equivalence relation = is given by

Q={{1,3,4,6},{2,8,9},{5,7}}
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and the respective central projections are given by

P{1,37476} - dla’g(17 07 ]-7 17 07 17 07 07 0)7
P{278,9} = dlag<07 17 07 07 Oa 07 07 17 1)a
P{5,7} = dlag(07 Oa 07 07 17 07 ]-a 07 0)

The central summands are obtained by deleting respective rows and columns:

* % 0 %
b{1,3,4,6}¢ _ 0 « 0 =*

Apsaey = Ap{ V= 0 % % x|’
0 0 0 =

.A{Q 8.0} = Ab{2 8,9} _ 7'27 A{S 7= Ab{5 3 _

3.2 Intrinsic diagonalization

We now state our first preparatory result, regarding the intrinsic diagonalization of ma-
trices within SMAs. Besides showcasing an interesting property of these algebras, it will
be applied in an essential way in the description of Jordan embeddings between SMAs,
as well as their Jordan automorphisms (Corollaries 4.2.13 and 4.2.14, respectively).

Theorem 3.2.1. Let A=A, C M, be an SMA and let F C A be a commuting family
of diagonalizable matrices. Then there exists S € A* such that ST'FS C D,

Before proving Theorem 3.2.1 we consider a special case when A is contained in 7,
and the family F consists of mutually orthogonal idempotents.

Lemma 3.2.2. Suppose that P C T, is a family of mutually orthogonal nonzero idempo-
tents such that ) p.p P = 1. Define a matriz T € T, with T;; := P;; (1 <i < j < n),
where P € P is the unique idempotent such that P;; = 1.

(a) We have T-YPT C D,,.

(b) If in addition P C A, for some SMA A, C Ty, then T € A.

Proof.
(a) Fix P € P and let Dp € D,, be the diagonal of P. Fix 1 <i < j<nandlet Q € P
be the unique idempotent such that @);; = 1. We have

Fj, if Pj; =
(TDp)y; Z T (Dp)i; EjJDjj:{ i 1L 1

ik 0, otherwise.

On the other hand, we have

(PT)ij= > PauTyy= Y PaTey+PyTy = > PaQu+ Py

i<k<j i<k<j i<k<j
P, ifP,=1,
= (PQ)ij — PyyQj; + Pij = (PQ)ij = { * .
0, otherwise.

This closes the proof of TDp = PT.
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(b) The statement follows directly from

suppT C | J supp P C p.
Pep

]

Remark 3.2.3. Let A € M, is a diagonalizable matrix. By an elementary linear algebra
argument, there exist a unique family {Py : A € 0(A)} of mutually orthogonal nonzero
idempotents (spectral idempotents of A) such that

A= )" AP, Y P=1

Aea(A) AEa(A)

For each A € 0(A) let p) € C[z] be the unique polynomial of degree < |o(A)| such that

L if v =\,
PO =0 e e o(A)\ (O]

Then it is well-known (and easy to verify) that py(A) = P, for all A € o(A). In particular,
all spectral projections of a diagonalizable matrix A € M, are contained in the unital
subalgebra C[A] of M,, (generated by A). Therefore, any unital (Jordan) subalgebra A of
M,, containing A also contains all spectral projections of A.

Proof of Theorem 3.2.1. By an elementary argument, it suffices to prove the statement
when F is finite (otherwise we conduct the argument on the basis of the linear span of
F, which is again a finite commuting subset of A consisting of diagonalizable matrices).
For simplicity, we can further assume that |F| = 2, so that F = {A, B}, as the general
case follows analogously.

Case 1. We prove the statement when A C 7,,.
Let {Py: A€ 0(A)} and {Q, : i € o(B)} be the families of spectral projections of A
and B, respectively. By Remark 3.2.3, both families are in fact contained in A.

Since A <> B, we have Py <> @, for all A\ € 0(A) and p € o(B) (also by Remark
3.2.3). Using this, it is easy to show that

P:={P\Qu: €o(A),pea(B)}\{0}CA

is a family of mutually orthogonal nonzero idempotents such that ), R = I. Also,
both A and B are linear combinations of elements of P. We can apply Lemma 3.2.2 to
P to obtain T" € A* which diagonalizes the entire family P, and consequently A and B
as well.

Case 2. We prove the statement when
diag(My,, ..., My,) €A C Ay, .k,

(where Ay, .k, is the corresponding block upper-triangular algebra, as defined by (2.1.1)).

.....

Proof. Denote by X1,Y) € My, ..., X,,Y, € My, the diagonal blocks of A and B, respec-
tively. Since A <+ B, for each 1 < j < p we have X; <+ Y so by the Schur triangularization
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(see e.g. [46, Theorem 40.5]) we can choose U; € My’ such that U; XU UYU €T,
Then
U :=diag(Uy,...,U,) € diag(My,, ..., M,) € A

and
UAU Y UBU e ANT,.

It follows that {UAU~!,UBU '} is a commuting family of diagonalizable matrices, so we
can apply Case 1 on the SMA AN T, to obtain S € (AN T,)* such that

UAU Y, UBU ' € SD,S™*

or equivalently A, B € RD,R™!, where R :=U"1S € A*. O
Case 3. Now assume that A is a general SMA.

Proof. From Lemma 3.1.4 we know that there exists a permutation matrix R € M and

7777

7777

Since A, B € A, we have RAR™!, RBR™' € RAR™! so by Case 2, there exists S €
(RAR™')* = RA*R™! such that

RAR ' RBR™' € SD,S7'.

It follows that
A,Be (R'SR)R'D,R(R'SR)™",

where R71SR € A*. The proof is now complete. n
]

Remark 3.2.4. Not all unital subalgebras A C M,, possess the intrinsic diagonalization
property in the sense of Theorem 3.2.1. For instance, fix an arbitrary diagonalizable
matrix T' € M, \D,, and let A := C[T| C M,,. Then A is a unital commutative subalgebra
of M, (its dimension is equal to the degree of the minimal polynomial of T'), so trivially
a matrix A € A is of the form A = SDS™! for some S € A* and D € D, if and only if
A itself is diagonal. However, this is clearly not true for the matrix T € A.

Furthermore, let

0 01
T:=10 1 0| €T;
0 0 2
and
z 0 3(z—ux)
A=C[T]=< |0 vy 0 cx,y,2 € C ) CT;.
0 0 z

One easily verifies that the algebra A is conjugated to D3 (e.g. A = (T + E11)Ds(T +
E11)™Y). In particular, the property of being conjugated to an SMA is not sufficient to
ensure the intrinsic diagonalization in the sense of Theorem 3.2.1.

In particular, every SMA is a subalgebra of a parabolic algebra up to conjugation with
a permutation matrix (note that the diagonal blocks are always fully present).
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CHAPTER 4

Jordan embeddings of structural ma-
trix algebras

4.1 Algebra embeddings

Let p be a quasi-order on [1,n|. Following [17], we say that a map g : p — C* is transitive
if

9(i,7)9(j, k) = g(i, k), for all (¢, ), (J, k) € p.
Note that necessarily g|a, = 1, so it suffices to verify the above condition for (7, j), (7, k) €

p~. We say that a transitive map g : p — C* is trivial if there exists a map s : [1,n] — C*
such that g separates through s, that is

s(t)
s(4)”

(again, it suffices to stipulate this for all (i,7) € p*).

(4.1.1) g(i,5) = for all (i,5) € p

Example 4.1.1. Consider the quasi-order p on [1,4] given by
p:=A,U{(1,3),(1,4),(2,3),(2,4)}.

The map
1, if (4,7) # (1,4),
2, if(i,5) = (L4).

is easily shown to be a transitive map which is not trivial.

g:p—C, gmﬁz{

Remark 4.1.2. If a quasi-ordered set ([1,n], p) has a smallest or a largest element, then
all transitive maps g : p — C* are trivial. Indeed, suppose for example that p=!(k) = [1,n]
for some k € [1,n] and let g : p — C* be a transitive map. Define s : [1,n] — C* by
s(i) := g(i, k). For each (i,j) € p we have

906,590, k) = g(i, k) = g(i,§)s(j) = s(i) = ¢(i,j) = 5G)

which implies that g separates through s.

Every transitive map g induces an automorphism ¢* : A, — A, given on the basis of
matrix units as

g*(Ez]) = g(l,j)Ew, for all (l,j) € pP-
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Triviality of a transitive map reflects on the induced map in a natural way:

Lemma 4.1.3. [17, Lemma 4.10] Let g : p — C* be a transitive map. Then g is trivial
if and only if there exists T € M, such that the induced automorphism g* : A, — A, is
of the form g*(-) = T(-)T~'. In this case, T is in fact a diagonal matriz, so that g* is an
inner automorphism of A,.

Proof. Suppose that g is trivial and separates through a map s : [1,n] — C*. Then one
easily verifies that D = diag(s(1),...,s(n)) € D) satisfies g*(-) = D(-)D". Conversely,
suppose that ¢g*(-) = T()T~"! for some T € M. Then A, = g (An) = TA,T™!

T <> A, and hence T' € D,,. Now s : [1,n] — C* given by s(i) := T}; is easily seen to
satisfy (4.1.1) so g is trivial. O

We now state the aforementioned description of all automorphisms of SMAs, which
was first obtained by Coelho in [17, Theorem C| and later streamlined by Akkurt et al.
as:

Theorem 4.1.4. [2, Theorem 2.2 (Factorization Theorem)| Let A, C M, be an SMA.
A map ¢ : A, — A, is an algebra automorphism if and only if there exists an invertible
matriz T € Ay, a transitive map g : p — C* and a (p, p)-increasing permutation m € S,
such that

¢() = (TRx)g" ()T R:) ™

Remark 4.1.5. In Theorem 4.1.4, the three parameters T, g, m which represent an auto-
morphism ¢ : A, — A, are in general not unique. In fact, there is a significant degree of
redundancy, which is clear from Coelho’s group theoretic formulation of this result (|17,
Theorem C]). To illustrate the issue, consider the quasi-order

p = AS U {(172)7 (173)7 (273)7 (37 2)}

and the corresponding SMA

Let ¢ =id : A, — A, be the trivial automorphism. We have

&) = (TiRe)) g7 ()(T1Rey) ™" = (TeRy) g5 () (ToRry)

where
e 7y is the identity, 771 = I and ¢, : p —> C* is the constant map 1.

e T, is the transposition 2 <+ 3, Ty = and gy : p — C* is given by

O Ol
_ o O
o = O

a2 i) e{(12),(13),
g2(1, 7) {17 f(i,7) € p\ {(1,2),(1,3)}.

We explicitly state the following simple generalization of Theorem 4.1.4, as it motivates
our later result regarding Jordan embeddings between SMAs (Corollary 4.2.13).
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Corollary 4.1.6. Let A,, A, C M, be SMAs. Then A, embeds (as an algebra) into
Ay if and only if there exists a (p, p')-increasing permutation © € S,. Furthermore, if
oA, = Ay is an algebra embedding, then there exists an invertible matriz T € .A:,, a
(p, p')-increasing permutation ™ € S,, and a transitive map g : p — C* such that

¢(-) = (TRx)g"()NTRx) ™.

Proof. If there exists a (p, p’)-increasing permutation 7 € S, then, following the discussion
around (3.1.1), the map R.(-)R, " defines the algebra embedding A, — A,.

Conversely, assume that ¢ : A, = A, is an algebra embedding. Note that

{¢(E11)7 S v¢(Enn)} - -/4/)’

is a set of mutually orthogonal idempotents so by Theorem 3.2.1 (in fact, Lemma 3.2.2
suffices) there exists S € A, and a permutation 7 € S, such that

QZ5(E”) = SEW(Z')W(i)Sil = (SRTF)EM(SRW)il, for all 1 S ) S n.
For each (i, j) € p* we have
O(Eij) = ¢(EiuEijEjj) = ((SRx)Ei(SRx) ™ )o(Ey)(SRx)Ej;(SR:) ™)

and hence ¢(E;;) = ((SRx)(9(i,j)Ei;))(SR,)™!) for some nonzero scalar g(i,j) € C*.
Multiplicativity of ¢ directly implies that the map

. £ N
g T () e 9(i,7), ?(m).e/),
1, ifi=y

is transitive. We conclude ¢ = (SR;)g*(-)(SR.)~*. For all X € A, we have
Rrg"(X)R;' = (S7'¢(X)S) € A,
By surjectivity of ¢*, it follows that R, A,R ' C A, so m is (p, p')-increasing. ]

We showcase an interesting consequence of Corollary 4.1.6 in the particular case of
block upper-triangular algebras:

Proposition 4.1.7. Let A,B C M, be block upper-triangular subalgebras. Then A
algebra-embeds into B if and only if A C B.

Proof. Denote A = A, = Ay, .., and B = A, = Ay, . ;,- By Corollary 4.1.6, we know
that A algebra-embeds into B if and only if there exists a (p, p/)-increasing permutation
m € S,. We claim that the latter is equivalent to p C p'. Since the direction
is trivial, we focus on which we show via induction on n. If n = 1, then clearly
A = B = M,;. Suppose therefore that n > 2, that the statement holds for all pairs of
block upper-triangular algebras in M,_4, and that © € S, is (p, p')-increasing. Notice
that for each j € [k + -+ 4 kp—1 + 1,n] we have

.....

4.12) p'(G) =0 = ()'(x() =[1,n] = 7G) €[l +...+11+1,n].

Let o € S, be the transposition n <> 7(n). We claim that the composition com € S, is also
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(p, p')-increasing. Indeed, suppose that (i, 7) € p. We wish to show (o (7 (7)), o(7(5))) € p'.
Clearly, we only need to examine the cases where i or j is in {n, 7 !(n)}.
e Suppose j € {n,7 1 (n)}. Then o(w(n)) € {n,7(n)} and (p')~!(n) =
[1,n] so (o(n(i)),o(m(4))) € p' no matter what o(m(7)) is.
e Suppose i € {n, 7 !(n)}. Then (7(i),7(j)) € p’ and (i) € {n,7(n)} C [lL +... +
l4—1 + 1,n] together imply 7(j) € [l1 + ...+ ;-1 + 1,n] as well. Therefore, o(7 (7))
belongs to the same interval so, since J( (1)) € {n,m(n)}, it follows

(o(r(i),o(r() €+ ...+ 1,1+ 1,n]* Cp.

Now, notice that (gom)(n) =nso (oom)|p,_1 € Sp_1isa (pN[l,n—1]% ' N[1,n—1]?)-
increasing permutation. Since the quasi-orders p N [1,n — 1]? and p’ N [1,n — 1]* clearly
again correspond to block upper-triangular subalgebras, by the induction hypothesis we
conclude pN[1,n — 12 C p'N[1,n — 1]%. Now (4.1.2) allows us to conclude p C p/. [

To end this subsection, we also mention Coelho’s characterization of SMAs which
admit only inner automorphisms.

Theorem 4.1.8. [17, Theorem D] Let A, C M, be an SMA. Then every automorphism
A, = A, is inner if and only if
(i) every transitive map g : p — C* is trivial,
(i1) every quasi-order automorphism m of p fizes the equivalence classes m of p (this is
equivalent to R, € Ay by Lemma 3.1.2).

Proof. (i) follows from Lemma 4.1.3. To prove (ii), let = be a quasi-order auto-
morphism of p. Then R,(-)R;" € Aut(A,) so by the assumption, there exists T € A
such that R,(-)R;* = T(-)T~'. Lemma 2.3.1 implies that R, € TD,, C A, which is the
desired conclusion.

Let ¢ € Aut(A,) be arbitrary. By Theorem 4.1.4, there exist an invertible
matrix A € A, a transitive map g : p — C* and a (p, p)-increasing permutation 7 € S,
such that

o) = Ag'(Ro ()R AT
By (i) and Lemma 4.1.3, there exists a diagonal matrix D € D such that g*(-) = D(-)D~'.
By (ii), we have R, € A. It follows that

¢(-) = (ADR;)(-)(ADR,)™"
eAS

SO ¢ is an inner automorphism. O]

4.2 Jordan embeddings

Now we are ready to describe the general form of Jordan embeddings ¢ : A — B between
SMAs A and B of M,. As expected, the transitive maps will play a role of similar
importance in the description of all Jordan embeddings and rank(-one) preservers A —
M,,. Their appearance displays the relative complexity of (Jordan) algebraic and preserver
theory on SMAs when compared to M, 7, or the block upper-triangular subalgebras
(see [24]). On the other hand, permutation matrices appear only when we restrict the
codomain to B, i.e. in the description of Jordan embeddings A — B.
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We first start with the special case when B = M,,.

Lemma 4.2.1. Let A, C M,, be an SMA and let ¢ : A, — M, be a Jordan homomorphism
such that ¢(E;;) # 0 for all (i,j) € p. Then there exists an invertible matriz S € M
such that ¢(D) = SDS™! for all D € D,,.

Proof. By Lemma 2.4.2 (c) we conclude that ¢(E1),...,¢(FEyy,) is a family of mutually
orthogonal nonzero idempotents. Therefore, there exists S € M, such that

The claim follows by linearity. O

Lemma 4.2.2. Let A, C M,, be an SMA and let ¢ : A, — M, be a Jordan homomorphism
such that ¢(E;;) # 0 for all (i,7) € p and ¢|p, is the identity. Then for every (i,j) € p*
there exist scalars «j, Bi; € C, exactly one of which is zero, such that ¢(E;;) = oy Eij +
Bij Eji-

Proof. By Lemma 2.4.2 (b) we have
O(Eij) = (L By Ejj + EjiEijBii) = Eio(Eij) Ejj + Ejo(Eij) Eis.
Therefore, ¢(E;;) is supported in {(z, j), (j, %)} so there exist scalars ;;, 8;; € C such that
¢(Eij) = i Eij + Bij Eji.
Furthermore, we have
0= ¢(E) = (Ey)* = ayBi(Ei + Ej))

so exactly one of a;; and f;; is equal to zero 0 (as ¢(£;;) # 0 for all (¢,j) € p, by the
assumption). O

Lemma 4.2.3. Let A, C M,, be an SMA and let ¢ : A, — M, be a Jordan homomorphism
such that ¢(E;;) # 0 for all (i,7) € p and ¢|p, is the identity. Define

P =1{0.4) € p: o(Ey) || Eyj}, Pl = {(i,4) € p: 6(Ey) || Eji}.

We have

(a) ply Ul = p and ply M p% = A,
(b) 0%, and p% are quasi-orders on [1,n] and there exist transitive maps g : p; — C*
and h : p% — C* such that the restrictions

¢|Api,4 P A = My, ¢|Api A = My,

t

are equal to g*(-) and h*(-)*, respectively. In particular, the maps ¢|4 , and @|a ,
Pm Pa

are multiplicative and antimultiplicative, respectively.
(c¢) Suppose (i,j) € p*. Then

p()Up (D) Up(G)Up () Sy or  pi)Up (i) Up(j)Up ' (j) C pf
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(d) Let P € D, be a diagonal idempotent defined by

Py =1 < there exists j € [1,n]\ {i} such that (i,5) € p, or (j,i) € p%,.

Then P € Z(A,), PX € Ay and (I = P)X € Ay for all X € A,.

(e) Suppose that (i, 7), (j, k) € p*. Then either (i,5), (j, k) € p%, or (i,7), (4, k) € p5%.

