Benceković, Mia

Undergraduate thesis / Završni rad

2024

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:246384

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-04-01

Repository / Repozitorij:

Repository of the Faculty of Science - University of Zagreb

Sveučilište u Zagrebu Prirodoslovno-matematički fakultet Geološki odsjek

Mia Benceković

STRUKTURNA ANALIZA DEFORMACIJSKIH STRUKTURA U ZALEĐU BIOKOVA

Seminar III Sveučilišni prijediplomski studij Geologija

Mentor: dr. sc. Bojan Matoš, izvanredni profesor RGN fakulteta

Zagreb, 2024.

TEMELJNA DOKUMENTACIJSKA KARTICA

Sveučilište u Zagrebu Prirodoslovno-matematički fakultet Geološki odsjek

Seminar III

STRUKTURNA ANALIZA DEFORMACIJSKIH STRUKTURA U ZALEĐU BIOKOVA

Mia Benceković

Rad je izrađen: Sveučilište u Zagrebu

Prirodoslovno-matematički fakultet, Geološki odsjek Geološko paleontološki zavod Horvatovac 102a, 10 000 Zagreb

Sažetak: Cilj završnog rada bio je izvršiti strukturnu analizu deformacijskih struktura u neposrednom zaleđu Biokova na temelju prikupljenih terenskih podataka i postojećih geoloških podataka. Područje istraživanja je dominantno prekriveno karbonatnim i klastičnim slijedom mezozojskih i paleogenskih naslaga koje su formirani kao rezultat tektonske evolucije Jadranske mikroploče. Kako bi se dobio bolji uvid u geološke značajke područja, svi su geološki podaci organizirani u programu QGIS. Na temelju terenskih prikupljenih geoloških i strukturnih podataka o građi terena, kinematskim obilježjima te orijentacijama slojeva, folijacija, pukotina, klivaža i rasjeda proračunato je polje paleonaprezanja s orijentacijama glavnih osi paleonaprezanja te su određene orjentacije kogenetskih struktura (npr. osi bora). Podaci su prikazani odgovarajućim stereografskim prikazom pomoću programa Stereonet i WinTensor. Prikupljeni podaci slojevitosti i folijacije prikazani su u programu Stereonet te njihove orijentacije su sukladne dinaridskom pravcu pružanja struktura tj. SZ-JI dok su proračunate osi bora ukazivale na blago tonjenje struktura prema SZ koje su nastale u kompresijskom polju naprezanja s pružanjem najveće osi naprezanja SI-JZ. U sklopu proračuna polja paleonaprezanja rasjedi su podijeljeni u tri kinematske grupe. Prva kinematska grupa obuhvaća reversne rasjede koji su nastali u kompresijskom polju naprezanja (kompresija SI-JZ), Drugu kinematsku grupu obuhvaćaju normalni rasjedi nastali ekstenzijom po pravcu SI-JZ. Treću kinematsku grupu obuhvaćaju strike-slip rasjedi orjentacije SI-JZ a koji su nastali kao rezultat transpresije/transtenzije po pravcu ISI – ZJZ.

Ključne riječi: zaleđe Biokova, Dinaridi, strukturna analiza, paleonaprezanje

Rad sadrži: 30+XVIII stranica, 22 slika, 4 tablice, 21 literaturnih navoda

Jezik izvornika: hrvatski

Rad je pohranjen u: Središnja geološka knjižnica, Geološki odsjek, PMF

Mentor: dr. sc. Bojan Matoš, izvanredni profesor RGNF fakulteta

Ocjenjivači: dr. sc. Bojan Matoš, izvanredni profesor RGNF

dr. sc. Zorica Petrinec, docentica PMF

dr. sc. Borna Lužar-Oberiter, izvanredni profesor PMF

Datum završnog ispita: 12.09.2024

BASIC DOCUMENTATION CARD

University of Zagreb Faculty of Science Department of Geology

Seminar III

STRUCTURAL ANALYSIS OF DEFORMATIONAL STRUCTURES IN THE HINTERLAND OF THE Mt. BIOKOVO

Mia Benceković

Thesis completed in: University of Zagreb

Faculty of Science, Department of Geology Division of Geology and Paleontology Horvatovac 102a, 10 000 Zagreb

Abstract: The aim of the BSc Theisis was to perform structural analysis of the deformation structures in the hinterland of Mt. Biokovo based on collected field data and existing geological data. The research area is dominantly covered by a carbonate and clastic sequence of Mesozoic and Paleogene deposits that formed as a result of the tectonic evolution of the Adria microplate. In order to get a better insight into the geological features of the area, all geological data are organized in QGIS software. Based on geological and structural field data collected along existing structures, including kinematic characteristics and orientations of bedding, foliations, fracture systems, cleavages and faults. The paleostress field was calculated with the orientations of principal axes of paleostress, and the orientations of cogenetic structures (e.g., the fold axes) were determined. The data are corroborated in a suitable stereographic projection using Stereonet and WinTensor software. The collected bedding and foliation data are presented in the Stereonet program and their orientations are consistent with the dinaric strike of the structures, i.e., NW-SE, while the calculated stress axes of the fold axes indicates a gentle dipping towards the NW, formed in the compressional stress field governed by principal stress axis oriented NE-SW. As part of the computation of the paleostress field, the faults are divided into three kinematic groups. The first kinematic group includes reverse faults that were formed in a compressional stress field (NE-SW compression), while the second kinematic group includes normal faults formed by extension in the NE-SW direction. The third kinematic group includes strike-slip faults of general strike NE-SW, which were formed as a result of transpression/transtension along the direction ENE-SWS.

Keywords: Mt. Biokovo hinterland, Dinarides, structural analysis, paleostress

Seminar contains: 30+XVIII pages, 22 figures, 4 tables, 21 references

Original in: Croatian

Thesis deposited in: Central Geological Library, Department of Geology, Faculty of Science

Supervisor: Associate Professor Bojan Matoš, PhD

Reviewers: Assoc. Prof., Bojan Matoš, PhD Assist. Prof., Zorica Petrinec, PhD Assist. Prof., Borna Lužar-Oberiter, PhD

Date of the final exam: 12.09.2024.

Sadržaj

1.	Uvo	od	1
2.	Geo	ografske značajke istraživanog područja	2
3.	Geo	ološke značajke istraživanog područja	3
	3.1.	Tektonski razvoj područja Jadranske mikroploče i Dinarida	3
	3.2.	Strukturni sklop Biokova i neposrednog zaleđa	5
	3.3.	Geološka građa istraživanog područja	8
4.	Met	tode istraživanja1	1
	4.1.	Terenski rad1	1
	4.2.	Kabinetski rad1	2
	4.2.1	. QGIS1	2
	4.2.2	. Stereonet1	4
	4.2.3	. WinTensor1	5
5.	Rez	ultati istraživanja1	6
	5.1.	Rezultati strukturne analize1	6
	5.1.1	. Slojevitost i folijacija1	7
	5.1.2	. Pukotine1	9
	5.1.3	. Rasjedi2	2
6.	Ras	prava i zaključak2	27
7.	Lite	eratura2	:9
P	rilog 1		[]
P	rilog 2	X	V

Popis slika

Slika 2-1 Prikaz istraživanog područja (plavi pravokutnik) pomoću <i>Google Earth</i> aplikacije
Slika 3-1. Prikaz razvoja Jadranske karbonatne platforme kroz glavne tektonske faze (Vlahović et al., 2005)
Slika 3-2 Distribucija karbonatnih naslaga nekadašnje Jadranske karbonatne platforme (Vlahović et al., 2005)
Slika 3-3 Pregledna tektonska karta lista Ploče sa naznačenim tektonskim jedinicama; A) Tektonska jedinica Biokovo, B) Tektonska jedinica Biokovska zgora. C) Tektonska jedinica Makarsko primorje i D) Tektonska jedinica Srednje-dalmatinski otoci (Magaš et al., 1979)
 Slika 3-4. Prikaz geološke građe terena pomoću mozaika Osnovnih geoloških karata 1:100 000 listova OGK SFRJ Imotski (Raić i sur., 1977), Jelsa (Marinčić i Majcen, 1976), Omiš (Marinčić i sur., 1976) i Ploče (Marinčić i sur., 1978)
Slika 3-5. Legenda geoloških jedinica područja istraživanja obuhvaćeno listovima OGK, M 1:100 000 Ploče (Marinčić et al., 1978), Jelsa (Marinčić i Majcen, 1976), Imotski (Raić et al., 1977) i Omiš (Marinčić et al., 1976)
Slika 3-6. Isječci geoloških stupova sa listova OGK; lijevo OGK Omiš (Marinčić et al., 1976), desno OGK Ploče (Marinčić et al., 1978)
Slika 4-1 Prikaz položaja točaka mjerenja tijekom terenskog rada, modificirano u QGIS-u
Slika 4-2 Prikaz programa QGIS sa uključenim layer-om georeferenciranih OGK karata i atributnom tablicom
Slika 4-3 Atributna tablica točaka terenskih istraživanja sa opisom pojedinih terenskih točaka
Slika 4-4 Prikaz korisničkog sučelja programa Stereonet (v. 11 by Richard W. Allmendinger © 2020)
Slika 4-5 Prikaz korisničkog sučelja programa Wintensor (version: 5.8.8) 15
Slika 5-1 Slojevitost u tankopločastim vapnencima (slika sa terena u okolici Makarske; 43° 17' 38,06" N 17° 2' 31,26" E; preuzeto iz Kučko, 2023) 17 V

