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Generalizirane simetrije i tenzorske bazdarne teorije

Sazetak

Rad istrazuje sloZzene odnose izmedu generaliziranih globalnih simetrija i tenzorskih baz-
darnih teorija, posebno se fokusirajuci na interpretaciju gravitona kao Nambu-Goldstoneovog
bozona za spontano slomljenu generaliziranu globalnu simetriju.

Prvi dijelovi predstavljaju pregled obi¢nih simetrija te simetrija viSih formi, vodeni prim-
jerom slobodne Maxwellove teorije. SrediSnji cilj je razumjeti kako viSedimenzionalni ob-
jekti prirodno proSiruju principe simetrije te kako se one manifestiraju u raznim fizikalnim
kontekstima. Uvodimo poopéenje globalnih simetrija kroz poznate obi¢ne simetrije. Simetrije
viSih formi su simetrije koje dovode do sacuvanih struja viSih formi. O njima se raspravlja
kroz primjer slobodne Maxwellove teorije i njezine elektromagnetske dualnosti. Takoder
su navedeni topoloski aspekti simetrije viSih formi. Nadalje, kratko su predstavljeni i drugi
razvoji u generalizaciji principa simetrije, kao Sto su simetrije viSe-grupe (poput -grupne
simetrije) i neinvertibilne simetrije.

-grupne simetrije, tj. simetrije koje omogucuju mijeSanje pozadinskih bazdarnih polja
pod njihovim odgovaraju¢im bazdarnim transformacijama, razmatrane su kroz najjednos-
tavniji abelovski slucaj gdje smo pokazali kako one proizlaze iz obi¢ne produktne simetrije
okusa bazdarenjem. Druga znacajna generalizacija koja se raspravlja u ovom radu su nein-
vertibilne simetrije. Za razliku od tradicionalnih simetrija, koje su invertibilne (tj. mogu se
ponistiti primjenom inverzne transformacije), operatori neinvertibilnih simetrija nemaju in-
verze. Ove simetrije nastaju u sustavima gdje uobi¢ajena grupna struktura simetrija propada.
Umjesto standardnih pravila mnoZenja generatora, operatori koji implementiraju takvu simetriju
postuju neka druga pravila fuzije.

Za teorije koje pokazuju dualnost, globalne simetrije moraju se podudarati - to vrijedi i
za simetrije viSih formi. Postupak dualizacije detaljno je objasnjen za Maxwellovu teoriju i
kasnije je skracen na recept koji djeluje za lagranzijane slicne Maxwellovom, a prikazan je,
ne samo za slobodnu Maxwellovu teoriju, nego i za neke nelinearne elektrodinamicke teorije.

Teorija linearizirane gravitacije je tenzorska baZzdarna teorija klju¢na za ovaj rad. Ten-
zorske bazdarne teorije generaliziraju konvencionalne bazdane teorije koristeci tenzore viSeg
ranga. Cilj rada leZi u poglavlju "Graviton kao Nambu-Goldstoneov bozon", gdje se istrazuje

ideja da se graviton, kvant gravitacijskog polja, moZe promatrati kao Nambu-Goldstoneov



bozon. Kroz prizmu linearizirane gravitacije, bezmaseni mod perturbacije metrike reinter-
pretira se kao rezultat spontano slomljene simetrije viSe forme, konkretno biformne simetrije.
Ova perspektiva ne samo da pruZa nov pogled na prirodu gravitona, ve¢ takoder istice ulogu
narusenja simetrije u razumijevanju bezmasenih spin- Cestica u bazdarnoj teoriji. Zakljucu-
juci s nedavnim napretcima, takoder smo predstavili potencijalni put za buduce istrazivanje

gravitona kao Nambu-Goldstoneova bozona.

Kljucne rijeci: generalizirane simetrije, simetrije viSih formi, slobodna Maxwellova teorija,

linearizirana gravitacija, graviton, bazdarne teorije, dualnost, 't Hooftove anomalije



Generalized Symmetries and Tensor Gauge Theories

Abstract

This work investigates the intricate relationships between generalized global symmetries
and tensor gauge theories, particularly focusing on the interpretation of the graviton as a
Nambu-Goldstone boson for a spontaneously broken generalized global symmetry.

The first sections present a review of ordinary and higher-form symmetries, guided by the
example of the free Maxwell theory. The central aim is to understand how higher-dimensional
objects, naturally extend symmetry principles and manifest in various physical contexts. We
introduce the generalization of global symmetries through familiar ordinary symmetries.
Higher-form symmetries are symmetries that lead to higher-form conserved currents. They
are discussed within the examples of free Maxwell theory and its electric-magnetic duality.
The topological aspects of higher-form symmetries are provided, too. Furthermore, other de-
velopments in the generalization of symmetry principles are briefly presented, such as higher-
group symmetries (like -group symmetries) and non-invertible symmetries.

-group symmetries, i.e. symmetries that allow for the mixing of background gauge fields
under their respective gauge transformations are considered through the simplest Abelian case
where we have shown how it is derived from ordinary product flavor symmetry by gauging.
Another notable generalization discussed in this work is non-invertible symmetries. Unlike
traditional symmetries, which are invertible (i.e., they can be undone by applying the inverse
transformation), non-invertible symmetry operators do not have inverses. These symmetries
arise in systems where the usual group structure of symmetries breaks down. Instead of
standard group multiplication rules, the operators that implement such symmetry obey some
other fusion rules.

For theories exhibiting some duality, the global symmetries must match - this is also true
for higher-form symmetries. The dualization procedure is done in detail for the Maxwell the-
ory and is later abbreviated to a recipe that works for Maxwell-like Lagrangians and is shown
for, not only the free Maxwell theory but also for some non-linear theories of electrodynamics.

The theory of linearized gravity is a tensor gauge theory pivotal to this work. Tensor gauge
theories generalize conventional gauge theories by employing higher-rank tensors. The core
of the thesis lies in the chapter "Graviton as a Nambu-Goldstone boson." This section explores

the idea that the graviton, the quantum of the gravitational field, can be seen as a Nambu-



Goldstone boson. Through the lens of linearized gravity, the massless mode of the metric
perturbation is reinterpreted as arising from a spontaneously broken higher-form symmetry,
specifically a biform symmetry. This perspective not only provides a fresh outlook on the
nature of the graviton but also highlights the role of symmetry breaking in understanding
massless spin-2 particles in gauge theory. Concluding with the recent developments, we have
also presented potential avenues for future exploration regarding the graviton as a Nambu-

Goldstone boson.

Keywords: generalized symmetries, higher-form symmetries, free Maxwell theory, linearized

gravity, graviton, gauge theories, dualities, 't Hooft anomalies
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1 Introduction

1.1 Historical context

The emergence of symmetry as the property of a physical system that is preserved under
some transformation had its greatest turning point with the occurrence of Noether’s theorem
in 1918 [1]. Here, a relation between a specific type of symmetry and the laws of conserva-
tion was mathematically shown which became one of the greatest reasons for the importance
of symmetries in physics. Throughout classical mechanics, spatial and temporal invariances
were known and used, as well as global spacetime symmetries for electrodynamics that were
derived before Einstein’s special theory of relativity. Nevertheless, the latter represents a new
approach, or even another breakthrough in the application of symmetry in physics since, un-
like those before him, Einstein derived the laws from the invariances. Even today, physical
theories are often built on desired symmetries. The significance of symmetries in physics
was quickly made clear in quantum mechanics where applying the theory of groups and their
representations played a crucial role. This is how symmetry evolved from an aesthetic prin-
ciple rooted in geometry to a scientific tool necessary for understanding modern-day physics.
Needless to say, new applications and approaches still appear, making the symmetry princi-
ples a relevant subject amongst physicists and mathematicians.

It is clear that there are many applications of the concept: some purely aesthetic, some
as obvious and as practical as bilateral symmetry of airplane design, and some as crucial as
the applications in crystallography [2]. Besides that, the concept of deviating from perfect
symmetry has become crucial in physics where symmetry in basic forces is simultaneously
central and yet at times enigmatically broken. This is where the interplay of simplicity and
subtlety starts making the concept of symmetry not only a plainly visible property of objects
seen in everyday life but also a profound characteristic deeply rooted in theories. The main
difference between the two can be seen as the distinction between the symmetries of an object

and the invariances of physical phenomena to certain transformations.

1.2 Why generalize?

As said earlier, symmetry is the property of a physical system that is preserved when the sys-
tem undergoes some transformations. A family of such transformations can be described us-

ing groups - Lie groups for continuous symmetries and finite groups for discrete symmetries.



Continuous and discrete symmetries correspond to continuous and discrete transformations,
respectively. Amongst many other divisions of symmetries, we should mention the difference
between external and internal symmetries where external refers to the symmetries of space-
time, and internal symmetries correspond to the internal degrees of freedom of the theory.
However, for our further observations, it will be most important to distinguish local from
global symmetries. Global symmetries keep a property invariant for a transformation that is
applied simultaneously at all points of spacetime, whereas local symmetries are features in-
variant to transformations parametrized by spacetime coordinates. Local symmetries are the
foundation of gauge field theories, i.e. gauge theory is presented with a Lagrangian density

invariant to a smooth family of operations. Because gauge fields (which take values in the
Lie algebra of the gauge group) are included in the Lagrangian density to ensure its gauge
invariance, gauge theories have additional, i.e. redundant degrees of freedom. For example,
the photon has two physical polarizations, but the gauge field that we use to describe it in a
relativistic manner has four components. The Standard Model, one of the most successful
and accurate physical theories, is based on gauge symmetries.

The discussion above is well-known for what one could call ordinary symmetries that
have been very successful in explaining phenomena across many physical theories: mechan-
ics, electromagnetism, and even quantum mechanics. As said in the previous chapter, in the
20th century, the use of symmetries became much more prominent than before and they even
gave rise to new theories, therefore, it seems natural to wonder how the generalization of the
symmetry principles became so important. Although greatly applied and still very much in
use, ordinary symmetries have some limitations since they, by Noether’s first theorem that
will be revisited in 2.1.1, provide a conserved current that is a vector and corresponds to a
point-like conserved charge. Moreso, they generally apply to point particles, specific space-
time transformations, etc., and are not suitable for a description of more complex systems,
particularly in quantum field theory and topological phases of matter. The need to develop a
universal tool for the application of symmetries became noticeable in quantum field theory as
the study of higher-form' gauge fields became standard in mathematics and physics. Roughly
speaking, generalizing global symmetries is applying the concept to objects of higher dimen-
sions. Such generalized global symmetries [3] have shown to have applications within string
theory and condensed matter physics, as well as in the study of extended operators and defects

and of the anomaly structure in quantum field theory. They have recently been a subject of

'Higher-forms refer to differential -forms with . The basics are covered in Appendix A.



discussion in various fields of theoretical physics as they provide a new and organized lan-
guage for thinking about symmetry principles. So, the behavior of modern physical systems
will sometimes include interactions involving branes or topological charges, making ordinary
symmetries insufficient. It turns out, however, that, when generalized, symmetries can truly
provide charges of “higher dimension” than point-like charges.

Some other cases for the generalization of symmetry principles can be made, and among
them is the phenomenon of topological phases of matter. These states of matter exhibit be-
havior that cannot be explained via ordinary symmetries. Topological phases are resistant to
local perturbations and are stable in spite of disturbances such as impurities and often be-
have differently at their boundaries. A simple example would be the quantum Hall effect in
which a sheet of a two-dimensional material has a quantized Hall resistance whose values
are invariant under change of shape or smoothness of the material. The quantization is a
consequence of symmetry breaking that differs from conventional symmetry breaking in the
following sense: the broken symmetry is not local, but rather a global topological property
of the material. Such materials are best understood through higher-form symmetries that ex-
plain the stability of topological phases despite the local perturbations. Great applications of
generalized symmetries are, therefore, met in condensed matter physics where, besides the
given example, the occurrence of some complex excitations (that exhibit neither fermionic
nor bosonic behavior) are protected by higher-form symmetries.

Apart from the motivation for the generalization of symmetries, the reasoning behind
combining generalized symmetries and tensor gauge theories into a single discussion should
be provided. It is well-known that vector fields play a crucial role in physics — for example, in
electromagnetism. In more advanced theories involving higher-dimensional objects, a suit-
able generalization is often used: tensor fields, that allow for more complex interactions. By
generalizing a scalar or a vector field, an object of “higher dimension” is encountered — a
tensor field, and when such objects are used in a theory, ordinary symmetries are no longer
sufficient to describe some of the theory’s properties. Therefore, it is natural to think of gen-

eralized symmetries and theories containing tensor fields as intertwined.



2 From Ordinary to Higher-form: Symmetry Upgraded

2.1 Ordinary Global Symmetries

As was said in chapter 1.2, one of the most important classifications of symmetries is that of
global and local. Global symmetries correspond to transformations simultaneously applied
to all points of spacetime, whereas local symmetries depend on the spacetime coordinates.
Local symmetries require the introduction of gauge fields into the Lagrangian - they ensure its
invariance under the local transformation. Such gauge fields lead to the formulation of funda-
mental forces and can be linked to conservation laws using Noether’s theorem (discussed in
detail in 2.1.1). However, the conserved quantities associated with local symmetries are not
generally physical (not generally non-trivial), as opposed to the conserved quantities associ-
ated with global symmetries. Local symmetries can, nevertheless, lead to quantization of the
global conserved charges. Since the focus of this chapter is to introduce the generalization of
the symmetry principles that lead to conserved quantities of higher dimensions, only global
symmetries will be discussed. To show the concept, ordinary global symmetries will first be

revisited.

2.1.1 Noether’s First Theorem

Noether’s theorem shows that for every continuous global symmetry, there is a corresponding

conserved current  given with:

2.1)

or, using a bit different language (see A):

d (2.2)

where isa -form. If Hodge dual is once again applied to equation (2.2), the final expres-

sion is obtained:

Since only ordinary symmetries are revisited in this section, only the first expression (2.1)

will be used for further observation.



The conserved charge is defined as:

(2.3)

or, once again, in a bit different manner:

To show Noether’s theorem in the language of quantum field theory, only expressions using
indices 2.3 and (2.1) will be necessary.

To start with, an action is to be considered:

as well as a transformation:

(2.4)

In the equations above, is a field (for example, a fermionic field that will later be coupled
to the electromagnetic background field), is an infinitesimal parameter and all of the other

notations are standard. The Lagrangian density also transforms as shown below.

(2.5)

Note that is not the conserved current. Variation of the Lagrangian density is, of

course, equal to the second term in (2.5) which gives the following equation:

Including and regrouping terms results with:

where the LHS of the Euler-Lagrange equation can be recognized in the square brackets,



meaning it can be replaced with zero (on-shell):

(2.6)

By comparison with (2.1), expression in the brackets in equation (2.6) is the conserved current

_ 2.7)

To show that the charge defined with (2.3) is conserved, the equation of continuity (2.1) will

be used in the third step:

Finally, by applying Gauss’ theorem,

S (2.8)

equation (2.8) is obtained, showing how the charge is conserved.

2.1.2 Example: Abelian Global Symmetries and the Electric Charge

To be able to understand the generalization of global symmetries, revisiting a familiar global
symmetry of the Standard Model will be useful. There are multiple laws of conservation
within the Standard Model that come from global symmetries. To see how conserved charges
arise, the example of the electric charge will be shown.