Proof. Following the notation from Lemma 4.2.2, throughout the proof for each (i, §) € p%,
by a;; € C* we denote the unique nonzero scalar such that ¢(E;;) = a;;E;;, while for each

R

(i,7) € pa by B;j € C* we denote the unique nonzero scalar such that ¢(E;;) = §;;Ej;.

(a)

(b)

Clearly, for all 1 < i < n we have ¢(Ey) = Ey so (i,1) is contained in both p, and

p%. It follows that A, C p%, N p%. On the other hand, let (i,7) € p* be arbitrary.

Lemma 4.2.2 directly implies that either (i,7) € pf/l or (i,j) € pﬁ. We conclude

P Uph = pand pfy N ph € A,

We first prove that p}z\z is a quasi-order and that there exists a transitive map

g : ph — C* such that ¢| Ay = g*(-). The reflexivity of p¢, follows from (a).
M

Suppose that (i,7), (4, k) € p%,. We show (i,k) € p%, and ag = ayaj,. Both of

these are clear if i = j or j = k so we can further assume (i, 5), (j, k) € (p%,)*. We

have

¢(Eir) + oriEj; = d(Ei + i Ejj)
= ¢(EijEj + EjrBiy) = ¢o(Eij)d(Ej) + ¢(Eji)d(Eij)
= a0, (B + 0 Ejj),

where, as usual, d;; denotes the Kronecker delta symbol. If i = k, then (i,4) € pf/[
is trivial and the above relation reduces to

Ei+ Ej; = ayja(Ey + Ejj)

which implies ;5 = 1. On the other hand, if ¢ # k, then the above relation
reduces to

O(Eir) = aijoip By,
which first implies (i,k) € p}z\} and then oy, = ajjay;. It follows directly that the
map g : pf/[ — C*,g(4,7) := ayj is transitive and ¢|4 , = g*(-).
Py
To show the second claim, consider the map ¢' : A, — M,, given by X — ¢(X)".

Obviously, ¢' satisfies the same properties as ¢ and pﬁ = pf;. By the first part of
the proof it follows that pﬁ is a quasi-order and that there exists a transitive map

h: pﬁ/t[ — C* such that ¢'|4 ,, = h*(-). Then clearly ¢|4 5 = h*(-)t.
3 p

For concreteness assume that (i,7) € p%,. Let (j,k) € p* be arbitrary. We claim
that (7,k) € p(ﬁj. Assume the contrary, that (j,k) € pﬁ. Then we have

O(Eir) + 6By = (B + 6 Ejj)
= (B Ejr + EjEij)
= ¢(Eij)9(Ejx) + ¢(Ejx)o(Eij)
= i B (Eij By + Eij Eij)
=0
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which is a contradiction. Therefore, (j,k) € p%,, and consequently (i,k) € p?, by
(b). Tt follows that p(i)Up(j) C p%,. The proof of p='(i)Up~'(5) C p%, is analogous.
(d) It suffices to show that for all (i,j) € p we have P < E;;, PE;; € Ap% and
(I-P)E; € Apﬁ' Since all three claims are trivially true when i = j, fix (i, j) € p*.
By (a), we consider two cases:
o If (1,5) € pf/[, then P; = P;; = 1 by definition, so

N 4

EA¢

PMm

which establishes all three claims.
o If (4,§) € p%, then P; = P;; = 0 as a consequence of (c), 5o

PE,L'j = 0 = EUP - ([ — P)Ezg = Eij € Ap‘z

eA
o

which establishes all three claims.
(e) This is a direct consequence of (c).
O]

Theorem 4.2.4. Let A, C M, be an SMA and let ¢ : A, — M, be a Jordan homo-
morphism such that ¢(E;;) # 0 for all (i,5) € p. Then there exists an invertible matriz
S e M), a central idempotent P € Z(A,), and a transitive map g : p — C* such that

¢(-) = S(Pg"(-) + (I — P)g"(-)")S™".
In particular, ¢ is injective (i.e. a Jordan embedding).

Proof. By Lemma 4.2.1 there exists S € M such that ¢(D) = SDS™! for all D € D,,.
By passing onto the map S™'¢(-)S which satisfies the same properties, without loss of
generality we assume that ¢|p, is the identity.

Let g : pr — C* and h : p‘f‘ — C* be transitive maps from Lemma 4.2.2 (b). Define
a map

. (CX P4 — g(Z7j)7 lf (Z,])GPM,
fip=C*  f(i,]) {h(i’j% it (i) € gt

Lemma 4.2.2 (d) directly implies that f is a transitive map. Clearly, f*|4, = g* and
PMm
f*|A . — h*
Pa
Let P € Z(A,) be the central idempotent defined in Lemma 4.2.2 (¢). As PX € Ap%
and (I — P)X € 'Api for all for X € A,, we have

6(X) = (PX) + 6((I - P)X) = g"(PX) + h*((I — P)X)'
= FPX) + F((I = P)X) = F(P)f*(X) + f(X) (1 = P)’
= PJ*(X) + (I - P)J*(X)"

It remains to show the injectivity of ¢. Let X € A, be a matrix such that ¢(X) = 0.
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By left-multiplying the expression
0=¢(X) =Pf(X)+( = P)f(X)

by P and I — P respectively, we conclude Pf*(X) = (I — P)f*(X)' =0. Since I — P €
Z(A,) C D,, the latter equality can be transposed to yield (I — P)f*(X) = 0. Overall,
we obtain

0=Pf(X)+ (I =P (X)=f(X),
which implies X = 0 by the injectivity of f*. We conclude that ¢ is injective. n

Corollary 4.2.5. Let A, C M, be an SMA. The following conditions are equivalent:
(1) Every Jordan embedding A, — M, is multiplicative or antimultiplicative.
(i1) The quotient set Q defined by (3.1.4) contains at most one class C € Q with |C| > 2.

Proof. | (i) = (it)| We prove the contrapositive. Suppose that there exist Cy,Cy € Q,
Cy # Cy such that |Cy|, |Cy| > 2. Let

P = ZE” € D,.

i€Cq
By Remark 3.1.5, P is a central projection and therefore, the map

is a Jordan embedding which is neither multiplicative nor antimultiplicative. Indeed,
choose some 7, j € Cy such that (i,j) € p*. Then

O(EijEjj) = ¢(Ey) = Eji # 0 = BBy = o(Eij)o(Ejj)

shows that ¢ is not multiplicative. That ¢ is not antimultiplicative can be shown in a
similar way by choosing elements of C'.

(11) = (i) | Suppose that there exists C € Q, |C| > 1 such that

Q={CYU{{i}:ieC)

Let ¢ : A, — M, be a Jordan embedding. By Theorem 4.2.4 there exists an invertible
matrix S € M), a central idempotent P € Z(A,), and a transitive map g : p — C* such
that

¢() = S(Pg"(-) + (I = P)g"())S™".
Notice that for all i € [1,n]\ C we have
E”X = E“'Xt, for all X S Ap.

Recall from Remark 3.1.5 that both P and I — P are sums of Ej;; for i € [1,n]\ C and
Po =3 jcc Ejj. Therefore, for C' and each i € C° there is a map (-)g, (1) € {id, (-)'}
such that

() =3 (Z Eig ()" + ch*(-)"c> St

ieCe
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- (Z Eig™(-)% + ch*(')oc> i

ieCe

= Sg*(-)7S™.

We conclude that ¢ is multiplicative or antimultiplicative (depending on whether oq is
the identity map or the transposition map). O]

Remark 4.2.6. Note that if ¢|p, is the identity, then the invertible matrix S from
Theorem 4.2.4 is necessarily diagonal and hence the conjugation S(-)S™! can be absorbed
into the induced map g*.

Now we discuss how the central decomposition from Remark 3.1.5 extends to Jordan
homomorphisms.

Proposition 4.2.7. Let A, C M, be a SMA and let ¢ : A, — M, be a Jordan homo-
morphism such that ¢(E;;) # 0 for all (i,j) € p and such that ¢|p, is the identity map.
For each C' € Q the map

e+ Ac — My, po(X) = p(XH7)"

is a Jordan embedding on a central SMA and hence is of the form g*(-)° for some transitive
map g : pc — C* and a map o € {id, *}. Furthermore, for all X € A, we have

(4.2.1) B(X) = do (XY,
CeQ

Proof. Note that ¢¢ is obtained as the composition of maps
Ac — PoA,, X X'

PCAp%PCMnPCv XHQS(X)u

and
PcM,Po — Mgy, X — XC°

The first and the last map are multiplicative isomorphisms, while the second one is mul-
tiplicative or antimultiplicative. It is well defined since for all X € A, we have

Lemma 2.4.2 (a)

¢(PoX Po) = ¢(Po(PoX Po)Fe) = ¢(Po)p(PoX Po)o(FPe)
= Poop(PcXPo)Pe.

Let X € A,. We have

$(X) = ¢(PoXPc)

CeQ

= > al(x

CceQ

= > do(XUP

CeQ

This proves (4.2.1). O
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Remark 4.2.8. Let A, C M,, be a SMA and let ¢ : A, — M,, be a Jordan homomorphism
such that ¢(E;;) # 0 for all (7,j) € p. By Lemma 4.2.1 there exists S € M, such that
S~1¢(-)S satisfies the same properties and S™'¢(-)S|p, is the identity. Then Proposition
4.2.7 applies to this new map. We obtain that for each C' € Q there exists a transitive
map gc : pc — C* and a map oc € {id, '} such that for all X € A, we have

$(X) =S (Z ((gc)*(XbCB)Oc)ﬁCC) ST forall X € A,

CeQ

We can define a global g : p — C* by setting

9(1,5) = ge(me (i), ma (7)) for all (i,7) € pN (C x C)

where 7o is taken from Remark 3.1.5. It is easy to check that ¢ is a transitive map.
The induced map g¢* : A, = M, satisfies (9c)* = (¢*)c in the sense of Proposition 4.2.7.
Indeed, for C' € Q and (i,7) € pN (C x C) we have

* * ce ¢ * ¢ .
(9")c(ErciymeG)) = 9 (Efrc(i)ﬂc(j))bc =9 (Eij)bc = 9(i, ) Enc(iyre ()

In particular, for all X € A, we have
g (PoX) = go(X ).

Furthermore, it is easy to verify that the map (-)*“° commutes with transposition so for
all X € A, we obtain

o(x)=5(> (<gc>*<xw>°0)"“> 5!

CeQ

_g Z ((gc>*(Xch)ﬁCC)°C> g-1

CeQ

=S(> g*(PCX)°C> S

ceQ

=5 Z(m*(x»%) 57!

CeQ

=S ch*(X)OC> S,

CeQ

We can now reproduce the form from Theorem 4.2.4 by setting

P = Z Po €D,

CeQ such
that o =id

and noticing that P is central, by Remark 3.1.5. This allows us to obtain the simplest
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form for ¢. Indeed, for all X € A, we have:

o) =5 (3 ch*<X>°C> 5

CeQ

=S Yo PelgX)+| Y PolgXx) s
CeQ such CeQ such
that oo=id that oC:.t

= S(Pg"(X) + (I - P)g"(X))S™".

If A is an SMA which satisfies the properties stated in Corollary 4.2.5, we shall say it
satisfies the multiplicative—antimultiplicative property (MAMP). From the proof

of Theorem 4.2.4, it can also be seen that if A C M,, is a SMA satisfying MAMP, then
every Jordan embedding ¢ : A — M, is precisely of the form

¢()=Tg ()T, or  ¢()=Tg"()T"
for some invertible matrix 7" € M, and a transitive map g : p — C*.

Remark 4.2.9. Let p be a quasi-order on [1,n]. We define a relation ~q on p* as

(i, §) ~o (k1) €5 {0,y N {k, 1} #0.

Clearly, ~q is reflexive and symmetric. Let ~ be the transitive closure of ~; then ~ is
an equivalence relation. Then the SMA A, satisfies MAMP if and only ~ posseses only a
single equivalence class. Indeed, in view of Corollary 4.2.5, it suffices to show that there
is at most one class C' € Q with |C| > 2 if and only if [p*/ ~| = 1.

Let C' € Q be the only class with |C| > 2. Let (i,7), (k,l) € p* be arbitrary;
we wish to prove (i,7) ~ (k,l). We necessarily have 4,7, k,l € C and therefore i = k.
Assume first that ¢ &, k. Then if ¢ # k, we have

(i,5) ~o (i, k) or (k, 1)) ~o (K, 1),

while if ¢+ = k, we have

(2, 7) = (k, ) ~o (k,1).
By transitivity we inductively arrive at the same conclusion when k£ = i. We conclude
that there is exactly one equivalence class of ~.

Suppose that |p*/ ~| = 1. If Q contains only singleton classes, the claim holds.
Suppose that C' € Q is a class with |C| > 2. We claim that C contains all elements of
[1,n] not already contained in some singleton class; in particular, it will follow that C' is
the only class with cardinality > 2. It is easy to see that we can choose distinct 7,7 € C
such that i &y j. Without loss of generality assume that (i,7) € p. If (k,1) € p* satisfies
(i,7) ~o (k,1), we readily obtain that k,l € C. By transitivity, we inductively conclude
that the same assertion holds with the weaker assumption of (i,7) ~ (k,l). Now the
desired claim follows since (i, j) ~ p*.

Corollary 4.2.10. Let A, C M, be a SMA. The following conditions are equivalent:
(1) Every Jordan embedding A, — M, is extensible to a Jordan automorphism of M,,.
(it) A, satisfies MAMP and every transitive map g : p — C* is trivial.
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Proof. From Corollary 4.2.5 and the discussion immediately after it, it is clear that when
A satisfies MAMP, every Jordan embedding A — M,, is of the form T'(-)T~! or T'(-)'T~!
for some invertible matrix 7" € M, if and only if every algebra automorphism g* € Aut(.A)
induced by a transitive map ¢ : p — C* is also of the form S(-)S~! for some invertible
matrix S € M. By Lemma 4.1.3, the latter condition is equivalent to the fact that every
transitive map g : p — C* is trivial. O

Remark 4.2.11. The two conditions of Corollary 4.2.10 (ii) are logically independent.
Namely, the SMA

satisfies MAMP, but not every transitive map is trivial (see Example 4.1.1), while the
SMA diag(Ms, My) € M, does not satisfy MAMP but every transitive map is indeed
trivial (see the semisimple case in [17]).

Example 4.2.12. If an SMA A, C M,, contains an entire row or an entire column, then
it satisfies the conditions of Corollary 4.2.10. This is precisely the situation when the
quasi-ordered set ([1,n], p) has a minimal or a maximal element. Indeed, for the sake of
simplicity suppose that A, contains the n-th column. Then for any (i, j), (k,{) € p* we
have

(Z?]) ~0 (27n) ~0 (k7n) ~0 (k7l)

and therefore (7,7) ~ (k,1). We conclude |p*/ ~| = 1 so by Remark 4.2.9 the SMA A,
satisfies MAMP. The fact that all transitive maps are trivial follows from Remark 4.1.2.

On the other hand, the converse is not true in general. Consider
p=A5U{(1,4),(1,5),(3,2),(3,4),(3,5), (4,5), (5,4)}.

Then the SMA

* 0 0 % =
0« 0 00
A, =10 % % x x
0 0 0 x =
0 0 0 % =

satisfies the conditions of Corollary 4.2.10, but does not contain a full row or a full column.
Indeed, we have

(574) ~0 (3’4) ~0 (174) ~0 (175) ~0 <3a 5) ~0 (47 5)
¢
(3.2)

so |p*/ ~| = 1. Suppose now that g : p — C* is a transitive map. Define s : {1,...,5} —
C* as

3(1) = 9(1’5)7 3(2) = 3(3) = 9(375)’ 3(4) = 9(47 5)? 5(5) =1

We need to show ¢(i,j) = % for all (i,7) € p. This is clear when j = 5 by the definition
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of s. When j = 4 we have

gl 4y = 900 s s e r1.45),

g9(4,5) = s(4)

vl

=

w | »
—~
SIS
=

_g(3,5) _s(3)

s(2

~—

We conclude that g is trivial.

Using Theorem 3.2.1 we can now prove the following consequences of Theorem 4.2.4
regarding Jordan embeddings between two SMAs. Before stating them, let us introduce
the following auxiliary notation. Let p be a quasi-order on [1,n] and consider a subset
U C [1,n] expressible as a union of some equivalence classes of & (i.e. U is a union of

some classes of the quotient set Q,). Denote U¢ := [1,n]\U and define a relation on [1, n|
by
(4.2.2) M= (pN (U xU)) U (p" N U xU)),

which is easily seen to be a quasi-order.

Corollary 4.2.13. Let A,, A, C M, be SMAs. Then A, Jordan-embeds into A, if
and only if there exists a subset U C [1,n] expressible as a union of classes of Q,, and
a (M, p')-increasing permutation © € S,. Furthermore, if ¢ : A, — Ay is a Jordan
embedding, then there exists an invertible matriz S € A;,, a central idempotent P €

Z(A,), a transitive map g : p — C*, and a (p, p')-increasing permutation w € S,,, where
U:={1<i<n:(ii) €supp P}, such that

¢() = (SRr)(Pg*(-) + (I — P)g*(')t)(SRﬁ)*l_

Proof. Suppose that ¢ : A, — A, is a Jordan embedding. By Theorem 4.2.4, there
exists an invertible matrix 7 € M), a central idempotent P € Z(A,) and a transitive
map g : p — C* such that

o) =T(Pg*(-) + (I - P)g*(-)")T".

Denote A, := diag(1,...,n) € D,. Obviously, the matrix ¢(A,) = TA, 7' has eigenval-
ues 1,...,n so by Theorem 3.2.1, there exists S € .A;, and a permutation m € §,, such
that ¢(A,) = (SR;)A.(SR;)~'. We have

TAT' = (SR:)M.(SR,) ™" = (SR;)'T < A,
and hence we conclude that there exists a diagonal matrix D € D,¢ such that

T = SR,D = S (R,DR.") R,
—_——

€Dy

By absorbing R,DR;! into S, without loss of generality we can write T = SR, and
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therefore
o(-) = (SRx)(Pg*(-) + (I = P)g*(-)")(SRx)~".

Note that, by Remark 3.1.5, & = {1 <i <n: (i,7) € supp P} is a union of certain classes
of Q,. Consider the quasi-order p“ from (4.2.2) with respect to this &. We in particular
obtain Ry AuR;' C A, thus concluding that 7 is (p", p')-increasing.
We have R, AuR ' C A, for some subset U C [1,n] expressible as a union of
classes of Q,. Let P € Z(A,) be a central idempotent corresponding to U, i.e. P :=
> icy i Tt easily follows that

Re(P() + (I = P)())R;"

™

is a Jordan embedding A, — A, . ]

By plugging p’ = p into Corollary 4.2.13, we obtain the description of Jordan auto-
morphisms of SMAs:

Corollary 4.2.14. Let A, C M, be an SMA. A map ¢ : A, = A, is a Jordan auto-
morphism if and only if there exists an invertible matriz S € Ay, a central idempotent
P e Z(A,), a transitive map g : p — C*, and a (p, p)-increasing permutation m € S,
where U := {1 <i <n:(i,i) € supp P}, such that

o() = (SR,)(Pg*(-) + (I — P)g*(-)")(SR,) .

In the special case of block upper-triangular algebras, the description of Jordan em-
beddings attains a much simpler form:

Corollary 4.2.15. Let A and B be block-upper-triangular subalgebras of M,,. Suppose
that ¢ : A — B is a Jordan embedding. Then one of the following is true:

(a) A C B and there exists T € B* such that ¢(-) = T(-)T7!,

(b) A® C B and there exists T € B* such that ¢(-) = T(-)°T .

