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Introduction

Generative modeling is one of the most crucial aspects of modern science. Many real-
world processes generate specific types of data, but these are often highly complex when
all contributing factors are considered. This complexity creates the need for modeling,
hypothesis formulation, and testing the observations. A key advantage of this approach
lies in its ability to emphasize the most salient characteristics of a process while treating
unknown or less relevant aspects as stochastic noise.

In this thesis, we explore the variational autoencoder (VAE) as a concrete example
of generative modeling. It was introduced by Kingma and Welling in their 2013 paper,
Auto-Encoding Variational Bayes [9], and emerged as a significant advancement in gen-
erative modeling. A VAE can be viewed as two coupled models, each parameterized in-
dependently. The recognition or inference model (encoder) approximates a latent, lower-
dimensional representation of the data generated by the process we seek to model. This
approximation is then passed to the generative model (decoder), which attempts to recon-
struct the original input, followed by the optimization of both parameter sets to maximize
the evidence lower bound (ELBO). After a sufficient number of iterations, during which
both models are optimized, we obtain an approximation of the data-generating process.
Then we can use generative part of VAE to create new, previously unseen data.

The first chapter introduces the fundamental principles of probabilistic models and
presents the expectation-maximization algorithm, serving as the foundation for develop-
ing the VAE. The second chapter introduces neural networks, which form the backbone
of the model architecture. In the third chapter, we combine these concepts by defining
both models that make up the VAE, formulating the loss function used to update their pa-
rameters, and introducing the reparameterization trick—a powerful technique that reduces
gradient noise arising from the sampling process in the recognition model. Finally, the last
chapter describes the implementation of the VAE in two variations, differing in their loss
functions, applied to the task of generating human portraits.
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Chapter 1

Probabilistic models

Probabilistic models are mathematical descriptions of systems or processes using probabil-
ity theory, enabling the modeling of uncertainty and complex dependencies while offering
greater interpretability compared to deterministic ones. In this chapter, we present the
foundations of these models and define the probabilistic concepts and terms used in their
implementation. Through the analysis and definition, it will become apparent that these
models grapple with challenges of intractability due to the Bayesian approach, which are
addressed through optimization techniques based on the expectation-maximization algo-
rithm, which form the foundation of highly efficient probabilistic models, including the
variational autoencoder.

1.1 Probability theory fundamentals
We assume that the observed datapoint x is a multidimensional random sample from an un-
known underlying process whose true distribution or probability density function p∗(x), is
unknown. In general, the observed data is assumed to be independently and identically dis-
tributed (i.i.d.). Since the distribution p∗(x) is unknown, we parameterize the probabilistic
model with θ and optimize its parameters to produce a distribution pθ(x) such that:

pθ(x) = p(x | θ) ≈ p∗(x).

Given that underlying processes can be complex, we require the model producing pθ(x)
to be sufficiently flexible and capable of incorporating prior knowledge about the data
distribution. This will be achieved using a Bayesian approach with a neural network model,
which will be defined in the next chapter, as further refinement of the assumptions about
data modeling and their dependencies is required. So, before formal definition of a model
in Section 1.2, we can think of it as a mathematical concept which describes this unknown
underlying process.

3



4 CHAPTER 1. PROBABILISTIC MODELS

Figure 1.1: The MNIST dataset of digits. We assume there is an underlying process (p∗(x))
that describes how each digit (x) is created, and our goal is to find a sufficiently good
mathematical model (pθ(x)) that we can then use to generate these digits. For example,
we might conclude that the generation of such images can be described by a probability
density function, enabling us to sample from it. Based on these samples, we can then use a
mapping (e.g., a neural network) to produce new images—but more on that later.

Information theory
Probability theory forms the basis of another important concept in understanding uncer-
tainty, known as information theory. This field quantifies the information contained in
data, providing critical insights into the structure of probabilistic models. Consider a dis-
crete one-dimensional random variable X, and let us explore how much information is
conveyed when its specific value is observed. If an event with very low probability occurs,
it conveys more information than an event with high probability. Consequently, the amount
of information can be interpreted as a ’degree of surprise’, and its measure depends on the
probability distribution p(X). To express this formally, we define a function h(x), which is a
monotonic function of the probability p(X), to quantify the information. Intuitively, h must
satisfy the property that the information gained from observing two independent events x
and y should equal the sum of the information gained from each event individually, i.e.,
h(p(x)p(y)) = h(p(x)) + h(p(y)).

Proposition 1.1.1. Let h be a continuous real valued function h : R+ → R that satisfies
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h(p(x)p(y)) = h(p(x)) + h(p(y)) for two independent events x and y. Then h(p(x)) must be
proportional to ln p(x).

Proof. We start with the property:

h(p2) = h(p) + h(p) = 2h(p).

Assume that for all k ≤ K, we have h(pk) = kh(p). For k = K + 1, we calculate:

h(pK+1) = h(pK p) = h(pK) + h(p) = Kh(p) + h(p) = (K + 1)h(p).

Moreover,
h(pn/m) = nh(p1/m) = nm−1h(p) =

n
m

h(p),

where we used:

h(p) = h((p
1
m )m) = mh(p

1
m ) =⇒ h(p

1
m ) = m−1h(p).

This implies that h(px) = xh(p), where x is a positive rational number, and by continuity,
this also holds for any positive real number. If we define p(x) = qx for a positive real
number q, it follows from the previous conclusions that h(x) is indeed proportional to
ln p(x):

h(p(x))
ln(p(x))

=
h(qx)
ln(qx)

=
xh(q)
x ln(q)

=
h(q)
ln(q)

=⇒ h(p(x)) ∝ ln(p(x)).

□

We therefore define an information function h(x) = − ln p(x), where negative sign
ensures that information is positive or zero. Choice of the logarithm base is arbitrary, due
to the properties of logarithm function. Now we can give formal definition of an entropy.

Definition 1.1.2. Let X be a discrete random variable. The entropy of X, denoted by H[X],
is defined as:

H[X] = −
∑

i

pi logb pi,

where the logarithm base b is commonly chosen as b = 2 (bits), b = e (nats), or b = 10
(hartleys).

Next, we generalize the concept of entropy to a continuous random vector and choose
b = e as the base of the logarithm.

Definition 1.1.3. Let X = (X1, X2, . . . , Xn)⊤ be a continuous random vector in Rn with joint
probability density function p(x), where x = (x1, x2, . . . , xn)⊤. The joint differential entropy
of X, denoted by H[X], is defined as:

H[X] = −
∫

p(x) ln p(x) dx.
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It is also interesting to discuss the principle of maximum entropy. This principle states
that, subject to known constraints (e.g., known mean and variance), the probability dis-
tribution which best represents the current state of knowledge is the one with the largest
entropy, as entropy measures the average level of ’uncertainty’ inherent in the random
variable’s possible outcomes. By maximizing it, we avoid introducing any unwarranted
assumptions or biases beyond the known constraints. We illustrate this principle using
the example of a discrete random variable that describes the outcomes of a coin toss, i.e.,
whether it lands heads or tails. If the coin is unfair, meaning it has tails on both sides, the
entropy of such a random variable is 0 because there is no uncertainty. On the other hand,
if the coin is fair, and thus the probability of landing heads or tails is equal, the amount
of uncertainty is maximal, and so is the entropy. This result is not coincidental; it can
be proven that the uniform distribution maximizes entropy in the case of discrete random
variables.

Let’s determine the probability density function p(x) that maximizes entropy for a con-
tinuous one-dimensional random variable. For such a distribution to exist, we maximize
the differential entropy subject to the normalization constraint and constraints on the first
and second moments of p(x): ∫ ∞

−∞

p(x) dx = 1,

∫ ∞

−∞

x p(x) dx = µ,

∫ ∞

−∞

(x − µ)2 p(x) dx = σ2.

By solving this optimization problem using methods such as the method of Lagrange mul-
tipliers (refer to [13] for the proof), we find that the probability density function p(x) that
maximizes the differential entropy under these constraints is:

p(x) =
1

√
2πσ2

exp
(
−

(x − µ)2

2σ2

)
.

Such a distribution is called the Gaussian (normal) distribution, and it plays a significant
role in machine learning. Therefore, we will further study it and generalize it to higher
dimensions, where we obtain an analogous result.

Gaussian distribution
Definition 1.1.4. A random variable X is said to follow a univariate Gaussian distribution
with mean µ ∈ R and variance σ2 > 0, denoted by X ∼ N(µ, σ2), if its probability density
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function is given by:

p(x) =
1

√
2πσ2

exp
(
−

(x − µ)2

2σ2

)
, ∀x ∈ R.

The coefficient at the beginning of the formula serves as a normalization factor, en-
suring that the integral of the probability density function equals 1. The exponent of the
exponential function represents the squared Z-score, whose formula is given by Z = x−µ

σ
.