The idea is to apply the discussion shown in section 2.1.1 to a free fermionic field

coupled to the electromagnetic field, as given with action



where

with standard notation. Note that the dynamical term is not of interest here, hence is used
simply as a background gauge field. To demonstrate that the Lagrangian density is invariant

under a phase transformation of

characterized by group of transformations, the transformation should first be expanded.
Using the Taylor series to the first order, and comparing with (2.4) the following result is

obtained:

as well as:

meaning that the two behave differently only with the respect to the sign. Due to the latter,

when deriving the change in the Lagrangian density:

the terms cancel:

providing the announced result: the Lagrangian density is truly invariant to such transforma-

tions. It immediately follows from (2.5):

(2.9)



To complete the example and find the conserved current, obtained results can be plugged in

equation (2.7):

Altogether, the conserved current is given with:

(2.10)

The result for the conserved charge follows by including (2.10) in (2.3):

These principles are what we want to now generalize so that both the current and the associ-

ated charge can be of "higher dimension".

2.2 Higher-form Symmetries

Notion of symmetry has broadened in various directions [4], including higher-form, higher-
group, non-invertible, fractal symmetry, and many more. Although they all have many appli-
cations, this work will consider only the most fruitful ones, with the higher-form symmetries
as the core generalization.

A -form global symmetry [3] is a global symmetry for which the conserved current
isa -form and the conserved charges are of dimension . In this language, -form
global symmetries are the ordinary global symmetries that were previously described and
many of the properties of -form global symmetries can be applied. These generalized global
symmetries are not some exotic generalizations in complicated theories but rather appear
naturally in gauge theories. To make the layout more general, there will be no reliance on

a specific Lagrangian density but rather a characterization of the charged objects as abstract

8



operators.
If there is a symmetry that arises from a conserved -form current

that satisfies

the conserved charges are given with:

The charged objects for these symmetries are -dimensional. For instance, in the simplest case
of , the charged objects can be line operators 2. This justifies that these symmetries are
not something strange but are essentially present in any theory that has extended observables>.

The classical source for the current is an abelian -form gauge field , so the

action must contain the following term:

Under transformation, the gauge field should transform as follows:

where isa -form gauge parameter. The next step is to look at an example of free Maxwell

theory to get a better understanding of the generalization.

2.2.1 Example: Free Maxwell Theory

We consider a gauge theory with gauge field and the corresponding field strength
with two -form global symmetries: "electric"” and "magnetic"
with respective background fields and

2such as the Wilson and the °t Hooft lines that are discussed in 2.2.2
3like Wilson’s loops



For currents defined as:

— 2.11)

— (2.12)

corresponding conservation laws are obtained if the source-free Maxwell equations are used:

d d (2.13)

The source-free Maxwell equations given with (2.13), of course, relate to the familiar layout
of Maxwell’s equations: d is associated with source-free Gauss’ law and source-free
Ampere’s law, whereas d corresponds to Gauss’ law for magnetism and Faraday’s
law. Applying the exterior derivative to (2.11) and (2.12), and plugging Maxwell’s equations
(2.13) in, trivially yields the conservation of currents and . This is the process of
formulation of a theory of a dynamical gauge field in the environment of the two back-
ground (non-dynamical) gauge fields which, due to their symmetries undergo gauge

transformations given with:

To be able to write the action  for this theory, i.e. to couple the dynamical field to the two
background gauge fields, two approaches can be taken: "electric" and "magnetic". Surely, the
two approaches must be equivalent, meaning that they show the duality of the theory which
might be useful. Here, the electric approach will be taken, and the duality discussion will be
revisited in 2.2.3.

In the "electric" approach, the gauge field shifts under background transfor-
mation, but remains the same under background transformation. Since d |,

the same is true for the field strength

10



If the gauge field is coupled to the background gauge fields, the action is expected to

have typical terms , which translates to:

(2.14)

In the equation above, the fact that the theory is taken to be invariant under electric background
transformation is used. The first term ensures this, since d  is added to both and
after the background transformation. It is easy to check that, after the transformation, d
derived from the transformation of and d obtained from the transformation of ,
cancel each other out, as they come with opposite signs. The first term is often referred to as
kinetic, and the second term is referred to as magnetic. As neither nor shift under
a background transformation, the first term is also invariant to magnetic background
transformations. What remains is to ensure the invariance of the second term. The second
term in (2.14) is invariant under magnetic background transformations, which can be easily
verified using source-free Maxwell equations (2.13), the derivative of an exterior product (see

A) and Stokes’ theorem:

d d
d d
However, this (magnetic) term experiences a shift under background transformation

- we use mathematical tools (from A) and Stokes’ theorem to see exactly how:

d (2.15)
d (2.16)

d d (2.17)
d (2.18)

11



The term in (2.18) given with d constitutes a ’t Hooft anomaly between
and . To understand the importance and the meaning of this anomaly, we should first
revisit some important notions that arise in the understanding of the generalization of the

symmetry principles.

2.2.2 Anomalies and Loop Operators

Upon attempting to quantize a theory with a global symmetry, an anomaly can occur. Roughly
speaking, an anomaly is a classical symmetry that does not remain when theory is quantized
[5]. Some anomalies can be canceled by adding terms to the action. The most important here
will be the 't Hooft anomalies which present an obstruction to gauging a global symmetry.
A global symmetry with a ’t Hooft anomaly remains a symmetry in the quantum theory, but
when the symmetry is coupled to a background gauge field, the charges that were previously
conserved are then not.

An anomaly is a term within the (effective') action that shifts the action and cor-
responds to a non-conservation law. Notation stands for the background gauge fields.
An anomaly is usually summarized by a -form gauge invariant anomaly polynomial

, meaning that the background gauge fields and their gauge transformations are
extended to dimensions. The relation between and , as well as the rela-
tion between the polynomials that present a procedure for the extension of to

are given as:

(2.19)
d (2.20)
d 2.21)

The procedure can be used in both directions.

Furthermore, a notion of Wilson loops and 't Hooft loops as observables will be made,
so let’s take a look at their definitions. The Wilson line  is an object that tells us how a
complex vector carried by a particle moves around the manifold with connection  (a Lie-

algebra valued gauge field):

! Anomalies are recognized in action , but refers to the shift in the effective action
, where is the partition function.
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Here, stands for the path ordering, while and  are the initial and final points of the
particle’s movement, respectively. In mathematics, this notion is called holonomy. The Wil-
son loop is a gauge invariant object, an observable, defined as the trace of the Wilson

line on a closed path

tr (2.22)

The 't Hooft loop is also an observable, similar to the Wilson loop, and related to it as
shown below.

(2.23)

In the expression (2.23)  stands for an element in the center of the gauge group, and
is the Gaussian linking number between the two spatial loops. Since they are observables,
these objects are of great importance, particularly in non-abelian theories (such as Yang-

Mills), where electric and magnetic fields are not observables.

2.2.3 Example: Electric-magnetic Duality

To continue the discussion on the previous example 2.2.1 of the free Maxwell theory, an
emphasis on a previously mentioned notion of 't Hooft anomalies should be made: if there
are no 't Hooft anomalies, the theory can be gauged. As discussed, anomalies are usually
shown using a -form, i.e. a -form polynomial . Using the procedure explained in
chapter 2.2.2 and given with (2.19)-(2.21), as well as, once again, the nature of the exterior
derivative of an exterior product and Stokes’ theorem as before, the following expression is

obtained from the anomalous term in (2.18):

— d (2.24)

presenting an obstruction to gauging the electric and the magnetic symmetry simultaneously.
One might change the presentation of the anomaly by adding local counterterms, but this
would only switch the action to being invariant under and would still give rise to
a 't Hooft anomaly under background transformations [6]. This is better reflected
through inspection of the "electric-magnetic" duality of the theory. It just goes to show that

higher-form symmetries play an important role in the context of duality, where more differ-
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ent Lagrangians describe the same theory. In such cases, global symmetries must match,
whether the ordinary ones or the higher-form ones. The various dual descriptions should
have corresponding charged operators that match, too [3].

To show the "electric-magnetic" duality of the theory, and all of the mentioned princi-
ples through the example, we will derive the dual "magnetic" representation starting from the
"electric" presentation of the theory. We should mention that 't Hooft anomalies are repro-
duced in any possible description of the theory, meaning that the magnetic formulation of
free Maxwell theory should reproduce the same 't Hooft anomaly as (2.24). Although gauge
symmetries may differ in the dual descriptions, the global symmetries of the theory must be
the same in the dual formulations. This is an important fact to remember about any kind of
duality in physics: the global symmetries must always match, even if the gauge symmetries
might not.

The dualization is done by considering an extended theory with action that includes a
Lagrange multiplier which is also a -form gauge field associated with its own

gauge symmetry.

— d (2.25)

Note that Bianchi’s identity for is still satisfied. The appropriate shiftof =~ under

background gauge transformations:

ensures the invariance under background gauge transformations up to the 't Hooft anomaly
obtained earlier. We now want to find the appropriate equation of motion for for action

to depend only on , and the new gauge field . In other words, we want to "lose"
the dependence of action on and replace it with dependence on . The equation of

motion for is obtained by varying over , as shown in the next equation.

(2.26)
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Due to symmetry of , the second term in (2.26) can be written as:

and due to graded commutativity, the last term in (2.26) can be replaced with:

The latter means that  can be extracted from all of the terms in (2.26) as follows:

— — d
and the equation of motion for is obtained when the expression in the square brackets is
set to zero.
— d (2.27)
As is now easily expressed from the previous equation (2.27), that expression can be

included in (2.25). The dual presentation of the theory with action , now depending only

on , and , is, therefore, derived:

This expression shows that the duality generates a counterterm proportional to
which will reproduce the same "t Hooft anomaly as before with (2.24). The conserved currents
within this theory are given with the following equations and are related to the currents defined

in the "electric" presentation, as shown here:
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Holonomies of and around a closed -cycle are Wilson’s loops and ’t

Hooft’s loops , defined with (2.22) and (2.23), given as:
where are charges of the Wilson and ’t Hooft loops respectively. When moving from
one formulation to another, is exchanged, and so are the loops

2.2.4 'Topological Aspects

Higher-form symmetries can also naturally be introduced through topological operators, as
follows. A -form symmetry in dimensions is implemented by an operator associated with

a codimension®- closed manifold

where is an element of the symmetry group . The meaning of it being a symmetry
[3] is that the manifold can be slightly deformed without affecting the correlation
functions - they are purely dependent on the topology of . Even though the use
of higher-form symmetries was implemented in the previous sections without mentioning
the corresponding topological operator, it is very useful to look at the principles from this
perspective - mostly due to other generalizations that require this formalism, such as non-
invertible symmetries discussed in chapter 3.2.

To argue this formalism, it is good to first consider the relation between topology and con-
servation. It is well-known that, in quantum mechanics, for a transformation to be symmetry,

its operator  has to commute with

(2.28)

When it comes to quantum field theory, one might intuitively try to generalize this condition
(2.28) by requiring the commutator between the symmetry operator  and the stress-energy
tensor to be zero, but that would be insufficient, as other constraints are necessary for a
proper formulation of the symmetry condition. Precisely, in relativistic quantum field theory

(QFT) with Euclidean signature, conservation under time evolution, as given by (2.28), must

*Codimension refers to the difference between the dimension of a space and the dimension of a subspace or
an object within that space.
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be further extended to invariance under any deformation in spacetime. It will be discussed
here how this extension requires that the operator U be topological beginning with a fairly
simple example that will better describe the concept: an n-dimensional theory with a U(1)
symmetry. Although this was considered in section 2.1, a different approach will be used
here.

The said symmetry is associated with a conserved current j,(z) satisfying:

gy = —00Jo + 8;5: = 0,

in Lorentzian signature. The only difference from (2.1) is that ¢ spans all the spatial coordi-
nates, and the problem is not limited to 4 dimensions. The charge operator is similarly given

with:

Q= j£ Jod" 'z . (2.29)

Assuming the space has no boundary or that appropriate boundary conditions are imposed,

the conservation of the charge can be shown using reasoning similar to what is shown in 2.1:

5‘0Q:U

The symmetry operator that embodies the symmetry of a U(1) rotation with angle € is:

Up = €9 . (2.30)

Incorporating equation (2.29) into expression (2.30), one gets:

UG _ 83‘9 § jod™ 'z

The operator is unitary and conserved and is referred to as the symmetry operator, whereas ()
is known as the charge operator. The topological aspect arises upon generalizing this principle

in a covariant manner using the mathematical framework introduced previously:

Us (M("_l)) = exp (?ﬂf *j) ,
M® D

where M ™1 is a closed (n—1)-dimensional manifold (and, by definition, with no boundary)

in n-dimensional Euclidian spacetime. The correlation functions containing Up(M ™~1)) are
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independent of small deformations of M (™~1) by Stokes theorem since xj is a closed form due
to the conservation. This illustrates how a conserved current operator in a relativistic QFT
generalizes to a topological object Up (M ™~V on a codimension-1 manifold in spacetime.
The correlation functions of the symmetry operator are independent of small deformations

of the manifold, confirming the operator’s topological nature.

2.2.5 Higher-form Symmetries Revisited

For more intuition, all of the concepts introduced so far (ordinary and higher-form symme-
tries) can also be presented in this language. In fact, an ordinary global symmetry is consid-
ered to be an invertible® O-form symmetry, and the concept can just be generalized from there.
A g-form global symmetry [3] is associated with a (n — ¢ — 1)-dimensional topological oper-
ator U, (M™971)) in n spacetime dimensions. This symmetry then acts on a g-dimensional

object D as:

Ug (M(n—q—l)) -D(N(‘i')) — g(D)D(N@) ’

where M(™=9-1) and N@ are linked in spacetime and g(D) is a representation of g.
A good illustration would be recalling the free Maxwell theory with no charged matter

from section 2.2.1. There, a topological operator is defined with:

0

U, (M(n—2)) = exp (—6—2 fjw , *F) .

The exponent is the electric flux and, due to the field strength F' being closed, the operator

Uy is closed. The conserved charges are non-topological Wilson lines W:

W:e}cp(inf A) ,
N

and the topological operator acts on the Wilson line as:

Uy (M(“_z)) - exp (m% A) — e exp (m,jg A) ,
N N

or simply put, adds a phase. This completes the basics of the higher-form symmetry use and

provides a better insight in the principles through the free Maxwell example.

Sas opposed to non-invertible symmetries discussed in 3.2
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2.2.6 Spontaneous -form Symmetry Breaking

It is well-known that an ordinary global symmetry can be spontaneously broken [7] [8], but,
according to recent developments [3], so can higher-form symmetries. As said before, higher-
form symmetries adopt many of the properties of ordinary symmetries and one of them is
spontaneous breaking. To diagnose the spontaneous symmetry breaking, an inspection of the
behavior of the large loops of the theory is used.

In quantum field theory (QFT) and symmetry discussions, area law, perimeter law, and
Coulomb law refer to different scaling behaviors of the potential energy between particles,
such as quarks, under various interactions, especially in gauge theories like QCD (Quantum
Chromodynamics) and electrodynamics. These laws often arise when discussing confine-
ment, deconfinement, or screening of charges.