Slika 5-2 Orijentacije slojevitosti na istraživanom području prikazane tragovima ravnina 18
Slika 5-3 Orijentacije folijacije na istraživanom području prikazane tragovima ravnina 18
Slika 5-4 Pukotine (crvene linije) koje su paralelne rasjedima u čelu Navlake Visokog Krša (slika sa terena u blizini Baške Vode; preuzeto iz Kučko, 2023)
Slika 5-5 Konturni dijagram sa označenim dominantnim setovima pukotina na istraživanom području
Slika 5-6 Rozeta dijagram pukotina sa izdvojenim dominantnim setovima pružanja u istraživanom području
Slika 5-7 Slika reversnog desnog rasjeda (okolica Baške vode, 43° 21' 41,39" N 16° 58' 38,03" E; preuzeto iz Kučko, 2023)
Slika 5-8 Prikaz proračunatih vektora glavnih osi naprezanja reversnih rasjeda. Lijeva slika prikazuje stereogram s proračunom glavnih osi <i>PBT</i> metodom, dok desna slika prikazuje proračun <i>R. Dihedron</i> metodom
Slika 5-9 Prikaz proračunatih vektora glavnih osi naprezanja normalnih rasjeda. Lijeva slika prikazuje stereogram s proračunom glavnih osi <i>PBT</i> metodom, dok desna slika prikazuje proračun <i>R. Dihedron</i> metodom
Slika 5-10 Prikaz proračunatih vektora glavnih osi naprezanja lijevih strike-slip rasjeda.
slika prikazuje proračun <i>R. Dihedron</i> metodom

Popis tablica

Tablica 1 Sistematizirani podaci strukturno-geoloških mjerenja tijekom terenskog rada;
opisan je tip rasjeda (N-normalni, R-reversni; L-lijevi, R-desni) te kvaliteta podataka
KP. Isječak iz Priloga 2 16
Tablica 2 Izdvojeni setovi pukotina istraživanog područja 20
Tablica 3 Izdvojeni setovi pružanja pukotina
Tablica 4. Rezultati mjerenja rasjednih ploha grupirani prema relativnom pomaku
rasjednih krila u odnosu na pružanje rasjedne plohe-najsvjetlijom sivom bojom su
označeni normalni, najtamnijom reversni, a svijetlo sivom strike-slip rasjedi.
Naznačena je orijentacija (smjer i kut nagiba), tip rasjeda (N-normalni, R-reversni; L-
lijevi, R-desni) te izmjerena lineacija strija (kut i smjer; N-sjever, S-jug, E-istok, W-
zapad)

1. Uvod

Biokovo, kao i njegovo neposredno zaleđe, predstavlja kompleksan strukturni sklop koji čini središnji dio Dalmacije, a dio je planinskog lanca Dinarida. S obzirom na strukturnogeološku složenost područja istraživanja, provedena terenska geološka istraživanja te strukturna analiza prikupljenih podataka za cilj je imala dati uvid u strukturna obilježja Biokovskog zaleđa. Istraživano područje je prikazano pomoću Google Earth-a zbog lakše predodžbe geografskog položaja (Slika 2-1), a geološki je isto područje prikazano u programu QGIS. Prikaz u QGIS-u je napravljen pomoću mozaika Osnovnih geoloških karata 1:100 000 listova OGK SFRJ Imotski (Raić i sur., 1977), Jelsa (Marinčić i Majcen, 1976), Omiš (Marinčić i sur., 1976) i Ploče (Marinčić i sur., 1978) dok je opis struktura i geološke građe uvelike temeljen na tumačima spomenutih listova. Prikupljeni strukturni podaci na terenuobrađeni su u programu *Stereonet (v. 11 by Richard W. Allmendinger* © 2020), te u programu *WinTensor (version: 5.8.8)*.

2. Geografske značajke istraživanog područja

Istraživano područje nalazi se u neposrednom zaleđu planine Biokovo koja je smještena u središnjoj Dalmaciji, a pripada planinskom lancu Dinarida. Ovaj masiv proteže se kroz područja općina Baška voda, Brela, Makarska, Tučepi, Podgora, Šestanovac, Zagvozd i Zadvarje, dok se u njegovom podnožju nalaze gradovi Makarska i Vrgorac (Slika 2-1). Pružanje planine Biokovo paralelno je pružanju obale, odnosno karakterističnog dinaridskog pravca pružanja SZ-JI. Hrbat Biokova dijeli priobalje od unutrašnjosti, Dalmatinske zagore, te se pruža od linije Vrulja-Šestanovac sjeverozapadno do rijeke Neretve na jugoistok. Najviši vrh ovog planinskog masiva je Sveti Jure (1762 m) do kojeg vodi Biokovska cesta, odnosno državna cesta Makarska-Vrgorac. Vrh Sveti Jure je treći najviši vrh u Hrvatskoj, a najviši vrh u sklopu parka prirode Biokovo (https://ppbiokovo.hr/hr). Park prirode Biokovo je proglašen 1981. godine (https://pp-biokovo.hr/hr) i jedan je od jedanaest parkova prirode u Hrvatskoj. Svojom površinom od 195,5 km pokriva razne geomorfološke krške oblike kao što su kamenice, škrape, ponikve, špilje i jame. Najveća špilja je špilja Krjava, a jama Njemica (-934 m) koja je po dubini na petom mjestu u Hrvatskoj. Mnoštvo fosilnih ostataka je pronađeno u špiljama i jamama, na primjer ostatci jelena, špiljskog medvjeda i vuka, a 24 fosilnih nalaza vezano za dinosaure (https://pp-biokovo.hr/hr).

Slika 2-1 Prikaz istraživanog područja (plavi pravokutnik) pomoću Google Earth aplikacije .

3. Geološke značajke istraživanog područja

3.1. Tektonski razvoj područja Jadranske mikroploče i Dinarida

Jadranska karbonatna platforma (AdCP) jedna je od najvećih mezozojskih karbonatnih platformi perimediteranske regije, a njezine naslage nalazimo u Italiji, Sloveniji, Hrvatskoj, Bosni i Hercegovini, Srbiji i Crnoj Gori te Albaniji (Vlahović et al., 2005). AdCP je nastala procesima riftovanja i odvajanja Adria mikroploče od Gondvane tijekom srednjeg trijasa. Riftovanjem je došlo do odvajanja fragmenata šelfa od Gondvane i nastala je izolirana karbonatna platforma; Južnotetijska megaplatforma na kojoj su se taložili dominantno karbonati (Slika 3-1). Tijekom mlađe donje jure, dogodila se dezintegracija Južnotetijske megaplatforme te su nastale tri izolirane karbonatne platforme koje su odvojene dubokomorskim jarcima: Jadranska (AdCP), Apeninska (ApCP) i Apulijska (ACP). Jadransku karbonatnu platformu karakteriziraju pretežito plitkomorske naslage, no jačanjem sinsedimentacijske tektonike debljina plitkomorskih naslaga karbonata dosežu debljine između 3500 i 5000 metara (Vlahović et al., 2005).

Slika 3-1. Prikaz razvoja Jadranske karbonatne platforme kroz glavne tektonske faze (Vlahović et al., 2005).

Kolizija Jadranske mikroploče s Euroazijom započela je krajem krede te se nastavila kroz paleogen što je rezultiralo sužavanjem nekadašnjeg prostora Neotetisa i izdizanjem Dinaridskog planinskog lanca (Vlahović et al., 2005). Posljedično tome, nastali su dubljevodni okoliši u području Dinaridskih predgorskih bazena uz manja područja plitkovodnih okoliša u priobalnim bazenima. Dubljevodne okoliše karakterizira taloženje sinorogenih flišnih naslaga dok se na rubovima bazena odvijalo taloženje foraminiferskih vapnenaca. Konačno izdizanje Dinarida kao planinskog lanca dogodilo se tijekom oligocena i miocena kao posljedica kontinuirane kompresije po pravcu S-J koja zbog rotacije Jadranske mikroploče poprima orijentaciju SI-JZ, čime nastaju strukture dinaridskog pravca pružanja. Tijekom kompresijske i postkompresijske faze reaktivirale su se brojne postojeće strukture, orijentirane dominantno okomito na pravac naprezanja, u obliku navlačnih ili ekstenzijskih struktura s relativno strmim rasjednim plohama. Kraj miocena obilježen je dominantno izraženom ekstenzijom i transtenzijom kao posljedica promjene polja paleonaprezanja. Završne promjene u polju naprezanja su započele u vrijeme pliocena, a koje traje i danas. Obilježje današnjeg polja naprezanja je uspostava kontinuiranog kompresijskog režima naprezanja (SI-JI) koji utječe na nasljeđeni strukturni sklop obilježen brojnim boranim i navlačnim strukturama.

Slika 3-2 Distribucija karbonatnih naslaga nekadašnje Jadranske karbonatne platforme (Vlahović et al., 2005).

3.2. Strukturni sklop Biokova i neposrednog zaleđa

Današnji strukturni sklop Biokova karakterizira visoki stupanj tektonske poremećenosti, što je rezultat kompleksnih geoloških događanja od kraja mezozoika do danas (Marinčić et al., 1977). Mezozojski tektonski pokreti i rezultantne strukturne deformacije u velikom su dijelu zaslužne za nastanak strukturnih sklopova Biokova koji i danas akomodiraju tektonske pokrete. Prvi su značajniji tektonski pokreti izazvali paleografske promjene koji su doveli anizičke naslage u dulju fazu emerzije tijekom ladinika te se zbog toga mogu pripisati pfalačkoj fazi odnosno početku alpinskog orogenetskog ciklusa (Marinčić et al., 1977). Pojačanim epirogenetskim pokretima, u donjem lijasu, počinje relativno mirna sedimentacija jurskih karbonata koja je trajala sve do kraja malma kada dolazi do obnavljanja tektonskih pokreta - novokimerijska faza (Marinčić et al., 1977). Spomenuta tektonska faza nije uzrokovala značajnije regionalne promjene što se može zaključiti iz taložnog slijeda koji ne ukazuju na prekid sedimentacije, za razliku od krednih pokreta koji su bili regionalnog značaja. Tijekom kredne faze, ponovljeni su pokreti koji su uzrokovali boranje i rasjedanje mezozojskog sedimentacijskog prostora. Laramijsko boranje karakteriziraju tektonski pokreti tijekom gornje krede i paleogena, a koji su doveli do završnog nastanka borano-navlačne strukture Biokova. Struktura Biokova je u to vrijeme doživjela najveće izdizanje i završno formiranje. Posljednja tekonska faza snažnih regionalnih pokreta je bila pirenejska faza tijekom gornjeg eocena i donjeg oligocena. Za to vrijeme nastaju završne ljuske i navlake (Marinčić et al., 1977). Oligocenski i neogenski pokreti nisu bitnije utjecali na strukturni sklop područja, već su utjecali na formiranje pripadajuće orografije.