It measures the deviation of a value from its corresponding distribution, and the greater its
absolute value, the higher the likelihood that the given data point is atypical for the distri-
bution, i.e., an outlier. Let us emphasize why it is important to use the (squared) Z-score for
such a metric instead of, for example, the Euclidean distance. The key issue with Euclidean
distance is that it does not account for the variance of the data. Specifically, as the variance
increases, the importance of such a distance diminishes because it simply reflects greater
uncertainty or noise in the dataset. Thus, it is crucial to account for variance when assess-
ing deviations by incorporating it into the denominator. This ensures that as the variance
increases, the distance becomes less significant, reflecting the greater uncertainty or noise
in the data. Finally, squaring the Z-score makes the PDF symmetrical around its maximum
value, which corresponds to the mean. The previously discussed concepts need to be gen-
eralized to random vectors in order to define the multivariate Gaussian distribution. When
multiple random variables are present within a random vector, there is the possibility of co-
variance between them, which must also be taken into account. In what follows, we define
the covariance matrix, which represents the multidimensional generalization of variance.

Definition 1.1.5. Let X = (X1, X2, . . . , Xd)⊤ be a d-dimensional random vector with mean
vector µ = E[X] = (µ1, µ2, . . . , µd)⊤, where µi = E[Xi] for i = 1, 2, . . . , d. The covariance
matrix Σ of X is a d × d matrix defined as:

Σ =


Cov(X1, X1) Cov(X1, X2) · · · Cov(X1, Xd)
Cov(X2, X1) Cov(X2, X2) · · · Cov(X2, Xd)

...
...

. . .
...

Cov(Xd, X1) Cov(Xd, X2) · · · Cov(Xd, Xd)

 .
The covariance matrix Σ is symmetric, i.e., Σ = Σ⊤, and it can be shown that it is posi-

tive semidefinite. This means that a⊤Σa ≥ 0, for any non-zero vector a ∈ Rd. Furthermore,
positive semidefinitness guarantees all of the eigenvalues to be non-negative. In order to
establish the necessary foundation, we present two propositions, proving only the first one,
which will later be essential for the geometric intuition.

Proposition 1.1.6. Let X = (X1, X2, . . . , Xd)⊤ be a d-dimensional random vector with mean
µ = E[X] and covariance matrix Σ, and let a ∈ Rd be a constant unit vector. Then the
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variance of the projection of X onto a is given by:

Var(a⊤X) = a⊤Σa.

Proof. We compute the expected value and variance of a⊤X:

E[a⊤X] = a⊤E[X] = a⊤µ,

Var(a⊤X) = E
[(

a⊤X − E[a⊤X]
)2
]
.

Substituting the mean into the variance we get:

Var(a⊤X) = E
[(

a⊤X − a⊤µ
)2
]
= E

[(
a⊤(X − µ)

)2
]
.

The square can be written as:(
a⊤(X − µ)

)2
=

(
a⊤(X − µ)

) (
a⊤(X − µ)

)
,

since a⊤(X − µ) is a scalar, this can be expressed as:(
a⊤(X − µ)

)2
= a⊤(X − µ)(X − µ)⊤a.

Thus, the variance finally becomes:

Var(a⊤X) = E
[
a⊤(X − µ)(X − µ)⊤a

]
= a⊤E

[
(X − µ)(X − µ)⊤

]
a = a⊤Σa.

□

Proposition 1.1.7. Let X = (X1, X2, . . . , Xd)⊤ be a d-dimensional random vector with mean
vector µ = E[X] and covariance matrix Σ. The eigenvectors ui of Σ represent the directions
of maximum variance in the data, ordered by their corresponding eigenvalues. Formally,
the eigenvectors and eigenvalues satisfy the following:

1. Each eigenvector ui is determined by:

ui = arg max
a∈Rd ,∥a∥=1,a⊥[{u1,...,ui−1}]

a⊤Σa, i = 1, . . . , d

where a ⊥ [{u1, . . . ,ui−1}] ensures orthogonality to all previously selected eigenvec-
tors.

2. For each ui, the associated eigenvalue λi satisfies:

u⊤i Σui = λi,

where λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0.
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Now we have everything necessary to define and give geometric interpretation of the
generalized Z-score — the Mahalanobis distance.

Definition 1.1.8. Given a random vector Q on Rd, with mean vector µ = E[Q] and covari-
ance matrix Σ, the Mahalanobis distance of a point x ∈ Rd from Q is given by

DM(x) =
√

(x − µ)⊤Σ−1(x − µ). (1.1)

This measure of distance has an interesting geometric interpretation. However, before
proceeding, it is necessary to state the spectral theorem for real symmetric matrices.

Theorem 1.1.9. Let A ∈ Rn×n be a real symmetric matrix. Then there exists an orthogonal
matrix Q ∈ Rn×n and a diagonal matrix Λ ∈ Rn×n such that

A = QΛQ⊤.

Moreover, the diagonal entries of Λ are the eigenvalues of A, and the columns of Q are the
corresponding orthonormal eigenvectors of A.

From the spectral theorem, we can express covariance matrix Σ using its eigenvectors
and eigenvalues in the following form:

Σ =

d∑
i=1

λiuiu⊤i ,

where λi represents the eigenvalues, and ui are the corresponding eigenvectors. Similarly,
the inverse of the covariance matrix Σ−1 can be represented as:

Σ−1 =

d∑
i=1

1
λi

uiu⊤i .

By substituting this representation of Σ−1 into (1.1), we get simplified squared Mahalanobis
distance:

D2
M(x) =

d∑
i=1

y2
i

λi
, (1.2)

where the new variables yi are defined as:

yi = u⊤i (x − µ).

Defining the transformed vector y = (y1, y2, . . . , yd)⊤, we can write:

y = U(x − µ),
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where U is the orthogonal matrix whose rows consist of the eigenvectors u⊤i . If we closely
examine the formula for yi, we conclude that it represents the projection of the vector x−µ
onto the new axis vector ui. It is then multiplied by the reciprocal of the eigenvalue in
(1.2), ensuring that variance is accounted for when calculating the distance. To summa-
rize, by calculating the eigenvectors of the covariance matrix, we identify the directions
of maximum variance in the data, where the variance along an eigenvector is proportional
to its corresponding eigenvalue. Such vectors are called the principal components of the
data. This effectively transitions from the canonical basis to a basis defined by the eigen-
vectors, allowing us to account for the variance of each component when calculating the
distance between two vectors, giving greater weight to the more stable components of the
data. Note that if the covariance matrix is an identity matrix, the Mahalanobis distance
simplifies to the Euclidean distance, treating all components equally. Relation between
those two distances can be seen in Figure 1.2.

Figure 1.2: Comparison of Euclidean and Mahalanobis distances: (a) The Euclidean dis-
tance treats all directions equally, ignoring the data’s variance and correlations. (b) The
Mahalanobis distance accounts for the data’s covariance structure, effectively scaling dis-
tances by variance and accounting for correlations. The value of this metric is computed
by applying the Euclidean distance following the coordinate transformation illustrated in
the image. P1 and P2 represent observed principal components of the data, i.e., the vectors
λ1u1 and λ2u2.

After an extensive analysis of the measure of the distance between a vector and a distri-
bution, specifically the Mahalanobis distance, we are now ready to define the multivariate
Gaussian distribution.

Definition 1.1.10. A random vector X = (X1, X2, . . . , Xd)⊤ in Rd is said to follow a multi-
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variate Gaussian distribution with mean vector µ ∈ Rd and covariance matrix Σ ∈ Rd×d,
denoted by X ∼ N(µ,Σ), if its probability density function is given by:

p(x) =
1

(2π)d/2|Σ|1/2
exp

(
−

1
2

(x − µ)⊤Σ−1(x − µ)
)
, ∀x ∈ Rd. (1.3)

The multivariate Gaussian distribution appears in numerous contexts and can be derived
from various perspectives. For instance, we have observed that, for a single real variable,
the Gaussian is the distribution that maximizes entropy. This property also extends to the
multivariate Gaussian and can be demonstrated using a similar approach. We can also see
that the multivariate Gaussian distribution is indeed an extension of its univariate case.
Specifically, the exponent of the exponential function contains the squared Mahalanobis
distance, which generalizes the squared Z-score to multiple dimensions, while the normal-
ization factor ensures proper scaling during integration.

1.2 Machine learning models: Concepts and types
Today, we often encounter vast and complex datasets containing immense amounts of
information that are beyond a human’s capacity to process efficiently and draw precise,
meaningful conclusions. This creates a need to automate tasks that are too intricate or
time-consuming for manual analysis, enabling resource efficiency and improved accuracy.
The solution to this challenge lies in machine learning models. But before demystifying
their meaning and how they work, we need to start from the very beginning with the basics.