Area law refers to a regime where the expectation value of a Wilson loop (that measures the

potential between two sources), scales with the area enclosed by the loop:

Here, is a parameter that stands for the string tension. The area law is usually associated
with confinement, meaning that the potential between the sources (particles, for example,
quarks) grows linearly with the distance between them. In the QCD example, this relates to
the quark-antiquark potential that increases linearly with . On the other hand, perimeter law
describes the expectation value of the Wilson loop when it scales with the perimeter of the

loop rather than the area:

perimeter

where is a constant related to a mechanism often associated with this behavior - screening.
In such cases, particles could be separated without an infinite energy cost. Another possibility
of the Wilson loop behavior is the Coulomb law that describes the potential energy between
particles as a function of distance with its exponent being , as in the classical Coulomb

law:

which typically occurs in QED. These behaviors give insight into symmetry breaking [3].
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An area law for a charged loop operator means that a corresponding -form symmetry is
unbroken. This is because the expectation value of the loop vanishes as its size goes to infinity.
On the contrary, perimeter law and Coulomb behavior mean that the loop has a nonzero
expectation value when it is large and the symmetry is spontaneously broken.

In other words, a -form global symmetry can break to a subgroup . If that happens,
the charged operators under the subgroup  exhibit area law. However, the loops that are
charged under , but not under transformations exhibit perimeter or Coulomb law. Even
though we are discussing -form symmetries here, further generalization is made by employ-
ing the key principle: inspecting whether charged objects have a non-zero vacuum expectation
value when they are large. Of course, as in the case of ordinary global symmetries, when a
continuous -form symmetry is spontaneously broken, a Nambu-Goldstone boson arises in
the system. This Nambu-Goldstone boson is a massless photon meaning that photon can be
seen as a Nambu-Goldstone boson of a higher-form symmetry breaking. A similar principle
will be applied to describe the graviton as a Nambu-Goldstone boson 4.2.3.

The spontaneous symmetry breaking can be noticed from the matrix element of the -
form Noether current between a photon with polarization and momentum and the

vacuum:

(2.31)

which is nonzero. The possibility of the spontaneous symmetry breaking is generalized [3]
to the following: A continuous -form symmetry is always unbroken for and a
discrete for

In the example of the free Maxwell theory which is a pure gauge theory with an
electric and magnetic -form global symmetries, in four dimensions, the -

form symmetry does not satisfy the condition for remaining unbroken:

but this does not ensure its breaking. To see how the symmetry gets spontaneously broken,
we should consider the Wilson line given with (2.2.5). The Coulomb behavior of the line
can be reasoned through the static point-like charge that would satisfy the Coulomb gauge

- making the exponential in the Wilson line Coulomb-like. The gauge field  would

be a generalization of this, taking all of the space-time configurations.
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Because the behavior of the Wilson lines is Coulomb-like, global symmetries are spon-
taneously broken and the massless photon is a Nambu-Goldstone boson. This can be further

proved using equation (2.31) for both the electric and the magnetic current.
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3 Generalized Global Symmetries: Further Developments

3.1 2-group Symmetries

Although the higher-form symmetries present the pillar of the generalization of symmetry
principles, there are other generalizations, one of them being higher-group symmetries which
we will present through the basics of -group symmetries with the example of Maxwell’s
theory, again. The concept can be understood as a generalization of a product symmetry.

A quantum field theory has a -group symmetry [6], if it can be coupled to a -form
background gauge field (here denoted ) that undergoes a -group shift in addition to its
own background gauge transformations. In other words, these are global symmetries
where the mixing of background gauge fields under their respective gauge transformations is
allowed. The -groups themselves will not be explored, but rather the -group background
gauge fields. To keep it straightforward, the simplest example where the mixing of a back-
ground gauge field for a -form flavor symmetry is taken, i.e. and a -form
background gauge field for previously mentioned -form symmetry is involved.

Such -group symmetry is said to be abelian and denoted as shown below.

(3.1)
Here, [6] is a -group structure constant that characterizes the -group symmetry.
To see what ~ means, we should consider the transformation rules for gauge fields and
. The transformation rule for remains standard:
d

but, as said before, undergoes an additional shift.
d — (3.2)
In the previous expression, d is the field strength. The consistency of the trans-

formation rule given with (3.2) is ensured with  being quantized. It ought to be mentioned
that  characterizes the -group symmetry because it does not change with the rescaling of
the gauge fields. This is visible in equation (3.2) where there is an additional shift propor-

tional to the field strength . The latter shows that we cannot turn a non-trivial profile of
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the gauge field on without it affecting . It should be recognized that, for , the
-group shift in (3.2) disappears. Therefore, the -group symmetry dissolves into ordinary

product symmetry:

Many quantum field theories possess the -group symmetry given with (3.1) such as QED
with many flavors [6].
It can be shown that the -group symmetry described with (3.1) arises from a "parent"
theory with
(3.3)

flavor symmetry, with being the corresponding background gauge field. Because of this,
it will be useful to take a look at parent theories with such abelian -form flavor symmetry.
In fact, gauging leads to a new -form global symmetry. The latter can be shown by
gauging from (3.3) by promoting and its field strength to dynamical fields.

The change is denoted with

The action should contain:

— — (3.4)
In the previous expression (3.4) the theta-term? is added.
To ensure that can be gauged, the theory must be checked for anomalies. The
most general anomaly -form polynomial [6], constructed of the field strengths and
is:
(3.5)

’the gauge invariant term that can be added to a -dimensional action, quadratic in field strength
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For further analysis, additional context is required. An anomaly polynomial is called
reducible if it can be written as a product of closed, gauge invariant polynomials and

of lower degree.

When trying to obtain , through the reversed procedure (described earlier with (2.19)-
(2.21)), an ambiguity gets involved since the exterior derivative can be removed from either

factor in (3.5). This can be described using a real parameter :

where

Yet another similar ambiguity arises when a similar procedure is used further [6] to get to the

-anomaly. Altogether, for dimensions, it follows:

where is areal parameter introduced in the same manner as . Using the procedure described

in (2.19)-(2.21), the expression for anomaly is computed.

For to be gauged, new gauge transformations must be anomaly-free, i.e.

is imposed. This is satisfied when:
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The previous conclusion leads to an anomaly that appears under gauge transforma-

tions and is of the form presented here [6]:

- — — — (3.6)

In its most general form, the -dimensional anomaly includes terms with and , but when
those are set to zero (for the purpose of removing any anomaly under background
transformation that we want to gauge), the anomaly is fixed as shown with (3.6). Also as
a consequence of the parameters and being fixed, the following non-conservation law is

obtained:

d . _ S 3.7)

When the gauge field is promoted to the dynamical gauge field , together with its
field strength, these anomalous shifts become operator-valued and need to be accounted for.
We can firstly examine the mixed anomaly in the non-conservation law shown above

(3.7). So, we are interested in the following term:

d _— (3.8)

The term shown in (3.8) violates the conservation of the current but can be accounted for
if some transformation rules are changed. However, this will not affect the dynamics of the
theory and is different than cancellations of anomalies which involve coupling the theory to
additional fields. The anomaly is resolved if in (3.4) is promoted to a background field that

shifts under background gauge transformations as:

(3.9)

which shows that, since is not dynamical, but rather a background field, is explicitly

broken and no profile of would stay the same after transformation (3.9).
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Therefore, if we demand that the symmetry of the theory cannot be explicitly broken, the only

resolution is to impose the following condition:

This analysis should be applied once again, this time for term in (3.7). This can be
done by observing how this term appears in the non-conservation law, once the field is

promoted (gauged) to the dynamical

d — (3.10)

The current is obviously not conserved, unless is trivial. But, there is an appropriate
source (field) for that will cancel the anomaly and will do so if it undergoes a -group
shift when transformation is applied. This shows that a symmetry,

when gauged, gives birth to a theory with a -group symmetry.

To see exactly how, let’s set up a symmetry with a -form background gauge field
that is associated with the gauge field strength as the current
is conserved due to the Bianchi identity that is earlier said to satisfy. Therefore, if the
current is defined as above, its classical source should be a background gauge field
with its own background gauge transformation:
d
which includes the Bianchi identity for . The action should, then, contain:

The resolution of the anomaly given in (3.10) is the following: one can impose that
undergoes a -group shift under background gauge transformation, and, since is

an appropriate source for , if the transformation is of the following form:
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where

then the operator-valued shift given in (3.10) is canceled. Although the transformation rule
for given with (3.9) and the transformation rule for might seem to take a similar form,
there is a difference: transforms only if is non-trivial. This is why, in the first case,
the symmetry was explicitly broken and had to be set to zero, unlike here, where the
current is conserved if the field strength
In conclusion, we have shown how a theory with flavor symmetry and a
anomaly gives rise to a theory with abelian -group symmetry when is gauged.
An interesting property is worth mentioning: an inverse construction is possible. Therefore,
upon gauging a in a theory with -group symmetry, a parent

theory is recovered with flavor symmetry and 't Hooft anomaly [6].

3.2 Non-invertible Symmetries

As was discussed earlier, other interesting phenomena occur when symmetry principles are
generalized. One of the interesting, yet applicable generalized symmetries are non-invertible
symmetries [4]. In short, when it comes to generalized symmetries, they do not necessarily
have to be implemented by an operator that has an inverse. This means there are symmetries
that cannot be reversed when applied.

Global symmetries in quantum mechanics are described with (anti-)unitary operators, by
Wigner’s theorem, which have inverses. But, when it comes to relativistic QFTs, symmetries
can be non-invertible, as described by operators that do not possess inverses. This comes as a
consequence of the requirement that the symmetry operator must be topological, as discussed
in 2.2.4 without restrictions on the possession of an inverse. Non-invertible symmetries lead
to new conservation laws and selection rules and are also not to be seen as overly exotic
since they do have a history in physics: an infinite number of conserved charges that do not
lead to unitary operators in integrable systems. It has been pointed out in recent years [9]
[10] that these non-invertible symmetries related to the topological defects are to be seen
as a form of generalization of global symmetries, hence, they will be considered here. It is
worth mentioning that they are often found to be intertwined with higher-form symmetries

in general spacetime dimensions and that they exist in realistic quantum field theories, such
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as four-dimensional free Maxwell theory. To provide the proper analysis of this concept, a
topological aspect, such as that of section 2.2.4 is to be taken. Note that many of the interesting
applications and concepts provided by the non-invertible symmetries will not be discussed

here.

3.2.1 Defects

Some key concepts and notions must first be introduced to start the analysis. A topological
defect is a localized disruption in the order of a system. The latter often refers to fields
or materials and it arises from constraints of the system’s topology. If not encountered by
another defect, a topological defect will remain stable. Formally, such defects occur if it is
impossible to deform the field configuration into a trivial configuration due to the nontrivial
elements of the homotopy® group , with  being the manifold describing the order
parameter space of the system, and is the number of dimensions. These, however, mostly
refer to solitons or other extended objects that are a consequence of a nontrivial topology of
the field space and typically have nonzero tension’. Here, "topological defects" correspond to
defects whose infinitesimal deformations in spacetime do not change any physical observables
- the correlation functions will not depend on the detailed shape and location, but only on the
topology, and they have zero tension. In short, the use of the term "topological" is somewhat
like that in "topological field theories". To make the distinction, the traditional defects are
sometimes referred to as "homotopy defects" [4].

To better elucidate the role of the symmetry operator , again a familiar example
of symmetry will be used. The idea is to show that, if is the whole space at
a fixed time, is conserved and unitary and acts on the corresponding Hilbert
space . But, when is extended in the time direction and localized in one
spatial direction, such as , becomes a defect that modifies the quantization
resulting with twisted Hilbert space , labeled by the rotation angle

For instance, consider a free complex scalar field in -dimensions (i.e., ):

®Homotopy refers to a continuous deformation of one shape or function to another, that can be done smoothly.

example: Any larger loop can be shrunk to a smaller loop smoothly. Moreover, any loop can be continuously
contracted to a point making all of the loops homotopic to each other. The homotopy group is since
there are no nontrivial loops.

"Tension describes how far a map is from being in the state of minimal energy. Having nonzero tension
means that these objects would require energy to be moved in spacetime.
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The theory possesses a global symmetry depicted with the transformation:

and the corresponding conserved current:

If the space is considered to be a circle ~ parametrized by , the corresponding
Hilbert space is obtained by the canonical quantization of the free scalar field subject

to the periodic boundary condition:

The conserved current yields a unitary operator:

acting on the said Hilbert space . What is interesting, is that an alternative, but equiv-

alent approach can be taken - inserting a defect:

along the Euclidean time direction at changing thereat the boundary condition of the

scalar field to:

(3.11)

Canonical quantization with the twisted boundary condition (3.11) now yields a twisted Hilbert
space , as announced, denoted with the group element . In other
words, we can relate the current to a unitary operator when is at a fixed time, or insert
a topological defect along the Euclidean time direction at

In the case of discrete symmetries , there is no conserved current or charge operator,
but the symmetry can still (in general) be formulated by the existence of a conserved unitary
operator  for each element of the group . Moving to relativistic quantum field the-

ories, the conserved operators will again be generalized to topological operators, i.e. defects
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in Euclidean spacetime. Given the previous discussion, a general principle can be extracted
for global symmetries in relativistic quantum field theories: every global symmetry leads to
a conserved operator acting on the Hilbert space and to a topological defect that modifies
the quantization and yields a twisted Hilbert space. The latter ensures the consistency of
Euclidean correlation functions by giving some strong constraints on symmetries. Both op-
erator and defect are captured in the same object and the correlation functions
involving it are invariant under infinitesimal deformation of . And when is
the entire space, the invariance under time evolution is in place.

When it comes to relativistic QFT, an ordinary global symmetry is associated with a
topological operator and a topological defect, but there are topological defects/operators that

do not correspond to invertible symmetries. They do not obey a group multiplication rule, but

a fusion rule of a different kind. In -dimensions, their fusion rule takes the following
form:
where . They generally do not have an inverse and are, therefore, called non-

invertible operators/defects. Higher-form symmetries have to be commutative but are not
necessarily invertible.

So, non-invertible symmetries are transformations that will leave the Lagrangian invariant
and are associated with conserved quantities, but an inverse transformation cannot be applied
to return to the original state. Even though this process is irreversible, it is not to be mistaken
or held responsible for other irreversible processes in physics such as hysteresis. The under-
lying principles might sound the same, but they arise in very different contexts. Hysteresis
happens if the response of the system is dependent on its history, which might include an
applied field or force, and not a symmetry transformation.

The interpretation of the non-invertible symmetries using the topological operator and
the codimension- topological defect described with the same object is the following. Since
the operator has no inverse, the symmetry transformation is non-invertible. From a different,
but equal perspective, the transformation that "crosses" the defect is non-invertible, whereas
symmetry transformations along "one side" of the defect behave more conventionally. There-
fore, because the symmetries can be imposed by implementing a defect, we can simply say

that the crossing of that topological defect is not invertible, in the case of the non-invertible
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symmetries.
The central part of this subsection will be the example of non-invertible symmetries [4]:

-dimensional Maxwell theory, but to get into that, condensation defects are to be understood.