Recentni tektonski sklop šireg regionalnog područja posljedica je opisane strukturne evolucije te se temeljem deformacijskih struktura i oblika može podijeliti u četiri osnovne tektonske jedinice: Biokovo, Biokovska zagora, Makarsko primorje i Srednjodalmatinski otoci (slika 3-3).

Slika 3-3 Pregledna tektonska karta lista Ploče sa naznačenim tektonskim jedinicama; A) Tektonska jedinica Biokovo, B) Tektonska jedinica Biokovska zgora. C) Tektonska jedinica Makarsko primorje i D) Tektonska jedinica Srednje-dalmatinski otoci (Magaš et al., 1979).

U okviru ovog rada opisane su u nastavku tektonske jedinice:

- Biokovo
- Biokovska zagora te
- Makarsko primorje

Tektonska jedinica Biokovo

Ovoj tektonskoj jedinici pripada ortografski istaknuto područje Biokova, od njegovog SI podnožja sve do čela biokovske navlake koje se nalazi na JZ padinama planine (Magaš et

al., 1979). Formirana je krajem mezozoika, no pod utjecajem dugotrajnih procesa se formirala kao niz strukturnih ljusaka koje su na kraju objedinjuju u jedinstvenu navlaku Biokova. Spomenuta struktura je djelomično navučena na srednjoeocenski fliš tektonske jedinice Makarskog primorja. Morfološki, navlaku Biokova karakterizira tektonsko poluokna Zaostrog i Gradac. Sjeverozapadni dio Biokova je ostao u stadiju ljuske te se zbog tog stupnja strukturne evolucije ova struktura ne može smatrati pravom navlakom (Magaš et al., 1979).

Tektonska jedinica Biokovska zagora

Područje koje se prostire SI od podnožja Biokova pripada ovoj tektonskoj jedinici koja je formirana mezozojskim i paleogenskim tektonskim pokretima. Tijekom Laramijske faze u zaleđu Biokova je formirano široko područje s nizom ešaloniranih manjih bora koje su tangencijalnim pokretima preobražene u prebačene bore i ljuske. Ljuske su uglavnom zadržale osnovni oblik prebačenih antiklinala nižeg i višeg reda te su dominantno građene od krednih naslaga koje su navučene na mlađi slijed srednjoeocenskog fliša te podinskih foraminiferskih vapnenaca (Marinčić et al., 1977). Idući od JZ prema SI, intenzitet boranja te rasjedanja djelomično opada pa je time strukturna poremećenost nešto manja u smjeru sjeveroistoka. Također, karakteristično za ovu jedinicu je pojava "tektonskih navlačaka" koji su zapravo prividni navlačaci. Porastom nadmorske visine, mjesta gdje isklinjavaju tanke ljuske često bivaju selektivno erodirane te se time prividno stvaraju "navlačci" u odnosu na baznu površinu. Razmatrajući tektonski odvojene zone fliša, vidljivo je da zapravo pripadaju zasebnim strukturnim domenama odnosno navlačnim ljuskama (Magaš et al., 1979).

Tektonska jedinica Makarsko primorje

Ova jedinica obuhvaća usko obalno područje od Makarske do Gradca, a koje završava sa SI strane čelom Biokovske navlake dok se pretpostavlja da je veći JZ dio prekriven morem i seže do otoka Hvara (Magaš et al., 1979). Predstavlja autohtoni sinklinorij i dio je eocenskog fliškog korita koje je bilo taložno područje za vrijeme Pirenejske tektonske faze. Posljedično tome, ova tektonska jedinica izgrađena je od izduženih prebačenih bora u flišnim naslagama pružanja SZ-JI.

3.3. Geološka građa istraživanog područja

Istraživano područje obuhvaća uglavnom naslage karbonatnih i klastičnih stijena mezozojske starosti (Slika 3-4, 3-5, 3-6). S obzirom na stratigrafsko-strukturna obilježja stijena na području Biokova, mogu se razlikovati tri osnovne gradbene jedinice: priobalni pojas, centralni gorski hrbat Biokova te Biokovska zagora (<u>https://pp-biokovo.hr/hr</u>).

Područje priobalnog pojasa obuhvaća naslage gornje krede, uglavnom senona, od kojih su najrasprostranjeniji rudistni vapnenci sa proslojcima dolomita (Slika 3-4). Jedan dio alokemijskih vapnenaca pripada najnižem razvoju senona sa proslojcima i lećama pločastih vapnenaca te se na te naslage talože neuslojeni senonski vapnenci u kojima također nalazimo leće dolomita i vapnenaca. Takve se naslage nalaze na području iznad čela ljuske od Dubaca do Basta te iznad Promajne. Ipak, može se reći da u ovom pojasu dominiraju paleogenske naslage foraminiferskih vapnenaca i eocenske klastične naslage (fliš i vapnenačke breče). Na opisane kredne naslage talože se transgresivne breče i vapnenci paleogena u kojima se nalazi mnoštvo provodnih fosila kao što su foraminifere Alveolina, Discocyclina karakteristične za to razdoblje (Slika 3-6). Područje od Krvavice, preko Makarske do Gornjih Tučepa obuhvaća ove šire rasprostranjene naslage (https://ppbiokovo.hr/hr). Prijelaz u fliš označava prekid sedimentacije što u širem smislu znači da serija fliša počinje transgresijom breča izgrađenih od gornjokrednog i formaniferskog vapnenca. Izgrađen je od pješčenjaka i detritičnih vapnenaca u izmjeni sa laporima u ritmičkoj sedimentaciji na koju ukazuju ciklična izmjena stijena i graduirani raspored čestica unutar slojeva (Marinčić et al., 1977). Razvijene na padinama, breče heterogenog sastava i slabe sortiranosti krupnih fragmenata nalazimo duž cijelog priobalnog pojasa. Ovisno o podlozi i donosu materijala ove kvartarne naslage sastoje se od jezerskih i barskih sedimenata, aluvijalnih, deluvijalnih i proluvijalnih naslaga (Marinčić et al., 1977). Daljnim djelovanjem valova i morskih struja koji su utjecali na breče u smislu erozije, transporta i taloženja, nastaju šljunčane plaže koje su karakteristične za Makarsko primorje.

Biokovska zagora oblikovana je u stijenskim kompleksima krede i paleogena koje čine vapnenci s klastičnim naslagama fliša. Sediment fliša, većih debljina, izmjenjuje se s krupnijim i sitnijim slojevima breče, pješčenjaka i lapora (Slika 3-6).

Slika 3-4. Prikaz geološke građe terena pomoću mozaika Osnovnih geoloških karata 1:100 000 listova OGK SFRJ Imotski (Raić i sur., 1977), Jelsa (Marinčić i Majcen, 1976), Omiš (Marinčić i sur., 1976) i Ploče (Marinčić i sur., 1978).

Slika 3-5. Legenda geoloških jedinica područja istraživanja obuhvaćeno listovima OGK, M 1:100 000 Ploče (Marinčić et al., 1978), Jelsa (Marinčić i Majcen, 1976), Imotski (Raić et al., 1977) i Omiš (Marinčić et al., 1976)

Slika 3-6. Isječci geoloških stupova sa listova OGK; lijevo OGK Omiš (Marinčić et al., 1976), desno OGK Ploče (Marinčić et al., 1978)

4. Metode istraživanja

U sklopu izrade ovog završnog rada provedena je strukturna analiza na temelju prethodno prikupljenih terenskih podataka u zaleđu Biokova tijekom 2023. godine. U provedbi strukturne analize uz terenski i kabinetski rad prethodio je i pregled dostupne literature tj. znanstvenih i stručnih radova.

4.1. Terenski rad

Podaci potrebni za izradu analize podataka prikupljeni su na terenu kamenolom Bast i neposrednom zaleđu Biokova u periodu od 26.04.-27.04. te 09.08-12.08.2023. g.. Ukupno je provedeno terensko istraživanje na 42 točke opažanja pri čemu su se uz osnovne geološke podatke, stratigrafiju i litološka obilježja, sustavno prikupljali i strukturni podaci koji se odnose na geometrijska obilježja deformacijskih struktura kao što su slojevi, pukotine, bore i rasjedi (Slika 4-1, Prilog 1).

Slika 4-1 Prikaz položaja točaka mjerenja tijekom terenskog rada, modificirano u QGIS-u

4.2. Kabinetski rad

Kabinetski rad je uključivao sistematizaciju i organizaciju prikupljenih podataka pomoću *MS Excel* tablice. Zajednička tablica podataka (Prilog 1) napravljena je kako bi se dobio uvid u sve prikupljene podatke s tog područja. Napravljena je sistematizacija podataka prema izdvojenim terenskim lokacijama kao i mjerenim strukturnim elementima. Također, uključivao je i prikazivanje istraživanog područja u QGIS programu radi lakše interpretacije geološke građe terena. Analize strukturnih podataka folijacija, pukotina, slojevitosti i rasjeda napravljene su u programima *Stereonet* i *WinTensor* za potrebe odredbe geometrijskih karakteristika deformacijskih struktura, ali i shvaćanja polja paleonaprezanja i strukturno-geološkog razvoja područja Biokova.