In machine learning, datasets and their composition vary depending on whether the
approach is supervised or unsupervised learning. In supervised learning, the dataset D
consists of m samples that include both input features and corresponding labels: D =
{(xi, yi)}mi=1}. Each sample comprises an input feature vector xi ∈ R

n and an associated
label yi. The features x represent the independent variables or inputs to the model, while
the labels y are the dependent variables or outputs that the model aims to predict. The
set of all possible feature vectors forms the feature space, which is the n-dimensional
space encompassing all combinations of input variables. In unsupervised learning, the
dataset D consists solely of input samples without associated labels: D = {xi}

m
i=1. In this

scenario, there are no labels yi. The model’s objective is to discover patterns, structures, or
relationships within the data based only on the features xi. Mixture of those two approaches
is semi-supervised learning where the dataset D consists of a small set of labeled samples
{(xi, yi)}li=1 and a larger set of unlabeled samples {x j}

m
j=l+1. This approach combines aspects

of both supervised and unsupervised learning, leveraging the labeled data to guide the
learning process while using the unlabeled data to capture the underlying structure of the
feature space. A compact representation of feature vectors is the design matrix X. Each
row corresponds to a single sample (feature vector), and each column corresponds to a
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specific feature (or variable). If we have m samples and n features, the design matrix X is
an m × n matrix defined as:

X =


x11 x12 · · · x1n

x21 x22 · · · x2n
...

...
. . .

...
xm1 xm2 · · · xmn

 .
Now, we establish a connection between the dataset and the model through the concept of
a hypothesis. In machine learning, a hypothesis is a function that represents a potential
explanation for the relationships within data. In supervised learning, the hypothesis space
H comprises all functions h : X → Y that map input features x ∈ X to output labels
y ∈ Y . The goal is to find the optimal hypothesis h∗ ∈ H that best approximates the true
mapping by minimizing a loss function over the training data. This can be mathematically
formulated as:

h∗ = arg min
h∈H

1
m

m∑
i=1

L
(
h(xi), yi

)
,

whereL is a loss function that measures the discrepancy between the predicted output h(xi)
and the true output yi. In unsupervised learning, hypotheses are functions that describe
the underlying structure or distribution of the data without labeled outputs, focusing on
patterns like clustering or density estimation within the input space X. For clustering, the
hypothesis might be that the data can be partitioned into k clusters {C1,C2, . . . ,Ck}, aiming
to minimize an objective function such as:

arg min
{C j}

k∑
j=1

∑
xi∈C j

∥xi − µ j∥
2,

where µ j is the centroid of cluster C j. Another example is density estimation, which we
mentioned at the beginning of the Section 1.1 where the goal is to find the parameter θ that
best fits the i.i.d. data by maximizing the likelihood:

θ∗ = arg max
θ

m∏
i=1

pθ(xi). (1.4)

Density estimation, as shown in (1.4), is often referred to as maximum likelihood estima-
tion (MLE). However, for computational convenience, it is commonly expressed in the
following form:

θ∗ = arg max
θ

m∑
i=1

log pθ(xi).
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Now, we define a model as a set of hypotheses. Since a hypothesis is a function, a model
can be understood as a set of functions. Formally, we can define it as:

H = {hθ : θ ∈ Θ},

whereH represents the model, hθ denotes a hypothesis, and Θ is the set of parameters that
characterize the hypotheses. Therefore, machine learning can be explained as the process
of searching through the set of hypothesesH to find the best hypothesis h ∈ H . The notion
of what makes a hypothesis best depends on the loss function, which in turn depends on the
type of model and the problem being solved. From this, we can see that machine learning
is directly linked to optimization problems where techniques are determined by the loss
function.

To summarize, we can divide the entire process into three components: selecting a
parametrized model that hypothetically describes the relationship between the data, defin-
ing the loss function, and conducting an optimization procedure to minimize it. Now, let’s
explore the different types of models, based on the problems they are designed to solve,
and conclude with the one that will be discussed in detail in this thesis.

Deterministic vs. stochastic models

A deterministic model provides a specific output for a given input without any inherent ran-
domness. Mathematically, it defines a function f : X → Y, where each input x ∈ X maps
to an output y = f (x) ∈ Y. For example, in linear regression, the relationship between
inputs and outputs is modeled as ŷ = θ⊤x, where θ are the learned parameters. In contrast,
a stochastic model incorporates randomness and provides a probability distribution over
possible outputs. It models the conditional probability p(y|x), capturing uncertainty in the
predictions. Probabilistic models are inherently stochastic, as they characterize the uncer-
tainty and variability in data. For instance, in probabilistic linear regression, we might
model the outputs as y = θ⊤x + ε, where ε is a random error term typically assumed to
follow a normal distribution.

Generative vs. discriminative models

Generative models aim to model the joint probability distribution p(x, y) of the inputs and
outputs. They can generate new realistic data instances by sampling from this distribution
because they learn how the data is generated. Examples are Gaussian mixture models
(convex combination of multivariate Gaussian distributions) and the main focus of this
thesis - variational autoencoder (VAE). On the other hand, discriminative models focus
on modeling the conditional probability p(y|x) directly or learning a direct mapping from
inputs to outputs without modeling the underlying data distribution. The most obvious
example is logistic regression.
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Latent variable models

The previously mentioned types of models can also be probabilistic in nature. Probabilistic
models offer an advantage over non-probabilistic ones because they account for variability
and uncertainty in the data, enabling better predictions and decision-making, especially in
complex situations. For instance, in a k-means model, each sample is assigned a single
label. However, a sample could be very close to two clusters, yet the output only shows the
cluster to which the model assigned it. This results in the loss of crucial information as the
uncertainty in choosing between the two clusters is ignored. Therefore, it is preferable to
use a probabilistic model, which could, for example, return the probabilities of the sample
belonging to each cluster.

In general, probabilistic models do not assume the existence of hidden features; in-
stead, they learn directly from the provided variables. In contrast, latent variable models
assume the presence of hidden features, known as latent variables, which are not directly
observed but are inferred from the observed data. There are many intuitive reasons why it
is natural to assume the existence of latent variables. For example, imagine a model whose
feature space consists of grayscale images containing circles, and the goal is to learn to
generate these images. Initially, the size of this space would equal the number of pixels in
the image (e.g., 28 x 28 = 784). However, upon closer consideration, creating an image
requires only the coordinates of the circle’s center and its radius, making the latent space
three-dimensional. Figure 1.3 illustrates this concept. More about latent space and latent
variables will be discussed in Section 1.4, as the variational autoencoder is a generative
model that fundamentally relies on them.

1.3 Frequentist and Bayesian approach
In statistics and probability, two main approaches have been widely studied: the frequentist
and Bayesian approaches. Each of these frameworks has its own assumptions, unique
principles, as well as advantages and disadvantages. The frequentist approach introduces
the concept of probability as being synonymous with long-run frequency and emphasizes
observable data rather than subjective beliefs. It assumes that parameters (such as the mean
or variance) are fixed, unknown values, while randomness is explained through sampling
from a random process, as different data samples may lead to different estimates. The
main goal is to use data to make objective inferences about the fixed parameters without
incorporating prior beliefs. We have already seen the maximum likelihood estimation of
the datasetD as one of the methods to achieve this goal:

θ∗ = arg max
θ

pθ(D) = arg max
θ

m∏
i=1

pθ(xi),
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Figure 1.3: Let us assume that we want to create a generative model based on latent vari-
ables to produce circles similar to those in the given image. One of the model’s hyper-
parameters is the dimension of the latent space. Naturally, this dimension is significantly
smaller than the number of pixels composing the image. We can observe that a dimension
of three is sufficient, as each circle is characterized by its center coordinates (x, y) and its
radius r. Thus, for the given image, we could design a model that outputs (x, y, r). Of
course, specifying a latent space of dimension three does not necessarily mean that the
model will explicitly learn to represent the center coordinates and radius. However, this
reasoning provides an intuitive guide for understanding latent space and selecting an ap-
propriate dimensionality.

which chooses the parameter values under which the observed data is most probable. This
aligns with the principle of selecting the most plausible explanation for the data. However,
this approach carries the risk of overfitting in complex models and, more critically, pro-
vides limited insight into the uncertainty of parameter estimates. When the sample size is
small, the observed data may not adequately represent the true underlying population dis-
tribution. This leads to variability in the MLE estimates because the likelihood function is
constructed based on the limited data available. On the other hand, the Bayesian approach
incorporates prior beliefs about the parameters and updates these beliefs using observed
data. It contrasts with the frequentist approach by explicitly treating parameters as random
variables with associated probability distributions, rather than fixed unknown quantities,
thereby providing a natural way to quantify the uncertainty of parameter estimates. This
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involves calculating posterior probabilities using Bayes’ theorem:

p(θ|D) =
p(D|θ)p(θ)

p(D)
,

where p(D|θ) represents the conditional probability, which we have previously denoted as
pθ(D). From the Bayesian viewpoint, there is only a single data set D (the one that is
actually observed). The process of calculating posterior probabilities is iterative, meaning
that the posterior probability becomes the prior for future data that will be observed. A key
feature of the Bayesian perspective is that incorporating prior knowledge is a natural part of
the process. Imagine you observe a student who has scored 100% on the first three exams.
Using maximum likelihood estimation, you might predict that the student will continue
to score 100% on all future exams. However, a Bayesian approach, incorporating prior
knowledge (such as the fact that perfect scores are rare), would lead to a more cautious
prediction, acknowledging the possibility of variability in future exam scores.