3.2.2 Higher Gauging and Condensation Defects

The simplest way to construct a non-invertible symmetry is to take a linear combination of

two invertible ones. For example, defining an operator  as:

where is the identity operator and ,i.e.ithasa  symmetry. Operator can then
be called a "twice the projection". Although a very easy way to construct a non-invertible
symmetry, it is not very interesting since it can be written (as it is constructed) as a linear
combination of operators of the same dimensionality. There are yet more creative ways such
as summing over a finite set of topological defects of lower dimensions along the nontrivial
cycles of a higher dimensional manifold. The procedure effectively creates a topological
defect on the higher dimensional manifold - condensation defect. Such defects cannot be
written as a linear combination of other defects with the same dimension, but are a mixture
of topological defects of lower dimensions. The term condensation defects was introduced
because the idea of higher gauging raised from anyon condensation along a one-dimensional
line in the -dimensional space [11], and it is only later recognized as gauging a higher-form
global symmetry along a higher dimensional manifold. The principle was also referred to
as the categorical generalization of the projection operator [4] and is the basic part of the
non-invertible fusion algebra in general spacetime dimensions.

If there are no 't Hooft anomalies for a given symmetry, it can be gauged in various
ways, however sometimes, a discrete -form global symmetry can be gauged, not in the entire
spacetime, but only along a codimension submanifold in spacetime. This is the
concept of higher gauging, i. e. -gauging a -form symmetry. An ordinary gauging would
be simply -gauging of a -form symmetry. In essence, the process of gauging is, thus, also

generalized. As mentioned before, the obstructions to gauging are not excluded: a -form

global symmetry can be not only but also . To be more precise,
a symmetry is -gaugable if it can be gauged for all , and if not, it is -anomalous.
Furthermore, because a -form symmetry is related to -defects, it is easy to see
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that -gauging it is possible only if:

(3.12)

If only the equal part of expression (3.12) is considered, higher gauging coincides with tak-
ing a linear combination of the symmetry’s topological defects. One should remember that
condensation defects can be both invertible and non-invertible.

3.2.3 Topological Defects in -dimensional Free Maxwell Theory

To provide an example of the occurrence of non-invertible symmetries, a free Maxwell theory
[12] can once again be considered:

— — (3.13)

In Lagrangian (3.13), is again the field strength, a -form, and the theta-term is
included. All of the properties considered so far (such as those in subsections 2.2.1 and
2.2.3), are still valid, of course. What can be added and recalled, are the electric and

magnetic -form symmetries that are responsible for the electric-magnetic duality of

the theory. The said symmetries provide electric and magnetic ~ charges as:

— — (3.14)

where is the dual field strength, and  is a -dimensional space. The observables are

Wilson and ’t Hooft lines:

Without getting into the discussion on duality itself, that exchanges and given as:

topological defects that arise from the related transformation will be studied. The electric-

magnetic duality exchanges both and and the coupling - which is one of the

32



reasons making this duality interesting®. What will be of interest here is the recognition of

the self-dual point 7 = 7 since the coupling 7 is given with:

At the self-dual point, the duality becomes a global symmetry that exchanges F' and *F'. In
[13], the topological defects for integer values of ¢7 were constructed, but here a more general
approach will be taken for topological defects implementing the said transformation away
from the self-dual point. The goal is to understand the topological defects in Maxwell’s theory
that implement even more general transformations between F' and *F'. As was announced,
the duality itself will not be considered yet, so only the defects within the same theory are
considered and not the relation between the dual theories. Therefore, the coupling 7 is the
same on both "sides" of the defect. This amounts to writing the Lagrangian £ in terms of the

defect along a surface .S that splits the spacetime M into two regions, such that

M=Stus-,

and:

S~ =-985T=85.

To make the matter simple, S can be chosen to be an infinite flat surface at z = 0 and the
fields on the sides of the defects can collectively be denoted as left and right: Ay, Ar. The
Lagrangian L is the same on both sides of the defect because, as said earlier, only one theory
is considered and not the interface between the dual theories. In such terms, the full action

in the presence of a defect can be written as:

S:/ E(AL,BQ,G)+/£S(AL,AR,6)+/ L(Ap,,0) . (3.15)
S S

S+
In the expression (3.15) above, b stands for any additional dynamical fields that live on the

defect.

8As explained in section 2.2.3, the exchange allows for better understanding of different regimes. This is
because strong coupling in one theory turns to weak coupling in the dual theory. Although it is not strictly so
in the free Maxwell theory, the principle sheds light on more general situations.
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The next important thing to consider is the most general transformation that would act linearly

on and , so the following transformation can be considered:

and analogously:

where and are real parameters. With the assumption of the defect Lagrangian as not
dependent on the metric, for the defect to be topological, the energy-momentum tensor

must obey:

(3.16)

In other words, for the energy-momentum tensor to be conserved, the previous expression
must hold. In (3.16), is the normal vector, perpendicular to the surface . The condition
is not generally satisfied, i. e. only specific relations between and will allow (3.16),
meaning that some constraints are in order. Specifically, equations of motions for ,
and derived from the defect Lagrangian  will provide them. The equations of motion are

given as follows.

and

The form degrees of and are marked with  and , respectively. So, the strategy is not
to start from a given defect Lagrangian, but to first determine the relations between and
on the defect, such that (3.16) is satisfied. The relations will give a suitable candidate for

a topological defect and the defect Lagrangian can be built.
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The energy-momentum tensor is explicitly given as:

and, since the satisfaction of (3.16) is imposed on it, the most general manner for the trans-

formations to be generated by a topological defect is an rotation [12]:

The theory also enjoysa  charge conjugation symmetry and the corresponding topological
defect is obtained when is set to . The topological defects that implement the trans-
formation of  to away from the self-dual point are obtained with —. Some other
interesting cases [14] have been considered using higher gauging.

For , a simple example of a condensation defect for arbitrary values of  and

is realized by the defect Lagrangian:

where is an auxiliary gauge field that is non-trivial only on the defect. Factor is
an integer that can be taken to be positive without loss of generality and serves to ensure the

gauge invariance. The equation of motion for will provide a condition:

(3.17)

and the other equations of motions give:

_ - - - — (3.18)

When condition (3.17) is included in equation (3.18), the following constraint is obtained:

After appropriate integration on the defect, a condition on the electric charges is yielded:
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where is the integer measuring the flux of ,and and  are the -form electric charges
defined by (3.14). If , the defect is trivial, but if , the charges are to be multiples
of and, although the defect acts trivially on local operators, the non-trivial transformation
of line operators is induced, showing the basic property of a topological defect as discussed
in the previous sections.

As announced, the case of also includes the charge conjugation. It is obtained

with the following defect Lagrangian:

— (3.19)
as the non-trivial  element of the . In the case of , the well-known invertible
charge conjugation symmetry is implemented. However, for , the condensation defect

occurs.
The condensation defect is best seen when the previously discussed defect (3.19) and the
charge conjugation defect are considered simultaneously. Then, one can formulate the action

as:

— — (3.20)

where  corresponds to the field living only on the condensation defect, and is the field
living only on the charge conjugation defect surface. The action (3.20) consists of two terms:
the first one corresponds to a trivial decoupled topological field theory and can be dropped,
and the second is the product of the usual charge conjugation and the condensation defect
given earlier (3.19). To put it simply, the defect Lagrangian (3.20) provides the familiar
invertible charge conjugation symmetry for , but for , it provides a product

of the usual charge conjugation and the condensation defect given with (3.19).

3.3 Non-linear electrodynamics

When two seemingly different physical theories are shown to be equivalent, they are said
to be each others’ dual theories. One thing to remember about duality in physics, as was
mentioned in 2.2.3 is that the global symmetries of dual theories must coincide, whereas the
same does not have to be the case for the gauge symmetries. This is one of the ways in which
the generalization of the symmetry principles provides a whole new frontier. If the symmetry

algebras of the two theories are the same, it may point to a duality and the degrees of freedom
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in these theories do not need to be the same. It is also worth mentioning that dual theories
typically interchange weak and strong coupling making it easier to find explanations for both
regimes, as was seen in the example of "electric-magnetic" duality in 2.2.3. Even though
there are many types of duality, it is sufficient to know that they provide new insights into
both theories.

Here, we will consider a specific class of Lagrangians and show how to find their dual
theories, as an extension of what was considered with discussion around free Maxwell theory
in 2.2.3. The procedure is essentially the same but depicted through a recipe that shortens the
calculations [15]. The procedure works for Maxwell-like Lagrangians and will be shown for
the case of Maxwell’s free theory and for more complex, non-linear cases.

When considering a -form dynamical field with an Abelian gauge transformation:

and the corresponding -form field strength , a class of Lagrangians of interest can be for-

mulated as a function of two independent Lorentz invariant scalars

and :

Because of the elegant formalism, a class of Lagrangians that can be written in these
terms, as an analytic algebraic function of and , the equations of motion can also be written
simply interms of , , ,and . Because these theories typically enjoy -form symmetries,
conserved currents (again, "electric" and "magnetic") can also be expressed this way. The
sources of the currents, and , can be minimally coupled to the action that would be

written in general as:

(3.21)

37



It is now clear that a new formulation of and is required to reflect the intro-

duction of the background -form fields and

When the background field  goes to zero, both and turn to their old forms
and , respectively. What follows is the off-shell dualization recipe.

Using a parent action:

one simply needs to solve equations for a given Lagrangian and include the results in (3.21)

to obtain the dual theory. The final equations that are needed to solve are [15]:

- (3.22)

(3.23)
(3.24)

where , and are given as follows:

The parent action can be also simplified to:
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To show the concept, it is useful to, yet again, consider the Maxwell theory in  dimensions,

as announced.

3.3.1 Maxwell’s Electromagnetism

Maxwell’s action can now be written using the previously introduced abbreviations:

Because there is no explicit dependence on , equations (3.22)-(3.24) simplify to:

To specity, equation (3.23) leads to:

making the first equation (3.22) lead to:

Plugging this in the parent action (3.21):

yields the dual action:

Although the coupling was not considered, it would have been properly converted using this

procedure, too [15].
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3.3.2 Born-Infeld Electromagnetism

A famous example of non-linear electromagnetism is the Born-Infeld electromagnetism de-
veloped in the 1930s [16]. The motivation for the establishment of this theory was to regu-
larise some divergences associated with point-like charges. The inspiration was taken from

the translation of the Newtonian free-particle Lagrangian —— to the relativistic case

In a similar manner, Maxwell’s Lagrangian was modified firstly by Born [17] so that the
divergences from the Coulomb potential are regularised due to the upper bound in the theory

[18]:

- — (3.25)

In (3.25), represents the upper limit of possible electric fields. Because such action is purely
motivated by the upper limit, it had some other shortcomings and, together with Infeld, Born
searched for a theoretically more appealing guiding principle. They concluded that, just like
the Lorentz group reduces to the Galilean transformations in the limit of small velocities,
Maxwell electromagnetism should be the limit of some other theory with a larger group of
symmetries: the group of general coordinate transformations. The action at which they have

arrived is given with [16]:

Here, the action coupled to the background fields is considered, in terms of previously intro-

duced scalar combinations:

Following the procedure given with (3.22) - (3.24), from equation (3.23), we obtain:

which is the usual case for theories of type that have electric-magnetic duality

rotations.
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The solutions of the remaining two equations are:

The dual theory is found by plugging these results in (3.21):

Besides the Born-Infeld theory, there is yet another extension of Maxwell’s theory to a non-

linear regime that recently spiked the interests of physicists, called ModMax theory.

3.3.3 ModMax Theory

A non-linear extension of free -dimensional Maxwell’s electrodynamics called ModMax
was recently discovered [19]. What is particularly interesting about this theory is that it admits
classical conformal invariance, as well as all the symmetries of Maxwell’s electrodynamics,
including the electric-magnetic duality. It arises as a weak limit of the generalized Born-

Infeld theory. The Lagrangian density of ModMax has the following form [20]:

and provides two -form currents as in the previous cases, making it suitable for the procedure.
The coupling constant is dimensionless and non-negative and Maxwell’s theory is recovered
when . When coupled to the appropriate sources (the two -form background fields),

the ModMax action can be written as:

Due to the nature of the coupling constant, only will be considered, since the case
is the Maxwell theory that was already discussed. As was said before, the theory admits the

electric-magnetic invariance and, as in section 3.3.2, equation (3.23) reduces to:
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and the solutions of equation (3.24) are:

both leading to different  in the equation (3.22) and, consequently to a different dual action.

The final result is:

Of course, the  distinction is not alone in providing different actions, since the action itself

is different for different values of the coupling constant . A noticeable property, however, is

that of:
This implies a negative angle in which is forbidden by the theory. In conclusion,
the dual theory is given with . Similarly to the two previous examples, if we set the

background fields to zero, the dual theory is the same as the original ModMax theory, but
with different parameters. Simply put, the dual theory is again of the "ModMax type".

The discussion around the non-linear extension of Maxwell’s theory offers a better insight
into the use of higher-form symmetries: the dual theories are easily found using the principles

grounded in the discussion 2.2.3 in an abbreviated manner.
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4 Generalized Global Symmetries in Tensor Gauge Theo-

ries

4.1 Tensor Gauge Theories

Gauge theories are the ones that admit gauge invariance, previously (chapter 1.2) described
as local symmetries - invariance under transformations that can vary from point to point
in spacetime. These transformations are implemented in the Lagrangian with the use of a
gauge field that undergoes these transformations. Gauge invariance results in redundancy
since the gauge transformations do not change the system’s physical state, making the gauge
invariance a somewhat odd principle on which to build some of the best theories of physics.
It is, therefore, not a nature’s property, but rather a property of the choice of description of
nature. Removing the redundancy, by fixing some specific gauge, causes some of the theory’s
properties to be removed, too. As odd as redundancy may seem, this principle provides
a description of three of the fundamental forces that are responsible for the success of the
Standard Model. In the words of David Tong [5]: "Although the use of gauge choice was
commonplace among classical physicists, it was viewed as a trick for finding solutions to the
equations of electromagnetism. It took a surprisingly long time for physicists to appreciate
the idea of gauge invariance as an important principle in its own right. Fock was the first
to realize, in 1926, that the action of gauge symmetry is intricately tied to the phase of the
wavefunction in quantum mechanics.”

A classic example of gauge theory that was considered throughout this work is electro-
magnetism. In the language of field theory, it is described by the gauge group with
being the gauge field - the vector electromagnetic potential. The gauge symmetry is local:
the phase of the wavefunction of a charged particle can be arbitrarily changed at every point
in spacetime. The gauge field is introduced in the Lagrangian and it transforms so that it
cancels the effect of the local phase change. The field strength is in-
variant under gauge transformations. The -vector potential is then recognized as the photon,
the force carrier of the electromagnetic force. Similarly, to describe the weak nuclear force,

and bosons arise as massive spin-1 mediators, the consequence of the gauge group
, where is the isospin and  is the hypercharge. And again, in quantum
chromodynamics, the gauge fields of the non-Abelian symmetry are implemented

via gauge fields  and correspond to gluons. The symmetry is that of color , and spans
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from to ,indicating the colors of the carriers - gluons. They are again, spin- particles,
massless and, unlike photons, interact with each other.

As was discussed in 2.2.6, the photon can be viewed as a Nambu-Goldstone boson -
a massless particle that arises from spontaneous symmetry breaking, and in the following
chapter, we will build a case for the graviton to be considered one in linearized gravity, too.
The symmetry that we hold accountable for the rise of the graviton as a Nambu-Goldstone
boson will be higher-form - more so, a biform symmetry, as will be explained in 4.2.2. The
argument will be made in the theory of linearized gravity which is a tensor gauge theory, and
the biform symmetries, as another generalization of symmetry principles, need to be properly
introduced.