Proof. Denote A = A, = Ay, ..k, and B = A, = A;, ;.. Since all block upper-triangular
subalgebras are central, U from Corollary 4.2.13 can be either [1,n] or (). Suppose U =
[1,n]. Then p = p. Since all transitive maps g : p — C are trivial (Remark 4.1.2), there
exists an invertible matrix S € B* and a (p, p’)-increasing permutation 7 € S,, such that

¢() = (SRx)()(SRx)~".

We need to show that R, € B, i.e. that (i,7(:)) € p for all i € [1,n]. Similarly as in the
proof of Proposition 4.1.7 we obtain that 7(n) € [l +---+1,—1 +1,n]|. Let 0 € S,, denote
the transposition n <> 7(n). Then as in the proof of Proposition 4.1.7 we conclude that
oo is (p, p')-increasing. Moreover, we have R,o, = R, R, and R, € B* so without loss
of generality by passing to o o we can assume 7(n) = n. Since (n,n) € p/, this allows us
to conduct an inductive argument as in Proposition 4.1.7 to conclude that (i,7(i)) € p’
for all 7 € [1,n — 1]. This completes the proof of this case.

.....

Suppose now that & = (). Then p¥ = p' and ¢ is an antihomomorphism. This case
follows from the previous one by considering the Jordan embedding ¢((-)®) : A — B. O

Corollary 4.2.16. Let A = Ay,
of M,,.

1, be block upper-triangular subalgebras

..........

46



Chapter 4. Jordan embeddings of structural matrix algebras

(a) A and B are algebra-isomorphic if and only if (ki, ..., kp,) = (I,...,1,).
(b) A and B are algebra-antiisomorphic if and only if (kyi,.... ky) = (g, ..., 01).
(c) A and B are Jordan-isomorphic if and only if

(k‘l,...,k}p):(ll,...,lq) or (k}l,..‘,kp):(lq,...,h).

Proof. We write the proofs only for the nontrivial implications.

(a) Let ¢ : A — B be an algebra isomorphism. Then ¢ is a multiplicative Jordan
isomorphism and Corollary 4.2.15 implies A C B. As the same argument applies to
the (multiplicative) map ¢!, we obtain A = B, i.e. (k1,...,kp) = (l1,...,1,).

(b) For an algebraic antiisomorphism ¢ : A — B which is antimultiplicative, Corollary
4.2.15 implies A® C B. Applying the same argument to ¢! yields B® C A. Since
the map ® is involutory, we have B C A® and therefore A® = B (which is equivalent
to A = B®). Consequently, (ky,..., k) = (lg,-..,11).

(¢) By Corollary 4.2.15 a Jordan isomorphism ¢ : A — B is multiplicative or antimul-

tiplicative, so the arguments in (a) and (b) can be applied.
[l

Note that the above conclusions do not follow if we merely assume that A and B are
isomorphic as vector spaces. More precisely, we have:

Proposition 4.2.17. Let Ay, ., and A ., be parabolic subalgebras of M,. Then

k4 k=0 + -+

Proof. Using the standard notation for power sums and elementary symmetric polynomi-
als, we have

kp:k‘1(k1+"'+k‘p)+k2<k‘2+"'+k’p>+"'+k7p—1(kp—1+kp>+k§
=K+ k2 [ kiks

1<i<j<p

= pg(kl, ce kp) + 62(]{?1, cee kip)

1
= pQ(kb ey k?p) + 5(]71(]{1, ey kp)z —pz(kl, ey kn))

1
= 5(712 +p2(k:1, e ]{ip))

-----

and of course the same holds for A;, ;. so the result follows. O

.....

In particular, Ay, ., = Aj,..1, does not imply p = g. Namely, we have
dim .A4,171 = dim .A373 = 27.
Even when p = ¢, the subalgebras do not have to be algebra-isomorphic e.g.

dim A1’4,677 = dim A2’3,578 = 213.
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CHAPTER D

Linear preserver problems on SMAs

5.1 Rank-one preservers

5.1.1 On transitive maps and rank-one preservers

We start this section by examining the connection between transitive maps and rank-one
preservers on SMAs. We first state two elementary and well-known facts regarding the
representation of rank-one matrices.

Lemma 5.1.1.
(a) A matric A € M, is rank-one if and only if it can be represented as A = uv* for
some nonzero vectors u,v € C".
(b) Suppose that a rank-one matriz A € M, has two distinct representations A = u vy =
ugvy where uy, ug, v1,v9 € C*. Then uy || us and vy || ve.
(c) Let uy,ug,v1,v2 € C™ be nonzero vector such that uvj + ugvy is a rank-one matriz.
Then uy || ug or vy || ve.

As before, we make use of relations &y and & (which are defined in Remark 3.1.5).

Lemma 5.1.2. Let A, C M,, be an SMA and let g : p — C* be a transitive map. Suppose
that

g’pﬁ[lm—l]2 =1L

If ® C [1,n — 1]* denotes the equivalence relation corresponding to the quasi-order p N
[1,n — 1)%, then we have the equivalence:

(Vi,j € (p*)'(n))(i R j = g(i,n) = g(j.n)),

g 1s trivial <= {(Vi,j € (P )i =R j = g(n,i)=g(n,j)).

Proof. Suppose that ¢ is trivial and separates through the map s : [1,n] — C*.
Note that for all (i,7) € pN[1,n]* we have

1=g(,j) = R s(i) = s(j).

In particular, for all 1 <1i,7 <n — 1 we conclude

i% ) = s(i) = s(j)
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and then inductively
(5.1.1) iRy = s(i) = s(j).

Let i,j € (p*)~'(n) such that ¢ ® j. We claim that g(i,n) = g(j,n). We have

~—

s(i) (5.1.1) s(j

This proves the first implication. The second implication is proved similarly.

Suppose that the two implications hold true. Define s : [1,n] — C* by first
setting s(n) := 1. For 1 < j < n — 1, let [j] be the equivalence class of & containing j,

and set
g(i,n), ifie[f]n(p*) " (n),
)

s() =4 s, i e [N (o)),
L, if 710 (p*) () = [N (p*)(n) = 0.
Note that s is well-defined. Indeed, if 41,35 € [j] N (p*)'(n), we have i; & iy and

therefore g(i1,n) = g(iz,n). The case iy,is € [j] N (p™)(n) is similar. Suppose now that

i1 € [7] N (p*)7H(n) and also iy € [§] N (p*)(n). Then (iy,n), (n,iz) € p imply (i1,is) € p
and hence by transitivity

1
g(n7 22)

g<i1’n)g(nvi2) = g(i1>i2) =1 = g(ilvn) =

Y

which is exactly what we wanted to show.

In particular, s is constant on each equivalence class of . Now we prove that g
separates through s. If (i,7) € pN[1,n — 1], then clearly i &, j and hence s(i) = s(j)
which implies

: s(i)
9(1,5) =1=—=
ED=1=5)
If (j,n) € p*, then s(j) = g(j,n) by definition and therefore
o s0)
g(]an) - s n)
Similarly we cover the case (n,j) € p*. O

Lemma 5.1.3. Let X € M,. Then X has rank one if and only if X # 0 and for all
1<i,j,k,l <n withi+#k, j#1 holds

Xij Xal| _ 0
Xij X '
Proof. See for example the section on Minors and cofactors in [46]. [

Let p be a quasi-order on [1,n]. Let 1 < i ,j,k 1 < n. We say that ordered pairs
(4,7), (4,1), (k,7), (k,1) € p form a rectangle of the SMA A, if i # k, j # L.

Lemma 5.1.4. Let p be a quasi-order on [1,n| and let g : p — C* be a transitive map.
Then the induced map g* : A, — M, is a rank-one preserver if and only if for every

49



Chapter 5. Linear preserver problems on SMAs

rectangle (i,7), (i,1), (k, j), (k,1) € p we have

g(i,7) g(i,1)
(5.1.2) ’g(k,j) g(k,1)

Proof. [ =] Suppose that ¢* is a rank-one preserver and let (¢, 7), (¢,1), (k,j), (k,l) € p

be a rectangle of A,. The matrix

o

G (Eij+ Eu+ Exj + Ew) = 9(t, ) Eij + g6, D Ey + g(k, 7) Ex; + g(k, 1) E

has rank one, which by Lemma 5.1.3 implies the desired result.

Conversely, suppose that g satisfies the stated condition and let X € A, be a
rank-one matrix. We wish to prove that ¢*(X) is a rank-one matrix. Since clearly ¢*(X) #
0, by Lemma 5.1.3 it remains to verify the determinant condition. Fix 1 < i,5,k,l <n

where i # k, j # 1. 1f {(i,7), (,1), (k,5), (k,1)} € p, then the submatrix [})((” })? has
kj Nkl

9" (X)) 9*(X)il} 0
X N . On the
(X 9" (X)u

other hand, if (4, 7), (¢,1), (k, j), (k,[) is a rectangle of p, we have

at least one zero-row or zero-column, so the same holds for [

Xij X
Xij Xu

and therefore

g (X)i; g (X)a _ 9(1,5)Xs g3, 1) Xy _ g(i,g) g(i,10) (X5 X)) (5.1.2) 0
Xk g Xm| |9k, ) Xns gk, D) Xua|  |g(k,5) g(k, 1) ’
which completes the proof. O

Corollary 5.1.5. Let A, € M,, be an SMA without rectangles. Suppose that g : p — C*
is a transitive map. Then the the induced map g* : A, — M, is a rank-one preserver.

Lemma 5.1.6. Let A, C M,, be an SMA. For every central idempotent P € Z(A,) and
X € A, we have
r(X)=r(PX + (I — P)X").

Proof. 1t is easy to show that if two matrices A, B € M, are supported on mutually
disjoint sets of rows or columns, then

r(A+ B) =r(A)+r(B).
Having this in mind, since Z(A,) C D,,, we have (I — P)* =1 — P € Z(A,). We obtain

r(X)=r(PX+ (I —-P)X)=r(PX)+r((I-P)X)=r(PX)+r((I-P)X"

r(PX + (I — P)X").

5.1.2 Main result

We are now ready to prove the main result of this section.
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Theorem 5.1.7. Let A, C M,, be an SMA.
(a) Let ¢ : A, — M, be a linear unital map preserving rank-one matrices. Then ¢ is a
Jordan embedding.
(b) Let ¢ : A, = M, be a Jordan homomorphism which satisfies ¢(E;;) # 0 for all
(1,7) € p. Then ¢ is a rank-one preserver if and only if the associated transitive
map g : p — C* obtained from Theorem 4.2.J satisfies

‘g(i,j) g(i,l)‘zo
g(k,j) g(k,1)

for every rectangle (i,7), (3,1), (k,7), (k,1) of A,.
The following remark justifies the claim of Theorem 5.1.7 (b).

Remark 5.1.8. If ¢ : A, — M, is a Jordan embedding, then the associated transitive

map g : p — C* obtained from Theorem 4.2.4 is not unique. However, if g, h : p — C* are
5(4)

two such maps, then there exists a function s : [1,n] — C* such that h(i, j) = mg(i,j)
for all (i,7) € p. Indeed, suppose that
S(Pg"() + (I = P)g*(-))S™ = T(Qh*(-) + (I = Q)R (")) T~
for some S, T € M), central idempotents P,Q € Z(A,). Denote A, := diag(1,...,n) €
D,, and note that
SAS™H = S(Pg*(An) + (I — P)Q*(An>t>8_1 =T(Qh" (An) + (I — Q)h*<An)t)T_1
— TAT Y,
which implies T71S <+ A, and hence S = T'D for some diagonal matrix D € D). By
plugging this in and cancelling T from both sides, we obtain

D(P(g"(:) + (I = P)g"())D™ = QR"(-) + (I = Q)h"(-)".

Now let (7, j) € p* be arbitrary. Since P and @ are central, by Remark 3.1.5 we certainly
have P; = P;; and Q;; = @;;. We consider four cases:
o If P, = Pj; = Qi = Q;; = 1, then we obtain

5.9 0)Ey = D(g(i, j)Ei) D Y=n(i,5)Ey = h(i,j) = A
Wy 27

o If P, = Pj; =1 and Q;; = Qj; = 0, then we obtain

Dy .. o _ . .
D.'Q(ZJ)Ez’j = D(g(i,j)Ei;) D t= (h(ZaJ)Eij)t = h(i, j) Eji,
J
which is a contradiction.
e The same argument also shows that the case P; = Pj; = 0 and Q;; = Qj; = 1 is

also not possible.
o If P = Pj; = Qi = @;; =0, then we obtain

D . . o _ o o
2906, ) By = D(g(i,5)Eiy) D" = (h(i, 1) Eyp)' = h(i,5) Es

o1
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which implies h(i, j) = g—ijg(i,j). Overall, if we define s : [1,n] — C* by

: Dy, if P =1,
s(i) == {L

otherwise,

we conclude
h(Z,j) = _g(zvj>7 for all (Zv.]) € p.

which shows that the condition from Theorem 5.1.7 (b) is unambiguously defined
(i.e. it is independent of the choice of the particular transitive map).

Proof of Theorem 5.1.7. First we prove (a). By Lemma 5.1.1, for each (i,7) € p we can
choose u;;,vi; € C" such that ¢(Ej;) = u;vj;.
Claim 5.1.8.1.

(a) For all 1 <14 <mn and distinct j, k € p(i) we have either u;; || wix or vi; || vik-

(b) For all 1 <i < n we have

dimspan{u;; : j € p(i)} =1 or dimspan{v;; : j € p(i)} = L.
If (p*)(4) is nonempty, then the disjunction is exclusive.
(¢) For all 1 <i <n we have the implications
o dimspan{u;; : j € p(i)} =1 = {v;; : j € p(i)} is linearly independent in
Cn.
e dimspan{v;; : j € p(i)} =1 = {w; : j € p(i)} is linearly independent in
Cn.
These are rowwise versions; the columnwise versions of the claims also hold true:
(a’) For all 1 < j < n and distinct 4,k € p~'(j) we have either u;; || ug; or v || vi;.
(b’) For all 1 < j <n we have

dimspan{u; :i € p~'(j)} =1 or dimspan{v;; :i € p~'(j)} = 1.

If (p*)~1(j) is nonempty, then the disjunction is exclusive.

(¢’) For all 1 <7 < n we have the implications
o dimspan{u;; :i € p*(j)} =1 = {v;; : i € p~'(j)} is linearly independent

in C".
e dimspan{v;; :i € p~'(j)} =1 = {uy; : i € p~*(j)} is linearly independent

in C".
Proof. We only prove (a), (b) and (c), as the proofs of (a’), (b’) and (¢’) are analogous

(or one can just pass to the map ¢(-)").
(a) The matrices ¢(E;;) and ¢(E;,) are rank-one and their sum ¢(E;; + E;;,) is rank-one

as well so Lemma 5.1.1 (c¢) applies. Suppose now that w;; || wy and v;; || vig. Let
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a, 8 € C* such that u;, = ou,; and vy, = Bv;;. Then
¢(aBEy — Ey) = afu;jv} T WiV = aﬁuijvfj - aﬁuijvjj =0,

which is a contradiction.

(b) For a fixed 1 <i < n, we need to show that the same option from (a) arises for all
1 < j # k < n such that (i,7),(i,k) € p. Suppose the contrary, for example that
1 <j,k,I <n are distinct indices such that (4, j), (i, k), (4,1) € p and w;; || wig |f wy-
Then by (a) it follows that v;; |f vy || va and hence we have u;; |f uy and vy, |f vy,
which is a contradiction with (a). This proves the first part of the claim. To prove
the second part, assume that (7, j) € p*, but both dimensions are 1. Then u;; || w;;
and vy; || v;;, which is a contradiction with (a).

(¢) We will prove the first claim as the second one is very similar. Fix 1 < i <n and
assume dimspan{u;; : j € p(i)} = 1. For each j € p(i) we can choose a scalar
Aij € C* such that w;; = Ajjus;. Then we have

(b(Ez]) = U]UU - (Azjum)v = uu()\ljvlj) )

so we can replace v;; with )‘_m% and assume that ¢(E;;) = uzvy; for all j € p(1).
Let a; € C,j € p(i) be scalars such that

Z Oéz'jUij = 0
jep(4)
Then

E Odzy i = Uy E Oéz] z] -

JEp( Jep(i

This implies o;; = 0 for all j € p( ), as otherwise the rank-one matrix
is in the kernel of ¢.

jeni) Qi i

]

Claim 5.1.8.2. The sets {u11,...,Un,} and {v1y, ..., vp,} are linearly independent. Fur-
thermore, they satisfy the orthogonality relations

(wis, vjj) = 6j, 1<4,5<n.
Proof. We have

n

= vy = [unn o ] [ v

i=1
In particular, the matrices [ull unn} and [vll vnn} are invertible. We also
have

[52'1']23':1 =1= [Ull Unn})k [ull Unn] = [UMUJJ]ZJ 1= [(ujjﬂvii>]2j:1'
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Denote
Ur :={1 <i<n:dimspan{u;; : j € p(i)} =1},

Vi :={1 <i<n:dimspan{v;; : j € p(i)} = 1}.
By Claim 5.1.8.1 (b), it is clear that

(5.1.3) U UVr={1,....n}, UrNVr={1<i<n:(p*)(i) =0}
Similarly, for the columns, we define
Uo = {1 < j <n:dimspan{uy i € 5 ()} = 1},

Ve :i={1<j<n:dimspan{v;;:i € p '(j)} =1}

and we can make similar observations as above to conclude
(5.1.4) UsUVe={1,....n}, UcNVe={1<j<n:p () =0}
Claim 5.1.8.3. We have

p* S ((Ur\ Vr) x (Vo \Uc)) U ((Vr \Ur) X (Uc \ Vo)),

where LI stands for the disjoint union.

Proof. Let (i,7) € p*. Since (p*)(i) and (p*)~'(j) are both nonempty, by (5.1.3) and
(5.1.4) we have

i€ Ur\Vr)U(VR\UR) and je€ Uc\Vo)U (Ve \Ue).
Suppose by way of contradiction that (i, j) € (Ur\Vr) X (Uc\Ve). It follows w;; || wij || wjj,

which contradicts Claim 5.1.8.2. The case (7, 5) € (Vr \Ugr) X (Ve \Uc) is similarly shown
to be impossible. O

Claim 5.1.8.4. Suppose that (i,7) € p*. If there exists (j, k) € p* then
(i,4) € (Ur\ Vi) X (Ur \ Vr)) U((Vr \Ur) X (Vi \ Ur)).