However, a major drawback of the Bayesian framework is that it often requires solving
highly complex integrals during inference, which become intractable, as we will see in
Section 1.4. This is because modern deep learning models can have millions or even bil-
lions of parameters and transformations, and since the expression to be integrated depends
on them, even basic approximations of such integrals become computationally impracti-
cal. Given a limited compute budget and abundant training data, it is often more effective
to use maximum likelihood methods, typically combined with regularization, on a large
neural network rather than applying a Bayesian approach to a smaller model. Luckily,
since intractable integrals are commonly encountered, various techniques have been devel-
oped to make them tractable or to approximate them efficiently. Amortized (variational)
inference is one such technique, which we will explore later in this paper.

1.4 Latent space
First, we consider the theoretical construct known as the data manifold, which is derived
from the properties of the data itself. The data manifold represents the lower-dimensional
structure within the high-dimensional space where the observed data actually resides. In
high-dimensional datasets, although the ambient space may have many dimensions, the
data typically occupies a region of much lower intrinsic dimensionality. The manifold hy-
pothesis posits that natural high-dimensional data lies on or near a manifold of significantly
lower dimensionality. For instance, images are often represented as high-dimensional vec-
tors (e.g., a 64×64 grayscale image corresponds to 4096 dimensions), while the intrinsic
dimensionality is much lower, as the true underlying factors that vary in the data, such as
pose, lighting, and object identity, are fewer. Another way to see that real data is con-
fined to low-dimensional manifolds is to consider the task of generating random images.
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Figure 1.4: Examples of pictures in 128×128 feature space where each feature is one pixel.
The top row shows examples of natural images, whereas the bottom row shows randomly
generated images obtained by drawing pixel values from a uniform probability distribution
over the possible pixel colours.

In Figure 1.4, we observe examples of natural images along with synthetic images of the
same resolution, generated by sampling each of the red, green, and blue intensities for ev-
ery pixel independently and randomly from a uniform distribution. It is clear that none
of the synthetic images resemble natural images. This discrepancy arises because random
images lack the strong pixel correlations that natural images exhibit. For instance, adja-
cent pixels in natural images have a much higher probability of being the same or having
similar colours compared to the randomly generated counterparts. So, each image in Fig-
ure 1.4 represents a point in a high-dimensional space, but natural images only occupy a
tiny fraction of this space. Therefore, it is reasonable to apply this approach in practice,
which has led to the development of latent variable models. As the name suggests, these
models are based on the existence of latent variables and simulate the data manifold using
a latent space. Latent variables are variables that are not directly observed in the data but
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are inferred from the model. They represent underlying, hidden factors that influence the
observed data and together they define latent space. Formally:

(i) observed variables: X = (X1, X2, . . . , Xn), where each Xi is a random variable.

(ii) latent variables: Z = (Z1,Z2, . . . ,Zm), where each Z j is a random variable.

It is important to note that the data manifold is a theoretical construct, while the latent space
is its practical implementation in the form of an approximation. Parameters such as dimen-
sionality are typically specified when defining the model. Training follows a Bayesian
approach, where we aim to align the latent variable space as closely as possible with its
prior distribution, which is often assumed to be a multivariate Gaussian distribution.

Now, we define posterior probability using the latent variables:

p(Z = z | X = x, θ) =
p(X = x,Z = z | θ)

p(X = x | θ)
.

The marginal probability of the observed data X in the presence of latent variables Z can be
expressed differently depending on whether the latent variables are continuous or discrete.
For continuous latent variables, the marginal probability is computed as an integral over all
possible values of Z:

p(X = x | θ) =
∫
Rm

p(X = x,Z = z | θ) dz =
∫
Rm

p(X = x | Z = z, θ) p(Z = z | θ) dz.

For discrete latent variables, the marginal probability is instead computed as a summation
over all possible discrete values of Z:

p(X = x | θ) =
∑

z

p(X = x,Z = z | θ) =
∑

z

p(X = x | Z = z, θ) p(Z = z | θ).

However, the general problem with such models is intractability, which often arises due to
the high dimensionality of the latent space, making it computationally infeasible to calcu-
late the marginal likelihood p(X = x | θ). Bayes’ rule thus implies the same holds for the
posterior probability, since this normalization constant appears in the denominator. Never-
theless, there are techniques that address this issue, and the one we will use is amortized
variational inference. More on this will follow.

In training latent variable models, the goal is to make the distribution of latent variables
as close as possible, or as minimally distant, from their prior distribution. So, we need a
metric to compare two distributions.
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Figure 1.5: The latent representation of the MNIST dataset in a two-dimensional space
organizes digits into distinct latent clusters. Each cluster is represented by a corresponding
color. If x represents the digit 7, then the density p(Z = (−60, 20) | X = x, θ) is higher than,
for instance, p(Z = (80, 0) | X = x, θ), for some fixed parameter θ. To achieve the most
accurate latent representation of the input data x, we aim to maximize p(Z = z | X = x, θ).

1.5 Kullback–Leibler divergence
In this section we introduce a metric to compare the similarity between two distribu-
tions—namely, the Kullback-Leibler divergence. Consider a situation where we approx-
imate a true probability distribution p(x) with another distribution q(x). The additional
information required to describe data using q(x), rather than the true distribution p(x), can
be expressed as the KL divergence:

KL(p∥q) = −
∫

p(x) ln q(x) dx −
(
−

∫
p(x) ln p(x) dx

)
= −

∫
p(x) ln

q(x)
p(x)

dx.

This measure, also referred to as relative entropy, is asymmetric (KL(p∥q) , KL(q∥p))
and quantifies the dissimilarity between the two distributions. Importantly, KL divergence
satisfies KL(p∥q) ≥ 0, with equality if and only if p(x) = q(x). To prove this statement, we
introduce convex functions and Jensen’s inequality.
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Definition 1.5.1. For a real-valued function f , we say that f is convex on an interval I ⊆ R
if:

f
( x1 + x2

2

)
≤

f (x1) + f (x2)
2

,

for all x1, x2 ∈ I.

Theorem 1.5.2 (Jensen’s Inequality). Let f : I → R be a function defined on an open
interval I ⊆ R. The function f is continous and convex on I if the following inequality
holds:

f ((1 − λ)x1 + λx2) ≤ (1 − λ) f (x1) + λ f (x2), (1.5)

for all x1, x2 ∈ I and λ ∈ [0, 1].

Using the technique of proof by induction, we can generalize (1.5) for a convex function
f that acts on a convex combination of points as follows:

f

 M∑
i=1

λixi

 ≤ M∑
i=1

λi f (xi). (1.6)

If we associate the coefficients with the probabilities of the events of the discrete random
variable X as P(X = xi) = λi, then (1.6) can be written:

f (E[X]) ≤ E[ f (X)]. (1.7)

Observe that each derived result above for the convex function (inequations (1.5), (1.6)
and (1.7)) has an analogous counterpart for the concave case, with all inequalities reversed,
since if f is convex, then − f is concave.

For continuous variables, Jensen’s inequality takes the analogous form:

f
(∫

xp(x) dx
)
≤

∫
f (x)p(x) dx. (1.8)

Applying the inequality in the form of (1.8) to the KL-divergence, we obtain:

KL(p∥q) = −
∫

p(x) ln
q(x)
p(x)

dx ≥ − ln
∫

q(x) dx = 0.

It is important to note that we relied on the convexity of − ln x for the inequality, and the
normalization condition

∫
q(x) dx = 1 for the final equality. Since − ln x is strictly convex,

equality holds if and only if q(x) = p(x) for all x. Thus, the Kullback–Leibler divergence
can be interpreted as a measure of the dissimilarity of the two distributions p(x) and q(x).

This metric also has a profound relationship with the maximum likelihood estimation.
When the data is generated from an unknown true distribution p(x), we often approximate
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p(x) using a parametric distribution q(x | θ) defined by parameters θ. Recall that when
provided with N points sampled from the distribution p(x), the expectation of an arbitrary
function f can be approximated as a finite sum:

E[ f ] ≈
1
N

N∑
n=1

f (xn). (1.9)

Thus, from equation (1.9), we establish the goal to minimize:

KL(p∥q) = −
∫

p(x) ln
q(x)
p(x)

dx ≈
1
N

N∑
n=1

(− ln q(xn | θ) + ln p(xn)) .

Since the term involving ln p(xn) is independent of θ, minimizing the KL divergence is
equivalent to maximizing the log-likelihood of the data under q(x | θ).

1.6 Expectation maximization algorithm
We now introduce one of the fundamental algorithms for latent variable models, which will
serve as the starting point for the variational autoencoder. Suppose we have a dataset D =
{x1, . . . , xN} consisting of i.i.d. samples for training a latent variable model pθ(x, z), where
z is the latent variable (for example, an image can be represented as x, while its lower-
dimensional representation corresponds to the latent variable z). The marginal density of x
can then be obtained by integrating over all possible values of z:

ln pθ(x) = ln p(x | θ) = ln
∫

p(x, z | θ)dz =⇒ ln pθ(D) =
N∑

i=1

ln
∫

p(xi, z | θ)dz. (1.10)

Looking closely at equation (1.10), we observe that the integral prevents the logarithm from
directly acting on the joint distribution. This results in a non-convex optimization problem
for the model parameters, which has been empirically shown to be difficult to solve. To
introduce approximation techniques, we begin with the new terminology. Consider the
case where, for each observation xi, the corresponding value of the latent variable zi is
known. In this scenario, we refer to the pair {(xi, zi)}Ni=1 as the complete data set, while the
actual observed data xi is considered incomplete. In practice, the complete data set is not
available, as our goal is to use the model to estimate the corresponding latent variables for
the observed variables. However, it turns out that by proceeding this way, we can derive a
lower bound, and by maximizing this bound, we effectively maximize the log-likelihood.