We should first build some intuition around tensor gauge theories. Unlike the usual gauge
theories that are based on vector fields, for example, the -form in electromagnetism, ten-
sor gauge theories employ higher-rank tensor fields, meaning that the gauge fields transform
as tensors under the gauge transformations. The motivation lies in describing higher-spin
fields (spin greater than ) [21] as well as in attempts to formulate consistent theories in the
study of gravity and string theory.

To show an example of how tensor gauge theories can be viewed as a generalization of
gauge theories, we can take a glance at one of the most famous examples of tensor gauge field
- the antisymmetric field called Kalb-Ramond field [22] that appears in string theory as

a generalization of the electromagnetic field. The gauge transformation is:

where  isa -form. The corresponding field strength is given with:

which is considered to be an analogue of the field strength in electromagnetism. The free

field Lagrangian is also analogous to the familiar electromagnetism gauge theory.

Both the field and the field strength are totally antisymmetric, i.e. they are differential forms,

but of higher rank, making this theory a tensor gauge theory.
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This example might serve as an introduction to how tensor gauge theories might look
like, but our focus will be on linearized gravity as the main goal is to see how the graviton
can arise as a Nambu-Goldstone boson. Although the following discussion is fairly recent[23]
[24], the closely related insights in tensor gauge theories, their symmetries and dualities were
explored before [25] [26], intertwined with [27] [28]. A unified approach to standard and
exotic dualizations of gauge theories was also considered through the language of graded

geometry [29].

4.2 Graviton as a Nambu-Goldstone boson
4.2.1 Linearized Gravity

As was said before, since we are to present the graviton as a Nambu-Goldstone boson in
linearized gravity, we should first cover the basics of the theory. Linearized gravity assumes

that the metric tensor is given by:

where is the flat metric and is a small perturbation. Since follows as a
deviation from the flat metric (that is always symmetric), it is a symmetric rank- tensor. An
action for the theory containing propagating in the flat metric will, therefore, be a tensor
gauge theory. The gauge symmetry will follow from the diffeomorphisms of the full Einstein
theory. Expanding the Einstein equations to linear order in the small perturbation leads
to thinking of gravity as a symmetric spin- field propagating in Minkowski space

In this regime, indices are lowered and raised with the flat metric, for example:

The various curvature tensors are constructed from the metric. When we only keep the
linear order in , the Christoffel symbols, the Riemann tensor the Ricci tensor, and the Ricci
scalar are obtained with structures [30] that lead to the Einstein tensor of the following

form:

_ 4.1)
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The Bianchi identity for the full Einstein tensor’ reduces to:

Even though Einstein’s equations become linear, they are still somewhat complicated and
present a set of partial differential equations where the stress-energy tensor also has to be
taken for small, to stay consistent. The linearized equations of motion are derived by varying

the Fierz-Pauli action:

— - - - - (4.2)

Truly, when varied, after some integration by parts, the Fierz-Pauli action yields:

which amounts to the vacuum Einstein equations and matter can be coupled by
adding term to the action.
Linearized gravity inherits a gauge symmetry from the diffeomorphisms of the full theory.

In other words, the action is invariant under:

In the following discussion, instead of (4.2), we will refer to the Fierz-Pauli action written in

the following convention (4.3):

— 4.3)

where the Einstein tensor is given with (4.1) but without the - factor, namely:

which is often slightly abbreviated using the symmetrization notation (with unit weight):

The usual Bianchi identity for the full Einstein tensor is
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From the perspective given with (4.3), it is also clear that the Einstein vacuum equations are

given with:

One should keep in mind that the linearized Einstein tensor is also gauge invariant. For further

development, we will also state the linearized Riemann tensor in the same convention:

4.4)

We should notice that the Einstein tensor is not the most general gauge-invariant local operator

in linearized gravity - the full Riemann tensor is also gauge invariant.

4.2.2 Biform Symmetries

To show some symmetries of tensor gauge theories, and in particular, linearized gravity, a
concept of biform should be introduced. A biform is a mixed-symmetry tensor and can be
denoted with indices, meaning that its depiction through the Young diagram consists
of two columns where is the length of the left column and of the right. For example, for

, the Young diagram could be sketched as follows.

The adopted convention is the following: the mixed-symmetry tensors are antisymmetric in
the indices associated with a column while antisymmetrizing all the indices from one of the
columns with any index from the second column causes the tensor to vanish [23]. A theory
that adopts an electric current of the nature is said to enjoy a biform symmetry [24]. In
more detail, a biform is a tensor which is an element of , where is the space
of -formsonan -dimensional manifold and analogously for . The index symmetries

can be written as:
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and forp > ¢:

A[m“.p.pwl]vz...uq =0.

Due to having two columns, exterior derivatives can act on either, therefore, to differentiate
them, one can introduce left and right exterior derivatives, d;, and dp that act on the left and

the right column, respectively:

dr, : Q! - P o0,

dp: P R0 — QP @ QI

Although the notion is familiar, it is good to see the definition of the operators explicitly:

(dLA)pl...pp.,_ﬂvl...vq = 6[#1‘4}-"2---}-"p+1]|1’1---”q !

(drA)

B1eBplVieVapr A»‘-"l-“»‘-"P+1|[V1~-Vq:1’q+1] .

In the previous equation, the comma stands for the partial derivative. The operators obey:

df =dp=0,(d +dr)* =0,

and commute. In a similar manner, left and right Hodge dual is introduced: *, and *p.

1 a
_ = 1---Cp
(*LA)}J-I---}J-n plvi-vg = p!fﬂ-l-u}-’-n pﬂfl-uﬂpA |v1...vq

1 a
_ = 1...0q
(*LA)}J-I---}-"pll’lu-Vn a q, €1 pin qal-quApl...pp|

All of the other operations necessary to work with these mixed-symmetry representations
(that we call biforms) are done in the similar manner, by employing the operations done on
differential forms, but separately for each set of indices. We can finally explain how a graviton

can be seen as a Nambu-Goldstone boson through these principles.
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4.2.3 Graviton as a Nambu-Goldstone boson

The Fierz-Pauli action given with (4.3) is not only invariant to linearized diffeomorphisms

but also under a global -biform symmetry where shifts as follows:

4.1
where is a constant symmetric tensor. The corresponding Noether current is a -
biform!'? [23]:

- 4.2)

that, although conserved on-shell!!, is not gauge invariant. So, in the search for the symmetry
that would yield the graviton as a Nambu-Goldstone boson, we have to look at a somewhat

different but related transformation. If we choose to write as:

4.3)

where isa -biform. The consequence of this choice is that the associated Noether
current is the Riemann tensor. Since the Riemann tensor is gauge invariant, such a choice
has led us to a both conserved and gauge-invaru’Obgiant current. We can further build the
picture of the graviton as the Nambu-Goldstone mode for this biform symmetry. Of course,
the choice given with (4.3) is not consistent with ~ being a constant symmetric tensor since
we have allowed for some spatial dependence. This is not an issue if the shift is chosen so
that the Riemann tensor built from it vanishes, or, at the free level, that the Einstein tensor
built from it vanishes.

Even though the proper symmetry that will allow us to obtain the graviton as a Nambu-
Goldstone mode is established, there are still some points to be made. The first instinct is to

find the appropriate background field that would act as a source for this symmetry.

10The depiction of a -biform current with a Young diagram is:

"'"The divergence of the -current is the linearized Einstein tensor which is zero in the absence of matter.

49



This is more easily done if the action for linearized gravity is written in an analogous Palatini-

like formulation [23]:

4.4)

In the expression (4.4), is a symmetric tensor and is the linearized analogue of the
Christoffel symbol, and is symmetric in its first two indices, whereas the last index has no
specific symmetry. This action, as it is analogous to the Fierz-Pauli action, also has the gauge

symmetry, but the gauge transformations are now combined:

where  is an arbitrary -dimensional vector. As a representation of its symmetry group,
is reducible and can be decomposed into a totally symmetric tensor and a -biform

[23]. An interesting property occurs where only the latter contributes to the Riemann
tensor, whereas the totally symmetric part of the linearized Christoffel connection is unnec-
essary. Therefore, after the action is written in terms of the discussed decomposition, we can
integrate the symmetric tensor out using its equations of motion. When that is included back
in the action, linearized Einstein-Hilbert action is obtained, but the quadratic dependence on
is present, which we would like to remove. There is a certain amount of freedom of
adding terms to this action that would not affect the equations of motion. There is, in fact, a
choice [23] that removes the quadratic dependence on which is unique up to an overall

rescaling parametrized with

This particular formulation is especially convenient because it decouples the symmetry whose
Noether current is the gauge non-invariant (4.2) from the symmetry whose current is the

Riemann tensor.
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We can see that by reviewing all of the symmetries that this theory enjoys starting with the

gauge transformations:

the biform symmetry that shifts

and an additional symmetry of the form (4.3):

(4.5)
(4.6)

Now that the two symmetries are decoupled, we can find the proper background gauge field for
the symmetry transformation given with (4.6) and promote the transformation to a symmetry
for an arbitrary function of , removing the condition that the Einstein tensor built out
of vanishes. The gauging is done by introducing a gauge field (which has
the same symmetries as the Riemann tensor) and the corresponding couplings into the action
and ensuring its gauge invariance. This improved action is then used to derive the gauge-
improved current [23]. The said current is conserved on-shell but does not satisfy all

of the properties that the previous current (that coincides with the linearized Riemann tensor).

That -biform current satisfies all of the following:
4.7)
(4.8)
4.9)
while the gauge-improved current satisfies only the on-shell conservation like (4.7),

but the other two conditions are violated. Upon trying to enforce as many of the conditions
as possible to the improved current (via choices of some free parameters), we come across

a nontrivial mixed 't Hooft anomaly. It arises because not all of the conservation conditions
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(4.7)-(4.9) can be satisfied. Moreover, the case of dimensions is special due to even fewer
possible conditions [23].
The presented theory has a conserved -biform current and the appropriate dual
-current in dimensions'?, that is obtained by acting on the with both the
"left" and the "right" Hodge dual. For such theories, an equivalent of the Goldstone theorem
can be made [23]: there must be a gapless spin- excitation in the spectrum. Any theory with
the conserved current of the discussed form with a mixed anomaly will be in a gapless phase
where the massless degree of freedom has spin . The Goldstone-like theorem is developed
by decomposing the current two-point function using the Kihllén-Lehmann spectral repre-
sentation. The gapless spectrum of the theory is read off by matching the spectral density to
the correlator of the two currents which is completely fixed by the symmetry structure and
the anomalies. The conclusion is that, as a consequence of the symmetry (4.3), there is a

massless spin- particle in the spectrum - the graviton.

4.2.4 The Most Recent Developments

Fairly recently, there has been some further development in the discussion around the gravi-
ton as a Nambu-Goldstone boson. In [24] linearized gravity with a global symmetry under
which the graviton is shifted is again considered, however, the symmetry transformation that
was used was the one given with (4.1) and (4.3) was interpreted just as a special case. It is,
therefore, argued that the symmetry given by (4.3) is not the most general symmetry. Also,
a mixed 't Hooft anomaly is obtained in the discussion of gauging the global symmetry si-
multaneously with gauging the dual symmetry - associated with a global shift of the dual
graviton. What follows is a brief look into the basic concepts of this work.

As was discussed in 4.2.1, the Fierz-Pauli action (4.3) with the mass term set to zero can

be written as:

where is the linearised Einstein tensor. The action (4.3) is, as said earlier, invariant

under the gauge symmetries of the graviton:

2In  -dimensions, this would be a -current.
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Given the language from chapter 4.2.2 and the fact that graviton can be viewed as a -

biform, the connection can be written as [24]:

Analogously, the Riemann tensor from (4.4) can be rewritten:

The variation of the action yields the following equation of motion:

as expected. When considering a shift (4.1) transformation of the graviton:

where is a -biform, we look into the variation of the action under the transformation.

The term with vanishes due to the equation of motion, and what is left is:

For the action to be invariant under (4.1), must satisfy:

(4.10)

i.e., for the transformation (4.1) to be a global symmetry of the theory. Using an appropriate

extension of Noether’s arguments [24], a -biform current can be constructed:

that is left-conserved on-shell:
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and right-conserved off-shell:

dbJ(h) =0.

The current is considered to be Noether-like and is associated with the continuous global
symmetry given with (4.1) and is analogous to the electric 1-form symmetry in Maxwell the-
ory that shifts the photon, but it is not gauge-invariant (it is not a well-defined local operator).
However, a gauge-invariant object can be constructed using this knowledge - the on-shell con-
servation of the Noether gauge-invariant current R should follow from that of J(h). Noether
current R is given as:
R(h),” =2 (6[PJ(h)M"] - iéﬁj(h)u]a?) .
n—2

In the case of a conserved p-form current, its integration over a p-cycle gives a topological
operator, but the procedure is more subtle when it comes to biform currents. It must first
be contracted with a suitable tensor to provide a conserved p-form current that can lead to a
topological operator. In the case of a codimension-1 topological operator that generates the
0-form symmetry (4.1) where « satisfies (4.10), the associated 1-form Noether current j(b)
is of the following form:

§(B)a = 38725 (b*"v&rhﬁa - a#yhﬁa)

The codimension-1 topological operator (charge) which generates this shift is:

aw - [ ).

In the case of by, = 20,&,), the associated charges Q)(b) vanish on-shell, as is expected for

the gauge transformation. If we go back to the particular shift (4.3), it necessarily satisfies:

b, =0,

and produces the gauge-invariant Noether current (that coincides with the Riemann tensor).
However, that is not the most general global shift symmetry - for the developments laid

out here, a much weaker constraint is necessary:

G(b)w =0.
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Although the gauge-invariant current had to be further developed, the symmetry considered
here is more general. Furthermore, in [24] the dual graviton is considered and a mixed ’t
Hooft anomaly is obtained. The graviton is successfully presented as a Nambu-Goldstone

mode of this, more general shift symmetry.
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5 Conclusion and Outlook

Because they lead to conservation laws, continuous global symmetries play an important role
in physics. As research of higher-form gauge fields became usual in physics and mathematics,
a generalization of symmetry principles to objects of higher dimensions was needed. A -
form global symmetry leads to a -form conserved current and a conserved charge
that has spatial dimensions, meaning it obeys Noether’s theorem. Higher-form symmetries
present a new organized way to think about symmetry principles and open possibilities to
further developments.

Having discussed generalized global symmetries through an example of the free Maxwell
theory - a free gauge theory with two -form global symmetries , we have also
found the dual formulation of the theory with a matching 't Hooft anomaly which presents
an obstruction to gauging. The obtained charges are the Wilson and the 't Hooft loops that
interchange when we move from one theory to its dual. The process of finding the dual theory
is later extended to non-linear electrodynamics. The higher-form symmetries can also be
understood through a topological aspect: they are implemented using a topological operator
and are represented in section 2.2.5 on the example of free Maxwell theory. Furthermore, we
have revisited spontaneous symmetry breaking in the case of the -form symmetry that leads
to the photon as a Nambu-Goldstone boson.