4.2.1. QGIS

U svrhu vizualizacije terena izrađena je karta istraživanog područja u programu *QGIS* (Slika 4-2). Digitalni ortofoto Republike Hrvatske sa *wms servera* Državne geodetske uprave (<u>https://dgu.gov.hr/vijesti/mrezne-usluge-prostornihpodataka-drzavne-geodetske-uprave/5015</u>) unesen je kao podloga rada. Zatim su georeferencirane karte OGK SFRJ listovi Imotski (Raić i sur., 1977), Jelsa (Marinčić i Majcen, 1976), Omiš (Marinčić i sur., 1976) i Ploče (Marinčić i sur., 1978) kako bi se što lakše mogao vizualizirati geološki prikaz terena (Slika 4-2). Nadalje, izrađen je *.shp* file u koji su uneseni podatci o prikupljenim litološkim informacijama i strukturnim mjerenjima tijekom terenskog rada u obliku atributne tablice (Slika 4-3).

	Vector Easter Database Web Mesh		0. 📾 🚸 5. 💷 - 💭	D (0) •		
	1.1日ノー治友・國		• • • • • • • • • • •		2	
	8 78 F & Vi # 9	양 만 표 ৫ - 1 상 년	1,12 0 PK - Y 😵	M·XX:		
🕒 • 🗞 • 🛼 • I 🌮 🕅	- 能 🛛 - 🛛 👬 - 🖏 🏹 🕻	🖧 .T. 😫 🎞 - м 🗉	1 110 0,000 \$ SC ADS T- T	a 🔲 🖾 (🕮 🤅	🖶 🖷 👈	5 0 3
Layers ØB						
✓ M ★ T. Su + M IT La Intocke istrazivanja		State State State	Mary and Party of	Contractivany	s = 61 n =	
✓ ● tocke istrazivanja	Contraction of the local sector		1. A Constant	point	latitude	Iongitude *
▶ ✓ ₩ ploce	Martin Com			28 CRD-133	43,45	16,69
v y jelsa v y imotski			Sec. Sec.	29 CRD-134	43,45	16,7
V V omis				30 CRD-135	43,52	16,55
	and the second se		a allera	31 BK-S1	43,3	17,03
		Constant States	and the second se	32 BK-52	43,3	17,03
	the state of the second second		Carlos and	33 BK-S3	43,3	17,03
	A DE CONTRACTOR		and the second	34 BK-S4	43,3	17,03
	March Strategy	Par la Carlo Carlo		35 BK-S5	43,34	17,11
	A CONTRACTOR OF		Martin Martin	36 BK-56	43,34	17,11
				37 BK-S7	43,34	17,11
				38 BK-58	43,34	17,11
	Contraction in the second second	Marine and and and		39 Bk-001	43,28	17,2
	A REAL PROPERTY AND A REAL		A COMPANY	40 BK-002	43,31	17,16
	All All All And All All All All All All All All All Al		Jan 1 Martin	41 BK-003	43,32	17,13
	a starting and	and the second of the	No.	47 RF-004	A2 22	17.12 *
				Show All Features		E []

Slika 4-2 Prikaz programa QGIS sa uključenim layer-om georeferenciranih OGK karata i atributnom tablicom

Q tocke_	istrazivanja –	– Features Tota	l: 47, Filtered: 47, Selected: 1 📃 🗌	×
/ 🖬 🖯	0 0	🗏 🕒 🔩 🕇		
point	latitude	longitude	opis	
1 BK2-15	43.36	16.98	Bijeli rekrist vap vise nisam toliko siguran da nije kotisina, vecinom je bijeli mikrit ali mjestimice ima zrnatih pekstona sa krsjem rud i u nekim uzor	cima
2 BK-S2	43.3	17.03	folijacija 110/65, 220/50 ; sp1 90/270; zona cca 200 m kanjona ispunjena siparima, vjerojatno poprecni rasjed	
3 BK-16	43.37	16.97	Fv diskociklinski s malo numulita ps pada kao litica ps=64/66 sp1=143/61 sp2=234/36 ima i tankolaminirani proslojak	
4 BK-S7	43.34	17.11	FV s alveolinama i numulitima R204/70, Is 555E- normalni lijevi, reversni desni R280/72, Is 405, normalni desni R3280/70, Is 205, lijevi	
5 BK-S1	43.3	17.03	Gornjokredni bioklasticni vapnenci, slojevitost nije mjerljiva. Situacija je kako je na karti deginirana, prema jugu je flis. Dvije folijacije340/28, 248	3/60
6 BK-S4	43.3	17.03	Ispod nas je flis, a tu je kreda. Vidljiva rasjedna zona u kojoj postoje sustavi strike slip rasjeda nagnutih prema SZ.	
7 Placem.	43.36	16.98	Isti vapnenci imaju vece pojave cisto crnog sp1= 143/41 Is1= 44 normalni desni kp2 sp2=38/40 (iz ruke) ploha jako povija u svim smjerovim	a, uc
B CRD-13	43.45	16.68	Ji podnozje druge ljuske izd bijelih vap sa milio i nekim sitnim mrezicama i izd bijelog sa svj smedjim valut, kts. Ima i roznjaka na pov izd	
9 BK-S5	43.34	17.11	Konglomeratno tijelo s klastima gornje krede koja ima u sebi crne fragmenta - roznjakevjerojatno paleogenska baza Folijacija132/53, 134/60	F)
10 BK-009	43.39	17.22	Kontakt je prekriven	
11 BK2-5	43.36	16.98	Na ovoj t sp=131/63 ls subvertikalan pomak ima indikacija i za revers i za normal kp3. Sp2=214/60 ova ploha se prema gore rascvjetava na vis	se pl
12 BK-7	43.36	16.98	Na ovoj tocki izrazena zagladjena ploho rp=45/30 (iz ruke) u podini su bijeli mikritni vap, rekristalizirani, u krovini za nijansu tamniji smedjkasto si	ivi re
13 Bk2-9	43.36	16.98	Na ovoj tocki je cijela fronta u smedjem fv, vj krovina plohe sa bk2-7 u fv je set sp1=14/25 (pada u frontu) Sp2=264/70 (strma poprecni set) sp2	3=22
14 BK-4	43.36	16.98	Na ovoj tocki je zdrobljena zona sirine oko 1m i ide visoko u fronte kamenoloma, vjerojatno rasjed. U njeno podini sp1=51/66 ls1=21 od sz orj	enta
15 BK2-6	43.36	16.98	Na ovoj tocki nekoliko sp. Sp1=297/79 Sp2=266/81 Sp3=199/56 sp4=250/62 az f=35	
16 CRD-13	4 43.45	16.7	Na si kraju prve ljuske je kts, bijeli sa klastima svj smedjeg, ne nalazimo valucicasti fv.	
17 CRD-13	3 43.45	16.69	Nakon tunela prema zadvarju na pocetku druge ljuske gdje je penjaliste prvi dio litice je kts, vecinom dosta bijela ali ima dijelova sa klastima. Na	fror
4				•
Show All	Features 🖕		le l	8

Slika 4-3 Atributna tablica točaka terenskih istraživanja sa opisom pojedinih terenskih točaka

4.2.2. Stereonet

Stereografska projekcija je jedna od najčešće korištenih grafičkih metoda u strukturnoj geologiji pomoću koje se može odrediti:

- orijentacija struktura i strukturnih elemenata,
- prikazati veliki broj orijentacija izmjerenih podataka,
- provoditi statistička obrada tih podataka,
- rekonstruirati orijentacija glavnih osi naprezanja,
- rekonstruirati prvotna orijentacija struktura.

Za ovu analizu se koristila ekvatorijalna (Schmidtova) mreža koju čine projekcije meridijana i paralela, odnosno projekcije velikih i malih kružnica. Tragovi velikih kružnica završavaju na azimutima sjevera i juga i služe za projiciranje tragova ravnina. Tragovi malih kružnica završavaju na perifernoj kružnici, gdje označavaju parne azimute 0 -360°. Mreža također sadrži dva međusobno okomita pravca, jedan sa pružanjem sjever-jug i drugi pružanja istok-zapad po kojima se očitavaju kutevi nagiba. Pomoću prikaza i obrade podataka slojevitosti te pukotina zabilježenih na području zaleđa Biokova, u *Stereonet*-u (Slika 4-4) mogu se geometrijski opisati glavne deformacijske strukture koje su nastale u pripadajućim poljima naprezanja.

Slika 4-4 Prikaz korisničkog sučelja programa Stereonet (v. 11 by Richard W. Allmendinger © 2020).

4.2.3. WinTensor

U okviru strukturnih analiza, prikupljeni podatci o rasjedima su obrađeni u programu *WinTensor*, a koji je omogućio proračun glavnih osi naprezanja i njihove značajke (Slika 4-5). Prije kinematske strukturne analize prikupljeni podaci o rasjedima organizirani su na osnovni njihovog relativnog pomaka rasjednih krila u odnosu na pružanje rasjedne plohe. Uz geometrijske značajke rasjeda (npr. smjer nagiba, pravac pružanja, kut nagiba) u strukturnoj analizi rasjeda bitne su se informacije odnosile na prikupljene podatke o karakteru pomaka duž rasjedne plohe, veličini pomaka kao i kinematskim indikatorima koji su ukazivali na vrstu pomaka te čestu polifaznost tektonske aktivnosti. Dinamička strukturna analiza obuhvatila je prikaz mjerenih rasjednih ploha pomoću stereograma kao i proračun glavnih osi naprezanja (PBT osi; $P - \sigma_1$, $B - \sigma_2$, $T - \sigma_3$) te odredbu polja paleonaprezanja pomoću sintetskih žarišnih mehanizama (Slika 4-5).

Slika 4-5 Prikaz korisničkog sučelja programa Wintensor (version: 5.8.8).