In the following analysis, we will focus on a single data point x, and the obtained results
can be easily extended to the entire dataset D using the implication in (1.10). Thus, we



22 CHAPTER 1. PROBABILISTIC MODELS

aim to optimize ln pθ(x) with respect to the parameters θ, i.e., the expression:

ln pθ(x) = ln
∫

p(x, z | θ)dz.

Using Jensen’s inequality for the concave function f (x) = ln x, for an arbitrary distribution
Q over z (where

∫
Q(z)dz = 1 and Q(z) ≥ 0), we obtain:

ln pθ(x) = ln
∫

p(x, z | θ)dz = ln
∫

Q(z)
p(x, z | θ)

Q(z)
dz ≥

∫
Q(z) ln

p(x, z | θ)
Q(z)

dz. (1.11)

More precisely, Jensen’s inequality is applied to:

f
(
Ez∼Q

[
p(x, z | θ)

Q(z)

] )
≥ Ez∼Q

[
f
(

p(x, z | θ)
Q(z)

)]
.

The inequality (1.11) shows that for an arbitrary Q, we have a lower bound on ln pθ(x).
Now, we aim to find a distribution that achieves equality for a fixed θ. By choosing Q(z) =
pθ(z | x), it is easy to see that we obtain equality:∫

Q(z) ln
p(x, z | θ)

Q(z)
dz =

∫
p(z | x, θ) ln

p(x, z | θ)
p(z | x, θ)

dz

=

∫
p(z | x, θ) ln

p(z | x, θ)p(x | θ)
p(z | x, θ)

dz

=

∫
p(z | x, θ) ln p(x | θ)dz

= ln p(x | θ)
∫

p(z | x, θ)dz

= ln p(x | θ). (since
∫

p(z | x, θ)dz = 1)

For the simplicity of the analysis in the following, let us denote:

ELBO(x,Q, θ) =
∫

Q(z) ln
p(x, z | θ)

Q(z)
dz.

The notation comes from the fact that this expression is referred to in the literature as
the evidence lower bound (ELBO). We will also use it in defining the loss function of the
variational autoencoder, where we will see its additional interpretations. Thus, up to this
point, we have proven:

∀Q, θ, x, ln p(x | θ) ≥ ELBO(x,Q, θ). (1.12)

Intuitively, the main idea of the EM algorithm will be the alternating updates of Q and θ:
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a) Set Q(z) = pθ(z | x), which gives ELBO(x,Q, θ) = pθ(x) for the data x and the
current value of the parameter θ (E-step);

b) Maximize ELBO(x,Q, θ) with respect to θ for a fixed choice of Q (M-step).

We have reached the conclusions for a single x. Now, we extend this to D = {x1, . . . , xN}

by indexing based on the sample:

ELBO(xi,Qi, θ) =
∫

Q(zi) ln
p(xi, zi | θ)

Q(zi)
dzi.

By summing over all the samples, we obtain:

ln pθ(D) =
N∑

i=1

ln
∫

p(xi, zi | θ)dzi ≥

N∑
i=1

ELBO(xi,Qi, θ)

=

N∑
i=1

∫
Qi(zi) ln

p(xi, zi | θ)
Qi(zi)

dzi. (1.13)

Now, the analogous result follows, namely, for an arbitrary set of distributions Q1, . . . ,QN ,
the expression:

N∑
i=1

∫
Qi(zi) ln

p(xi, zi | θ)
Qi(zi)

dzi

represents a lower bound on the log-likelihood ln pθ(D). Thus, in the E-step, we set
Qi(zi) = p(zi | xi, θ), i = 1, . . . ,N and compute the log-likelihood. After that, we max-
imize the expression in (1.13) with respect to the parameter θ. The pseudocode is shown
in Algorithm 1.

Now, it is necessary to prove the convergence of the algorithm. Let us assume that
θ(t) and θ(t+1) are the parameters from two consecutive iterations of the algorithm. We will
prove:

ln pθ(t)(D) = ln p(D | θ(t)) ≤ ln p(D | θ(t+1)) = pθ(t+1)(D).

By the construction of the algorithm, in iteration t we have chosen Q(t)
i (zi) = p(zi |

xi, θ
(t)), i = 1, . . . ,N, and with this choice of distributions Qi, the following holds:

ln p(D | θ(t)) =
N∑

i=1

ELBO(xi,Q
(t)
i , θ

(t)).
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Then, we know that the parameters θ(t+1) are obtained by maximizing the right-hand side
of the above expression. Therefore, we have:

ln p(D | θ(t+1)) ≥
N∑

i=1

ELBO(xi,Q
(t)
i , θ

(t+1))

≥

N∑
i=1

ELBO(xi,Q
(t)
i , θ

(t))

= ln p(D | θ(t)).

The first inequality follows from the fact that the evidence lower bound holds for an arbi-
trary choice of Q and θ, while the second follows from the M-step, where we choose θ(t+1)

such that:

arg max
θ

N∑
i=1

ELBO(xi,Q
(t)
i , θ).

Thus, EM ensures that the log-likelihood converges monotonically. One reasonable conver-
gence test would be to check if the increase in log-likelihood between successive iterations
is smaller than some tolerance parameter, and to declare convergence if EM is improv-
ing it too slowly. With this, we have finally described the EM algorithm and proven its
correctness.

Algorithm 1 Expectation-maximization algorithm
1: procedure EMAlgorithm
2: Input: i.i.d data {(xi, zi)}Ni=1, joint distribution p(xi, zi | θ), initial parameters θold

3: Output: Final parameters θ
4: while not converged do
5: Qi(zi) = p(zi | xi, θ

old), i = 1, . . . ,N ▷ E-step
6: θnew ← arg maxθ

∑N
i=1 ELBO(xi,Qi, θ) ▷M step

7: L ←
∑N

i=1 ln p(xi | θ
new) ▷ Evaluate log-likelihood

8: θold ← θnew ▷ Update parameters
9: end while

10: return θnew

11: end procedure



Chapter 2

Neural networks

Neural networks represent one of the leading concepts in machine learning, based on the
structure and function of the human brain. A neural network, much like the human brain,
is a cohesive unit whose proper functioning results from the good connectivity of its basic
components—(artificial) neurons. Good connectivity is achieved through a chain reaction
of weight updates using the gradient descent technique in accordance with the training
data, mirroring how synapses in the human brain strengthen or weaken based on experience
and learning from the observed data. Obviously, to perform these weight updates, we need
an efficient technique to calculate the gradient, and this is precisely what we call backprop-
agation. All the mentioned concepts will be elaborated on in detail, leading to a formal
definition of a neural network and the process of optimizing its accuracy. Furthermore,
we will define a specific type designed for image processing challenges - a convolutional
neural network. However, before delving into the details, it is necessary to motivate their
study, which arises from numerous shortcomings of the assumptions regarding the linearity
of data, fixed basis functions that do not depend on it, and the famously known curse of
dimensionality.

2.1 Motivation
Given a n-dimensional vector x, we can define linear basis function models based on linear
combination of non-linear basis functions ϕ j(x):

y(x,w) = f
( M−1∑

j=0

w jϕ j(x)
)
= f

(
w⊤ϕ(x)

)
, (2.1)

where f is a non-linear output activation function. Basis functions can take arbitrary forms,
which might lead us to believe that such models could solve any classification or regression

25
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problem. In other words, a sufficiently large and diverse set of basis functions could make
a linear basis function model capable of approximating any function to an arbitrary level of
accuracy. However, a closer look at equation (2.1) reveals a significant drawback: the basis
functions are predefined and data-independent. A natural assumption is that larger datasets
would require more basis functions, which would also need to be sufficiently flexible. This
demands a combination of domain knowledge and trial-and-error, which was a key princi-
ple in machine learning for many years. But, as datasets grew larger, this approach became
impractical, making it untenable to maintain the independence between basis functions and
the dataset. Today, domain knowledge is more relevant in the design of model hyperpa-
rameters, while the neural network is tasked with learning the basis functions directly from
the data. Nevertheless, as we will see later, the linear basis function model is actually a
special case of a neural network.

Even assuming that we have sufficiently efficient basis functions, the problem arises
when there are too many of them. Specifically, a linear basis function model can be illus-
trated by a generalized second-order polynomial:

y(x,w) = w0 +

n∑
i=1

wixi +

n∑
i=1

n∑
j=1

wi jxix j.