Besides the higher-form symmetries, other developments have been made in recent years,
including higher-group symmetries that were discussed here through the -group symmetries.
A -group symmetry is a global symmetry where the mixing of background gauge fields
under their respective gauge transformations is involved. The notion of such symmetries was
described here using the simplest case: a theory with abelian - group symmetry

. We have presented how such symmetry arises from an ordinary product symmetry

by promoting the background gauge field to a dynamical one. In our

attempt to do so, we have analyzed the anomalies that occurred. Non-invertible symmetries

present another generalization of the symmetry principles where the topological operator that
implements the symmetry does not have an inverse.

The main part of the work focuses on implementing the generalized symmetries in lin-
earized gravity. The treatment of the graviton as a Nambu-Goldstone boson is key because it
situates the graviton, a massless spin-2 particle, within the framework of spontaneous sym-

metry breaking. Traditional Goldstone theorems, well-established for lower spin particles,
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are generalized here to include spin-2 particles, fundamentally altering the way gravitational
interactions can be understood at the quantum level. The notion that a massless particle like
the graviton arises due to a broken biform symmetry is a bold and insightful interpretation.
Tensor gauge fields are higher-rank fields that generalize the structure of ordinary gauge the-
ories, and through the use of linearized gravity, it is shown how these fields naturally support
the graviton’s interpretation as a Nambu-Goldstone boson. Importantly, the diffeomorphisms
of Einstein’s theory, when linearized, lead to a gauge theory that fits neatly within this frame-
work, indicating that gravity might be another example of generalized symmetry principles.
The core of this interpretation lies in the introduction of biform symmetries. These symme-
tries, which extend the concept of higher-form symmetries, become critical in explaining the
graviton’s massless nature. In particular, the shift symmetries acting on the graviton field
are identified with a specific biform symmetry. We have shown how Fierz-Pauli action, a
well-known framework for spin- particles, is not only invariant under linearized diffeomor-
phisms but also displays an additional symmetry that can be associated with a conserved
Noether current. In chapter 4.2.3, we have shown this for a particular shift, whereas the most
recent developments reflect how the graviton can be viewed as a Nambu-Goldstone boson
for a more general shift symmetry. Furthermore, the notion of anomalies is crucial in this
discussion. The work examines the role of ’t Hooft anomalies in constraining the possible
symmetry structures in theories involving the graviton. The existence of mixed anomalies
between the gravitational and dual symmetries is discussed, offering insight into how sym-
metries may be gauged and the implications for gravitational theories. The ’t Hooft anomaly
is crucial in determining the graviton as a Nambu-Goldstone mode of the theory since it fixes
the correlation function of the dual currents.

Further development can be made in making a case for the graviton being the Nambu-
Goldstone mode of the more general shift symmetry. One idea is to build a theory from "the
bottom". This could potentially be done by starting from a massive mixed-symmetry tensor
[31] that is decomposed using the Stueckelberg [32] procedure to a massless -form a
massless -form, massless -form, and a massless -form. When such decomposition is
included in the Curtright action [33], it transforms it to a sum of the massless Curtright action,
the massless Fierz-Pauli action, an additional term with the massless -form field, and some
mixing terms. Considering certain transformations (including the shift of the -form) of
these fields might lead to a new and more general approach to finding the graviton to be a

Nambu-Goldstone boson.
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Appendices

Appendix A Mathematical tools

This work involves the application of differential geometry. For the reader’s convenience,
the essential concepts and foundational principles are reviewed in this Appendix, following
[34] and [30]. A -form (differential form) is a totally antisymmetric tensor field. For
a more intuitive approach, a -form is a function and a -form is a covector. Generally, the
antisymmetry of -forms has the following consequence: there cannot be any form of degree
higher than the dimension of the manifold on which the form is defined. Note thatan -form
is often referred to as top form, or volume form.

Let bea -formand a -form. The exterior product or wedge product is a construction

of a -tensor:

via the tensor product that is antisymmetrized to ensure some properties, such as

if is an odd-degree form. It can also be shown that:

To build some intuition, we can take a look at a special case where , meaning we
take and to both be -forms and . It is easy to show what their exterior product

is in terms of the tensor product

The exterior derivative (is a map that) in local coordinates, acts as:

d _ (A.1)

where is a -form. The exterior derivative defined by (A.1) returns a -form. One

can think of the exterior derivative as an antisymmetric covariant derivative.
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It is important to note that, due to the antisymmetry, if we act on equation (A.1) with the

exterior derivative again, we obtain:

d(dw) =0,

which is true for every g-form and often written in the following form:

d>=0.

The exterior derivative of a wedge product for w and i of degrees as given before, is:

dwAn) = (dw) An+ (-1)?wA (dn) .

The Hodge dual is a map that takes a g-form w to an (n — g)-form, denoted *w as follows:

1
(*w)’ul'"’un a ameﬂ'lmﬂ-n qvl...vqulqu .

Note that the Hodge dual is independent of the choice of coordinates. Using the Hodge dual,

an inner product of two g-forms w and 7 is defined:

(n,w) :f nA W,
M

which shows how the dimension of 77 A *w is equal to the dimension n of the manifold M.
To get a better picture of the Hodge star operator, one should keep in mind that it gives the
part of the manifold orthogonal to the differential form that it is acting on. A common 3D
example follows:

xdr = dy N dz

which provides a better insight into the way that Hodge dual acts.
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6 Prosireni sazetak

6.1 Uvod: Kontekst i motivacija

Jedan od srediSnjih koncepata moderne teorijske fizike zasigurno je simetrija - svojstvo fizikalnog
sustava koje ostaje nepromijenjeno primjenom neke transformacije. Simetrije su od velike
vaznosti u fizici, ponajviSe zbog Noetherinog teorema (koji ¢e biti proucen kasnije) koji
pokazuje kako, za svaku kontinuiranu globalnu simetriju postoji odgovarajuéi zakon ocu-
vanja. Invarijantnosti na prostorne i vremenske transformacije bile su poznate i u klasi¢noj
mehanici, kao $to su i globalne simetrije prostorvremena izvedene za elektrodinamiku prije
Einsteinove teorije relativnosti. Ipak, potonje predstavlja novi pristup primjeni simetrija u
fizici buduci da je, suprotno onima prije njega, Einstein izveo zakone iz simetrija. Znacaj
simetrija u fizici postao je brzo jasan u kvantnoj mehanici gdje je primjena teorije grupa i
njihovih reprezentacija imala klju¢nu ulogu.

Potreba za razvojem univerzalnog alata za primjenu simetrija postala je primjetna u kvant-
noj teoriji polja kako je izuCavanje bazdarnih polja viSih formi postalo standardno u matem-
atici i fizici. Generaliziranje globalnih simetrija je, grubo govoreci, primjena koncepta na
objekte viSih dimenzija. Takve generalizirane globalne simetrije[2] pokazale su se korisnima
u teoriji struna i fizici ¢vrstog stanja te imaju primjenu u proucavanju proSirenih operatora,
defekata i struktura anomalija u kvantnoj teoriji polja. Nedavno su postale tema rasprava i
suradnji razlic¢itih podrucja teorijske fizike buduci da daju nov i organiziran jezik za koncepte
simetrija.

Kako je re¢eno, simetrija je svojstvo fizikalnog sustava koje je oCuvano pod nekim trans-
formacijama. Familija takvih transformacija moZe se opisati upotrebom grupa - Lijevih grupa
za kontinuirane simetrije i kona¢nim grupama za diskretne simetrije. Kontinuirane i diskretne
simetrije odgovaraju kontinuiranim i diskretnim transformacijama, respektivno. Medu mnogim
ostalim podjelama simetrija, valja napomenuti razlikovanje eksternih i internih simetrija gdje
se eksterne odnose na simetrije prostorvremena, a interne simetrije odgovaraju unutarnjim
stupnjevima slobode teorije. Svakako, za naSe daljnje razmatranje, od najvece ¢e vaZnosti
biti razlucivanje lokalnih od globalnih simetrija. Globalne simetrije ostavljaju svojstvo in-
varijantnim za transformacije koje su primijenjene podudarno u svim tockama prostorvre-
mena, za razliku od lokalnih simetrija koje predstavljaju svojstva invarijantna na transforma-
cije parametrizirane koordinatama prostorvremena. Lokalne simetrije temelj su bazdarnih

teorija polja, to jest, baZdarna teorija predstavljena je gusto¢om lagranZijana invarijantnom
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na glatku familiju operacija. Budu¢i da su baZdarna polja (¢ije su vrijednosti u Lievoj algebri
bazdarne grupe) ukljucena u gustocu lagranzijana  kako bi osigurali njenu bazdarnu invar-
ijantnost, bazdarne teorije imaju dodatne, odnosno suviSne stupnjeve slobode. Primjerice,
foton, koji ima dvije fizikalne polarizacije, prikazan je bazdarnim poljem koje u relativis-
ti¢koj formulaciji ima Cetiri komponente. Standardni model, jedna od najuspje$nijih fizikalnih
teorija, temeljena je na bazdarnim simetrijama.

Izuzev svrhovitosti generalizacije simetrija, valja motivirati i kombiniranje istih s ten-
zorskim baZzdarnim teorijiama u jedinstvenu raspravu. Vazna uloga vektorskih polja u fizici,
npr. u elektromagnetizmu, dobro je poznata. U nesto "naprednijim" teorijama koje zahtijevaju
objekte visih dimenzija, odgovarajuca generalizacija je ¢esto u upotrebi: tenzorska polja, koja
dopustaju kompleksnije interakcije. Ako su takvi objekti koriSteni u teoriji, obi¢ne simetrije
viSe nisu dostatne za opis svih svojstava teorije. Prirodno je, stoga, razmiSljati o general-
iziranim simetrijama i teorijama koje sadrZe tenzore kao medusobno poveznaim. Ovo se
posebno istie u centralnom dijelu i cilju rada: prikaz gravitona u lineariziranoj gravitaciji
(tenzorskoj bazdarnoj teoriji) kao posljedica spontanog loma generalizirane globalne simetri-

jie.

6.2 Generalizirane globalne simetrije: simetrije visih formi
6.2.1 Obicne globalne simetrije

Noetherin teorem[1] pokazuje da, za svaku kontinuiranu globalnu simetriju, postoji odgo-

varajuéa ocuvana struja  dana s:

koja daje pripadajuci o€uvani naboj:

Noetherin teorem medu glavnim je razlozima vaznosti simetrija u fizici.
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6.2.2 Simetrije viSih formi

Generalizacija simetrija otvara mnogo moguénosti pa su tako neke od generalizacija simetri-
jskih principa: simetrije viSih formi, simetrije viSe-grupe i neinvertibilne simetrije. Premda su
temeljni koncepti navedenih primjera obradeni u radu, poseban naglasak je upravo an simetri-
jama visih formi, bududi da ¢e se u konacnici graviton prikazati kao posljedica spontanog
loma takve simetrije.
Generalizirana globalna simetrija -forme [3] globalna je simetrija za koju je oCuvana
struja -forma, a ouvani su naboji dimenzije . U ovom kontekstu, globalne simetrije
-forme su obi¢ne globalne simetrije opisane ranije. Mnoga svojstva globalnih simetrija -
forme mogu se primijeniti i ovdje. Ove generalizirane globalne simetrije nisu neke egzoti¢ne
generalizacije u kompliciranim teorijama, ve¢ se pojavljuju vrlo prirodno u bazdarnim teori-
jama. Da bismo predstavili generalizirane globalne simetrije, ne¢emo koristiti konkretnu
gustocu lagranZijana, nego okarakterizirati objekte kao apstraktne operatore, ¢ineéi pritom
izlaganje opCenitim.
Ako promotrimo simetriju proiza$lu iz ocuvane struje koja je -forma

i zadovoljava:

ocuvani naboji su dani, onda, s:

Nabijeni objekti su za ove simetrije -dimenzionalni. Na primjer, u najjednostavnijem slucaju
, nabijeni objekti linijski su operatori poput 't Hooftovih i Wilsonovih linija. Ovo

obrazlaze kako ove simetrije nisu nesto neobi¢no, ve¢ su prisutne u bilo kojoj teoriji koja ima

proSirene opservable poput Wilsonovih petlji.

Klasican izvor za struju je abelovsko polje koje je -forma. Akcija treba sadrza-

vati sljedeci Clan:

Pod transformacijom, bazdarno polje se treba tansformirati kako slijedi:
d
gdje je bazdarni parametar -forma. U svrhu boljeg razumijevanja ovakve generalizacije,
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slijedi primjer slobodne Maxwellove teorije.

6.2.3 Slobodna Maxwellova teorija

Uzmimo bazdarnu teoriju s bazdarnim poljem i odgovaraju¢om jakosti polja
te dvjema globalnim simetrijama -forme: "elektri¢na" i "magnetska"
s pripadnim pozadinskim poljima i [6].

Za struje definirane kao:

dobivamo odgovarajuée zakone oCuvanja koristimo li Maxwellove jednadzbe bez izvora:

d d (6.1)

Maxwellove jednadZbe opisane sa (6.1), svakako su povezane s poznatim oblikom Maxwellovih
jednadzbi: d je pridruZena Gaussovom zakonu i Ampereovom zakonu bez izvora,
dok d odgovara Gaussovom zakonu za magnetizam i Faradayevom zakonu. Primi-
jenimo li vanjsku derivaciju na definirane struje i uvrstimo li Maxwellove jednadzbe, lako se
pokaze da su struje i ocuvane. Dakle, gradimo teoriju dinami¢kog bazdarnog polja
u okruzenju dvaju (nedinamickih) bazdarnih polja koja se, zbog svojih simetrija

podvrgavaju bazdarnim transformacijama:

Pisanju akcije = za ovu teoriju, odnosno za vezanje dinamickog polja za dva pozadinska
baZzdarna polja, moZemo pristupiti na dva nacina: "elektri¢na" formulacija i "magnetska"
formulacija. Ta dva pristupa zasigurno moraju biti ekvivalentna, to jest, pokazivati dual-
nost teorije, Sto mozZe biti korisno. Promotrit ¢emo prvo "elektri¢ni" pristup: bazdarno polje

transformira se pod pozadinskom transformacijom, ali ostaje isto pod
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pozadinskom transformacijom. Buducdi da je d ,isto vrijedii za jakost polja

Vezemo li bazdarno polje za pozadinska bazdarna polja, o¢ekujemo da ¢e akcija imati

tipi¢ne Clanove , odnosno:

(6.2)

U prethodnoj jednadZzbi, takoder smo koristili ¢injenicu da Zelimo teoriju invarijantnu na elek-
tri¢ne pozadinske transformacije. Prvi ¢lan to osigurava jer se, pri pozadinskoj transformaciji,
d dodaje i jakosti polja i polju
Lako je provjeriti da se, nakon transformacije,d  dobiven iz transformacije jakosti polja
id koji se pojavljuje pri transformaciji pozadinskog polja poniStavaju, zato $to
ulaze s obrnutim predznakom u akciju. Prvi ¢lan se Cesto naziva kinetickim, a drugi ¢lan
magnetskim. Kako se ni ni ne transformiraju pod pozadinskim transforma-
cijama, prvi je ¢lan takoder invarijantan na magnetske pozadinske transformacije. Preostalo je
samo osigurati invarijantnost drugog ¢lana. Drugi ¢lan u (6.2) invarijantan je na magnetske
pozadinske transformacije, Sto se moZe lako utvrdititi koriStenjem Maxwellovih jednadZbi

danih sa (6.1), svojstva vanjske derivacije [34] i vanjskog produkta te Stokesovog teorema:
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Ipak, ovaj (magnetski) ¢lan ima otklon prilikom pozadinske transformacije -upotrijebimo

ponovno matematicke manipulacije i Stokesov teorem kako bismo vidjeli to¢no kakav.

d
d
d d
d
Clandans d reproducira 't Hooftovu anomaliju [5] izmedu i

Treba naglasiti da se, ako nema ’t Hooftovih anomalija, teorija moZe baZzdariti Sto u suprot-
nom nije moguce. Poradi boljeg razumijevanja daljnjih implikacija slijedi pregled povezanih

pojmova.