Proof. As in the proof of Claim 5.1.8.3, first note that i,5 € (Ug \ Vr) U (Vr \ Ur). We
shall assume that i € Ug \ Vg as the other case is similar. Assume first that & # i. Then
by Claim 5.1.8.3 from (i, k) € p* it follows

iGZ/{R\VR — /CGVC\UC — jEZ/{R\VR.
Now assume that k& = 4. Then (i,1), (¢,7), (4,7), (j,4) € p so the matrix
¢(E” + Eij + Eji + Ejj) = U”U;‘; + U/UU:} + Ujﬂ);i + U]’jl};}

has rank one. By (5.1.3), j € Ur\ Vg or j € Vr\URg so by way of contradiction suppose the
latter. Then there exist scalars «, 5 € C* such that u;; = au;; and vj; = Bv;;. Therefore

* * * * — * ) *
Uiy + WiV + UiV + w0y = (Vi + o)+ (Bugi + ug;)vj;
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so by Lemma 5.1.1 (c) it follows that
wii || (Buji +ugg)  or (va+ @) || vy

By Claim 5.1.8.3, since (j,i) € p*, from j € Vg \ Ur we obtain i € Us \ Ve and therefore

wii || | B wsi 4uy

Il
is a contradiction with Claim 5.1.8.2. Similarly, from i € Ugr \ Vg we obtain j € V¢ \ Ue
and therefore

v +a vy | v

—~~

llvsj
is a contradiction with Claim 5.1.8.2. OJ

Claim 5.1.8.5. Suppose that two nonzero vectors v, w € C" satisfy v || w. Then

_{pw) ol

el (w0)

Proof. An easy computation. 0

Claim 5.1.8.6. Suppose that (p, q), (p, s), (r,q), (r, s) € p form a rectangle in A,. Then

2 2 2 2
<qu=up5><ur87uv“q><vv"q=qu><”p8=Uv"8> = Huqu s | ||qu|| s

Proof. By definition we have p # r and ¢ # s which implies that all sets (p*)(p), (p*)(r),
(p*)"Hq), (p*)~*(s) are nonempty, so by (5.1.3) we may assume that p € Ug \ Vg (as the
other case p € Vg \ Ug is similar). We first show that r € Ur \ Vg as well. If r = ¢, then
in particular r # s so (p,7), (r,s) € p* and hence r € Ug \ Vg follows from Claim 5.1.8.4.
Assume r # q.

e If p = ¢, then r # p # s and therefore (r, p), (p, s) € p* so by Claim 5.1.8.4 it follows

that r € Up \ Vkg.
e If p # ¢, then

Claim 5.1.8.3 Claim 5.1.8.3
S B3

pEUR\VR QEV(]\UC TEZ/{R\VR.
Putting it all together, since at least one of (p,q),(r,q) is in p*, and similarly for

(p7 8)7 (T, 8)7 we have

p,7 €Ur\ Vg KIS ) s e Ve \ Uc

and hence, by Claim 5.1.8.5,

u u u Uu
pEUR\VR = Ups = Mum, r GUR\VR = Upg = Mum,
[[2tpq l sl
2
v v v
q €< VC \UC = Upq = Mqu, S & VC \Z/[C —> Upg = Mvps.
||qu” <Up87v7‘s>
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The matrix

O(Epg + Eps + Evg + Erg) = UpgUpy + UpsUps + UrqUy, + UpsVyg

*
*

Upg, U Ups, U
= Upq <qu + < - ps> Up8> + Ups (< = |(2q> Urq +Urs)

2
HU’PCI” Hurs
( )\ ( ) (Vrg» Upa) ol
u U u U v U )
= Upg | Vpg + = B [)25 Ups |+ Urs = TQq ks p2q Upg + e Ups
HUPQH HUTSH ||qu|| <UPS7UT8>

has rank one. Since ¢ € Vo \Ue and r € Ur \ Vg, by Claim 5.1.8.1 (a) we have uy, |f g ||
urs. Claim 5.1.1 (c) now yields

2
Uu ,/U/ S uTS7uT‘ /U’I” 7U v’r’s
(qu+<pq >> | << H2q>< S B | >)

[ty || sl | Upgl (Vps, Urs

In particular, we have

(u ;U > 2
0=t T ol (e ) (o ) Gt )
Ups, U Vpq U v
||:jrs||T2q ||:;;q|T2q (vp:,sws) = {Ups, Vrs) [[wrs]| [[vpg [[4pql
which is exactly what we desired to show. O]

The next claim proves that ¢ is a Jordan homomorphism.

Claim 5.1.8.7. For all (4,7), (k,l) € p we have

(5.1.5) d(Eij o Ey) = ¢(Eyj) 0 ¢(E).

Proof. We will assume throughout that ¢ € Ugr (as the case i € Vi can be treated
similarly). We have several cases to consider.
(1°) Suppose i =1 =k = j. Then

% Claim 5.1.8.2

¢(Ei o Ey) = 20(Ey;) = 2uyv;; 2u;; (Vi vl = 20(Ey)* = ¢(Ey) o ¢(Ey)

so (5.1.5) holds.
(2°) Suppose i =1 # k = j. Then

(L5 0 Eji) = ¢(Ey) + ¢(Hj5) = wzvy; + w0}

Ji*
On the other hand,
O(Eij)p(Eji) + d(Eji) d(Eij) = wi(viug)vj; + wyi(viuig)vi;
= (Ui, Vij)uijVy; + (Wig, Vi) ujivy;
Since (i,7), (7,4) € p*, by (5.1.3) we have i € Ug \ Vg and hence

Claim 5,1.8.4 . Claim 5,1.8.5 <uji7 Ujj>
— ] € UR\VR = Uj; || Ujj — Uj; = ———5 " Ujj,

2
[ |

'iGZ/[R\VR
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. - . /l}.. ’l}
j c Z/[R \ VR Cla1m:5.>l.8.d i c VC \Z/{C s V)i || i Cla1m:5.>l.85 v = <||j;7 HZ) s
1
. - . U . U. .
i c MR \ VR Clalrn:5.>1.8.3j c VC \MC — vis || o Clalm:5,>1.8.5 vij = <Hl’2a ng>vjj-
Jj

We also have

€U\ Vi = uy || wi Olaim 5,1.8.5 iy — (g, wis)

||Un'H2 v

Therefore,

*
<Uji, Uz‘j)”ijvji _ <sza u32J>ujj, <U’L]7 UJ;> vjj (Mu“> (Mvu)
[ vl [z | [[vig]|

Claim 5.1.8.2 <ujia Ujj) <Ujja Uij> (Uij, Uu> <Uii7 Uji) "

2 2 2 2
||Ujj|| ||Ujj|| s | ™| vl
*

= UqVy5,

where the last equality follows by conjugation from Claim 5.1.8.6 for p = ¢ = ¢ and
r = s = j. By exchanging ¢ and j in the same way we obtain

* . . *
(Uij, vji)wjivy; = ;v

This proves (5.1.5).
Suppose k = j but i # I. Then (i, ), (j,1) € pso (i,1) € p* (in particular, i € Ur\Vr
by (5.1.3)). We need to prove that

O(EijEj + EjEy) = ¢(Ey) = uyvj
equals
O(Ei)p(Ej) + ¢(Ej)o(Ei;) = Uz’j(vfjuﬂ)v;z + Ujl(U;luij)U;j
= (w1, vij)wijVj + (Wij, Vj1) Uiy

For the time being, we additionally assume that j # [. First note that we always
have j € Ur \ Vg. Indeed, if i = j, then this is obvious, while if ¢ # j then
(4,7), (4, 1) € p*, so this follows from Claim 5.1.8.4. In any case, since (j,1) € p*,
Claim 5.1.8.3 also implies [ € V¢ \ Ue. We now have

iGUR\VR = Uyj H Wz ZEVC\Z/{C = Vj H i

and hence (u;j,v;;) = 0 by Claim 5.1.8.2. Therefore, the second term of the right
hand size is zero. Now we focus on the first term.

We have
j € UR \ VR = Uj || Wjj, l e VC’ \Z/{O = Vj || Vi,
. . . . . Claim 5.1.8.3 .
i € Up\Vr = uj || ua, (i=jor(ij =""7€Vc\Uc)) = vy | vj;
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and therefore (again invoking Claims 5.1.8.5 and 5.1.8.2),

*
(uji, vig)ui vy = <<uﬂ,uj2j>“jja <U”’Uj§>”jj> (<u”7ul2[>“il> <<Uﬂ’v§>vﬂ>
s | v ez [lvall

g, ugg) (g, vig) (g, wa) (Ui, vi)

_ v
el g 1 el vl Z

*
= U3 V;,

where the last equality is obtained by conjugating the equality from Claim 5.1.8.6
for (p,q) = (i,1) and (r,s) = (j,7). This proves (5.1.5).

It remains to consider the case j = [ so we are looking at (i,1), (I,1). We need to

prove that
o(EaEn + EnEq) = ¢(Eq) = uiv;
equals
O(Eu)o(En) + ¢(En)d(Ey) = wq(viun)vy + un(vjua)vy
(5.1.6) = (uu, va)uavy + (Wi, vp)unvy.

Since i € Ug \ Vg, we have uy || u; and thus (uy, vy) = 0 by Claim 5.1.8.2, rendering
the second term of (5.1.6) zero. We have

1€ Z/{R \ VR Claim:5.>1.8,3 l e VC \Z/{C — Uy H Vil

and therefore (by Claims 5.1.8.5 and 5.1.8.2), the first term of (5.1.6) is

*
(vit, vn) lvul®
<Uu7 Uil>uilvl*l = <ulh HZU;TU” Ui <Uil, Uu>vil = uilv;"l

which proves (5.1.5).

(4°) Suppose i = [ but k # j. By the commutativity of the Jordan product, this case
reduces to (3°) by exchanging E;; and Ej,.

(5°) Suppose k # j and ¢ # [ (so, as before, i € Ur \ Vg). Then the left hand side of
(5.1.5) is zero, while the right hand side equals

O(Eij)9(Er) + ¢(Er)o(Eij) = wi(viur) vy + g (Vg uig)vj;

= (Upt, Vi) Uij Uy + (Wig, Vrt) U V3

Note that
(5.1.7) (i=jor(i#j EE" j e Vo \Ue)) = vy | vy

Suppose that k € Ugr. Then

(k=lor (k#1 = kelUp\ Vg 251 e Vo \U)) = v || .
We also have

1 €U = uy || Ui k EUr = up || Uk,
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s0 (ug, vi;) = 0 and (u;j, vg) = 0 by Claim 5.1.8.2.
Suppose now k € Vg \ Ug. Then in particular i # k. Assume first that j # [. We
have
1€ UR —— Uy H Uy ke VR ——> Vi || Vkk,
(k=lor (k+#1

so by (5.1.7) we have (uy, vi;) = (w;j, vig) = 0 by Claim 5.1.8.2. Now assume j = .
Then i # | = j so (i,7), (k,j) € p* and therefore

Cla1m0183 l c UC\VC)> — w; H Upg

Claim 5.1.8.3 Clalm 5.1.8.3

iEUR\VR jEVC\uC /{ZEUR\VR,

which is a contradiction. Therefore j = [ is impossible.
In either case, this proves ¢(E;;)¢(Ex) + ¢(Ew)P(E;;) = 0.

Claim 5.1.8.8. ¢ is injective.

Proof. ¢ is a Jordan homomorphism which clearly satisfies ¢(E;;) # 0 for all (i,j) € p.
Now Theorem 4.2.4 directly implies the claim. [

This concludes the proof of (a). Now we prove (b). In view of Lemma 5.1.4, it suffices to
prove that ¢ is a rank-one preserver if and only if g* is a rank-one preserver. Theorem 4.2.4
implies that there exists an invertible matrix 7" € M,*, a central idempotent P € Z(A,),
and a transitive map ¢ : p — C* such that

¢(-) =T(Pg*(-)+ (I = P)g"(-)") T~
For each X € A, we have

r(X) = r(¢(X)) = r(T(Pg"(X) + (I = P)g"(X))T™)
=r(Pg"(X) + (I = P)g"(X)")
Lemm:a 5.1.6 (g ( ))

This implies that ¢(X) is a rank-one matrix if and only if ¢*(X) is. Since X € A, was
an arbitrary rank-one matrix, the claim follows. O

Remark 5.1.9. For a concrete example showing that the converse of Theorem 5.1.7 (a)
does not hold in general, consider the map from Example 4.1.1. On the other hand, by
direct computations, one easily shows that the converse of Theorem 5.1.7 (a) does hold if
n < 3. Moreover, for general n € N and an SMA A, C M, the same holds true if we only
assume |C] < 3 for all C' € Q (following the notation from Chapter 3). It can be easily
shown that this condition, combined with the central decomposition of A, from Remark
3.1.5, implies that all transitive maps g : p — C* are necessarily trivial. Moreover, using
Lemma 5.1.6, it turns out that in this case all Jordan embeddings A, — M,, are in fact
rank preservers, which will be a topic of the next subsection.

5.1.3 When does the converse of Theorem 5.1.7 hold?

Lemma 5.1.10. Let p be a quasi-order on [1,n] with 1 <n < 3. Then all transitive maps
g:p— C* are trivial.
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Proof. e If n =1, the claim is obvious.

o If n = 2, then A, is either Dy, or contains an entire row or an entire column. The
first case is clear and the second one follows from Remark 4.1.2.

e Suppose n = 3. Then pN{1,2} is a quasi-order on {1,2} s0 g|,n{1,2) : pN{1,2} = C*
is a trivial transitive map. Without losing generality we can assume that g|,n{12; =1
so that we are in the position to use Lemma 5.1.2. If (1,2),(1,3) € p, then A,
contains the entire third column so ¢ is trivial by Remark 4.1.2. If at most one
of (1,2),(1,3) is in p, then the desired condition is trivially fulfilled. Similarly we
argue for the elements in the third row.

]

Lemma 5.1.11. Let A, C My be a central SMA. Suppose that a transitive map g : p —
C* has the property that the induced map g* : A, — My is a rank-one preserver. Then g
15 trivial.

Proof. pN{1,2,3} is a quasi-order on {1, 2,3} so by Lemma 5.1.10 we can without loss
of generality assume that g|,nf1233 = 1 so that we are in the position to use Lemma
5.1.2. We will discuss elements in the fourth column; the discussion for the fourth row
is analogous. Assume that some distinct i,k € (p*)7'(4) satisfy ¢ & k, where & denotes
the respective relation on p N {1,2,3}. We need to show g(i,4) = g(k,4). Since we are
working on {1, 2,3}, by unraveling the definition of i & k we arrive at these two options:
e Suppose that i &y k. Then (i, k) € p or (k,i) € p; without loss of generality assume
the former. Then (4,k), (¢,4), (k, k), (k,4) is a rectangle in A, and therefore by
Lemma 5.1.4 we have

9(i. k) g<¢,4>‘ ‘1 g<¢,4>‘ ‘
0= = ¢(1,4) = g(k,4).
o | = fh| = sen=ota
e Suppose that there exists j € {1,2,3}\ {i, k} such that i Ry j Ry k. If (4,7), (j, k) €
por (j,1),(k,j) € p, then by transitivity of p we arrive at ¢ &, k, which was the
first case. If (4,7), (k,j) € p, then (i,7), (i,4), (k,7), (k,4) form a rectangle in A,
and therefore by Lemma 5.1.4 we have

0— ‘g(z',jl) g(z’,4)‘:'1 g((li:i))‘ (i 4) = g(k,4).

Finally, suppose that (j,1), (4, k) € p. Then by transitivity from (4, k), (k,4) € p we
obtain (7,4) € p and clearly j & 7, k so the previous cases allow us to conclude

g<i74) = g(j74) = g(k74)'
L]

Claim 5.1.11.1. Let A, C M5 be a central SMA. Suppose that a transitive map g : p —
C* has the property that the induced map g* : A, — M5 is a rank-one preserver. Then
g is trivial.

Proof. The proof of this assertion is completely analogous to the proof of Lemma 5.1.11.
Notice that (g|,nq1,...43)* is a rank-preserver so we can use Lemma 5.1.11 and without loss
of generality assume that g|,n{1234 = 1 so that we are in the position to use Lemma
5.1.2. We will discuss elements in the fifth column; the discussion for the fifth row is
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analogous. Assume that distinct i,k € (p*)~'(5) satisfy i & k, where & denotes the
equivalence relation on {1,2,3,4} with respect to the quasi-order pN{1,2,3,4}. We need
to show ¢(i,5) = g(k,5). Since we are working on {1, 2,3,4}, by unraveling the definition
of 1 & k we arrive at these options:
e Suppose that i &y k. Then (i, k) € p or (k,i) € p; without loss of generality assume
the former. Then (¢,k), (¢,5), (k, k), (k,5) is a rectangle in A, and therefore by
Lemma 5.1.4 we have

_ |9l k) g(,5)] _ |1 g i,5)
o= 1) = sem| = 969 =oth)
e Suppose that there exists j € {1,2,3,4}\ {4, k} such that i By j Xy k. If j € 72(p*),
then by the previous case it follows that

g(i,5) - g(jv 5) = g(k75)'

This situation is obtained from transitivity when (j,7) € p or (j, k) € p. Therefore
it only remains to consider (i, 7), (k, j) € p. Then we observe that the ordered pairs
(¢,7),(4,5), (k, j), (k,5) form a rectangle on A, and therefore by Lemma 5.1.4 we

have D i)

9(i,7) 9(3,5 1925‘

‘g(lw) g(k,5)‘ '1 g(k, 5 9(1,5) = g(k,5).

e Suppose that there exist distinct ji, 72 € {1,2,3,4} \ {i, k} such that i &y j; &y
Jo Ro k. If ji € (p*)71(5) then by the previous two cases it follows that

9(i,5) = g(jr,5) = g(k,5).

Similarly when j, € (p*)7*(5). At least one of these two cases arises from transitivity
when (j1,7) € p or (j2, k) € p. It remains to consider the case (4, j1), (k, j2) € p and
analyse cases with respect to j; g ja. If (j1,J2) € p, then by transitivity (i, ) € p
and therefore 1 &y jo &y k so we are in the previous case. Similarly, if (js2,j1) € p,
then by transitivity (k,j1) € p and therefore i &y j; =y k so we are in the previous
case. Overall we conclude ¢(i,5) = g(k, 5).

O

In the context of the previous three claims, we conclude:

Lemma 5.1.12. Let A, C M, be a central SMA with 1 < n < 5. Suppose that a
transitive map g : p — C* has the property that the induced map g* : A, — M, is a
rank-one preserver. Then g is trivial.

Corollary 5.1.13. Let A, C M,, be a SMA such that |C| <5 for all C € Q. Then every
unital linear rank-one preserver ¢ : A, — M, 1is of the form

o) = S(P()+ (I = P)())S™
for some central idempotent P € D,, and S € M,*.

Proof. By Theorem 5.1.7, ¢ is a Jordan embedding. In view of Lemma 4.2.1, without loss
of generality we can assume that ¢|p, is the identity map. Now we can use Proposition
4.2.7 and Remark 4.2.8 to conclude that all transitive maps g¢ : Ac — C* for C € Q are
trivial so the result follows. O]
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In particular, by Corollary 5.2.7 it will follow that ¢ is a rank-preserver.

Example 5.1.14. Claim 5.1.12 is false when n > 6. A counterexample is given by the
"staircase algebra", a central SMA A, C M, defined by the quasi-order

A U{(i—14), (i +1,i) : 2 <i <n—2even} U{(n,2)}, if n is odd,
P= A, U{(i—1,i),(i+1,0):2<i<n-—2even}U{(l,n),(n—1,n)}, ifn iseven.