5. Rezultati istraživanja

5.1. Rezultati strukturne analize

Rezultati ovog istraživanja temelje se na prikupljenim podacima tijekom terenskog rada, gdje su zabilježena 73 strukturna mjeranja na ukupno 42 lokacije. U navedena mjerenja ubrajamo 10 orijentacija folijacija, 11 orijentacija slojevitosti, 33 orijentacije pukotina, 16 orijentacija rasjednih ploha te jednu orijentaciju klivaža (vidi Tablica 1 te Prilog 2). Pomoću spomenutih podataka napravljena je strukturna analiza kojom bi se objasnile orijentacije struktura u području istraživanja, orijentacija glavnih osi naprezanja te kako bi se odredilo polje paleonaprezanja u istraživanom području.

Tablica 1 Sistematizirani podaci strukturno-geoloških mjerenja tijekom terenskog rada; opisan je tip rasjeda (N-normalni, R-reversni; L-lijevi, R-desni) te kvaliteta podataka KP. Isječak iz Priloga 2.

TERENSKA OZNAKA	SLOJEVITOST	FOLIJACIJA	PUKOTINE	KLIVAŽ	RASJEDI	LINEACIJA STRIJA	TIP	KP
BK-4			51/66		12/68	21NW	х	2
BK-7			45/30		45/30			2
ВК-13			183/55 311/84 203/69	194/88		46SW 84SE	R NL RD	2 1 2
BK-16			143/61 234/46					2 2
BK2-1			226/54 45/55 119/13					
ВК2-2					203/73 203/73 65/81	85 20SE 87	R RD	1

5.1.1. Slojevitost i folijacija

Slojevitost je planarno strukturno svojstvo taložnih tijela ujednačenog litološkog sastava, koja su odvojena od slojeva u krovini i podini slojnom plohom (Slika 5-1). Slojevitost je najvažnije strukturno obilježje u sedimentnim stijenama te se svrstava u "primarne strukture" koje nastaju u stijenama u najranijoj fazi njihova postanka.

Slika 5-1 Slojevitost u tankopločastim vapnencima (slika sa terena u okolici Makarske; 43° 17' 38,06" N 17° 2' 31,26" E; preuzeto iz Kučko, 2023)

Folijacija, s druge strane, predstavlja penetrativno strukturno obilježje u stijenama koje nastaje pravilnim, ravnomjernim i paralelnim rasporedom planarnih strukturnih elemenata (npr. pukotina, ploha slojevitosti). Iz izrađenih stereograma koji prikazuju slojevitost (Slika 5-2) i folijaciju (Slika 5-3) vidljive su različite orijentacije koje ukazuju na boranost struktura u području istraživanja. Bore su deformacijske strukture koje nastaju djelomično plastičnom deformacijom planarnih strukturnih elemenata u stijenama. Plastična deformacija stijena je u direktnoj svezi s vrstom stijena koja se deformira, prisustvom fluida u stijenama te povećanim geotermalnim gradijentom. Tijekom terenskog rada izmjereno je ukupno 11 slojevitosti i 10 mjerenja folijacije. Iz stereograma je vidljivo da je prosječna proračunata os bore približne orijentacije 315/20 što govori o strukturi koja blago tone prema sjeverozapadu, odnosno 120/20 koja tone prema jugoistoku.

Slika 5-2 Orijentacije slojevitosti na istraživanom području prikazane tragovima ravnina

Slika 5-3 Orijentacije folijacije na istraživanom području prikazane tragovima ravnina

5.1.2. Pukotine

Pukotine su deformacijske strukture koje u stijenama nastaju kao posljedica krtog loma, čime se smanjuje kohezija stijene. Strukturna analiza pukotina u pravilu obuhvaća:

- analizu rasporeda, orijentacija i učestalosti pukotina, odnosno definiranje setova pukotina,
- analizu morfoloških značajki na stjenkama pukotina i njihovu genetsku klasifikaciju
- određivanje relativne starosti među pukotinama,
- definiranje odnosa rasporeda i orijentacije pukotina prema kogenetskim strukturama kao što su rasjedi i bore.

Iako je nastanak pukotina vezan uz prevladavajući tip polja naprezanja, morfološka i kvantitativna obilježja pukotina, npr. gustoća pukotina, ovisi o litološkom sastavu tj. mehaničkim svojstvima stijene. Dobro razvijene pukotine nalazimo u stijenama, dok su manje učestale ili izostale u nekompetentnim stijenama (Slika 5-4).

Slika 5-4 Pukotine (crvene linije) koje su paralelne rasjedima u čelu Navlake Visokog Krša (slika sa terena u blizini Baške Vode; preuzeto iz Kučko, 2023)

Konture na Schmidtovoj mreži (Slika 5-5) predstavljaju gustoću orijentacija pukotina na istraživanom području i pomoću njih se mogu odrediti prevladavajuće orijentacije setova pukotina koje su dio struktura nižeg reda.

Slika 5-5 Konturni dijagram sa označenim dominantnim setovima pukotina na istraživanom području.

SETOVI	SETOVI PUKOTINA			
1	323/29			
2	19/34			
3	84/20			
4	114/15			
5	223/52			
6	229/90			

Tablica 2 Izdvojeni setovi pukotina istraživanog područja

Središnji dijelovi konturnog dijagrama predstavljaju najgušću frekvenciju tj. najveći broj pukotina. Ukupno je izmjereno 33 pukotine, a tablica uz konturni dijagram prikazuje šest izdvojenih setova pukotina s njihovim prosječnim orijentacijama - smjerom i kutom nagiba. Najgušće (najtamnije obojano) područje na prikazanoj mreži odgovara setovima pukotina 1, 4, 5 i 6, dok je na području setova 2 i 3 vidno manja učestalost pukotina odnosno prikazano svjetlijom bojom. Prosječne orijentacije uočenih pukotina prethodno spomenutih setova su **323/29** (set 1), **19/34** (set 2), **84/20** (set 3), **114/15** (set 4), **223/52** (set 5) i **229/90** (set 6) prikazani u Tablici 2.

Rozeta dijagramom (Slika 5-6) u istraživanom području mogu se izdvojiti tri dominantna seta pružanja pukotina:

- Set 1 (50-230) u ovom setu se pukotine pružaju u smjeru sjeveroistok-jugozapad
- Set 2 (135-315) pukotine se u ovom setu pružaju u smjeru sjeverozapad-jugoistok
- Set 3 (20-200) u zadnjem setu se pukotine pružaju približno smjerom sjever-jug

Slika 5-6 Rozeta dijagram pukotina sa izdvojenim dominantnim setovima pružanja u istraživanom području.

SETOVI-PRUŽANJA				
1	50-230			
2	135-315			
3	20-200			

Tablica 3 Izdvojeni setovi pružanja pukotina

5.1.3. Rasjedi

Rasjedi su posmične pukotine duž kojih su stijene ili stijenska tijela pomaknuta s jedne u odnosu na drugu stranu pukotine u iznosu većem od nekoliko centimetara (Slika 5-7). Nastaju kao posljedica diferencijalnog naprezanja u Zemljinoj kori kad posmično naprezanje premaši posmičnu čvrstoću stijene (Tomljenović B. (2023): Predavanja iz kolegija Strukturna geologija i tektonika).

Prema relativnom pomaku rasjednih krila u odnosu na pružanje rasjedne plohe razlikuju se:

- rasjedi s pomakom po pružanju (engl. *strike-slip*),
- rasjedi s pomakom okomito na pružanje (normalni i reversni),
- rasjedi s pomakom dijagonalno na pružanje (normalni lijevi/desni i reversni lijevi/desni).

Slika 5-7 Slika reversnog desnog rasjeda (okolica Baške vode, 43° 21' 41,39" N 16° 58' 38,03" E; preuzeto iz Kučko, 2023)

U Tablici 4 prikazani su izmjereni rasjedi, ukupno 16 mjerenih podataka te su razvrstani prema odgovarajućem karakteru i prikazani sljedećim analizama izrađenim u *WinTensor*-u.

Tablica 4. Rezultati mjerenja rasjednih ploha grupirani prema relativnom pomaku rasjednih krila u odnosu na pružanje rasjedne plohe-najsvjetlijom sivom bojom su označeni normalni, najtamnijom reversni, a svijetlo sivom strike-slip rasjedi. Naznačena je orijentacija (smjer i kut nagiba), tip rasjeda (N-normalni, R-reversni; L-lijevi, R-desni) te izmjerena lineacija strija (kut i smjer; N-sjever, S-jug, E-istok, W-zapad).

RASJEDI							
Oznaka terenske točke	Orijentacija	Tip rasjeda	Lineacija strija				
BK-S7	204/70	NL	55SE				
DIC 37	80/72	ND	40S				
BK-S8	230/70	Ν	90				
DK-30	115/58	L	0				
BK-007	174/58	NL	48S				
ר באם	203/73	R	87				
DNZ-Z	203/73	RD	20SE				
BK2-14	245/42	R	х				
BK-S7	204/70	RD	55SE				
PK 006	44/62	R	90				
BK-000	30/58	R	90				
BK-007	44/70	RD	30N				
BK-4	12/68	Х	21NW				
DK 004	290/85	L	х				
вк-004	320/72	L	30W				
BK-S7	280/70	L	205				

Reversni rasjedi

Ukupno je zabilježeno osam mjerenja ploha reversnih rasjeda generalnog pružanja SZ-JI te otklona lineacije strija većeg od 20° (Slika 5-10). Utvrđene osi naprezanja *PBT* metodom ukazuju na to da je najveća os naprezanja σ_1 orijentacije **197/3**, srednja os σ_2 orijentacije **107/0** te najmanja os naprezanja σ_3 orijentacije **15/87**. Iz podataka proračunati sintetski žarišni mehanizam *R. Dihedron* metodom ukazuje na kompresijske strukture koje generalno imaju pružanja SZ-JI, gdje je najveća os naprezanja približno okomita na strukture, odnosno orijentacije je SI-JZ. Grupa reversnih rasjeda odgovara setu pukotina SP2 (Tablica 2).