From the above, it is evident that the number of independent coefficients is of the order
O(n2). This concept can be generalized to a polynomial of degree M, resulting in an ex-
ponential growth O(nM) in the number of coefficients. Furthermore, consider the example
of a classification problem. Suppose we divide the feature space into a grid by splitting
possible values at each coordinate into equidistant intervals, and use a naive algorithm for
classification—classifying a given point by identifying its box at the grid and assigning it
the class that is most frequent in that box. Therefore, if the box corresponding to the coor-
dinates of x contains 10 members of class A and 5 members of class B, we classify the data
x as belonging to class A. The problem with this naive approach is that, for proper clas-
sification, as the dimension of the feature space increases, the number of points required
grows exponentially, as illustrated in Figure 2.6.

Both examples illustrate the phenomenon known as the curse of dimensionality, where
increasing dimensions result in computational inefficiency among many other challenges.

2.2 Artificial neuron

An artificial neuron (hereinafter referred to as a neuron) consists of three key components:
linear combination of weights, bias, and the activation function. This can be mathemati-
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Figure 2.1: The increase in the number of grid elements is exponentially dependent on the
dimension n. Intuitively, 10 samples would cover a much larger portion of the space when
n = 1 than when n = 3.

cally expressed as:

z =
n∑

i=1

wixi + b, (2.2)

a = f (z), (2.3)

where x1, x2, . . . , xn represent the inputs to the neuron, b represents the bias, and f is
the activation function which can be non-linear. Regarding the rest of the terminology,
w1,w2, . . . ,wn are called weights, the value z is referred to as the pre-activation, and the
output of the neuron a is called the activation. The simple mathematical formulation given
by (2.2) and (2.3) has formed the basis of neural network models from the 1960s up to the
present day, and can be represented in diagram form as shown in Figure 2.2. The activation
function of a neuron is crucial for introducing non-linearity into a neural network. With-
out it, the network would behave like a linear model, which follows from its definition as
the composition of linear functions remains linear. By incorporating non-linear functions,
neural networks can capture complex patterns in data, enhancing their ability to learn and
model intricate relationships. When it comes to choosing the right activation function,
modern deep learning primarily proposes three commonly used options: the sigmoid func-
tion, the hyperbolic tangent (tanh), and the rectified linear unit (ReLU). Below are their
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Figure 2.2: Neuron model.

mathematical definitions, presented in the order mentioned:

σ(x) =
1

1 + e−x ,

tanh(x) =
ex − e−x

ex + e−x ,

ReLU(x) = max(0, x).

While the graphs of these activation functions are shown in Figure 2.5, understanding the
advantages and disadvantages of each function is essential. These aspects will become
clearer after we explain neural network training methods; therefore, further details, along
with modifications based on their positive and negative characteristics, are provided in
Section 2.6.

Figure 2.3: Activation functions.
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2.3 Neural network
A neural network consists of interconnected layers of neurons that perform transformations
on the input data in order to best approximate the elements of the input dataset according
to its output value. Regarding the transformation flow of input data, it’s important to note
that we will be working with feedforward neural networks, where connections between
the neurons do not form a cycle. This is the simplest form of neural network architecture,
where information moves only in a forward direction, sequentially passing through the
input, any hidden layers (if they exist), and finally the output layer. Before providing a
formal definition, it’s essential to define all the mentioned types of layers, specifically the
transformations that occur within each group of neurons.

The input layer, as the first layer of the neural network, receives the input vector x ∈ Rn

and directly passes it to the next layer without performing any computations or transforma-
tions. Next, calculations occur within the hidden layers and the output layer, for which we
provide the corresponding mathematical notation. For a layer l with M(l) neurons receiving
an input vector x ∈ RN(l)

, the layer computes an output vector y(l) ∈ RM(l)
. To calculate each

of its component y(l)
j , we extend the definition of a single neuron to a set of neurons using

matrix notation:

z(l)
j =

N(l)∑
i=1

W (l)
ji xi + b(l)

j =⇒ z(l) = W (l)x + b(l),

where W (l) ∈ RM(l)×N(l)
is the weight matrix of the layer, x ∈ RN(l)

is the input vector,
b(l) ∈ RM(l)

is the bias vector, and z(l) ∈ RM(l)
is the vector of pre-activation values for the

layer. Next, we apply the activation function to each pre-activation value:

a(l)
j = f (l)

j (z(l)
j ),

or in vector form:

a(l) = f (l)(z(l))

where f (l) is the vector of activation functions applied element-wise to the vector z(l). Thus,
the layer transformation can be summarized as:

a(l) = f (l)(W (l)x + b(l)),

where a(l) is the output of the layer after applying the activation function to the pre-
activation values. This transformation will be written shortly as f (l)(x; W (l),b(l)). Using
this notation, we can express layer transformations as follows:

• input layer: f (0)(x) = x,
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• hidden layers: f (l)(x; W (l),b(l)), l = 1, 2, ..., L − 1,

• output layer: f (L)(x; W (L),b(L)),

where L is the total number of hidden and output layers. It’s important to note that the
output a(l) of a layer l serves as part of the input, along with the weight matrix and bias, for
the next layer l + 1.

Figure 2.4: A feedforward neural network with an input layer, three hidden layers, and
an output layer. Note that the inputs to each neuron come from the outputs of all neurons
in the previous layer, although this is not always the case. This type of neural network is
called a fully connected neural network.

Definition 2.3.1. A neural network with L layers, where L includes both hidden layers and
the output layer, is a function f : Rn → Rm defined as:

f (x) = f (L)( f (L−1)(. . . f (2)( f (1)( f (0)(x); W1,b1); W2,b2) . . . ); WL,bL),

where N(0) = n, M(l) = N(l−1) for l = 1, . . . , L − 1, and M(L) = m.

Convolutional neural network
Feedforward neural networks can face challenges with an excessive number of parame-
ters resulting from complex input data, such as images, without additional preprocessing.
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Figure 2.5: By defining f in (2.1) as identity function, we obtain the linear model y(x,w),
which can be expressed with a single layer of parameters in a neural network. In this case,
the basis functions are independent of the data because the first layer of neurons remains
unchanged during training and parameter optimization. On the other hand, a general neural
network incorporates implicit basis functions that are data-dependent and their output for
the same input changes during the training as weights and biases are affected.

Convolutional neural networks (CNNs) address this issue by introducing convolutional
and pooling layers before the layers mentioned in the previous section. Motivated by the
mathematical concept of convolution, CNNs have been instrumental in driving significant
advancements in the field of computer vision, as detailed below.

The convolutional layer is the fundamental building block of a CNN, inspired by the
idea that nearby pixels are more strongly correlated than those farther apart. It introduces
filters or kernels, typically represented as H ×W matrices, where H and W are the height
and width of the filter, respectively. Each element of these matrices corresponds to a train-
able parameter (weight) that is adjusted during the training process. These filters perform
element-wise multiplication (Hadamard product) followed by summation with correspond-
ing sections of the input data across its entire spatial dimensions (width and height). This
approach significantly reduces the number of parameters and improves computational ef-
ficiency, even though the filters themselves consist of learnable parameters updated during
training. The output of this layer is referred to as a feature map, also known as a chan-
nel. Empirical evidence shows that deeper convolutional layers recognize more complex
patterns, while earlier layers detect simpler ones. A fascinating simulator that visually
demonstrates this concept can be found in [8].

Example 2.3.2. Let us compare the number of parameters in a convolutional layer and
a fully connected (FC) layer. A convolutional layer with F filters (kernels), each of size
H × W, applied to an input of size Cin × Hin × Win (where Cin is the number of input
channels, and Hin, Win are the height and width of the input) has:

Parameters (CNN) = (H ×W ×Cin + 1) × F,
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where +1 accounts for the bias for each filter. For Cin = 3, Hin = Win = 32, H = W = 3,
and F = 64:

Parameters (CNN) = (3 × 3 × 3 + 1) × 64 = 1, 792.

An FC layer with input size Cin × Hin ×Win and output size F has:

Parameters (FC) = (Input size) × (Output size) + (Output size).

For Cin = 3, Hin = Win = 32, and F = 64:

Parameters (FC) = (3 × 32 × 32) × 64 + 64 = 196, 736.

Thus, the convolutional layer has significantly fewer parameters (1,792) compared to the
fully connected layer (196,736).

The pooling layer further simplifies the output from the convolutional layers and re-
duces the number of parameters by focusing the network on important features. It operates
by sliding a window across the feature map and applying a specific operation to each region
covered by the window. The most common types are max/min and average pooling. An
additional benefit of this layer is translation invariance (or equivariance), which enables the
network to recognize an object or feature regardless of its position, orientation, size, etc.

Figure 2.6: Illustration of the use of convolutional and max pooling layers on input data
represented as a tensor. The 4 in the feature map is computed by performing element-wise
multiplication between the kernel and the top-left 3×3 section of the input tensor, followed
by summing the results. Similarly, 1 is obtained by applying the same operation to the next
3×3 section of the input, shifted by one step, and summing the results. After max pooling,
the value 4 in the feature map is derived by selecting the maximum value from the 2 × 2
sliding window applied to the feature map, which covers the region {4, 1, 2, 0} in this step.