Consider the transitive map g : p — C* given by

a, if (4,5) = (1,n),
g(Z,j) = 57 if (Zm?):(n_]-an)a
1,  otherwise

if n is even, and
a, if (i,7) = (n,2),
g(,laj) = 57 if (Z7.7):(n7n_1)7
1, otherwise
if n is odd, where o, 5 € C*, o # 3. Then the induced map g* : A, — A, is a rank-one

preserver (by Claim 5.1.4) but nontrivial (by Lemma 5.1.2). Visually, for n = 6,8 these
algebras and maps are given by

[1 1.0 00 0 0 «f

(1 10 0 0 «of 01 000O0O0TDU

01 0000 01 110000

011100 0O0001O0O0O0D0
00010 0|’ 0001110 0}

0001127 0O000O0O0OT1FUO0OFD0

00 00 0 1} 000O0O0OT1TT12p

00 00O0O0O0 1)

while for n = 7,9 they are given by

1 1.0 00 00 0 0]
(1 1. 0 0 0 0 O] 01 00O0O0O0OTUO0ODDO
01.000O0O 011 100O0O00
0111000 00010O0O0OTUO0DTDO
000100 0], 000111000
0001110 0 000O0OT1O0TO0OFO
0O000O0O0OT1FO 0000O0OT1T1T1FP0
0 00 0 B 1} 0O000O0O0OO0OO0OT1FP0
00 00000 B8 1

Now we state a sufficient condition for the converse of Theorem 5.1.7 (and the later
Theorem 5.2.5):

Corollary 5.1.15. Let A, C M,, be a SMA such that |C| < 3 for all C € Q. Then every
Jordan homomorphism ¢ : A, — M, such that ¢(E;;) # 0 for all (i,7) € p, is a rank
preserver.
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Proof. The proof is very similar to the proof of Corollary 5.1.13, but relies on Lemma
5.1.10 instead of Lemma 5.1.11. O

Example 5.1.16. Let n > 4 and consider the quasi-order
p=AU{(l,n—1),(L,n),(2,n—1),(2,n)}.

Then the map
2, if (1,7) = (1,n),
1, otherwise

g:p—C*, g(i,j)—{

is transitive so the induced map ¢* : A, — M, is a Jordan embedding. However, by
Lemma 5.1.4 it is not even a rank-one preserver. This SMA A, satisfies

O={{1,2,n—1,n}Uu{{i}:3<i<n-—2}

so it has a class of cardinality 4.

5.2 Rank and determinant preservers

5.2.1 Rank preservers

As previously announced, in this section for an arbitrary SMA A, C M, we fully describe
the form of all rank preservers A, — M, (Theorem 5.2.5). We start with the following
lemma.

Lemma 5.2.1. Let A, C M, be an SMA. Assume that g : p — C* is a transitive map
such that

g|pﬂ[1‘n—1}2 =1
and that the induced map g* : A, — M, is a rank preserver. Then g is trivial.

To motivate the proof of Lemma 5.2.1, which is rather technical, we first illustrate it
on a concrete example.

Example 5.2.2. Consider the SMA A, C M given by

(1,1) 1,2) 0 0 0 0 0 0 0 (1,10
0 (22) 0 0 0 0 0 0 0 0
0 (32) (33) (334 0 0 0 0 0 0
0 0 0 (4,4) 0 0 0 0 0 0
A_lo 0o 0 G4 6eIEe 0 00 0
*~lo 0o 0o 0 0 (66 0 0 0 0
o 0 0 0 0 (7.6) (.7) (.8) 0 0
o 0 0 0 0 0 0 (88 0 0
o 0 0 0 0 0 0 (98 (99 (910
| 0 0 0 0 0 0 0 0 0 (10,10)_
If ® denotes the equivalence relation on {1,...,9} with respect to the quasi-order

pN{1,...,9}2 then by Lemma 5.1.2 we have to show the implications

(Vi,j € (p*)71(10))(i B j = g(i,10) = g(j, 10)),
(Vi,j € (p*)A0))i B j = ¢(10,4) = ¢(10,7)).
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The second implication is vacuously true, and to prove the first one we only have to
consider 1,9 € (p*)~1(10). Their equivalence 1 & 9 (in pN{1,...,9}?) manifests through
the chain of length 8 given by

(1,2),(3,2),(3,4),(5,4),(5,6),(7,6),(7,8),(9,8).

Consider the following matrix A € A,, which has 1 at those exact positions:

0100 000 0 0 1
000 0 000 0 0 0
010-10000 0 0
000 0 000 0 0 0

q_l000 10100 00
000 0 000 0 0 0
000 0 010 —-10 0
000 0 000 0 0 0
000 0 000 10 —1
000 0 000 0 0 0]

Clearly, the first four nonzero columns of A are linearly independent, while the last one
is precisely the sum of all the previous ones. Therefore, r(A) = 4 and hence the rank of

010 0 000 0 0 g(1,10) ]
000 0 000 0 0 0
0101000 0 0 0
000 0 000 0 0 0
. 0001010 0 0 0
T@=1000 0 000 0 0 0
000 0 010 -1 0 0
000 0 000 0 0 0
000 0 000 —1 0 —g(910)
000 0 000 0 0 0 |

is 4 as well. Now it is easy to arrive at g(1,10) = g(9, 10), which is the desired conclusion.

In general, every pair a = b for which the implications from Lemma 5.1.2 apply requires
us to produce a similar chain of consecutive positions which establishes the equivalence.
Hence, first we prove this auxiliary lemma:

Lemma 5.2.3. Suppose p is a quasi-order on [1,n] and assume that distinct a,b € [1,n]
satisfy a = b (where = corresponds to p). Then there exist m € N and distinct a =

io,il, ey bme1, 0 = b € [1,n] such that at least one of the following is true:
(G,’ll) (i2,11), (22, %3), (44,13), - - -, (b1, tm—2), (Im-1,0) € p~,
2 (CL,ZI), (ZQ,Zl), (12,13) (24,i3), ceey (Zm Q,Zm 1), (b Zm 1) € p s
3. (Zl,a) (’il,lg), (23,12), (23,i4), RN (Zm 1,Zm_ ), (’Lm 1, ) € p ,
4 (Zl ) (Z1,ZQ>,(23,22) (23,i4),...,(lm Q,Zm 1) (b Zm 1)
Proof. By definition of &, there exists m € N and a = ig, 41, .. .,%n_1,im = b € [1,n] such
that
a =g Ry i1 Ry iz Ry -+ Ry o by = b.
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We further assume that m is chosen to be minimal (in particular, the elements are dis-
tinct). Certainly m > 1 since a # b so iy exists.

By definition of a & i;, we have (a,i,) € p or (i1,a) € p. First we assume the former.
Define a sequence (s;)72, of length m in [1,n]* by

{(ij17ij)a lfj is Odd,
Sj =

(ij, ij—l)a lfj is even.

Note that (s;)7L, is precisely a sequence of the form (1) or (2) if m is odd or even,
respectively. It therefore suffices to prove that s; € p for all 1 < j < m. We prove this
fact by induction on j. For j = 1 we have s; = (a,4;) € p by assumption. Assume that
m > 2 and that s; € p for some 1 < j < m — 1. We aim to prove s;;1 € p. If j is
even, then by the inductive hypothesis, we have s; = (ij,9;_1) € p. Since i; Ry i41, by
definition we have (i;,7;41) € p or (ij4+1,7;) € p. If the latter is true, by transitivity we
would conclude (i;11,%;-1) € p, and hence

a:ZOzO"'QOZj—leZj—i-l%0"'%0@m:b

which contradicts the minimality of m. Therefore, s;41 = (i;,%;41) € p, which is what we
wanted to show. On the other hand, if j is odd, then by the inductive hypothesis we have
s; = (ij-1,1j) € p. Since i; Ry i;41, by definition we have (i;,7;11) € p or (ij11,%;) € p,
but the former would, by transitivity, again contradict the minimality of m. Therefore,
we conclude s;+1 = (i41,4;) € p, thus completing the inductive step.

The other case (i1,a) € p follows from the above argument applied on the reverse
quasi-order p', yielding a sequence of the form (3) or (4). ]

Proof of Lemma 5.2.1. If & denotes the equivalence relation on [1,n — 1] with respect to
the quasi-order p N [1.n — 1], then by Lemma 5.1.2 we have to show the implications

{(W,j e (p) )i R j = gli,n) = g(j,n)),
(Vi,j € (p*)(n)(i R j = g(n,i) =g(n,7)).

We will show the first one as the second one will then follow by considering the reverse
quasi-order p' and the corresponding algebra A.

Suppose that distinct a,b € (p*)~!(n) satisfy @ & b. Then by Lemma 5.2.3 applied on
the quasi-order p N {1,...,9}* there exists m € N and distinct a = ig, i1, .- -, im_1,im =
b € [1,n — 1] such that at least one of the conditions (1) — (4) is true.

Assume first that m = 1. Then (a,b) € p or (b,a) € p. In the first case we notice that
(a,b), (a,n), (b,b), (b,n) form a rectangle in A, so by Lemma 5.1.4 it follows

1 g(a,n)

=[5 4] = ate.m ~ gfan)

In the second case we proceed similarly with the rectangle (b, a), (b,n), (a,a), (a,n). There-
fore in the remainder of the proof we can assume that m > 2.

Assume that we are in the case (2). In particular, m is even. Consider the matrix
A e A, given by

A = (Ejpi, +Eigi,)— (Eiyiy+ Eiyiy)+ - +(—1) 2 (B +E; i)t Eant(—1)2 7 By,

m—2tm—1

65



Chapter 5. Linear preserver problems on SMAs

Note that A has rank exactly equal to 7. Namely, the

linearly independent, while its n-th column is their sum:

Z (_1)%(617 +€ij+2) :fa+ (_1)%_165‘

0<j<m—-2
J even

m

% columns 41,13, ..., 4,1 are

vV vV
ij+1-th column of A n-th column of A
The map ¢* maps the matrix A to the matrix

9" (A) = (Eigi, + Eiyiy) — (Bigiy + Bigig) + -+ + (1) 2 (B
+ g(a’u n)Ean + (_1>%_lg<b7 n)Ebn

_'_ Eim'im—l )

m—2tm—1

which, by assumption, also has rank 7. Hence there exist scalars ag, az,...,q, 2 € C
such that

S ay (D + i) = glan)en + (—1)F (b, ne.
0<j<m—2
J even

VvV TV
tj41-th column of g*(A) n-th column of g*(A)

Comparing coefficients of e;, yields

lh=a: ap = g(a,n),
ijforeven2 <j<m-—2: (—1)%0@_2 +(-1)ia; =0 = a; = a;_9,
Im =0 (—1)T_2am_2 =(-1)271g9(b,n) = au_o = g(b,n).

Inductively it follows
g(a7n) =0y =0Qg == 0p_2 = g(b7n)7

which is precisely what we desired.

Assume that we are in the case (1). Then by transitivity (im,_1,b), (b,n) € p* implies
(im-1,m) € p*. Then a and i,,—1 are connected by a sequence of the form (2) and hence
g(a,n) = g(ipm_1,n). Furthermore, we have i,,_1 &y b so by the m = 1 case it follows
g(im—h n) = g(b7 n)

Cases (3) and (4) are treated similarly.

[

Lemma 5.2.4. Let A, C M,, be an SMA and let g : p — C* be a transitive map. Suppose
that the induced map g* : A, = M, is a rank preserver. Then g is trivial.

Proof. We prove the claim by induction on n. For n = 1 the claim is clear. Suppose that
n > 2 and that the claim holds for all SMAs contained in M,,_;. As the automorphism

(g‘pﬂ[l,nflP)* : Apﬂ[l,nfl]Q — '/4,00[1,7171}2

induced by the transitive map g| pn1,n—1)2 coincides with the restriction of g* on Ajnp ,—1)2,
which is a rank preserver, by the induction hypothesis g|,nn—1)2 is trivial. Hence, there
exists a map s : [1,n — 1] — C* such that

g(i, j) = o for all (i,5) € pN [1,n — 1]%
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Additionally set s(n) := 1 and define a new transitive map

. s(j) . .
h:p— C* h = )
p : (i, ) S@.)g(w)
Note that h|pnpn—12 = 1. Furthermore, if we denote D := diag(s(1),...,s(n)) € D),
then one easily verifies that
h*=D7'g*()D
so h is also a rank-one preserver. Lemma 5.2.1 implies that h is trivial, which implies

that ¢ is trivial as well. O

Theorem 5.2.5. Let A, C M, be an SMA. A map ¢ : A, — M, is a linear unital rank
preserver if and only if there exists an invertible matriz T' € M,* and a central idempotent

P e Z(A,) such that
(5.2.1) ¢() =T (P()+ T —P))) T

Proof. Suppose that ¢ : A, — M, is a linear unital rank preserver. By Theorem
5.1.7 (a) it follows that ¢ is a Jordan embedding. Theorem 4.2.4 then implies that there
exists an invertible matrix 7" € M, a central idempotent P € Z(A,), and a transitive
map g : p — C* such that

o(-) = S(Pg*(-) + (I — P)g*(-)")S™.

By a similar argument as in the proof of Theorem 5.1.7 (b) we obtain that r(X) =
r(¢(X)) = r(g*(X)) for each X € A,. It follows that ¢g* is a rank preserver, so by Lemma,
5.2.4 we conclude that the transitive map g is trivial. By Lemma 4.1.3, the induced map
g* is of the form g* = D(-)D~! for some D € D). Consider I' € D given by

oo if (4,]) ¢ supp P.

_— {Djj, if (j,j) € supp P,
Ji
For all X € A, we have

S (Pg"(X) + (I — P)g"(X)") 5~
S(PDXD™'+ (I - P)D'X'D) S
=S(D(PX)D'+D ' ((I-P)X")D) S
STPX)r'+r(I-PXHr) s

T(PX + (I — P)X")T!

where T := ST € A;.

Suppose that ¢ : A, — M,, is of the form (5.2.1) for some invertible matrix 7" € M*
and a central idempotent P € Z(A,). Then, by Lemma 5.1.6, for all X € A, we have

r(¢(X)) =r(PX + (I — P)X") = r(X),
so that ¢ is a rank preserver.

Remark 5.2.6.
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(a) In Lemmas 5.2.1 and 5.2.4 and in Theorem 5.2.5 it actually suffices to assume that
the respective map preserves the rank of matrices up to max {1, L%J — 1}. Indeed,
let 1 <a,b <n—1andm € N be as in the beginning of the proof of Lemma 5.2.1. To
prove the result, we use the fact that ¢g* is a rank-one preserver, while if m > 2 then
we additionally use that g* preserves rank %. Since ig,i1,...,%m € {1,...,n — 1}
are distinct, it follows that m +1 < n — 1 so we arrive at % < % — 1.

As a consequence of (a), every unital rank-one preserver ¢ : A, — M, where n <5,
is necessarily a rank preserver. In fact, we already showed in Corollary 5.1.13 that
for general n € N and A, C M, the same result holds whenever |C| < 5 for all
CeQ.

Corollary 5.2.7. Let A, C M, be an SMA. A map ¢ : A, — M, is a linear rank
preserver if and only if there exist invertible matrices S,T € M,* and a central idempotent

P e Z(A,) such that

¢() =S (P()+I=P)())T.
Proof. In either direction it follows that the matrix ¢(I) € M, is invertible. The equiva-
lence follows by applying Theorem 5.2.5 to the unital map ¢(I)~ e(-). ]

Example 5.2.8. Corollary 5.2.7 cannot be further strengthened by assuming that ¢ :
A, — M, is only a rank-k preserver for all 1 < k < n — 1. Indeed, let A, = D,, and
consider the map ¢ : D,, — M,, defined by

_a:n + Ty, Tnn Tnn 0]
Ton Lo + Tnn Tnn 0
diag(z11, ..., Tpn) > : : :
Tnn Tnn T(n—1)(n-1) T Tnn 0
0 0 0 0]

Clearly, ¢(I) is a singular matrix, so in particular ¢ is not of the form outlined in Corollary
5.2.7. Further, ¢ preserves rank of all singular matrices (hence ranks up to n—1). Indeed,
let X € D,, be a singular matrix. We need to prove that 7(¢(X)) = r(X). This is clear if
Znn = 0 so assume that z,, # 0. By conjugating by a permutation matrix we can further
assume that xy; = 0. By subtracting the first row from rows 2,...,n — 1, we conclude
¢»(X) has the same rank as

R Tn O]
0 Tog - 0 0
) 3 dlag(xmw Z22y .- T(n—1)(n—1)» 0) ~ Xv
0 0 T(n-1)(n-1) 0

0 0 - 0 o

where ~ denotes the matrix equivalence.

5.2.2 Remarks about determinant preservers

Note that (algebra) automorphisms of a unital subalgebra A C M,, are not necessarily
determinant preservers. Indeed, consider the subalgebra

A = {diag(r,z,y) : 7,y € C} C My
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and the automorphism ¢ € Aut(A) given by

p(diag(z, z,y)) := diag(y, y, v).

On the other hand, SMAs do satisfy this property. We establish this fact in the remainder
of this short subsection.

Lemma 5.2.9. Let S C [1,n] be a subset and suppose that X € M,, satisfies
supp X C (S x S) U (8¢ x §°).
Define an idempotent P := Eies FE;; € M,,. Then
det(PX + (I — P)X") = det X.
Proof. Define the subgroup
Sn(S) ={ce€sS,:0(5)=8} <S5,

of all permutations o € S,, which fix the sets S and S¢ (this is usually called the stabilizer
subgroup). Since

supp(PX + (I — P)X") C (8 x §) U (8° x §°),

when calculating det(PX + (I — P)X"), it suffices to sum over permutations from S, (S).
We have

det(PX + (I — P)X") = ) (sgno) [[ (PX + (I - P)X")0()

0€ESh 1<i<n

— Z (sgno) H (PX+ (I —P)X"iw
7ES(S) 1<i<n

= Z (sgno) (H(PX + (I — P)Xt)w(i))
0E€SL(S) €S
. (H(PX + (I — P)Xt>w(z)>

1€S¢

= Z (sgno) (H Xw(i)> (H XU(i)i) .

0€S,(S) i€S i€Se

Notice now that every o € S, (S) can be uniquely written as a composition o = 01 009 =
09 0 01 of two permutations o1, 09 € 5,(S) such that o1|s and os|se act as the identity.
Having this in mind, we continue the calculation.

det(PX + (I — P)X") = Z (sgnoy)(sgnoy)) (H Xm(i)) (H Xaz(i)i)

01,02€5n(S), €S eS¢

o1|s=ids,
0’2|Sc Zidsc
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= Z (sgnoq)( SgHU2 (HXWI )(HXiozl(i)>

01,02€5n(S), €S 1€S°¢
o1|s=ids,
Jg|sc=id5c

= Z (Sgl’lO’l Sgn02 (HXun z)) (HXWQ@))

O’1,UzESn(S), €S eS¢
o1ls=ids,
Jg|sc=id5c
= Z (Sgna) H Xiag(i)
o€SR(S) 1<i<n
= Z(sgna) H Xios ()
0ESH 1<i<n
=det X

Here we used the fact that for oy € S, such that o3|s = ids, we have
{Xag(i)i . 'l € SC} = {Xiog(’i) . Z € SC}
and that o, ' has the same property o, '|s = ids. []

Lemma 5.2.10. Let p be a quasi-order on [1,n] and let g : p — C* be a transitive map.
Then the induced map g* : A, — M, is a determinant preserver.

Proof. Denote by
SPi={oc €S, (i,0(i) e p,V1<i<n} <S5,

the subgroup of all permutations ¢ € .5, such that the graph of the function ¢ is contained
in p. Let X € A, be arbitrary. Since X and g*(X) are supported on p, we have

detg"(X) = " (sgmo) [ o°(X

€Sy, 1<i<n

= Z(sgna) H 9(i, (i) Xio)

oESH 1<i<n

— Z(Sgng) ( H g(i,a(i))) ( H Xia(i)) :

oeSh 1<i<n 1<i<n

To prove det g*(X) = det X, for a fixed o € S, we need to show that [[,,,, 9(3,0(i)) = 1.