Slika 5-8 Prikaz proračunatih vektora glavnih osi naprezanja reversnih rasjeda. Lijeva slika prikazuje stereogram s proračunom glavnih osi *PBT* metodom, dok desna slika prikazuje proračun *R. Dihedron* metodom.

Normalni rasjedi

Unutar grupe normalnih rasjeda ubrajamo pet izmjerenih rasjednih ploha sa generalnim pravcem pružanja SZ-JI, a kojima je izmjerena lineacija strija kuteva većih od 40° (Slika 5-9). *PBT* metodom je utvrđeno da je najveća os naprezanja σ_1 orijentacije **270/80**, srednja os σ_2 orijentacije **83/10**, a najmanja os naprezanja σ_3 **173/1**. Pomoću *R. Dihedron* metode, dobiveni sintetskim žarišni mehanizam ovih rasjeda ukazuje na ekstenzijsko polje naprezanja po pravcu SSZ-JJI.

Slika 5-9 Prikaz proračunatih vektora glavnih osi naprezanja normalnih rasjeda. Lijeva slika prikazuje stereogram s proračunom glavnih osi *PBT* metodom, dok desna slika prikazuje proračun *R. Dihedron* metodom.

Strike-slip rasjedi

Tijekom terenskog rada izmjerene su tri rasjedne plohe lijevog pomaka po pružanju sa otklonom lineacije strija pretežito 30° (Slika 5-8). Ovi rasjedi generalnog su pružanja SI-JZ te odgovaraju pružanju seta pukotina **SP1** i **SP3**. U ovom slučaju, *PBT* metodom su određene glavne osi naprezanja pri čemu je najveća os σ_1 naprezanja orjentacije **257/8**, srednja os σ_2 orijentacije **2/61** i najmanja os naprezanja σ_3 orijentacije **162/28**. Obradom podataka *R. Dihedron* metodom dobiven je sintetski žarišni mehanizam koji ukazuje na lokalno transtenzijsko/transpresijsko polje naprezanja čija je najveća os naprezanja pružanja ISI – ZJZ .

Slika 5-10 Prikaz proračunatih vektora glavnih osi naprezanja lijevih strike-slip rasjeda. Lijeva slika prikazuje stereogram s proračunom glavnih osi *PBT* metodom, dok desna slika prikazuje proračun *R*. *Dihedron* metodom.

6. Rasprava i zaključak

Na temelju prikupljenih terenskih podataka provedena je strukturna analiza istih na istraživanom području zaleđa Biokova. Orijentacije slojevitosti i folijacije koje su izmjerene na terenu te analizirane pomoću stereograma ukazuju na pružanje struktura dinaridskog karaktera tj. pravca pružanja SZ-JI, uz prosječni kuta nagiba od 50°. Bore su definirane presječnicama tragova ravnina slojevitosti i folijacije, vidljivo je da se one pružaju istim pravcem te da su nastale u kompresijskom polju naprezanja s orijentacijom glavne osi smjera SI-JZ. Njihove su osi nagnute prema SZ odnosno JI, što ukazuje na naprezanje čija je glavna os naprezanja orijentacije SI-JZ. Takva su naprezanja, pravcem SI-JZ, nastala tijekom Laramijske tektonske faze (krajem krede i paleogena), ali i prilikom konačnog izdizanja Dinarida tijekom Pirenejske tektonske faze (sredinom paleogena) (Marinčić et al, 1977).

Strukturnom analizom pukotina mogu se odrediti prevladavajuće orijentacije setova pukotina koje su dio struktura nižeg reda te su ovdje izdvojena tri dominantna seta pružanja: SP1 pružanja **SI-JZ**, SP2 pružanja **SZ-JI**, te SP3 približnog pružanja **S-J**. Pružanja setova pukotina mogu se usporediti sa pružanjima rasjednih ploha gdje se setovi SP1 i SP3 pružaju paralelno strike–slip rasjedima dok set SP2 ima paralelno pružanje skupini reversnih rasjeda.

Pomoću kinematske analize rasjednih ploha određena su polja paleonaprezanja rasjeda čiji su podatci organizirani u tri skupine. Analizirani reversni rasjedi generalnog su pružanja SZ-JI koje ukazuje na nastanak kompresijskih struktura koje generalno imaju pružanja SZ-JI te je najveća os naprezanja približno okomita na te strukture, odnosno orijentacije je SI-JZ. Normalni rasjedi sa generalnim smjerom pružanja SZ-JI ukazuju na ekstenzijsko polje naprezanja po pravcu SSZ-JJI. *Strike-slip* rasjedi generalnog su pružanja SI-JZ, a ukazuju na lokalno transtenzijsko/transpresijsko polje naprezanja čija je najveća os naprezanja pružanja SI-JZ.

Opisani rezultati i deformacijske strukture u skladu su s regionalnim strukturnim sklopom koji prevladava u istraživanom području. Kao i bore, reversni rasjedi nastali su tijekom kredno-paleogenske kompresijske faze koja dovodi do konačnog izdizanja Dinarida kao planinskog lanca, odnosno nastaju strukture dinaridskog pravca pružanja SZ-JI (Vlahović et al., 2005; Schmid et al., 2008). Pretpostavlja se da je do promjene smjera u polju naprezanja došlo krajem miocena, kada je dominirala ekstenzija i transtenzija (Schmid et

al., 2008; van Unen et al., 2019), te se za normalne rasjede može reći da su vjerojatno tada i nastali. Krajem miocena dolazi do završne promjene u polju naprezanja, koja traje i danas, pri čemu uz ponovnu uspostavu kompresijskog naprezanja (S-J) prevladava kontrakcija i transpresija, odnosno navlačenje i boranje (Schmid et al., 2008; van Unen et al., 2019). *Strike-slip* rasjedi, odnosno transtenzijske/transpresijske strukture nastale su tijekom pliocena i kvartara prilikom naknadno rotiranih i/ili reaktiviranih postojećih struktura što dovodi do ustrmljavanja regionalnih reversnih rasjednih ploha koje su reaktivirane kao desni rasjedi.

7. Literatura

HERAK, M., ORLIĆ, M., KUNOVEC-VARGA, M. (2001): Did the Makarska earthquake of 1962 generate a tsunami in the central Adriatic archipelago? Journal of Geodynamics, 31, 71-86.

KUČKO B. (2023): Strukturna istraživanja na području Biokova, Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet (Geološki odsjek), Seminar III, 51 str.

MAGAŠ, N., MARINČIĆ, S. & BENČEK, Đ. (1979): Osnovna geološka karta SFRJ 1:100.000, Tumač za list Ploče L33–35. – Institut za geološka istraživanja, Zagreb (1972); Savezni geološki institut, Beograd, 48 str.

MARINČIĆ, S. & MAJCEN, Ž. (1976): Osnovna geološka karta SFRJ 1:100.000, List Jelsa L33–34. – Institut za geološka istraživanja, Zagreb, (1967–1968); Savezni geološki institut, Beograd (1975).

MARINČIĆ, S., KOROLIJA, B. & MAJCEN, Ž. (1976): Osnovna geološka karta SFRJ 1:100.000, List Omiš L33–22. – Institut za geološka istraživanja, Zagreb, (1968–1969); Savezni geološki institut, Beograd.

MARINČIĆ, S., KOROLIJA, B., MAMUŽIĆ, P., MAGAŠ, N., MAJCEN, Ž., BRKIĆ, M. & BENČEK, Đ. (1977): Osnovna geološka karta SFRJ 1:100.000, Tumač za list Omiš L33–22. – Institut za geološka istraživanja, Zagreb (1969); Savezni geološki institut, Beograd, 45 str.

MARINČIĆ, S., MAGAŠ, N. & BENČEK, Đ. (1978): Osnovna geološka karta SFRJ 1:100.000, List Ploče L33–35. – Institut za geološka istraživanja, Zagreb, (1967–1971); Savezni geološki institut, Beograd (1977).

RAIĆ V. & PAPEŠ J. (1978): Osnovna geološka karta SFRJ 1:100.000, Tumač za list Imotski L33–23. – Institut za geološka istraživanja, Sarajevo, (1968); Savezni geološki institut, Beograd, 45 str.

RAIĆ V., AHAC A. & PAPEŠ J. (1978): Osnovna geološka karta SFRJ 1:100.000, List Imotski L33–23. – Institut za geološka istraživanja, Sarajevo, (1968); Savezni geološki institut, Beograd. SCHMID, S. M., BERNOULLI, D., FÜGENSCHUH, B., MATENCO, L., SCHEFER, S., SCHUSTER, R., TISCHLER, M., USTASZEWSKI, K., (2008): The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss Journal of Geosciences, doi: 10.1007/s00015-008-1247-3, 48 str.

SCHMID S. M., FÜGENSCHUH B., KOUNOV A., MATENCO L., NIEVERGELT P., OBERHANSLI R., PLEUGER J., SCHEFER S., SCHUSTER R., TOMLJENOVIĆ B., USTASZEWSKI K., VAN HINSBERGEN D. J.J. (2019): Tectonic units of the alpine collision zone between Eastern Alps and western Turkey, Gondwana Research 78, https://doi.org/10.1016/j.gr.2019.07.005, 198 str.

TOMLJENOVIĆ B. (2023): Predavanja iz kolegija Strukturna geologija i tektonika (dostupno putem portala sustava Merlin, Sveučilište u Zagrebu).

USTASZEWSKI K., SCHMID M. S., FUGENSCHUH B., TISCHLER M., KISSLING E. & SPAKMAN W. (2008): A map-view restoration of the Alpine-Carpathian-Dinaridic system for the Early Miocene, Swiss Journal of Geosciences. 101, supplement 1, s273–s294, doi: 10.1007/s00015-008-1288-7.