Alongside convolution, we will use its reverse operation during implementation. Specif-
ically, the flow of our model will involve creating a lower-dimensional latent representation
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of the input using convolution. However, it will also be necessary to reconstruct the image
from the latent space, which requires increasing the dimensionality of the latent variable.
This is achieved using the transposed convolution operation, which employs all the tech-
niques seen so far but with the purpose of increasing dimensionality. It is best explained
visually, as shown in Figure 2.7.

Figure 2.7: Transposed convolution: applies the kernel to the input matrix by sliding and
performing element-wise multiplication and summation, producing an upsampled output
matrix with larger dimensions.

2.4 Gradient descent
Neural networks can be understood as universal function approximators, capable of ap-
proximating complex, non-linear functions that map input data to output data. Accord-
ingly, the network can contain numerous parameters, raising the question of how to op-
timize them to ultimately become a better approximator. The answer lies in the gradient
descent algorithm. Gradient descent is an optimization algorithm used to minimize a func-
tion by iteratively moving towards the direction of steepest descent, which can be shown to
be in the direction of the gradient but with opposite orientation. The algorithm starts from
an initial point (typically random) and updates parameters to move closer to the function’s
minimum. Let us denote all the parameters of the neural network as θ = (w,b), where w
represents the set of all weights, and b represents the set of all biases in the neural network.
The update rule for parameters θ at iteration t is:

θt+1 = θt − η∇L(θt),
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where η is the learning rate, a hyperparameter that controls the step size for each update,
and ∇L(θt) is the gradient of the loss function with respect to θ at iteration t. Each iteration
of gradient descent aims to reduce the value of the loss function, ideally leading to a local
(or global) minimum. In convex optimization problems, this approach guarantees conver-
gence to the global minimum. However, in neural networks, the loss function is generally
non-convex, meaning it has multiple local minima. Despite this, gradient descent often
identifies a solution that is sufficiently effective, as many local minima tend to result in
comparable performance in practice. This algorithm can be implemented in three varia-
tions based on the data size: batch, stochastic, and mini-batch. Batch gradient descent is
ideal for smaller datasets that fit entirely into memory. It computes the gradient of the loss
function using the entire dataset in each iteration, providing stable and accurate gradient
estimates that promote smooth convergence. However, this approach can be computation-
ally expensive and slow for large datasets. Stochastic gradient descent (SGD), on the other
hand, is better suited for large datasets or online learning scenarios. Instead of using the
entire dataset, SGD computes the gradient using only a single randomly selected data point
per iteration. This frequent updating makes SGD computationally efficient and capable of
escaping local minima due to its high variance, but this noise can also lead to less stable
convergence. Mini-batch gradient descent offers a compromise, processing small batches
to reduce memory usage while maintaining more stable convergence than SGD, making it
widely used in deep learning applications. In accordance with the above, we provide the
formal definition of the aforementioned variant of gradient descent, with a particular em-
phasis on its application in the context of supervised learning, as this will be our primary
focus.

Definition 2.4.1. Let L be the loss function, θ be the vector of values of all parameters
of the neural network, and B = {(xi, yi) | i = 1, 2, . . . , n} be a randomly selected subset
(mini-batch) of training data, where xi is the input to the model and yi is the actual output.
Then the parameter update for gradient descent with mini-batches is given by:

θ ←− θ − η∇θ

(1
n

n∑
i=1

L(yi, xi, θ)
)
. (2.4)

In deep learning, η denotes the learning rate. A new mini-batch is randomly selected in
each iteration from yet unused data pairs until the entire training set is exhausted, with one
complete pass referred to as an epoch. The optimization continues until the convergence
criteria are met or the maximum number of epochs is reached. The first stopping crite-
rion does not always occur. There are several gradient descent optimization techniques
that address the issue of convergence, such as momentum, Nesterov accelerated gradient,
AdaGrad, RMSprop, and Adam. In this thesis, the Adam optimizer will be used, and it will
be explained in the following section. For information on other optimization techniques,
please refer to Section 7.3 in [2].
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The Adam optimizer
The Adam (Adaptive Moment Estimation) optimizer is a widely used optimization algo-
rithm in deep learning, which combines the benefits of two other extensions of stochastic
gradient descent (SGD): AdaGrad and RMSProp. Adam adapts the learning rate for each
parameter based on the first and second moments of the gradients, which helps in improv-
ing convergence rates, especially in high-dimensional spaces. The key features of Adam
include adaptive learning rates, where each parameter has its own learning rate that is dy-
namically adjusted based on past gradients, and bias correction, which compensates for
the initialization bias in the moving averages during the early stages of optimization. So,
Adam optimizer maintains two moving averages for each parameter: the first moment es-
timate mt (the mean of the gradients) and the second moment estimate vt (the uncentered
variance of the gradients). The first moment helps accelerate in relevant directions, while

Algorithm 2 Adam optimizer
1: procedure AdamOptimizer
2: Input: η, β1, β2, ϵ
3: Initialize parameters θ
4: Initialize m0 ← 0, v0 ← 0, and t ← 0
5: while not converged do
6: t ← t + 1
7: gt ← ∇θL(θ) ▷ Compute gradient
8: mt ← β1mt−1 + (1 − β1)gt ▷ Update first moment
9: vt ← β2vt−1 + (1 − β2)gt ⊙ gt ▷ Update second moment

10: m̂t ←
mt

1−βt
1

▷ Bias-corrected first moment
11: v̂t ←

vt
1−βt

2
▷ Bias-corrected second moment

12: θ ← θ − η
√

v̂t+ϵ
m̂t ▷ Update parameters

13: end while
14: end procedure
where η is the learning rate, β1 and β2 are decay rates (commonly set to β1 = 0.9 and
β2 = 0.999), ϵ is a small constant to prevent division by zero, and ⊙ is Hadamard product.

the second moment stabilizes updates by accounting for the variability of gradients. This
balance makes Adam particularly adept at managing sparse gradients, characterized by
numerous zero or near-zero values in the gradient of the loss function, thereby facilitating
faster convergence in a wide range of deep learning scenarios. Large gradients can cause
unstable updates, while very small gradients can stall progress. The variance-based adjust-
ment helps control these extremes by moderating the impact of outlier gradients, which
is particularly useful in deep networks prone to vanishing or exploding gradient issues.
Pseudocode is provided in Algorithm 2.
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2.5 Backpropagation
In the previous section, we saw that finding the minimum of the loss function requires its
gradient. However, this calculation can be quite demanding if approached naively, using a
brute-force algorithm that follows its mathematical definition. Backpropagation is an ex-
tremely efficient way to calculate the gradient, leveraging the structure of the network and
the chain rule. Therefore, this algorithm requires activation functions to be differentiable.
However, the ReLU function is not differentiable at 0. Despite this, the non-differentiability
at a single point has not proven to be problematic in practice. This situation rarely occurs,
and the gradient is typically defined to be either 0 or 1 at that point.

The objective of backpropagation is to compute the gradient of the loss function using
the chain rule, specifically to determine the partial derivatives:

∂L

∂w(l)
i j

,
∂L

∂b(l)
i

, (2.5)

where L represents the cost function, b(l)
i is the bias of the i-th neuron in layer l, and w(l)

i j is
the weight factor by which the activation value of the j-th neuron in layer (l− 1) enters the
i-th neuron in layer l. The activation value of the i-th neuron in layer l is denoted by a(l)

i .
Furthermore, a(l)

i is related to the activation values of layer (l − 1) through the equation:

a(l)
i = f (l)

∑
j

w(l)
i j a(l−1)

j + b(l)
i

 . (2.6)

Equation (2.6) can be rewritten in matrix form:

a(l) = f (l)
(
W (l)a(l−1) + b(l)

)
,

where W (l) = (w(l)
i j ) represents the weight matrix of layer l, b(l) is the bias vector of layer l,

and a(l) is the activation vector of layer l.
To calculate the required partial derivatives, we introduce an intermediate variable

δ(l)
i =

∂L

∂z(l)
i

which we call the error of the i-th neuron in layer l, in accordance with the previous para-
graph. Backpropagation provides us with a recursive way of calculating δ(l)

i in terms of
δ(l+1)

i using the chain rule. First we compute the error at the neurons in the last (output)
layer L:

δ(L)
i =

∂L

∂z(L)
i

=
∂L

∂a(L)
i

∂a(L)
i

∂z(L)
i

=
∂L

∂a(L)
i

( f (L))′(z(L)
i )
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or in vector form,
δ(L) = ∇aL ⊙ ( f (l))′(z(L)), (2.7)

where ⊙ represents the Hadamard product (A⊙ B)i j = (A)i j · (B)i j, and ∇aL is the vector of
partial derivatives ∂L

∂a(L)
i

. Now we want to calculate the error δ(l)
i at the neurons in layer l in

terms of the error in layer l + 1:

δ(l)
i =

∂L

∂z(l)
i

=
∑

j

∂L

∂z(l+1)
j

∂z(l+1)
j

∂z(l)
i

=
∑

j

δ(l+1)
j

∂z(l+1)
j

∂z(l)
i

=
∑

j

δ(l+1)
j
∂

∂z(l)
i

∑
k

w(l+1)
jk f (l)(z(l)

k ) + b(l+1)
j


=

∑
j

w(l+1)
ji δ

(l+1)
j ( f (l))′(z(l)

i ).