We have
H g(i, o (i (( H gli, o(i ) ( H g(U(i)ao'?(i))))
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PN

= ( I1 g(i,a‘*(i)))

1<i<n

1

- ( I1 g(z’,a%»)z

1<i<n

for any & € N. By choosing k € N large enough such that 2* exceeds the order of o, we
obtain that the last expression is equal to 1, which is what we wanted to show. O

Proposition 5.2.11. Let A, C M,, be a SMA and let ¢ : A, — M, be a Jordan embed-
ding. Then ¢ is a determinant preserver.

Proof. By Theorem 4.2.4, there exists an invertible matrix S € M, a central idempotent
P e Z(A,), and a transitive map ¢ : p — C* such that

¢(-) = S(Pg*(-) + (I = P)g*(-)")S.
For all X € A, note that

supp X C ((supp P) x (supp P)) U ((supp P)° x (supp P)°)
and therefore

det ¢(X) = det(S(Pg"(X) + (I — P)g"(X)")S™)
— det(Py"(X) + (T = P)g" (X))
Lernm:a 5.2.9 det g* (X)

Lemma 5.2.10
= det X.

]

Remark 5.2.12. There is a shorter, less computational proof of the previous fact which
we outline here. In view of Lemma 3.1.4, one can assume that A, satisfies

diag(M/ﬂa S Mkp) - Ap - Akl ..... kp

for some block upper-triangular subalgebra Ay, . r, € M,. Then, by Lemma 4.2.1, one
can assume that ¢|p, is the identity map. Then similarly as in the proof of Proposition
4.2.7, it follows that ¢ maps each diagonal block of A, into itself. On the other hand, the
restriction of ¢ onto each diagonal block My, is a Jordan embedding of M, and hence a
determinant preserver. Since the determinant of ¢(X) is completely determined by the
action of ¢ on the diagonal blocks of the matrix X € A, it follows det ¢(X) = det X.

Example 5.2.13. In contrast with the M,, case (Theorem 2.5.1), linear determinant pre-
servers A — M, on a general SMA A C M,, are not necessarily Jordan homomorphisms.
For example, any linear map ¢ : 7, — M, which acts as identity on the diagonal and
satisfies ¢(E;;) || Ei; for all 1 < 4 < j < n clearly preserves the determinant, but is
nowhere close to a Jordan homomorphism in general. Another such example is any map
of the form X — SXT for any S,T € M with det(ST) = 1 and T # S~', though this
is less interesting since it is not a unital example.
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CHAPTER 0

Nonlinear preserver problems on SMAS

6.1 Groundwork
Lemma 6.1.1. Let A, C M,, be an SMA. Define
R :={Ae€ A,: A is a rank-one non-nilpotent}.
Then
R = {ab* € M, : a,b € C",31 < k < n such that aej, e b* € A} C A,
In particular, R contains all matrices in A, supported in a single row or a single column.

Proof. Note that
R={w* €A, :u,veC" vu#0}.

By the lower-semicontinuity of the rank, clearly any nonzero element A € R has rank
one and hence is of the form A = ab* for some nonzero vectors a,b € C". Since A € A,,
we have

(suppa) x (suppb) = supp A C p.

For the sake of concreteness, we assume that M,, is equipped with the norm

[ X oo :=  max | Xijl.
Denote
= i Al > 0.
a (z‘,j)r?slurxlapA| il

By the assumption, there exist uv* € R (where u,v € C*, v*u # 0) such that ||uv* — A|| <
w. In particular, for each (i, j) € supp A we have

|Aij| = [(wv®)is| < Ay — (o)l <p = [(wv")iy| > |Ay[ —p >0
so w;U; = (uv*);; # 0. It follows
(suppa) x (suppb) = supp A C supp(uv*) = (suppu) X (suppv)

which implies suppa C suppu and supp b C suppv. Since v*u # 0, we can choose some
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1 < k < n such that w0y # 0. Then k € (suppu) N (suppv) and therefore

((suppa) x {k}) U ({k} x (supp)) < ((suppu) x {k}) U ({k} x (suppv))

-
C (suppu) x (suppv) C p.

In particular, we have

supp(aey) = (suppa) x {k} € p = aej, € A,
and

supp(exb™) = {k} x (suppb) C p = exb* € A,.

Clearly 0 € R. Suppose now that ab* € A, for some nonzero vectors a,b € C" such
that aej, ekﬁ € A, for some 1 < k <n. We claim that ab* € R. If b*a # 0, then clearly
ab* € R C R so assume b*a = 0.
For £ > 0 consider
A = (a+ee)(b+ee)” € M,.
We have
A, = ab* +e(ae} + eph®) + 2Ep € A,

and clearly lim._q A. = ab*. Furthermore,
(b+eep)*(a+cey) = b*a+ e(efa + bey) + e%epef = e(ag + by) + &°

which is nonzero when & # —(ay, + by), implying that A. € R for such e. This completes
the proof.

Finally, suppose that a matrix A € A, is supported in a single row j € [1,n|. Then
there exists a vector b € C" such that A = e;b*. We have e;b*,eje; = Ej; € A, so

A € R. The case when a matrix is supported in a single column is treated by a similar
argument. O

The next example shows that for a general SMA A, C M, the set R does not need
to be dense in the set of all rank-one matrices in A,.

Example 6.1.2. Consider the quasi-order
P = A4 U {(17 3)7 (17 4)7 (27 3)7 (274)}

on [1,4] and the corresponding SMA

* 0 * %
A—O***C’T
P10 0 % 0] =
_000*_
Then _ _
0 011
0 011
A=l 0 0 o €
0 0 0 0
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is a rank-one matrix such that A ¢ R, as for any 0 < £ < 1, the || - ||-ball B(4,¢) in A,
does not intersect R. Indeed, if B € B(A,¢) is a diagonalizable matrix in A,, then there
exists some j € [1,4] such that ([1,2] x [3,4]) U{(J,7)} C supp B. Hence, B cannot be of
rank-one.

Alternatively, note that A = (e; + e3)(e3 + €4)* and
(e1 + e2)e, (e1 + e2)es, ez(es + ea)™, eaes + ea)” € A,
Therefore, A does not satisfy the condition of Lemma 6.1.1 and thus A ¢ R.

Remark 6.1.3. In fact, given a quasi-order p on [1,n], one easily sees that R is dense in
the set of all rank-one matrices in A, if and only if for all subsets S,7" C [1,n] we have

SxT Cp = Tk €ll,n]such that (S x {k})U({k} xT) Cp.

It is not difficult to check that this condition is fulfilled for all block upper-triangular
subalgebras of M,,.

Lemma 6.1.4. Let A, C M,, be an SMA. Then the set
{Sdiag(A1,...,A\)S 7t S € AJ AL Ay padrwise distinet}

is dense in A,.

Proof.

Case 1. First we consider the case when diag(My,,..., M;,) € A, C Ay, .., Let
A € A, be arbitrary and let ¢ > 0. By applying the Schur triangularization on each
diagonal block, we obtain a unitary block-diagonal matrix U € A’ such that U*AU € T,.
Let © € 7T, be a matrix which is identical to U* AU outside the diagonal, while its diagonal
D € D, consists of pairwise distinct complex numbers O41, ..., 0,,, such that

Z |(U*AU)kk — @kk|2 < 52.

ke[l,n]

Clearly, supp © C supp(U*AU)UA,, C p,s0 © € A,. If ||-|| - denotes the Frobenius norm
on M, we have

|A = UOU || = [UTAU = Ol = | > (U AU — Ol | <.
ke[l,n]
Since UBU™ € A, has n distinct eigenvalues, it remains to apply Theorem 3.2.1.

Case 2. Now we consider the general case. By Lemma 3.1.4, there exists a permutation
m € S, such that
diag(Mkl,...,Mkp) - RWAPR;l C Akl k>

where R, € M is defined by (2.1.2). By Case 1, the set

S:={Sdiag(A1,..., A\)S™" 1 S € (Re AR = R AR My, ..., A €Cp.d}
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is dense in R, A,R; ", which immediately implies that R, 'SR, which equals

{(R,'SR,) diag(Ar-1(1)s - - s A1) (R 'SRr) ' 0 S € RRAXR My, ... A €Cp.d}
:{Tdiag(,ul,...,un)T ! TGAp,ul,...,,uneCp. d.},

is dense in A, (where p. d. abbreviates “pairwise distinct”).

6.2 Main results

We say that an SMA A, C M,, is 2-free if |C| # 2 for all C € Q.

Proposition 6.2.1. Let A, C M,,n > 3 be a 2-free SMA and let ¢ : A, — M, be an
injective continuous commutativity and spectrum preserver Then there emsts S E a

transitive map g : p — C* and quasi-orders pM,pA C p such that pMUpA = p, pMﬂpA =
A, and

¢(E) — g(ihj)SEijSi% Zf(l,j) qujf&7
7 9, )SERSTY,if (6,5) € ph
Proof. In view of Theorem 2.6.1, we may assume throughout that A, C M,,.

Claim 6.2.1.1. ¢ preserves characteristic polynomial.

Proof. ¢ clearly preserves characteristic polynomial on the set
{Sdiag(Ai,...,\)S 'S ¢€ AJ A1, A, € C pairwise distinet }
so the claim follows by the continuity of ¢ and of the characteristic polynomial. O]

Claim 6.2.1.2. Without loss of generality we can assume ¢(A,) = A, and hence that ¢
acts as the identity map on D,,.

Proof. Since the matrix ¢(A,) € M, is diagonalizable with eigenvalues 1,...,n, there
exists an S € M* such that ¢(A,) = SA,S™'. By passing to the map S7'¢(-)S, we can
assume ¢(A,) = A,. Fix an arbitrary D € D,,. We have D < A,, and hence ¢(D) «
o(A,) = Ay, since D < A,. We conclude ¢(D) € D,. The same argument from [47,
Lemma 2.1| now gives that ¢(D) = D. For completeness, we include it here. Assume first
that the diagonal entries of D are all distinct, and denote them by A{,..., \,. Choose
continuous paths fi : [0,1] = C,1 < k < n from k to Ay such that for all ¢ € [0, 1] the
values fi(t),..., f,(t) are all distinct. To be explicit, for each 1 < k < n and any path

ar [0,1] = (C\{L,...om Ay e A ) U R, A}

from k to Ay (which exists by path-connectedness), we can define

k ifee [0.51],
fult) = Jan (n (£ = 552)) e [EL ],
Ak, ift e [£,1].
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Denote
d:= min] {|fz(t) —fi®)]:1<i,j< n} > 0.

telo,1

Notice that the set

S={t€0,1]: o(diag(fi(t),. .-, fu(t))) # diag(fi(t), ..., fu(t))}
= {t € [0,1] : [|p(diag(f1(£), ..., fn(t))) — diag(f1(t), ..., fu ()|l o« = d}

is both open and closed in [0, 1]. Since 0 ¢ S, by the connectedness of [0, 1] it follows that
S = (). In particular, for t = 1 we get

¢(diag(Ai, ..., An)) = o(diag(f1(1), - .., fu(1))) = Sdiag(fi(1), ..., fu(1))S™
= Sdiag( M, .., A)S7L

As the diagonal matrices with distinct eigenvalues are dense in D,, and ¢ is continuous,
the claim follows for all D € D,,. O

Claim 6.2.1.3. For each S € A7 there exists T € M,* such that
#(SDS™') =TDT™, for all D € D,,.

Proof. For a fixed S € A there exists T' € M, such that ¢(SA,S™') = TA,T~'. Now
we can apply the Claim 6.2.1.2 to the map T '¢(S(-)S™!)T which satisfies the same
properties as ¢, as well as A, — A,,. n

Claim 6.2.1.4. Fix k € {1,2,...,n}. Let S € A and T' € M;* be invertible matrices
such that ¢(SE;S™') = TE,; T~ for all i € [1,n]\ {k}. Then ¢(SES™") = TEwT ™.

Proof. We know that ¢(SA,,S™!) = PA,, P! for some invertible P € M¢, which by Claim
6.2.1.3 implies that ¢(SDS™') = PDP~! for every diagonal matrix D € Dj. It follows
that TE;T~' = PE;P~" whenever i € [1,n]\ {k} and so

O(SEwS™') = PEygP ' =1— Y  PE;P'=I1- > TET'=TE,T"".
i€[1,n]\{k} i€[1,n]\{k}
O

Claim 6.2.1.5. Let A, B € A, be two diagonalizable matrices such that A L B. Then
o(A) L ¢(B).

Proof. Follows directly from Theorem 3.2.1 and Claim 6.2.1.3. O

Claim 6.2.1.6.
(a) Let A, B € A, be diagonalizable matrices such that A <+ B. Then ¢(aA + SB) =
ap(A) 4+ Bo(B) for all o, 8 € C.
(b) ¢ is a homogeneous map.

Proof. (a) follows directly from Theorem 3.2.1 and Claim 6.2.1.3, while (b) follows from
(a), Lemma 6.1.4 and the continuity of ¢. O

Claim 6.2.1.7. ¢ maps every nonzero matrix from R to a rank-one matrix.
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Proof. If A € R, then A is diagonalizable in A, (Theorem 3.2.1) so the claim follows
directly from Claim 6.2.1.3.

Now suppose that A € R and let (Ar)%2, be a sequence of matrices in R such that
A — A. By continuity we have ¢(Ax) — ¢(A) and then by lower semicontinuity of the
rank we conclude that ¢(A) has rank one. O

Claim 6.2.1.8. Suppose that nonzero matrices A;, Ay € R satisfy A; L A,. Then
d(A1) L (Ay).

Proof. Suppose first that A; || As. Then Ay = Ay for some a € C* so A7 L A, implies
A? = 0. By Claim 6.2.1.7, ¢(A;) is a rank-one nilpotent so ¢(A;)* = 0. By homogeneity
of ¢, we conclude ¢(A;) L ad(A;) = ¢(ad;) = ¢(As), as desired.

Suppose now A; |f Ay. In view of Claim 6.2.1.7, for j = 1,2 denote ¢(A;) = z;y; for
some nonzero vectors x;,y; € C". Since A; <+ Ay, we obtain

(Yiw2)z1ys = (2197) (T2y5) = (2y5)(2197) = (y201)22y7 -

If yizo = yiaq = 0, it follows ¢(A;) L ¢(As), as desired. Assume therefore yjxo, ysz, # 0.
Then z1y5 || z2y; so x1 || 22 and yy || yo. It follows ¢(A1) = z1y; || zays = #(Az), so by
injectivity of ¢ it follows A; || As. This contradicts our assumption that A; |} As so the
proof is concluded. ]

Claim 6.2.1.9. We have ¢(E;;) || Eij or ¢(E;;) || Ej; for all (¢,7) € p*.

Proof. By Lemma 6.1.1, note that all matrix units of A, are contained in R. For each
(i,7) € p* we have E;; L Eyy, for all k € [1,n]\ {7,7} so by Claim 6.2.1.8 we obtain

supp ¢(Ey;) C {1, 5} x {4, j}-
Via a direct computation we now show that for each 1 <i < n we have
p()| =3 = (6(Ey) || Eij,Vj € p(i)) or (¢(Ey) || Eji, Vi € p(1)).
Indeed, if (i, 7), (i, k) € p* for j # k, then there exist scalars such that
O(Eij) = B + aij Bij + 0 Eji + a3 By,
O(Eir) = Bl + BinBir + Brioki + B Lk
Since E;; L Ey, by invoking Claim 6.2.1.8, we obtain
0= o(Eij)0(Eir) = i Eii + i Eir, + jiBii Eji + 04iBin Eji,
0= o(Eir)0(Ey) = ifiuEi + oijfiEij + o Bri L + 0iBri By

Suppose that ,6“ 7£ 0. Then O{”Bu = a/ijﬁii = Oéjiﬁii =0 1mp1y Qi = OG5 = QG = 0 and
hence ¢(E;;) = «a;;E;;, which contradicts injectivity (as ¢(a,;Ej;) = ayEj;). We run
into a similar contradiction when assuming «;; # 0 so we conclude a;; = §; = 0. Since
¢(E;;) and ¢(E;;) are rank-one nilpotents, we have

0= ¢<Ez)2 = Oé,'jO(jiEii + OéijOéijij + ozjjajz-Eﬂ + (ozijajz- + Oéjzj)Ejj
and

0= ¢(Ew)® = BuBriLii + BirBix Bire + B Bri Bri + (BixBri + Biy,) Eri-
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We first conclude oj; = i = 0 and then a;; = 0 or aj; = 0 (but not both since otherwise
we would have ¢(E;;) = 0) and similarly 8z = 0 or x; = 0 but not both. If a;; # 0, then
o(Ei;) = oy E;; and o8, = 0 implies fx; = 0 from which we conclude ¢(Ej) = Bix Eix.
Similarly, if a;; # 0, we conclude ¢(E;;) = aj; Ej; and ¢(Eiy) = BriEg.

An analogous argument shows that for each 1 < j7 < n we have

071 ()] =3 = (¢(Ey) || By, Vi€ p~'(j)) or (¢(Ey) || Eji, Vi€ p~'(j)).

It remains to consider the case (i,7) € p* when |p(i)] = 2 (or |p~'(j)| = 2). For concrete-
ness, assume p(i) = {7,7} for some j € [1,n] \ {¢}. Since, by assumption, A, is 2-free,
clearly there exists some k € [1,n] \ {i,7} such that k Ry i or k &y j. The possibilities
(1,k) € p and (j, k) € p can be excluded, as they would lead to k € p(i), which is false.
The possibilities which remain are (k,7) € p or (k,j) € p, so in either case we can assume
(k,j) € p. Then 4,5,k € p~'(j) and hence |p~1(j)| > 3, which allows us to reach the
desired conclusion that ¢(E;;) || Ei; or ¢(Ei;) || Eji. O

In view of Claim 6.2.1.9, for each (i,7) € p, denote by g(i,5) € C* the unique scalar
such that
o(Eij) = 9(i, j) Eij or o(Eij) = g(i, ) Eji.
In this manner we obtain a function g : p — C* whose transitivity we intend to show in

the remainder of the proof. As, by assumption, ¢|p, is the identity map, it is immediate
that g|a, = 1. Define

(6.2.1) P =1{00,5) €p: 6(Ey) || By}, ph=A{(i.4) € p: &(Eyj) || Eji}.

Clearly, p}z\} U pﬁ = p and pﬂ N pﬁ =A,.
Claim 6.2.1.10. Suppose (i,7) € p*. Then

({i} x p(@)) U (p~" (@) x {ih) U ({7} x p(3) U (07" (5) x {3}) S pis

({i} > p(0) U (071 (1) x {i}) U ({5} x p(1)) U (07" (7) x {5}) S p%-

Proof. For concreteness suppose that (i,7) € p‘]@, as the other case is similar.

o If k € p*(i), then E;; L Ej, and Claim 6.2.1.8 imply (4, k) € p3,.

o If k€ (p*)7'(j), then Ey; L Ej; and Claim 6.2.1.8 imply (k, j) € p%,.

o Let k€ (p*)71(z). If k # j, then by transitivity we obtain (k,j) € p* and hence
(k,§) € p%, and then (k,i) € p%,, by the previous two cases. On the other hand,
the case k = j follows from the injectivity and homogeneity of ¢.

e Let k € p*(j). The case k = i again follows from the injectivity and homogeneity
of ¢. If k # 4, then by transitivity we obtain (i, k) € p* and hence (i, k) € p%, and
then (j, k) € p%,, by the first two cases.