USTASZEWSKI K., KOUNOV A., SCHMID S. M., SCHALTEGGER U., KRENN E., FRANK W., BERNHARD FÜGENSCHUH B. (2010): Evolution of the Adria-Europe plate boundary in the northern Dinarides: From continent-continent collision to back-arc extension, Tectonics, vol. 29, TC6017, 34 str., doi:10.1029/2010TC002668, 2010.

VAN UNEN, M., MANTECO, L., NADER, F. H., DARNAULT, R., MANDIC, O., & DEMIR, V. (2019): Kinematics of Foreland-Vergent Crustal Accretion: Inferences from the Dinarides evolution. Tectonics, American Geophysical Union (AGU), 2019, 38 (1), 48-76.

VLAHOVIĆ, I., TIŠLJAR, J., VELIĆ, I., MATIČEC, D., (2005): Evolution of the Adriatic Carbonate Platform: Paleogeography, main events and depositional dynamics. Palaeogeography, Palaeoclimatology, Palaeoecology, 220, 333-360.

Web izvori:

LINK 1: https://pp-biokovo.hr/hr (15.06.2024.)

Prilog 1.

Prikaz terenskih podataka izmjerenih na području kamenoloma Bast i neposrednog zaleđa Biokova sa odgovarajućim terenskim oznakama, datumima mjerenja, geografskom širinom i dužinom te opisom stijenske jedinice.

TERENSKA OZNAKA	DATUM MJERENJA	GEOGRAFSKA ŠIRINA	GEOGRAFSKA DUŽINA	OPIS
ВК-4	2023-04-26 T12:45:06+02:00	43.36	16.98	Na ovoj tocki je zdrobljena zona sirine oko 1m i ide visoko u fronte kamenoloma, vjerojatno rasjed. U njeno podini sp1=51/66 ls1=21 od sz orjentacija rp=12/68. Azimut f2=0 U podini plohe je izrazen klivaaz od 10 do 50 cm debljine u zoni od oko 5 do 10 m i zaustavlja se na setu pukotina slican kao sp4 sa zt.
ВК-7	2023-04-26 T13:59:01+02:00	43.36	16.98	Na ovoj tocki izrazena zagladjena ploho rp=45/30 (iz ruke) u podini su bijeli mikritni vap, rekristalizirani, u krovini za nijansu tamniji smedjkasto sivi rekrist mikriti. Nije fv i nije kotisina. Az f=96
Bk-13	2023-04-26 T16:24:43+02:00	43.36	16.98	Tocka na visljoj etazi ovdje imamo manji izdanak flisa kojemu je izrazen subvert klivaz ok=194/88 na njemu je vjerojatno u rasjednom kont numulitni fv. Cini se kao da se kontakt fv i fl pruza dalje na zapad i ide pod liticu s kotisinom prije 2 tocke formirajuci zonu za klizanje ljuske. Mjerimo plohe u fv sp1=183/55 nema strija ali po stepenicama izgleda kao revers. Sp2=311/84 ls=46 od jz kp1 normalni ljevi Malo dalje prema iducoj t sp3= 203/69 ls=84 od ji reversni desni kp2
BK-16	2023-04-26 T18:38:26+02:00	43.37	16.97	Fv diskociklinski s malo numulita ps pada kao litica ps=64/66 sp1=143/61 sp2=234/36 ima i tankolaminirani proslojak

			r	
BK2-1	2023-04-26 T11:28:03+02:00	43.36	16.98	Sivkasto bijeli kredni vapnenci, mikritni, sa crnim tockicama za koje ne znamo jesu li dijagenetske promjene ili klastici velicine do 3mm, rekristalizirani sp1=226/54 sp2=45/55 sp3=119/12 azimut f2=280
BK2-2	2023-04-26 T11:55:34+02:00	43.36	16.98	Rasjedna ploha u kred vap kao na zt rp1=203/73 Ls1=subvertikalan pomak reversni kp1 (kp1 jako dobar podatak kp3 ne toliko pouzdan) ls1.2= 20 od ji reversni desni kp1 nekih 5 m iznad rp1 je jos jedna izrazena ploha iste orijentacije rp1 je na svojoj istocnoj strani prekinut sa gotovo vertikalnom smrvljenom zonom uz koju ima i speleotema orjentacija te zone je rp2= 65/81 (iz ruke) na mjestima u ovim vap ima ogranicenog pojavljivanja breciranja, bijeli klasti u sivom mtx, i klast crvenog vap.
ВК2-5	2023-04-26 T13:05:52+02:00	43.36	16.98	Na ovoj t sp=131/63 ls subvertikalan pomak ima indikacija i za revers i za normal kp3. Sp2=214/60 ova ploha se prema gore rascvjetava na vise ploha f2
BK2-6	2023-04-26 T13:16:14+02:00	43.36	16.98	Na ovoj tocki nekoliko sp. Sp1=297/79 Sp2=266/81 Sp3=199/56 sp4=250/62 az f=35
BK2-8	2023-04-26 T14:15:36+02:00	43.36	16.98	Ovdje malo vislje na fronti je smedji fv sa sitnim num u prosjeku velicine 2mm. Mislim da je i u krovini polohe sa zt smedji fv jer je ovo odmah bocno, samo tamo je uz rasjed rekrist i neprepoznatljivo u siparu uz frontu dosta je lapora iz flisa
Bk2-9	2023-04-26 T14:28:02+02:00	43.36	16.98	Na ovoj tocki je cijela fronta u smedjem fv, vj krovina plohe sa bk2-7 u fv je set sp1=14/25 (pada u frontu) Sp2=264/70 (strma poprecni set) sp3=228/71 ls1=subvert reversni kp2 (f1 gore na fronti pada od fronte) ploha mjerena 19ak m bocno gdje je otvorena uz pod. Az

				f1=130
BK2-10	2023-04-26 T14:51:22+02:00	43.36	16.98	Ps u fv ps=41/21 ps ustanovljen na raslojavanju, orjentaciji vecih foramin u sloju i na sadrzaju fosila i ostalih taloznih tekst duz sloja
BK2-11	2023-04-26 T15:11:20+02:00	43.36	16.98	Ovdje malo van kamenoloma, prvi izdanci iznad zone sipara i drveca (vj flis) je bijela kreda. Secerasta i rekristalizirana, nema fosila i ne izgleda kao kotisina, a niti kao kreda koju smo imali na prvim tockama kamenoloma prvenstveno jer nema crnih tockica i internog breciranja sa sivim mtx
BK2-12	2023-04-26 T15:37:41+02:00	43.36	16.98	Ovdje je izdanak kotisine. Vj je kotisina i na zt ali je nismo prepoznali. U ovom vap ima valutica starijih vap, zrnata je ima sitnog krsja rud i cini mi se orbitoida sli nisam sig staklasti 2mm kao riza
BK2-14	2023-04-26 T17:03:48+02:00	43.36	16.98	Ovdje je neravana kotakt fv i krednog vapnenca sa dosta crnih klastica od kojih su neki velicine do 3-4 cm, ima i krsja rudista, matriks tog vapnenca je rekristalizirani svijetlo bijeli ili sivi mikrit. Kreda je na jugozapadu. Par m od kontakta u krednom vap je lamina koja odredjuje ps=26/46 pratimo tu laminu gore po fronti i ona je isprekidana setovima reversnih rasjeda koji ju pomicu, orjentaciha tih rasjedica je rp= 245/42 vapnenci u krovini te lamine bogatiji su crnim klastima i generalno su za nijansu tamniji od podinskih. Mjestimice podjecaju na kotisinu ali su previse mikritni dodatak Kontakt fv u krovini i kred u podini je 345/34, ploha je zagladjena. I prema visljem djelu fronte ustrmljava Krsje plitkovodnih rudista

ВК2-15	2023-04-26 T17:42:30+02:00	43.36	16.98	Bijeli rekrist vap vise nisam toliko siguran da nije kotisina, vecinom je bijeli mikrit ali mjestimice ima zrnatih pekstona sa krsjem rud i u nekim uzorcima mali do 2mm smedji staklasti izduzeni rombici koji podjecaju na orbitoide, sp1=144/61 sp2=194/64
BK2-17	2023-04-26 T19:26:33+02:00	43.37	16.97	U podnozju litice, od zt je prekriveno siparom u kojem smo nali klast sa jezincem i komade pjescenjaka iz flisa. Ovdje je bijeli vapnenac, ali putem je bilo glondji tipicne svijetle kotisine sa raznim krednim klastima. na Sp1 (fronta litice)=143-323 sp2=294/75
Placemark 3	2023-04-26 T12:27:16+02:00	43.36	16.98	Isti vapnenci imaju vece pojave cisto crnog sp1= 143/41 Is1= 44 normalni desni kp2 sp2=38/40 (iz ruke) ploha jako povija u svim smjerovima, udubljena je i zagladjena - sp3=204/68 sp4 (slicna kao sp2) =42/50 zagladjena sa nedovoljno jasnim strijama
CRD-123	2023-04-27 T12:12:01+02:00	43.44	16.68	Prvi izdanci nakon flisa bijeli kredni vapnenac, neki uzorci su potpuno bijeli rekristalizirani, jedan uzorak je bijeli vecinom ali ima par drugacijih klasta, klast svjetlozutog mikrita i crvenkasti mikrit. Foto
CRD-124	2023-04-27 T12:29:02+02:00	43.44	16.68	U podnozju litice ne skroz u dnu nego nekih 30m od nje, sekundarci ocite kotisine, brecokonglomerat sa zuckastim mikritnim klastima u bijelom zrnatim rekrist mtx
CRD-125	2023-04-27 T12:39:05+02:00	43.45	16.68	Putem uz podnozje penjalista vecinom bijeli vap, uzorci koje nalazimo imaju bar nesto valutica unutar bijelog mtx, ovo su odlike kotisine ovdje isto bijeli sa svj smedjom val
CRD-126	2023-04-27 T12:51:00+02:00	43.45	16.68	S druge strane litice na planinarskom putu. Izd bijelog zrnatog vap sa roznjacima na povrsini, jos jedna odlika kts.