6.2.4 Anomalije, Wilsonove i ’t Hooftove petlje

Prilikom pokusSaja kvantizacije teorije s globalnom simetrijom, moZe se pojaviti anomalija.
Za sljedecéa poglavlja, razumijevanje anomalija u kvantnoj teoriji polja bit ¢e nuzno. Grubo
receno, anomalija je klasi¢na simetrija koja ne opstaje kad je teorija kvantizirana. Neke se
anomalije mogu poniStiti dodavanjem ¢lanova u akciju. Nama ¢e najvaznije biti 't Hooftove
anomalije koje predstavljaju prepreku bazdarenju globalne simetrije. Globalna simetrija s
’t Hooftovom anomalijom ostaje simetrija u kvantnoj teoriji, ali, kad se simetrija veze za
pozadinsko baZzdarno polje, naboji koji su ranije bili o¢uvani viSe to nisu.

Anomalija [6] ¢lan je (efektivne ') akcije koji se u njoj pojavljuje kao otklon i koji
odgovara zakonu neocuvanja. Ovdje smo koristili notaciju  za pozadinska bazdarna polja.
Anomalija je obi¢no prikazana polinomom anomalije koji je bazdarno invarijantna

-forma, gdje je broj dimenzija. Dakle, pozadinska baZdarna polja i njihove bazdarne

transformacije proSireni su na dimenzije. Relacija i , kao i odnosi ostalih
! Anomalije se prepoznaju u akciji , ali se odnosi na promjenu u efektivnoj akciji definiranoj s
, gdje je particijska funckija.
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polinoma koji predstavljaju postupak za ekstenziju do dani su s:

(6.3)
d (6.4)
d (6.5)

Procedura, naravno, moZe biti koriStena u obama smjerovima.

Nadalje, pogledajmo definiciju Wilsonovih petlji i 't Hooftovih petlji [S] buduci da ¢emo
ih u iducem poglavlju koristiti. Wilsonova linijja  objekt je koji govori kako se kompleksni
vektor (kojega nosi Cestica) pomice po mnogostrukosti s konekcijom  (baZdarnim poljem

izvrijednjenim u Liejevoj algebri):

Ovdje, predstavlja uredenje po putevima, dok su i  pocetna i konac¢na tocka gibanja
Cestice. U matematici se ovaj pojam naziva holonomijom.
Wilsonova petlja je bazdarno invarijantni objekt, opservabla, definirana kao trag Wilsonove

linije po zatvorenoj putanji

tr (6.6)

't Hooftova petlja takoder je opservabla, slicna Wilsonovoj petlji i s njom povezana
kako je pokazano nize.

(6.7)

Uizrazu (6.7), jeelement srediStabazdarne grupe, a je Gaussov vezni broj izmedu

dviju prostornih petlji. Bududi da su obje petlje opservable, ovi objekti su od velike vaznosti,
osobito u neabelovskim teorijama (poput Yang-Millsove teorije) gdje elektricno i magnetsko

polje nisu opservable.
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6.2.5 "Elektricno-magnetska'' dualnost

Kako je najavljeno ranije, anomalije se obi¢no prikazuju polinomom koji je -forma,
to jest, polinomom koji je -forma. Koristeci postupak opisan sa (6.3) - (6.5), kao i,
jos$ jednom, svojstva vanjske derivacije i vanjskog produkta, te Stokesov teorem, izveden je

sljededi izraz za anomaliju dobivenu od drugog ¢lana u (6.2):

— d (6.8)

Dualizaciju postiZemo promatranjem proSirene teorije s akcijom koja ukljucuje Lagrangeov
multiplikator koji je takoder bazdarno polje ( -forma) pridruZeno vlastitoj baz-

darnoj simetriji.

— d (6.9)

Treba primijetiti da je Bianchijev identitet za i dalje zadovoljen. Prikladna transformacija

polja pri pozadinskim bazdarnim transformacijama:

osigurava invarijantnost na pozadinske bazdarne transformacije do na ’t Hooftovu anomaliju

dobivenu ranije.

Sada zelimo nadi jednadzbu gibanja za kako bi akcija ovisila samo o ,
i novom polju . Drugim rije¢ima, Zelimo "izgubiti" ovisnost akcije o i zamijeniti je
s ovisnosti o . JednadZba gibanja za dobivena je variranjem  po , kao Sto je

pokazano sljedecom jednadZbom:

— d
Zbog simetrije djelovanja , drugi ¢lan mozZe se zamijeniti s — ,a
zbog stupnjevane komutativnosti, posljednji se clan moZe zapisati kao — d
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Prethodno re¢eno znaci dase  moZe izvudi iz svih ¢lanova kako slijedi:

— — d (6.10)

a jednadzba gibanja za dobiva se kad je izraz u uglatim zagradama jednak nuli:

— d (6.11)

Bududi da je sada lako izraziti iz prethodne jednadzbe (6.11), taj se izraz moZe ukljuciti
u (6.9). Dvojna formulacija teorije s akcijom , zapisane preko , i je, stoga,

izvedena.

(6.12)

Jednadzba (6.12) pokazuje da dualna formulacija generira ¢lan proporcionalan s
koji ¢e reproducirati istu "t Hooftovu anomaliju kao (6.8). Ocuvane struje unutar ove teorije
dane su sljede¢im jednadzbama i povezane s ocuvanima strujama definiranim u "elektri¢noj"

formulaciji, kako je pokazano ovdje.

— d —d (6.13)
Holonomije polja i polja po zatvorenoj krivulji  su Wilsonove petlje i’t
Hooftove petlje , definirane s (6.6) i (6.7) te se za njih dobiva:

(6.14)
gdje su naboji Wilsonovih, to jest, 't Hooftovih petlji. Prijelazom iz jedne u
drugu formulaciju, izmjenjujemo polja , ali i petlje . Ovime su

temeljna svojstva i upotreba koju simetrije viSih formi nude na primjeru slobodne Maxwellove

teorije zakljucena.
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6.2.6 Topoloski aspekti

Simetrije viSih formi mogu se uvesti putem topoloskih operatora. Simetrija -forme u di-

menzija implementira se operatorom povezanim s zatvorenom mnogostruko$céu

gdje je element simetrijske grupe. Simetrija je transformacija prilikom koje se mno-
gostrukost mozZe deformirati bez promjene korelacijskih funkcija, jer ovise samo o
topologiji [3]. Tako se simetrije viSih formi mogu uvesti bez spominjanja topoloskih

operatora, ovaj formalizam je koristan, posebno kod drugih generalizacija poput neinvertibil-
nih simetrija.

U kvantnoj mehanici operator  je operator simetrije ako komutira s hamiltonijanom

Prelaskom u kvantnu teoriju polja, intuitivno je proSiriti ovaj uvjet na komutiranje s ten-
zorom energije i impulsa  , no to je nedovoljno. U relativistickoj teoriji polja s euklidskom
signaturom ocuvanje podrazumijeva invarijantnost pod deformacijama prostorvremena. To
znaci da operator  mora biti topoloski. Dobar primjer je teorija s simetrijom, gdje

struja zadovoljava:

a operator naboja je:

Pod pretpostavkom odgovarajucih rubnih uvjeta, o¢uvanje naboja daje:

Operator simetrije za rotaciju s kutom dan je s:
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a ukljucivanjem izraza za (), dobivamo:

Up = ez’.‘}fjg,d“ lg

Generalizacija ovog principa je:

Us (M("_l)) = exp (?ﬂf *j) ,
M@ 1

gdje je M1 zatvorena (n — 1)-dimenzionalna mnogostrukost. Funkcije korelacije koje
sadrze Ug(M™=1)) ne ovise o malim deformacijama M ™~ zbog Stokeosovog teorema, jer
je *7 zatvorena forma.

Simetrija vie forme moZe se opéenito prikazati (n — ¢ — 1)-dimenzionalnim topolo¥kim

operatorom:

U, (M(“_q_l)) - D(N?) = g(D)D(N?) .
Primjer iz slobodne Maxwellove teorije pokazuje topolo3ki operator:

0

Uy (M(n—2)) = exp (—6—2 iﬂ , *F) ,

koji generira oCuvane naboje - netopoloske Wilsonove operatore:

W oo (inf ).

Topoloski operator djeluje na Wilsonovu liniju kao:

Uy (M(“_2)) - exp (mjg A) = e exp (1nj£ A) :
N1 N1

Generalizacija, dakle, topoloSkog aspekta simetrija vrlo je intuitivna.
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6.2.7 Spontani lom generalizirane globalne simetrije

Spontano naruSavanje simetrije -forme moZe se dijagnosticirati ponaSanjem Wilsonovih
petlji (operatora) teorije. U tom kontekstu, zakon povrsine '3 opisuje skaliranje vrijednosti

Wilsonove petlje na sljedeci nacin:

area

n 14

a zakonom "opsega" '* nazivamo ponaSanje dano s:

perimeter

Jos je jedno tipi¢no ponasanje koje nazivamo Coulombovim zakonom:

Ako je u danoj teoriji sa simetrijom povezana Wilsonova petlja koja poStuje "zakon povrsSine",
onda ona ostaje neslomljena. Ovo vrijedi zbog toga Sto ocekivana vrijednost petlje nestaje
kako njena veli¢ina ide prema beskonacnosti. Suprotno, kada veli¢ina petlje ide u beskon-
acnost, petlje koje postuju "zakon opsega" ili "Coulombov zakon" imaju vrijednost razlicitu
od nule. Zbog toga je u takvim slucajevima simetrija spontano slomljena.

U slobodnoj Maxwellovoj teoriji, i simetrije su spontano narusene, S

fotonom kao Nambu-Goldstoneovim[8] [7] bozonom.

6.3 Generalizirane globalne simetrije: Daljnji razvoj
6.3.1 Simetrije -grupe

Premda su simetrije viSih formi temelj generalizacije nacela simetrije, postoje i druge gen-
eralizacije, medu kojima su simetrije viSe-grupa koje ¢emo predstaviti kroz osnove -grupnih
simetrija na primjeru Maxwellove teorije. Koncept se moZe smatrati generalizacijom simetrije
opisane produktom grupa.

Kvantna teorija polja ima -grupnu simetriju [6] ako se moZe povezati s pozadinskim
bazdarnim poljem koje je -forma (oznaceno kao ), a koje doZivljava -grupni otklon

uz vlastite pozadinske baZdarne transformacije. Drugim rije¢ima, to su globalne

Beng., "area law"
l4eng., "perimeter law"
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simetrije gdje je dopuSteno mijeSanje pozadinskih bazdarnih polja pod njihovim odgovara-
juc¢im baZdarnim transformacijama. Same -grupe se nece istraZivati, ve¢ pozadinska baz-
darna polja -grupe. Najjednostavniji primjer uzima mijeSanje pozadinskog bazdarnog polja

za -formnu flavor simetriju, tj. ,i -formno pozadinsko bazdarno polje za
ranije spomenutu simetriju -forme.

Takva se -grupna simetrija naziva Abelovom i oznacava se kako slijedi:

(6.15)

Ovdje, [6] je strukturna konstanta -grupe koja karakterizira -grupnu simetriju.

Kako bismo vidjeli §to  znaci, trebamo razmotriti pravila transformacije za bazdarna polja

i . Pravilo transformacije za ostaje standardno:
d
ali, kao Sto je receno, podlijeze dodatnom otklonu:
d — (6.16)
U prethodnom izrazu, d je jakost polja. Dosljednost pravila transformacije danog

sa (6.16) osigurana je time da je kvantiziran. Treba spomenuti da karakterizira -
grupnu simetriju jer se ne mijenja reskaliranjem bazdarnih polja. To je vidljivo u jednadZzbi
(6.16), gdje postoji dodatni otklon proporcionalan jakosti polja . Ovo pokazuje da ne
mozemo trivijalno postaviti profil bazdarnog polja bez da to utjeCe na . Treba pre-
poznati da za , -grupni otklon u (6.16) nestaje. Stoga, -grupna simetrija prelazi u

obi¢nu produktnu simetriju:

Mnoge kvantne teorije polja posjeduju -grupnu simetriju danu sa (6.15), poput QED-a s
viSe okusa[6]. MozZe se pokazati da -grupna simetrija opisana s (6.15) proizlazi iz "mati¢ne"

teorije s:

(6.17)
okusnom simetrijom, pri cemu je odgovarajuce pozadinsko bazdarno polje ¢ijim baz-
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darenjem se "rada" simetrija dana sa (6.15) [6].