O

Claim 6.2.1.11. Suppose that X € A, satisfies supp X C S x S for some S C [1,n].
Then supp ¢(X) C S x S.

Proof. By applying Claim 6.1.4 on the matrix X*¥° € A’S°, by the continuity of ¢ it
suffices to assume that X is a diagonalizable matrix. Now the assertion follows from
X L Eyy for all k € [1,n]\ S and Claims 6.2.1.2 and 6.2.1.8. O
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Claim 6.2.1.12. Let S C [1,n]. The map
¥ A5 — Mg, X 5 (X5
is an injective continuous commutativity and spectrum preserver.
Proof. In view of Claim 6.2.1.11 it makes sense to consider the maps
@Dl:AZSC%{XGAp:suprQSxS}, X — X%

Yo {X €A, suppX CS xSt = {X €M, :suppX CS xS}, X — o(X),
Y3 {X € M, :suppX C S x S} — Mg, X 5 X5

Note that ¥ = 13 0 19 0 ¢)1. Since 17 and 13 are algebra isomorphisms, it follows that
1 is an injective continuous commutativity preserver. Finally, for each X € .AZSC and we
have the equality of polynomials

Claim 6.2.1.1

n— n— Claim 6.2.1.11
(=2)" Flkyx) (2) = (=) |S|k¢(xﬁ50)bsc($) = kg(xsse)(x) =" kxuse(x)
= (=) Plkx(2),
which implies ky(x) = kx so 1 is a spectrum preserver. O

Claim 6.2.1.13. Suppose that n = 3 and that p(i) = p~'(j) = [1, 3] for some distinct
1 <4,7 <3 Then p = p}z\} and ¢ is the identity map, or p = pﬁ and ¢ acts as the
transposition map.

Proof. We start by making several reductions. Let m € S3 be the permutation such that
7(i) = 1 and 7(j) = 3. By passing to the map

d(P7'()P): PA,P™" — M;

which is again an injective continuous spectrum and commutativity preserver (and acts
as the identity map on Dj), we may assume that ¢ = 1 and j = 3, i.e. A, O T3. Therefore,
we have A, € {73, A12,A21, M3}. When A, = M;, the assertion follows from Theorem
2.6.1. On the other hand, if we prove the result for A, = A, , the result for A, = A, will
follow by considering the map ¢((-)")*. Therefore, without loss of generality, we can assume
A, € {T;, A1 2}. By Claim 6.2.1.10 it easily follows that p = p%, or p = p%. Without loss
of generality assume the former (otherwise we pass to the map ¢(-)"). Finally, by passing
to the map

diag(1,9(1,2), 9(1,3))¢(-) diag(1,9(1, 2),9(1,3)) ™" : A — M3

we can assume that g(1,2) = g(1,3) = 1, i.e. that ¢(E4;) = Ey; for all j € [1,3].
We show that ¢(A) = A for all non-nilpotent rank-one matrices A € A,. Every
rank-one matrix in A4, is either of the form

(a) (b)

S O %
o O O
EE I
EE

S O %
S O ¥
o
=

We start with case (a). Let y = (0, y2, y3) and
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a Yz Y3
Ri(a,y):= (0 0 O
0 0 O

In view of Lemma 2.3.5, if a = 1, we write R1(1,y) = S(y) " 'F11S(y). Let

Ry = S(y) ' FyS(y) = By — y2E1o
Ry = S<y)7lE33S<y) = B33 — ys B3,

Moreover, Ry 1 FEi3, E33 and commutes with F43, while R3 L FEis, Fys and commutes
with F1s. Correspondingly, by Claim 6.2.1.8, the same holds for ¢(Rs) and ¢(R3). Hence
there exist continuous functions f; : C — C, such that ¢(R;) = E;; — f;(y;)E1j, j = 2,3.
Since ¢(E;;) = Ej; we have f;(0) =0, j = 2,3. Let f(y) := (0, fa(y2), f3(y3)). By Lemma
2.3.5, for j = 2,3 we have

S(R;) = S(f ()" E;S(f(y)).

By Claim 6.2.1.4 we have that

S(Ri(Ly)) = S(f(W) ' EuS(f(y) = Ra(L, f(y))-

From ” v;
o(abr +y;Ey) = ag <E11 + E]E“) = ol + af; (j) Eyj,

the homogeneity of ¢, the continuity of f;, and
yjb = g}g}) d(aEn +y; Eyy)

we get

. Yi\ -

lim af; (—) = v, J=23.
a

a—0

Similarly,

O(1(0.)) = ¢ (Im Bi(a.9) ) = a0 (lim 7y (1. 7)) = 7o (0. limorf (7))
= Ri(0,y).

For arbitrary nonzero ¢t € C let us next consider the matrix Es3 — tEs3 € A,, which
is orthogonal to Fj;. By setting z = (0,1,t), E33 — tEs3 commutes with Ry(0,z) =
Eis +tE13 = ¢(R1(0,2)). An easy computation yields that there exist complex numbers
pe and ¢4, not both equal to zero at any nonzero ¢, such that

0 0 0
¢(Es3 —tEgs) = |0 —tp, —tq
0 Dt qt

We use this observation with the relation R(1,y2,v3) L Fs3 — y3/y2Ea3, yo # 0, (we have
chosen t = y3/y,) and thus obtain that [1 fo(ys) f3(ys)] [0 — ys/y2 1] = 0 when ys, y3 are
both nonzero, giving f2(y2)/y2 = f3(y3)/ys = ¢ for some nonzero complex scalar c. Recall
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that by our reduction ¢(E;2) = F2. By the continuity and the homogeneity of ¢ we have
. . c .
By = () = lim ¢(aBy; + Ep) = lim oR (1, -, 0) = lim R(a,,0) = By,

Hence ¢ = 1. The cases when y, = 0 or y3 = 0 follow by density, which finishes the proof
of case (a).

Let us proceed with the case (b). We can write any such rank-one (possibly nilpotent)
matrix as ab* where a, b € C3 and b L e;. Suppose a ¢ span{e;} (otherwise, we are in
the case (a)). By Claim 6.2.1.7, we have ¢(ab*) = uv* for some nonzero vectors u,v € C?
such that b*a = v*u. Obviously, ab* commutes with e;(at)* for any vector a* orthogonal
to a. From (a) we already know that ¢(e;(at)*) = e;(at)*. So,

(6.2.2) (v*er)u(a™)* = wrei(at)* = er(at) uwv* = ((a)*u)ev*.

We claim that v L e; and u L a*. Suppose the contrary. Then, since both u(a®)* and e;v*
are nonzero, (6.2.2) shows that both v*e; and (at)*u are zero or both nonzero. If they are
nonzero, we have u € span{e; }, which conflicts injectivity. Therefore, v L e; and u L a*
and so, u € ({a}t)* = Ca. Without loss of any generality, we can assume u = a, and
the scalar factor can be absorbed in v. So far we have obtained that ¢(ab*) = av* € A
for some vector v 1 e; which depends on a and b. On the other hand, ab* commutes
with (b%)c*, where bt L b and ¢ € {ej,a}* (it is possible that ¢ can be chosen only
in the way that (b')c* is nilpotent and so, we can use only commutativity preserving).
From the previous argument, we know that ¢(btc*) = btw* for some w # 0. Then
P(ab*) = av* <> btw* = ¢(b*tc*). This gives

(v*bH)aw* = av*btw* = brwrav* = (wra)btu*

At this point assume that ab* is not nilpotent, i.e. b is not orthogonal to a. Then b*
(defined up to a scalar factor) and a are linearly independent, hence v*bt = 0. This
implies that v = b for some scalar § # 0. From the spectrum preserving property,
comparing the traces, we get that § = 1, and we are done.

By density, to show that ¢ is the identity map, it suffices to prove that ¢ is the identity
map on the set of matrices in A with 3 distinct eigenvalues. By Theorem 3.2.1, for every
matrix A of this kind there exists a matrix S € A* and a diagonal matrix D € D,, such
that A = SDS™'. Applying Step 1 for the map X — ¢(SXS™!) we get that there exists
T € M; such that

$(SDS™')=TDT', forall D € Ds.

By Claim 6.2.1.3 we also have
SE;; S~ =¢(SE;S™ ) =TE;T™", 1<j<3,
so by linearity T7DT ' = SDS~! and consequently,
#(SDS™)=TDT ' =SDS™*
for all diagonal matrices D € D3. We conclude that ¢ is the identity map. O

We return to the proof of the proposition. The reflexivity of p, and p% is immediate
from Claim 6.2.1.2, while their transitivity follows from Claim 6.2.1.10. To begin proving
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that ¢ is a transitive map, first notice that Claim 6.2.1.10 implies

(6.2.3) (i.7),(.k) €p = (i.5),(j.k) € py or  (i,5), (4, k) € p5.

Therefore, it suffices to show that g|p¢ and g|p¢ are transitive maps. We focus on p‘]@ as the
M A

proof for pﬁ is analogous. Suppose that (i, 7), (j, k) € p}@. We show that ¢(i,7)g(j, k) =
g(i, k). This is obvious if i = j or j = k so assume further that (i,7), (j,k) € (p3,)*.
We first focus on the case ¢ # k. By deleting [-th row and column in A, where [ €
[1,n]\ {i, 7, k}, the elements which remain are

(i,1) (i,5) (i,k)
«  (00) (k)
* x  (k, k)

Therefore, AZ({i’j’k}c) C M3 contains 73. Hence, in view of Claim 6.2.1.12 we can apply
Claim 6.2.1.13 to the map

e AZ({i’j’k}E) — M, X = ¢(xﬁ({i,j,k}c))b({ivjvk}g)
to conclude that ¢ is an algebra homomorphism or an antihomomorphism. We have

¢|D3 = id, ¢(E12) = g(i»j)Ew; w(Els) = 9(2} k)EB: w(Ezg) = 9(9} k)Eza,

whence ¢ is a multiplicative map. In particular, we obtain
9(i, k) Ers = Y(E13) = Y(E12Ey3) = Y(E)Y(Eas) = g(i, j)g(j, k) Es,

so g(i, k) = g(i,7)9(j, k).

It remains to consider the easier case ¢ = k. Since A, is 2-free, there exists some
[ € [1,n]\{i, 7} such that i &y [ or j &y [. Without loss of generality suppose the former.
If (i,1) € p*, then from (j,i) € p%, via (6.2.3) we conclude (i,1) € (p%,)*. Now from
(4,9), (i,1) € (p%,)* by the previous case if follows (4,1) € (p%,)* and

904, 1) = g(7,9)g(i, 1), g(i,1) = g(i,5)9(4,1).
We obtain
9(3,0) g(i,1)

9(i,7)9(j,1) = WD) eG D 1

as desired. On the other hand, if (I,7) € p* then similarly we obtain
9(l,7) = g(,0)g(i,5),  g(,i) =g(l,5)g(j; ),

again yielding ¢(i,7)g(j,7) = 1. O

Theorem 6.2.2. Let A, C M,, be an SMA. Then the following two statements are equiv-
alent:
(i) For each (i,j) € p* we have

[(p(3) U p™ (@) N (p(3) U ™" ()] = 3.

(it) Every continuous injective commutativity and spectrum preserver ¢ : A, — M, is
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necessarily a Jordan embedding.

Remark 6.2.3. Note that for (i, 7) € p*, the condition (i) of Theorem 6.2.2 (i) is equiv-
alent to

(p() U p~"(0) N (p(5) U p~"(5)) & {4, 5}-
In particular, (i) implies that A, is 2-free.
Proof of Theorem 6.2.2. First we consider the n = 3 case.

Claim 6.2.3.1. An SMA A, C M; distinct from Dj satisfies (i) if and only if there exist
distinet 4, j € [1, 3] such that p(i) = p~'(j) = [1, 3].

Proof. By the assumption, we have

p(i) U p~ (i) = p(5) U p~'(5) = [1,3].

Denote k € [1,3]\{1,2}. Since k € p(i) and k € p~(j), we also have p(k)Up~' (k) = [1, 3].
Therefore, A, satisfies (i).
Since A, # D, choose some (i, j) € p*. By (i), there exists k € [1,3] \ {7, j} such
that
k€ (p(i) Up™' (1)) N (p(5) U p~'(5))-
We consider two cases:
o If k € p(j), then from (i, 7), (j, k) € p it follows (i, k) € p and hence p(i) = p~ (k) =
1, 3].
o If k € p~1(j), then from (i, ), (k,j) € p it follows p~'(j) = [1,3]. Moreover, since
k € p(i) U p~'(i) we obtain (i,k) € p or (k,i) € p, which implies p(i) = [1,3] or
p(k) = [1, 3], respectively.
[

(i) = (it)|Since A, is 2-free, in view of Proposition 6.2.1 (and Claim 6.2.1.6) without
loss of generality by passing to the map S™'¢((g*)7!(+))S we can assume that

iy if (7.4 o
(6.2.4) O(Ey) = {Ew» £(i,7) € P>

Eji, if (i,4) € p4
where p%, and p% are quasi-orders defined in (6.2.1).
Claim 6.2.3.2. Every rank-one matrix in A, is entirely contained in Apf/f or in Apﬁ .
Proof. Assume ab* € A, for some nonzero vectors a,b € C"*. We have
(suppa) x (suppb) € p.

Let (i,7), (k,1) € ((suppa) x (suppb)) N p* be distinct but otherwise arbitrary. We need
to show that (i,7), (k,1) € p%, or (i,5), (k,1) € p%. If j = k or i = [, this follows from
(6.2.3). Otherwise, since {i,k} x {j,l} C p, we have

(i,0) € p* = (i,5), (i, 1), (k1) € p,
(k,g) € p* = (i,), (k, ), (k1) € p*,

so in either case we obtain the desired assertion from Claim 6.2.1.10. O
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Claim 6.2.3.3. ¢ acts as the identity on R N Ap%, and as transposition on R N Api'

Proof. For concreteness assume that ab* € Rﬂ.Ap¢ for some (nonzero) vectors a,b € C",
M

as the other case is similar. In view of Claim 6.2.1.7, denote ¢(ab*) = zy* for some
nonzero z,y € C". As b*a # 0, we can fix some

J € (suppa) N (suppb).
Let i € [1,n] \ {7} be arbitrary and consider the matrix
A= (bjes — biey)(aie; — Gje,)".

Note that

(bje; — biej)ef =< 2 J 1 Z supp
bjEz'ia if ¢ ¢ supp b’

_ — w Jaibi; —ajEy, if © € suppa,
ei(aiej - CL]‘GZ‘) =

—a; By, if i ¢ suppa.

In all cases, these matrices belong to A,, so by Lemma 6.1.1 we have A € R and in
particular A € A,.

We claim that ¢(A) = A. Consider the following cases:

e Ifi ¢ (suppa)U(suppb), then A = —a;b; E; and hence ¢(A) = A by the homogeneity
(Claim 6.2.1.6).

e Suppose that i € suppa. Then (i,j) € supp A C {i,5} x {i,7}, so (i,7) € p*. By
(1) there exists k € [1,n] \ {i, 7} such that

k€ (p(i) Up™ (1) N (p(i) U p~ (7).
It is immediate that
{i.5,k} € (p(0) U p~ (i) N (p(5) U p~"(5)) N (p(k) U p~ ' (K)),
which implies that the SMA .Al;({i’j M C My satisfies (i). Furthermore, since
(i, j) € (suppa) x (suppb) = supp(ab*) C p;,
by Claim 6.2.1.10 we conclude that
({i,4,k} > {i, 4, k}) N p € piy.

In particular, by (6.2.4), ¢ acts as the identity on all matrix units supported in
({i,7,k} x {i,4,k}) N p. We can now invoke Claim 6.2.1.12 and the n = 3 case
(which was already covered) to conclude that the map

Y AR X s (XA P(Ed4))
is a Jordan embedding. Since 1 acts as the identity on all matrix units of A;({i’j ’k}c),

we conclude that v is the identity map. In particular, Claim 6.2.1.11 implies that
6(4) = A.
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e Suppose that i € suppb. Then (j,i) € p* so by the symmetry of our assumption
(i), the exact same discussion as above yields ¢(A) = A.
Now notice that ab* 1. A so by Claim 6.2.1.8 we obtain

zy* = ¢(ab®) L ¢(A) = A = (@e; — aje;)*z = y* (bje; — bie;) = 0.
Overall, it follows
v L{@e; — e i€ [Ln]\ {j}},  yL{bes—biej i€ [Ln]\{j}}.

In fact, these sets are bases for {a}+ and {b}* respectively. We conclude z || a and y || b,
which implies ¢(ab*) || ab*. Equating the traces yields ¢(ab*) = ab*. O

Claim 6.2.3.4. ¢ acts as the identity on .qua , and as transposition on A 0
M A

Proof. For the sake of variety, we prove the second claim, as the first one is similar. By
Claim 6.2.1.3, for each S € A%, there exists T" € M such that
Pa

#(SDS™Y) =TDT ™, for all D € D,.
In particular, for all j € [1,n] we have
TE,T™ = ¢(SE;S™) 2?7 (SE,; 571
—
ERNA &
PA
Hence, by the linearity of the maps T'(-)T~! and (S(-)S™!)¢, for all D € D,, we have
p(SDS™) =TDT ' = (SDS™ ).
The Claim now follows by the continuity of ¢ from Lemma 6.1.4 applied to A x m
Claim 6.2.3.5. Let P € D, be a diagonal idempotent defined by
Py =1 <= there exists j € [1,n] \ {i} such that (i,7) € p%, or (j,i) € p%,.
Then P € Z(A,), PX € qu& and (I — P)X € Ay for all X e A,

Proof. A variant of this argument (when ¢ is assumed to be a Jordan homomorphism)
already appears in Lemma 4.2.3 and a similar proof applies here. Indeed, it suffices to
show that for all (7, j) € p we have

(625) P+ Eija PEZ] € .Apz]z\b/[, (] — P)EZJ € Apz.

Since all three claims are trivially true when i = j, fix (i,j) € p*.
separate cases:

o If (i,5) € p},, then P; = P;; = 1 by definition, so

We consider two

~~

GAP?\)/I
which establishes (6.2.5).
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o If (i,j) € pﬁ, then by Claim 6.2.1.10, P; = P;; = 0. Hence,

PEZ‘]‘: 0 :EZJP - (I_P)Eij:EijEApi7

A
o

so again (6.2.5) follows.
[l

Claim 6.2.3.6. Let P € Z(A,) be the idempotent from Claim 6.2.3.5. Then for all
X € A, we have
#(X)=PX+(I-P)X".

In particular, ¢ is a Jordan embedding.

Proof. Fix a diagonalizable matrix X € A,. Since the idempotent P is central, from
Theorem 3.2.1 it easily follows that PX and (I — P)X are both (in fact, simultaneously)
diagonalizable. By Claim 6.2.3.5, we have PX € Ap}@’ (I - P)X € Apﬁ and PX L

(I — P)X so by Claims 6.2.1.6 and 6.2.3.4, we have

$(X) = ¢(PX + (I — P)X) = ¢(PX) + ¢((I - P)X) = PX + ((I - P)X)'
= PX + (I — P)X",

It follows that the continuous maps ¢ and P(-) + (I — P)(-)* coincide on the set of all
diagonalizable matrices in A,, so Lemma 6.1.4 implies their overall equality. O

(i) <= (¢)| Suppose that an SMA A, C M, fails to satisfy (i). Then by Remark 6.2.3
there exists (r,s) € p* such that

(p(r)Up~H(r)) N (p(s) U p~'(s)) = {r.s}.