CRD-127	2023-04-27 T13:05:41+02:00	43.45	16.68	U podnozju druge ljuske ispod litice, bijeli vap sa valuticama, nema foraminifera! Po ogk bi tu ili po sredini jarka trebao biti valuticasti fv. Mislim da je ovo isto kts, forpto uzoraka sp=317/65 ls=25 od si reversni ljevi kp2
CRD-128	2023-04-27 T13:29:26+02:00	43.45	16.68	Po sredini jarka ima nekih glondi, vecinom bijeli vap kts, jedan komad sam nasao valuticasti fv, sekundarac
CRD-129	2023-04-27 T13:55:20+02:00	43.45	16.68	U si podnozju prve ljuske, ostra ploha sa lokalnim breciranjem koja je kontakt kts na jz i valuticastog fv na si. Ploha subvertikalna. Fv ima malo fv, udio mtx je po procjeni 70 posto, klasti pretezno max do 4mm. Fv su alveo i milio, sto znaci da je dosta nizak fv. Uz plohu mislim da je definitivno bilo pomaka ali mozda je predistponirana oslabljenim kontaktom na trans granici. Gore iznad u ovoj litice izgledalo je da ps pada strmo oko 70 prema si niz liticu, ovdje je mozda u vertikali. Jos jedan argument da je tg je to da malo dalje nize prema cesti imam siguran izd kts na mjestu gdje bi po pruzanju te plohe trebao biti fv, znaci da granica mozda je neravna, paleoreljef. Ploha orijent sp=237/76 ploha blago povija i gore i bocno, generalno suvert. Na njoj uz breciranje ima i crvenih obojenja (mozda bx tragovi)
CRD-130	2023-04-27 T14:14:32+02:00	43.45	16.68	Ji podnozje druge ljuske izd bijelih vap sa milio i nekim sitnim mrezicama i izd bijelog sa svj smedjim valut, kts. Ima i roznjaka na pov izd
CRD-131	2023-04-27 T14:35:43+02:00	43.45	16.68	Pozt sipar sa pretezno bijelom kts. Ovdje dio izd zrnat uniforman pvekston pek, svj zuto smedji. Nije tipicna kts ali ispod njega u blizini kts. Uzorak
CRD-132	2023-04-27 T14:45:04+02:00	43.45	16.69	Veliki blok odlomljen ispod litice reprezentativnog kts brecokong

CRD-133	2023-04-27 T15:56:11+02:00	43.45	16.69	Nakon tunela prema zadvarju na pocetku druge ljuske gdje je penjaliste prvi dio litice je kts, vecinom dosta bijela ali ima dijelova sa klastima. Na fronti penjalista ima velikih roznjaka
CRD-134	2023-04-27 T16:03:17+02:00	43.45	16.70	Na si kraju prve ljuske je kts, bijeli sa klastima svj smedjeg, ne nalazimo valucicasti fv.
CRD-135	2023-04-27 T16:49:57+02:00	43.52	16.55	U usjeku ceste izd fv sa valuticama. Prema jz pocinju kts bijeli sa klastima. Uzorak fv sa val
BK-S1	2023-08-09 T15:33:28+02:00	43.30	17.03	Gornjokredni bioklasticni vapnenci, slojevitost nije mjerljiva. Situacija je kako je na karti deginirana, prema jugu je flis. Dvije folijacije340/28, 248/60 (vjerojatnije S0), 76/30
BK-S2	2023-08-09 T15:48:00+02:00	43.30	17.03	folijacija 110/65, 220/50 ; sp1 90/270; zona cca 200 m kanjona ispunjena siparima, vjerojatno poprecni rasjed
BK-S3	2023-08-09 T15:58:35+02:00	43.30	17.03	Slojevitost nije mjerljiva kao ni ostali indikatori
BK-S4	2023-08-09 T16:07:34+02:00	43.30	17.03	Ispod nas je flis, a tu je kreda. Vidljiva rasjedna zona u kojoj postoje sustavi strike slip rasjeda nagnutih prema SZ.
BK-S5	2023-08-09 T17:18:42+02:00	43.34	17.11	Konglomeratno tijelo s klastima gornje krede koja ima u sebi crne fragmenta - roznjakevjerojatno paleogenska baza Folijacija132/53, 134/60
BK-S6	2023-08-09 T17:27:13+02:00	43.34	17.11	Preko puta konglomeratnog tijela, imamo kredu u pravom smislu rijeci, svijetlosmede, mikritne bojeSO 30/55, 26/63 Folijacija-210/35 Sp1-120/50, 172/46
BK-S7	2023-08-09 T17:38:53+02:00	43.34	17.11	FV s alveolinama i numulitima R204/70, ls 55SE- normalni lijevi, reversni desni R280/72, ls 40S, normalni desni R3280/70, ls 20S, lijevi
BK-S8	2023-08-09 T18:06:46+02:00	43.34	17.10	Rasjedna ploha dekametarskih dimenzija u Fv 115/58, ls je 0 lijevi pomak, 240/60, pomak x Folijacija (moguce slojevitost)-102/63 ukljestena leca ili prijelaznih naslaga

				povrh fv (kao mala sinklinala), ostri kontakt Rp u fv- 188/70, ls nije mjerljiv, pomak x Rp-230/70, ls 90, normalni
Bk-001	2023-08-12 T09:55:51+02:00	43.28	17.20	Pretpostavljeni vertikalni rasjed koji se u terenu ne nadzire. vjerojatno fotogeoloski definiran. pogled prema sv. mihovilu.
BK-002	2023-08-12 T10:08:33+02:00	43.31	17.16	Navlacni kontakt
BK-003	2023-08-12 T10:18:27+02:00	43.32	17.13	Navlacni kontakt. s mogucom ljuskicom unutar sebe.
BK-004	2023-08-12 T11:07:41+02:00	43.33	17.12	S0-20/58, fv R/S0-43/38, i dalje fv S0-62/40 R-320/72, ls 30W, lijevi R-290/85, najvjerojatnije strike slip jer dovodi kredni blok u kontaklu s fv, lijevi karakter pomaka
BK-005	2023-08-12 T11:35:58+02:00	43.33	17.11	S0-73/58, rudistni vapnenci
BK-006	2023-08-12 T11:41:23+02:00	43.33	17.11	S0/R-44/62, ls 90, reversni pomak S0-26/42, 36/45 R/S0- 30/58, ls 90, reversni pomak
ВК-007	2023-08-12 T11:59:28+02:00	43.34	17.11	Reversni rasjed iznad tunela. Rasjed je unutar FV-a. R- 44/70, ls 30N, RD Dekametarska rasjedna ploha 200 m od tunela orijentacije 174/58, ls 48S, NL (kreda) SO u kredi - 274/50
BK-008	2023-08-12 T12:32:45+02:00	43.36	17.13	Niski izdanci, slojevitost nije mjerljiva.
BK-009	2023-08-12 T13:25:43+02:00	43.39	17.22	Kontakt je prekriven

Prilog 2

Tablica 1. Rezultati mjerenja rasjednih ploha grupirani prema relativnom pomaku rasjednih krila u odnosu na pružanje rasjedne plohe. Naznačena je orijentacija (smjer i kut nagiba), tip rasjeda (N-normalni, R-reversni; L-lijevi, R-desni) te izmjerena lineacija strija (kut i smjer; N-sjever, S-jug, E-istok, W-zapad); redovi tablice označeni narančastom bojom označavaju terenske točke na kojima nisu izmjereni strukturni podatci.

TERENSKA OZNAKA	SLOJEVITOST	FOLIJACIJA	PUKOTINE	KLIVAŽ	RASJEDI	LS	TIP	KP
ВК-4			51/66		12/68	21NW	х	2
BK-7			45/30		45/30			2
ВК-13			183/55 311/84 203/69	194/88		46SW 84SE	R NL RD	2 1 2
ВК-16			143/61 234/46					2 2
ВК2-1			226/54 45/55 119/13					
ВК2-2					203/73 203/73 65/81	85 20SE 87	R RD	1
ВК2-5			131/63 214/60				R ILI N?	3

BK2-6		297/79 266/81 199/56 250/62				
BKZ-8						
ВК2-9		14/25 264/70 228/71			R	2
BK2-10						
BK2-11						
BK2-12						
BK2-14			245/42		R	
BK2-15		144/61 194/64				
BK2-17		143-323 294/75				
PLACEMARK 3		143/41 38/40 204/68 42/50		44?	ND	2
CRD-123						
CRD-124						
CRD-125						
CRD-126						
CRD-127		317/65		25NE	RL	2
CRD-128						
CRD-129		237/76				
CRD-130						
CRD-131						

CRD-132							
CRD-133							
CRD-134							
CRD-135							
BK-S1		340/28 248/60					
BK-S2		110/65 220/50	90/270				
BK-S3							
BK-S4							
BK-S5		132/53 134/60					
BK-S6	30/35 26/63	210/35	120/50 172/46				
BK-S7				204/70 204/70 80/72 280/70	55SE 55SE 40S 20S	RD NL ND L	
BK-S8		240/60 188/70 102/63		115/58 230/70	0 90	L	
BK-001							
BK-002							
BK-003							
BK-004	20/58 43/38 62/40		43/38	320/72 290/85	30W	L SS (L)	
BK-005	73/58						

ВК-006	44/62 26/42 36/45 30/58		44/62 30/58	90 90	R R	
ВК-007	274/50		44/70 174/58	30N 48S	RD NL	
BK-008						
BK-009						