6.3.2 Neinvertibilne simetrije

Kao $to je ranije raspravljano, zanimljivi se fenomeni pojavljuju kada se principi simetrije
poopce, amedu njima su i neinvertibilne simetrije [4]. Globalne simetrije u kvantnoj mehanici
opisuju se (anti-)unitarnim operatorima koji imaju inverze, dok u relativistickim kvantnim
teorijama polja simetrije mogu biti neinvertibilne, odnosno implementirane operatorima koji
nemaju inverze. Ove simetrije dovode do novih zakona oCuvanja i pravila "fuzije"'>
Medu osnovnim konceptima koje veZemo uz neinvertibilne simetrije je topoloski defekt -
lokalizirana smetnja u redu sustava koja se javlja uslijed topoloSkih ograni¢enja. Topoloski
defekti ostaju stabilni ako nisu ometani drugim defektima. Fromalno, javljaju se kada nije
moguce deformirati konfiguraciju polja u trivijalnu zbog netrivijalnih elemenata grupe homo-
topije ,pricemuje  mnogostrukost. Topoloski defekti su defekti Cije infinitezimalne
deformacije u vremenu ne mijenjaju fizicke opservable.
Ulogu simetrijskog operatora i odgovarajuceg topoloskog defekta zgodno
je upoznati na primjeru simetrije. Ako je cijeli prostor u fiksnom vremenu,
je oCuvan i djeluje na odgovarajuéi Hilbertov prostor . Kada se
prosiri u vremenskom smjeru i lokalizira u jednoj prostornoj koordinati, kao $to je

, postaje defekt koji modificira kvantizaciju rezultirajuéi s "uvijenim" '°

Hilbertovim prostorom , oznacenim kutnom rotacijom
Razmotrimo slobodno kompleksno skalarno polje u -dimenzijama (tj. ):
Teorija posjeduje globalnu simetriju:

s pripadaju¢om ocuvanom strujom:

SOperatori ovakvih simetrija ne postuju grupno pravilo umnoska, veé je ono modificirano npr. u -
dimenzionalnom prostorvremenu na sljedeéi nacin:
%eng., twisted
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Ako se za prostor uzme kruZnica  parametrizirana s , tada se odgovarajuci
Hilbertov prostor dobiva kanoni¢kom kvantizacijom slobodnog skalarnog polja pod

uvjetom periodi¢nosti:

Ocuvana struja vodi na simetrijski unitarni operator:

koji djeluje na navedeni Hilbertov prostor
Ono $§to je zanimljivo jest da se moZe uzeti alternativan, ali ekvivalentan pristup - umetanje

defekta:

po liniji euklidskog vremena u mijenjajudi pritom rubni uvjet u:

(6.18)

Kanonska kvantizacija s "uvijenim" rubnim uvjetom (6.18) sada daje "uvijeni" Hilbertov
prostor , kako je najavljeno, oznacen s . Drugim rije¢ima, oCuvanu struju
mozZemo povezati s unitarnim operatorom kad se odnosi na fiksirano vrijeme ili unijeti
topoloski defekt po euklidskom vremenu u
Kod diskretnih simetrija , ne postoji ouvana struja ili operator naboja, ali simetrija
se moZe formulirati postojanjem oCuvanog unitarnog operatora  za svaki element grupe
. U relativistickim kvantnim teorijama polja, o€uvani operatori se generaliziraju na
topoloske operatore, tj. defekte u euklidskom prostoru. Svaka globalna simetrija dovodi do
ocuvanog operatora koji djeluje na Hilbertov prostor i do topoloskog defekta koji modificira
kvantizaciju. Operator i defekt obuhvaceni su istim objektom . Neinvertibilne
su simetrije, dakle, transformacije koje ¢e ostaviti lagranZijan nepromijenjen i povezane su
s ocuvanim veli¢inama, ali inverzna transformacija se ne moze primijeniti kako bi se sustav
vratio u prvotno stanje - prvotnu topoloSku fazu. lako je proces ireverzibilan, ne treba ga
mijesati s drugim ireverzibilnim procesima u fizici poput onih opisanim histerezom.
Zaklju¢no, kako operator simetrije nema inverza, simetrija je neinvertibilna. Iz druge, ali

ekvivalentne perspektive, transformacija koja "prelazi" defekt je neinvertibilna, dok simetri-
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jske transformacije s "jedne strane" defekta imaju konvencionalnije ponaSanje. U slucaju

neinvertibilnih simetrija, "prelazak" defekta je neinvertibilan.

6.3.3 Vise-baZdarenje i kondenzacijski defekti

Najjednostavniji nacin za konstrukciju neinvertibilne simetrije jest uzeti linearnu kombinaciju

dviju invertibilnih simetrija. Primjerice, definirajmo operator  kao:

gdje je operator identiteta, a ,Stozna¢idaima  simetriju. Iako je ovo jednostavan
nacin konstrukcije neinvertibilne simetrije, nije previse zanimljiv jer se = moZe napisati kao
linearna kombinacija operatora iste dimenzionalnosti. Kreativniji pristupi ukljucuju zbra-
janje topoloskih defekata niZe dimenzije duZ netrivijalnih ciklusa viSedimenzionalne mno-
gostrukosti. Ovaj postupak stvara defekt kondenzacije, koji je mjeSavina topoloskih defekata
niZih dimenzija i ne moZe se napisati kao linearni spoj drugih defekata iste dimenzije.
Pojam defekt kondenzacije dolazi iz kondenzacije aniona duZ jedne dimenzijeu -dimenzionalnom

prostoru [11], akasnije se prepoznaje kao bazdarenje simetrija viSih formi duz mnogostrukosti
viSe dimenzije. Ako nema 't Hooftovih anomalija za danu simetriju, ona se mozZe bazdariti
na razliCite nacine. Ponekad se diskretna globalna simetrija -forme moze baZdariti, ne u
cijelom prostorvremenu, ve¢ samo duzZ podmnogostrukosti kodimenzije . Ovo se
naziva vise baZdarenje'’ ( -bazdarenje globalne simetrije -forme). Obi¢no baZzdarenje je,

stoga, -baZdarenje -formne simetrije. Time je i proces bazdarenja generaliziran.

6.4 Graviton kao Nambu-Goldstoneov bozon
6.4.1 Linearizirana gravitacija

Kako bismo prikazali graviton kao Nambu-Goldstoneov bozon u lineariziranoj gravitaciji,
prvo trebamo promotriti osnove teorije. Linearizirana gravitacija pretpostavlja da je metricki

tenzor zadan kao:

gdje je ravna metrika, a mala perturbacija. Tada je simetri¢ni tenzor ranga

Yeng., higher gauging
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. Akcija za teoriju s u ravnom prostoru je tenzorska bazdarna teorija. BaZdarna simetrija
naslijedena je iz difeomorfizama u Einsteinovoj teoriji. Lineariziranjem Einsteinovih jed-
nadzbi, gravitacija se opisuje kao simetricno polje spina , , koje propagira u prostoru

Minkowskog. Indeksi se podiZu i spuStaju ravnim metrikom:

Za Einsteinov tenzor u lineariziranoj gravitaciji dobiva se:

— (6.19)

Bianchijev identitet se reducira na:

Iako su Einsteinove jednadZbe linearizirane, joS uvijek su sloZene parcijalne diferencijalne

jednadzbe. JednadZbe gibanja dobivaju se iz varijacije Fierz-Paulijeve[30] akcije:

. _ - - - (6.20)

Akcija je invarijantna na transformaciju danu s:

Za daljnje razmatranje koristit ¢e se Fierz-Paulijeva akcija napisana u nesto drukcijoj konven-

ciji:

- (6.21)

gdje je Einsteinov tenzor dan s (6.19), no bez predfaktora. Linearizirani Riemannov tenzor

prikazan je niZe.

Svi ostali bitni rezultati dobivaju se iz navedenih.
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6.4.2 Uvod u bifromne simetrije

Za prikaz simetrija tenzorskih teorija, ukljucujudi lineariziranu gravitaciju, uvodi se pojam
biforme. Biforma je tenzor mijeSane simetrije , Sto znaci da je antisimetri¢na unutar
svakog skupa indeksa, dok antisimetrizacija izmedu setova rezultira nulom. Teorija sa sacu-
vanim strujama koje su -biforme posjeduje simetriju biforme!®.

Vanjske derivacije djeluju na svaki skup indekasa posebno, kao i

Analogno se uvode i lijevi i desni Hodgeov dual, i isve ostale operacije - tako da zasebno
djeluju na svaki set indekasa. Graviton se moZe interpretirati kao Nambu-Goldstoneov bozon,

tj. kao posljedica spontanog loma ovakve simetrije.

6.4.3 Graviton kao Nambu-Goldstoneov bozon

Fierz-Paulijva akcija iz (6.21) nije samo invarijantna na linearizirane difeomorfizme, ve¢ i na
globalnu simetriju -biforme gdje se transformira na sljede¢i nacin:
(6.22)

a  je konstantan simetrican tenzor. Odgovarajuc¢a Noetherina struja je -forma:

- (6.23)

koja je oCuvana na ljusci mase'®, ali nije baZdarno-invarijantna. Kako bismo interpretirali
graviton kao Nambu-Goldstoneov bozon, trebamo razmotriti drugaciju transformaciju [23].

Ako napiSemo  kao:

(6.24)

Noetherina struja postaje Riemannov tenzor, koji je i bazdarno-invarijantan i o¢uvan. Time

gradimo sliku gravitona kao Nambu-Goldstoneovog bozona za ovu biformnu simetriju. Iako

18U tekstu se povremeno koristi i izraz "biformna simetrija" odnose¢i se, pritom, na simetriju biforme.
Divergencija -struje je linearizirani Einsteinov tenzor koji je jednak ako materija nije ukljucena

7



nije konstantan tenzor, to nije problem ako pripadajuci Riemannov tenzor i§¢ezava.
Kako bi se lakSe ostvarila interpretacija gravitona kao Nambu-Goldstoneovog bozona za

ovu simetriju (6.22), zgodno je zapisati akciju linearizirane gravitacije u "Palatini-stilu" [23]:

Ova akcija je analogna (6.21) pa takoder ima baZdarnu simetriju koja je sada opisana sljede¢im

transformacijama:

Potonji zapis je posebno prikladan zbog toga §to se u ovom formalizmu odvajaju transfor-
macije (6.22) i (6.24) (zapisane preko drugih varijabli - linearizirane konekcije i polja ).
Odvajanje se dobiva razdvajanjem konekcije na sasvim simetri¢ni dio i dio koji je -
biforma i koji doprinosi Riemannovom tenzoru.

Bazdarenjem simetrije (6.24) i uvodenjem odgovarajuceg bazdarnog polja dolazi
se do poboljsane struje koja je o€uvana na ljusci mase, no ne zadovoljava sve uvjete

koje zadovoljava struja

(6.25)
(6.26)
(6.27)

Nezadovoljeni uvjeti vode do mijeSane 't Hooftove anomalije, a u  dimenzije situacija je
posebna zbog dodatnih ograni¢enja. Teorija s ocuvanom -strujom i mijeSanom anomal-
ijom mora imati bezmaseno pobudenje sa spinom , $to prema Goldstoneovom teoremu im-
plicira postojanje gravitona kao bezmasene Cestice. Ovaj analogon Goldstoneovom teoremu
dobiva se promatranjem dekompozicije korelacijske funkcije struje i njzinog duala gdje se
nalazi bezmaseni mod u potpunosti fiksiran uvjetima simetrije i 't Hooftovom anomalijom.
Zakljucak je da, kao posljedica simetrije (6.24), u spektru postoji bezmasena Cestica spina

- graviton.
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Najnoviji radovi[24] pokazuju i opcenitiji pristup, gdje se i za opcenitu transformaciju
(6.22) u lineariziranoj gravitaciji moZe konstruirati bazdarno-invarijantan objekt pocevsi od
Noetherine struje te pronaéi bezmaseni mod. Drugim rijecima, i u takvom slucaju postoji
nacin za interpretaciju gravitona kao Nambu-Goldstoneovog bozona. Tada transformacija
(6.24) predstavlja samo poseban slucaj u kojem je oCuvana struja jednaka Riemannovom ten-

Z0ru.

6.5 Zakljucak

Bududi da vode na zakone oCuvanja, kontinuirane globalne simetrije igraju vaznu ulogu u
fizici. Kako je istraZivanje polja koja su viSe forme (diferencijalne -forme gdje je )
postalo uobicajeno u fizici i matematici, tako je i potreba za poopéenjem nacela simetrije na
objekte viSih dimenzija postala vidljiva. Globalna simetrija -forme dovodi do o¢uvane struje
koja je -forma. Ovakvo poopcenje nudi organizirani nacin razmiSljanja o principima
simetrije te otvara mogucénosti za daljnji razvoj. Navedeno je raspravljeno na primjeru slo-
bodne Maxwellove teorije s dvije globalne simetrije -formi i pokazano je formuliranje dualne
teorije s ekvivalentnom ’t Hooftovom anomalijom. Simetrije viSih formi mogu se razumjeti
i kroz topoloski aspekt: one se primjenjuju uvodenjem topoloskog operatora. Kako on ne
mora imati inverz, ovakav pristup omogucava i definiciju neinvertibilih simetrija.

Simetrije viSe-grupe mogu se shvatiti kao generalizacija produkta simetrija u kojem je
dopusteno mijeSanje bazdarnih polja prilikom njihovih bazdarnih transformacija. Potonje je
takoder prikazano na primjeru slobodne Maxwellove teorije.

Izuzev ovakvih generalizacija, i ostali koncepti vezani uz simetrije mogu se lako gener-
alizirati, poput spontanog loma simetrije. On se prepoznaje na temelju ponaSanja velikih
Wilsonovih petlji dane teorije te je uo¢en u slobodnoj Maxwellovoj teoriji gdje je pripadajuci
Nambu-Goldstoneov bozon foton.

Cilj je rada prikazati implementaciju generaliziranih simetrija u lineariziranoj gravitaciji.
Tretiranje gravitona kao Nambu-Goldstoneove Cestice klju¢no je jer smjeSta graviton, Cesticu
bez mase s spinom , unutar okvira spontanog narusenja simetrije. Tradicionalni Goldsto-
neovi teoremi, dobro uspostavljeni za Cestice nizeg spina, ovdje su generalizirani kako bi
ukljucili Cestice spina , Sto fundamentalno mijenja nacin na koji se gravitacijske interakcije
mogu razumjeti na kvantnoj razini. Pojam da Cestica bez mase poput gravitona nastaje zbog
narusene biformne simetrije smjela je i pronicljiva interpretacija. Tenzorska bazdarna polja

su polja viSeg reda koja generaliziraju strukturu obi¢nih bazdarnih teorija a kroz koriStenje
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linearizirane gravitacije pokazuje se kako ta polja prirodno podrZavaju interpretaciju gravi-
tona kao Goldstoneove Cestice. Srz ove interpretacije leZi u uvodenju biformnih simetrija. Te
simetrije, koje proSiruju koncept simetrija viSih formi, postaju klju¢ne u objasnjavanju bez-
masene prirode gravitona. Konkretno, simetrije koje otklanjaju graviton identificirane su sa
specificnom simetrijom biforme. Pokazali smo kako je Fierz-Paulijeva akcija, dobro poznat
okvir za Cestice sa spinom , ne samo invarijantna pod lineariziranim difeomorfizmima veé
takoder prikazuje dodatnu simetriju koja se moze povezati s Noetherinom o¢uvanom strujom.
Ovo je prikazano za specifi¢an otklon [23], dok najnovija saznanja[24] odraZavaju kako se
graviton moze smatrati Nambu-Goldstoneovim bozonom za opcenitiju simetriju. Nadalje,
pojam anomalija kljucan je u ovoj raspravi - rad ispituje ulogu 't Hooftovih anomalija u
ograni¢avanju mogucih struktura simetrije u teorijama koje ukljucuju graviton. Raspravlja
se o0 postojanju mijeSanih anomalija izmedu gravitacijskih i dualnih simetrija, Sto nudi uvid
u to kako se simetrije mogu mjeriti i koje su implikacije za gravitacijske teorije. 't Hooftova
anomalija klju¢na je za odredivanje gravitona kao Nambu-Goldstoneova moda teorije jer fik-
sira korelacijsku funkciju dualnih struja.

Daljnji razvoj mozZe se ostvariti u iznoSenju argumenta da je graviton Nambu-Goldstoneov
mod opcenitijeg otklona. Jedna ideja je izgraditi teoriju "od temelja". To bi se potencijalno
moglo postic¢i krecuci od masivnog tenzora s mijeSanom simetrijom [31] koji se dekom-
ponira pomocu Stueckelbergovog[32] postupka u sumu bezmasenih polja: -biforma,

-biforma, -formai -forma. Kada se takva dekompozicija ukljuci u Curtrightovu akciju
[33], ona se transformira u zbroj bezmasene Curtrightove akcije, bezmasene Fierz-Paulijeve
akcije, dodatnog ¢lana s bezmasenim -formnim poljem i nekim mjeSovitim ¢lanovima. Raz-
matranje odredenih transformacija (ukljucujudi -biformnni otklon) moglo bi dovesti do

novog i openitijeg pristupa interpretaciji gravitona kao Nambu-Goldstoneovog bozona.
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