We consider two separate cases:

Case 1. Suppose that (s,7) € p. Then by the transitivity of p it easily follows
(6.2.6) p(r) = p~(r) = p(s) = p~'(s) = {r,s}.
Define a rank-two idempotent

P:=FE,+ E; € A,

Note that P is central. Indeed, fix (i,7) € p and note that ¢ € {r,s} if and only if
j € {r,s}. On the other hand, we clearly have

PE.. = E;, ifie{r s}, 5P By, if j e {r s},
S0 dfig{rsy, T |00 s {rs),

so P < E;;. If follows that
A, =PA, & (I - P)A,

is an inner direct sum of algebras. Moreover, by (6.2.6), PA, is isomorphic to M, so
let ¢ : My — M, be a slight modification of the nonlinear counterexample due to [45,
Example 7| (in order to ensure its injectivity). Let f : [0, +00) — S' be any nonconstant
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i

continuous map such that lim; , ., f(t) = 1 (concretely, we can choose f(t) := e#1).
Define v : My — My by

oD

Then 1 is a nonlinear injective continuous spectrum and commutativity preserver (and
hence not a Jordan homomorphism). Indeed:

S
jen)

if b=0,

} , otherwise.

e We claim that 1 is continuous. Let (A, )nen, An = [CCL" 2"] be a sequence in M,
such that A, - A = |¢ b} € M,. We need to show that ¢(A,) — ¥ (A).

d
If b # 0, for large enough n € N we have b, # 0 nd hence
S| N R YA 1)
@ZJAn = " —>|: P b :|:1/JA
) af(fz) cf(5l)  d W

On the other hand, if b = 0, then we decompose the sequence (A,),en into two
subsequences; suppose that (A),en satisfies b, # 0, while (A)), satisfies b/ =
0 (if either of the two subsequences turns out to be finite, we simply omit the
corresponding part of the following argument). For the second subsequence, we
have simply

B(AL) = A = A = (A)

Let us focus on the first subsequence. We have b/, — b = 0. If ¢ # 0, in particular

we have
i ([5r]) = 7 ([ 52]) = 7 (5]) = #0000 <1

/
b,
On the other hand, f(-) € S' implies b/, f < C ) — 0. We conclude

s
Y(A) = Jﬁfjdjga)%ﬁ ﬂ=A=wm»

s ([ _

/

Cn

v,

n

/
Cn

-

If, however, ¢ = 0, then f(-) € S}, ¥/, = b =0 and ¢/, — ¢ = 0 implies ¢}, f ( %
a v f ()5

0. We conclude
/ f( 7 ) d,

a fll2
Therefore, ¥(Al) — ¥(A) 1 P(AY) — P(A) so we conclude (A,) — ¥(A). This
shows the continuity of .

by,

: . b DY
e We claim that ¢ preserves commutativity. Suppose that A = {(é d] VA = {(2, d’] €
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M, satisfy A <> A’. We need to show that (A) <> (A"). If b = = 0, then this
is clear. If b, b’ # 0, then we have

(6.2.7)

aa' +bc abl +bd'| |a b| |d V
ca' +dc b +dd|  |c d| |d d

| - ax

a b’] [a b] B {a’a%—b’c ab+bd

J— / J—
_AA_L’ d| |c d|  |da+dc Jb+dd|’

In particular, it follows b’'c = bc’ and hence

i=7 = (D= ()=

Now the desired conclusion follows by a direct calculation:

Cl

v

s = | & ) )

T aa’ +bcd (ab’—i—bd’)f}

(cd' +dd)f b +dd

(da+de)f Jb+dd

[ da+Ve (a’b—i—b’d)f}

ld Vf][a bf
RS d’] [07 d]
= Y(ANY(A).

Suppose now that b = 0 and &’ # 0. Then (6.2.7) implies t'c = b’ = 0 so by b’ # 0
we conclude ¢ = 0. We have

aa’ ab'| |a O] |d 0| ;s a V| la 0]  |da bd
{dc’ dd’] N [0 d} [c’ d’] =Ad = A4 = [c’ d’} [O d] N [c’a d’d] '
If we again denote f := f (|%|), a direct calculation shows

s = o o |5 ]

_ [ad ab’f]
4T dd

_a’a_ b’df]

cdaf dd

B _a’_ b’f} [a O]
¢F a0 d

= (A)(A).

The final case of b # 0 and O’ = 0 follows by swapping the roles of A and A’.
Now it is easy to see that the map

A, My, B(X) 1= pOTI )y (0l

cPA, —(I-P)X
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satisfies the same properties as .

Case 2. Suppose that (s,r) ¢ p. By the assumption and the transitivity of p it easily
follows that

(6.2.8) pt(r)={r},  p(s) = {s}.
Each X € A, can be written as
X =X°+ XT‘SETS7

where
X =X-XEs€ A,

Consider the map

v, ifful < Jol,

v

o, if ful > vl

f:CxC—C, f(u,v)::{

()

It is straightforward to check that f is continuous, homogeneous, and that f(u,-): C — C
is injective for each fixed u € C. Define a map

§Z5 : Ap — Ap7 QZS(X) =X+ f(Xss - XT"N er)Ersa

that is o
S, — {Xija i(5,0)# (r,9),
f(Xss — Xory Xis), if (i,7) = (r,s).

We claim that ¢ is a continuous injective commutativity and spectrum preserver, but not
a linear map (and hence not a Jordan homomorphism).

e The continuity of ¢ follows directly from the continuity of f.

e Using the Laplace expansion along the s-th row and the r-th column, we obtain

kx(z) = (x — X)) (2 — Xsg)kxotrsy () = kxe ().

In particular, the spectrum of X is equal to the spectrum of X°. As ¢(X)® = X°,
we conclude that ¢ is a spectrum preserver.
e Suppose that ¢(X) = ¢(Y) for some X,Y € A,. Immediately we obtain
(i) X°=Y*,
(ii) f(Xss — X, er) = f(Y;s - Y., Y;”s)a
whence we conclude f(Xgs — X, Xos) = f(Xss — X, Yys). This implies X, = Y,
since f(Xgs — X,r, +) is injective. Therefore, X =Y, so ¢ is injective.
e Suppose that X,Y € A,. We have

XY = (Xe + erErs)(Ye + Y:r‘sErs)
=X°Y*" + Y;‘SXGETS + erErsYe

=X°Y® + Y, X Eir | Ers + X5 B Z Y B
iep1(r) iep(s)

CZ XV 4 (X Yrs + XosYeo) B
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Moreover, (XY)® = X°Y*, as E,.(X°Y*®)E,, = 0. Indeed, if E,, E;jEuEs # 0
for some (7,7), (k,1) € p\ {(r,s)}, then i =r, j = k and | = s, which implies that
J € p(r)Np~t(s) = {r, s}; a contradiction. Similarly,

YX=Y°X"+ (Y Xos + Vs X5) B, YX)*=Y°X".
Hence,

X® oY~

6.2.9 XY —
( ) {(Xss - X’V"I‘)Y;‘S = (Y;‘s - Y:N")er-

Assume now X < Y. Since ¢(X)° = X*° and ¢(Y)® = Y°, to show that ¢(X) <>
¢(Y), it remains to verify that

(Xss - er)f(Yjss - Y;"ra Y;"s> = (Yjss - Y;"r)f(Xss - XT‘T‘7XTS)'
By the homogeneity of f, this is equivalent to
f((Xss - er)(YTss - }/7“7“)7 (Xss - er)Y;‘s) - f((Xss - er)<YTss - }/7"7“)7 (}/;s - Y;“T)er>7

which is true by (6.2.9). We conclude that ¢ preserves commutativity.
e That ¢ is not an additive map follows from

1
¢(2Err + Ers) =2E,. + §E7“sa ¢(Ers) = E’V‘S7 ¢<2E’r’r + 2E’/‘s) =2E,.,. +2E,;.

The proof of Theorem 6.2.2 is now complete. O]

Note that, in the contrast to the previous cases of M,,, 7,, and general block upper-
triangular subalgebras of M, Jordan embeddings A, — M, are not necessarily multi-
plicative or antimultiplicative, even when A, satisfies the condition (i) of Theorem 6.2.2.

Example 6.2.4. Consider the quasi-order
p = ([1,3] x [1,3]) U ([4,6] x [4,6])

on [1,6]. Then clearly A, = diag(Ms;, M) satisfies the condition (i) of Theorem 6.2.2.
However, the Jordan automorphism ¢ of A, given by ¢(diag(X,Y)) := diag(X,Y") is
obviously neither multiplicative nor antimultiplicative.

One may also wonder whether an SMA A, C M, which satisfies the condition (i) of
Theorem 6.2.2 necessarily admits only trivial transitive maps or, more generally, if all
Jordan embeddings A, — M,, are necessarily rank-one preservers, as it is the case when
A, is M, T, or an arbitrary block-upper triangular subalgebra od M,. This is not true
in general, as the following example shows.

Example 6.2.5. Consider the quasi-order

p:=A7U ([173] X [47 7]) U {(173)> (47 5)7 (677>}
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on [1,7] and the corresponding SMA:

x 0 % % *x % *
0 « 0 % *x % =
0 0 % * x * %
A, =10 0 0 = x 0 0| C7T7
000000
000 00 % =
00 00 0 0 =
We have
p(1)Up (1) =p3)Up '(3) = {1,3,4,5,6, 7},
o) U (2) = 2,4,5,6,7)
p(4)Up 1 (4) = p(5) Up~'(5) = {1,2,3,4,5},
p(6) Up 1 (6) = p(T)Up ' (7) = {1,2,3,6,7}.

One easily checks that A, satisfies (i) of Theorem 6.2.2 and that the map

2, i (4,7) €{(2,4),(2,5)},

1, otherwise

g:p—C*, g@ﬁ:{

is transitive map. On the other hand, ¢ is nontrivial. Indeed, if g separates through the
map s : [1,7] — C*, we obtain

—<=g(L4) =1, L =g(1,6)= = s(4) =s(1) = s(6),

SO

which is a contradiction.

Further, as for the induced algebra automorphism ¢* of A, we have
G (Evs + Erg + Eyy + Eo) = By + Eig + 2E + Ea,

it is clear that ¢* does not preserve rank-one matrices.

Remark 6.2.6. Suppose that A C M, is a subalgebra and let S € M. Clearly, every
injective continuous commutativity and spectrum preserver ¢ : A — M, is a Jordan
embedding if and only if the same holds for maps ¢ : S™LAS — M,,.

Remark 6.2.7. The statement of Theorem 6.2.2 does not have to include n > 3. Indeed,
the n =1 case is trivial, while the only SMA in M, which satisfies (i) is Ds.

Remark 6.2.8. For an SMA A, C M,,n > 3 which satisfies (i) of Theorem 6.2.2, we
discuss the necessity of all assumptions in (ii).
e Spectrum preserving is necessary to assume for all SMAs A,. Indeed, let D be the
open unit disk in C. Define a map g: D — D by

1—3z
3—z°

9(z) =
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It is easy to check that g is a holomorphic bijection (actually, it is an involution).
Consider the map ¢ : A, — M,, given by

(b(X):g(%HXH)’

where |[-|| denotes the spectral norm. The map ¢ is well-defined, as for each X € A,
the matrix ﬁ has norm < 1 and hence its spectrum is contained in D, at
which point we can apply ¢ using the holomorphic functional calculus. Using the
properties of the holomorphic functional calculus, we conclude that ¢ is continuous

and preserves commutativity. Moreover, since the map X
1

ﬁ is injective, via
the application of g~ = ¢g we conclude that ¢ is injective. However, ¢ is clearly not

linear as 1

¢(0) = 9(0) = 31.

Commutativity preserving is necessary to assume for all SMAs A,. Indeed, when
A, # D,, this follows by considering the map ¢ : A, = M,,

(X)) :=diag(1,...,1,e% % 1,.. . )X diag(1,...,1,e”%* 1,...1),

where both ¢4 and e~ 9% stand at some position i € [1,n] for which p* (i) # 0.
Then ¢ is clearly continuous and preserves the spectrum. Moreover, since ¢(X)

is similar to X, we can see that ¢ is a bijection (its inverse is given by Y
F(Y)7'Y f(Y). However, ¢ is not linear:

O+ Erp) =1 +elig # 1+ Eig = ¢(1) + ¢(Era).
On the other hand, when A, = D,,, we can consider the map ¢ : D,, — M,, given by
P(X) == X + X11 By,

which is clearly a continuous injective spectrum preserver, but not a Jordan homo-
morphism.

Continuity is necessary to assume for all SMAs A,. As in [45], consider the map
¢ : A, = M, given by

diag(Aa, A1, ..., A\n), if X =diag(A,...,\,) and all \; are distinct,
X, otherwise

which is bijective, spectrum and commutativity preserving but clearly not continu-
ous.

Injectivity is necessary to assume if and only if A, is not semisimple (note that
by [17], A, is semisimple if and only if p is symmetric). Indeed, suppose that
A, is semisimple and ¢ : A, = M, is a continuous commutativity and spectrum
preserver. In view of Remark 6.2.6 and Lemma 3.1.4, we can assume that A4, =
diag(My,, ..., My,) where, by (i), cach k; # 2. By analysing the proofs of Claims
6.2.1.1,6.2.1.2, 6.2.1.3 and 6.2.1.5 we observe that they do not require the injectivity
of the map ¢. Therefore, without loss of generality, one can assume that ¢ acts as the
identity map on D,,. Further, using Claim 6.2.1.5 and a standard density argument,
it easily follows that ¢ maps each diagonal block of A, into itself. Therefore, for

92



Nonlinear preserver problems on SMAs

each 1 < j < k the map ¢ restricts to a continuous spectrum and commutativity
preserver ¢; : My, — My,. If k; = 1, clearly ¢; is the identity, while if k; > 3
we apply Theorem 2.6.1 to ¢; to conclude that it acts as the identity or as the
transposition map. Putting everything back together, it follows that ¢ is a Jordan
embedding. Now, on the other hand, suppose that A, is not semisimple. Again,
in view of Remark 6.2.6 and Lemma 3.1.4, we can assume that A, is in the block
upper-triangular form with at least one nonzero entry in the strict upper triangle.
Then a map ¢ : A, — M, which maps a matrix X € A, to a matrix ¢(X)
having the same diagonal blocks but zeroes everywhere else, is an example of a non-
injective unital Jordan homomorphism (in particular, ¢ is a continuous spectrum
and commutativity preserver).

Example 6.2.9. Note that if A, C M,,n > 3 is an SMA with the property that there
exist distinet i, € [1,n] such that p(i) = p~'(j) = [1,n], then A, satisfies (i). Indeed,
for each r, s € [1,n] we have

i,j € (p(r)Up=t(r)) N (p(s)Up~'(s))

which proves (i) except when 7, s € {7, 5}, in which case (i) follows from

(p(D)Up~' (@) N (p(5) Up~'(4)) = [1,n]

and n > 3. An important class of such algebras are the ubiquitous block upper-triangular
subalgebras which satisfy p(1) = p~(n) = [1,n].

When we further assume that B = A, so that ¢ : A — A, we can relax the spec-
trum preserving assumption to spectrum shrinking (o(¢(X)) C o(X) for all X € A).
More precisely, we obtain the following result (similarly as in [55|, the proof relies on the
invariance of domain theorem).

Remark 6.2.10. Suppose that A, C M, is an SMA which satisfies (i). Then every
¢ : A — A continuous injective commutativity preserving spectrum shrinking (o(¢(X)) C
o(X) for all X € A,) map is necessarily Jordan embedding. Indeed, similarly as in [55],
the proof of this fact relies on the invariance of domain theorem to show that ¢ in fact
preserves the characteristic polynomial. Namely, by the invariance of domain theorem,
the image R = ¢(A) is an open set in M, and ¢|® : A — R is a homeomorphism. Let
& denote the set of all matrices in M,, with n distinct eigenvalues. As £ is dense in M,
ENR is dense in R.

Now, since ¢ shrinks spectrum, its inverse (¢|%)~! expands spectrum. In particular,
the restriction (¢|®)7!|gnr preserves characteristic polynomial. Since the characteristic
polynomial k. : M,, — C<,[z] is a continuous map (Remark 2.3.7), we conclude that the
continuous maps

R — (an[.f] : X — /{Z(¢|R)—1(X), and X = kx

are equal on the dense set £ N'R. Hence, they are equal everywhere so (¢|%)~! preserves
characteristic polynomial. The same follows for ¢, of course.
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Conclusion

In this dissertation, we studied structural matrix algebras, their Jordan embeddings and
some characterizations thereof using preserver properties.

In the first part of the dissertation we have successfully provided a complete description
of Jordan embeddings A — M, where A C M, is an SMA. In particular we can read out
that each such map is a sum of an (algebra) homomorphism and an antihomomorphism.
The description involves transitive maps in an essential way, a concept used by Coelho
in her description of the automorphism group Aut(.4) so our results can be interpreted
as a direct continuation of her work. For SMAs A,B C M,, we also gave a criterion
for when does A Jordan-embed into B, as well as a description of Jordan embeddings
A — B. A preliminary result which was used in the proof which stands out is the result
concerning the intrinsic diagonalization of a family of diagonalizable matrices F in an
SMA A. Via counterexamples we have shown that this kind of intrinsic characterization
cannot be expected to hold in general, at least without suitable modifications.

In the second part of the dissertation, we solved two natural linear preserver problems
for maps A — M,, where A C M,, is an SMA. The first one shows that unital linear rank-
one maps A C M, are necessarily Jordan embeddings (and hence of the form outlined
in the first part). This conclusion serves as a direct generalization of rank-one preserver
results obtained earlier by Marcus-Purves (on M,) and Molnar-Semrl (on 7,,). We have
also provided a criterion for when does the converse hold (i.e. which Jordan embeddings
A C M, are rank-one preservers). By counterexamples, we have shown that omitting
the unitality assumption can result in maps which exhibit strange behaviour. The second
linear preserver problem concerns linear rank preservers. Essentially, we obtained that
unital linear rank preservers A — M,,, where A C M,, is an SMA, are precisely Jordan
embedding with the property that the corresponding transitive map (from the first part
of the dissertation) is trivial. We have also made an observation that it actually suffices to
assume that the map preserves rank up to § — 1 to ensure the same conclusion. We were
also able to give a simple description of linear rank preservers without assuming unitality.

The third and final part of the dissertation concerns a particular nonlinear preserver
problem which was originally studied by Petek and Semrl on M, and 7,. We have
extended this result to the class of SMAs. More precisely, we have given a simple necessary
and sufficient condition on an SMA A C M,, such that all injective continuous spectrum
and commutativity preservers A — M, are precisely Jordan embeddings.

An open area for further research would be to try and extend some of these results to
a wider class of subalgebras of M,, (or ideally all of them). A substantial generalization
in this direction would likely have to include radically more advanced techniques, since
most of the existing preserver results we built upon heavily relied on the use of matrix
units F;;. In view of this, extending the use of such elementary methods beyond the class
of SMAs seems somewhat unlikely.
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