Declaring δ(l)
j as a component of the vector δ(l), we get:

δ(l) =
(
W (l+1)

)T
δ(l+1)

⊙ ( f (l))′(z(l)). (2.8)

Using equations (2.7) and (2.8) we can determine the error at each neuron in the network,
which is the primary objective of backpropagation (2.5). By applying the chain rule, we
obtain

∂L

∂b(l)
j

=
∂L

∂z(l)
j

∂z(l)
j

∂b(l)
j

= δ(l)
j ,

∂L

∂w(l)
i j

=
∂L

∂z(l)
j

∂z(l)
j

∂w(l)
i j

= δ(l)
j a(l−1)

i .

In matrix form, this becomes
∂L

∂b(l) = δ
(l),

∂L

∂W (l) = δ
(l)

(
a(l−1)

)T
.

Here, a(l−1) denotes the activation vector of the neurons in layer (l − 1), and (δ(l))T is the
transposed error vector for the neurons in layer l. Now we have all the neccessary equations
for the backpropagation described in Algorithm 3. A key feature of Algorithm 3 is its
ability to efficiently compute all partial derivatives through a two-phase process: an initial
forward pass, where inputs are propagated through the network, followed by a backward
pass, where the model weights are updated based on the backward propagation of the loss
function’s error.
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Algorithm 3 Backpropagation in neural networks
1: procedure Backpropagation
2: Input: W (l), b(l), activation function f (l) and its derivative ( f (l))′, for l = 1, 2, . . . , L
3: Forward Propagation:
4: for l = 1 to L do
5: z(l) ← W (l)a(l−1) + b(l) ▷ Compute weighted sum
6: a(l) ← f (l)(z(l)) ▷ Apply activation function
7: end for
8: Backward Propagation:
9: Compute the output layer gradient: δL = ∇aL ⊙ ( f (L))′(z(L))

10: for l = L − 1 to 1 do
11: δ(l)

← (W (l+1))Tδ(l+1)
⊙ ( f (l))′(z(l)) ▷ Backpropagate the error

12: end for
13: Gradient Computation:
14: for l = 1 to L do
15: ∂L

∂b(l) ← δ
(l) ▷ Compute gradient for biases

16: ∂L
∂W(l) ← a(l−1)(δ(l))T ▷ Compute gradient for weights

17: end for
18: end procedure

2.6 Challenges
In the initialization phase of the backpropagation algorithm (Algorithm 3), it is crucial to
set initial values for the weights and select an activation function for each layer. The choice
of these components is interconnected and presents a non-trivial challenge, ultimately de-
termining the quality of the network that emerges after training.

Activation functions
After deriving all the necessary equations for the backpropagation algorithm, it becomes
evident that we need to compute the derivatives of the activation functions. Therefore, it is
crucial to examine these functions’ behavior and, based on this analysis, identify potential
numerical issues that may arise. The vanishing gradient problem refers to the issue where
the gradients of the activation function become very small during backpropagation. This
can prevent the network from learning effectively. It happens when the derivative of the
activation function approaches zero for large positive or negative inputs, as is the case with
sigmoid and tanh derivatives which can be seen on Figure 2.6. Such functions are often
described as saturating around certain values, leading to slow or unstable learning because
the neural network becomes insensitive to input changes.
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Figure 2.8: Activation functions and their derivatives.

While the sigmoid and tanh functions have certain drawbacks, such as vanishing gra-
dients and saturation, they continue to be useful in specific scenarios due to their unique
properties. For example, the sigmoid function outputs values in the range [0, 1], which is
particularly beneficial for tasks like binary classification or when activations are required
to represent probabilities. This makes the sigmoid function especially valuable in the out-
put layer of a network, where we need a probabilistic interpretation. In contrast, the tanh
function produces outputs in the range [−1, 1], which are zero-centered. This characteris-
tic is advantageous in the sense that it reduces the risk of biased gradient updates towards
the positive values, which is particularly important for the hidden layers. Moreover, both
activation functions introduce essential non-linearity into the network, along with their
smooth and differentiable behavior which also makes them mathematically convenient,
aiding in gradient-based optimization. Although they face the vanishing gradient problem,
sigmoid and tanh functions can still be useful in shallow networks, where this issue is less
pronounced. Finally, it’s also important to note that many pre-trained models and legacy
systems rely on sigmoid and tanh due to their historical prevalence. Transitioning to al-
ternatives such as ReLU may not always be feasible, especially when compatibility with
these existing systems is a concern.

The ReLU function clearly avoids the problems of vanishing gradients and saturation,
but it faces the problem of dead neurons. Dead neurons refer to neurons that consistently
output zero or a constant value for all inputs, regardless of the learning process. This occurs
when a neuron’s activation function becomes trapped in a state where its output no longer
changes, effectively removing its contribution to the learning process. This drawback of
the ReLU function has been mitigated by its modifications, which can be seen in the Table
2.1. However, ReLU is widely used due to its simplicity and effectiveness. Some of its
beneficial characteristics include enabling sparse activation within a neural network, where
only a subset of neurons are active at any given time.

So far, we have observed that activation functions face challenges such as vanishing
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Activation
Function Formula Description

Leaky ReLU LeakyReLU(x) =

x, if x ≥ 0,
αx, if x < 0

Allows a small, non-
zero gradient α for neg-
ative values, avoiding
dead neurons.

Parametric ReLU
(PReLU) PReLU(x) =

x, if x ≥ 0,
αx, if x < 0

Similar to Leaky ReLU,
but α is a learned pa-
rameter during training.

Exponential Lin-
ear Unit (ELU) ELU(x) =

x, if x ≥ 0,
α(exp(x) − 1), if x < 0

Smooth transition be-
tween positive and neg-
ative values, controlled
by α, which improves
gradient flow.

Table 2.1: Variations of ReLU activation functions.

gradients, saturation, and dead neurons. While dead neurons can be addressed through
modifications of the ReLU function, weight initialization techniques help mitigate the is-
sues of vanishing gradients and saturation.

Weight initialization
Improper weight initialization can significantly damage the neural network training pro-
cess. If weights are too small, it can lead to vanishing gradients, where the network fails to
learn effectively, particularly in deep networks. On the other hand, large weights can cause
exploding gradients, leading to instability and diverging values during training. In the case
of activation functions like ReLU, poor initialization can result in dead neurons. Addition-
ally, poorly initialized weights can cause slow convergence, prevent effective optimization,
and lead to the symmetry problem, where neurons in the same layer learn the same features.
Proper weight initialization techniques, such as Xavier or He initialization, are crucial to
overcome these issues and ensure efficient network training. Interested reader can find
more in papers [3], [6] and [11]. The first paper [3] examines recent advancements in tech-
niques to improve model performance, stability, and convergence, particularly in remote
sensing applications. Kumar’s work [11] develops proper weight initialization theory with
non-linear activations, while Glorot and Bengio [6] discuss the importance of initialization
schemes that maintain the variance of activations and gradients across layers, addressing
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issues like saturation and improving training efficiency in deep neural networks.





Chapter 3

Variational autoencoder

An auto-associative neural network, or autoencoder, is a model designed to learn internal
representations of data by reconstructing its input. It has the same number of output units
as input units and is trained to generate an output x̃ that closely matches the input x. The
network consists of two components: an encoder, which maps the input x to a hidden rep-
resentation z(x) within a latent space of significantly lower dimensionality than the original
feature space, and a decoder, which maps this representation back to the output x̃(z). Once
trained, the encoder’s output z(x) serves as a compact, low-dimensional representation of
the input, which is later used for generating new data. We will first introduce the deter-
ministic autoencoder, a straightforward approach focused on direct reconstruction of the
input, and discuss its properties. While simple autoencoders are rarely used directly in
modern deep learning — due to their inability to provide semantically meaningful latent
representations or to generate new examples from the data distribution — they form an
important conceptual foundation for more advanced generative models. Building on this
foundation, we will explore the variational autoencoder (VAE) — a latent variable model
that extends the autoencoder into a probabilistic framework and serves as a central focus of
this thesis. VAEs address the limitations of deterministic autoencoders by structuring the
latent space probabilistically, enabling both meaningful representations and powerful gen-
erative capabilities. This is done by learning an encoder distribution q(z|x) together with
a decoder distribution p(x|z). The key differences between these two approaches, such as
deterministic versus probabilistic latent spaces, will be discussed in detail.

3.1 Deterministic autoencoder
Autoencoders extend classical dimensionality reduction techniques, such as principal com-
ponent analysis (PCA). In PCA, a linear transformation maps the input data onto a lower-
dimensional manifold, which can then be approximately reconstructed back to the original
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data space using another linear transformation. For further details on PCA, see [2, Section
16.1], although the main ideas have already been outlined in the geometric interpretation
of the Mahalanobis distance, where we defined the principal components. Autoencoders
extend PCA by leveraging neural network non-linearity to model complex, nonlinear data
subspaces, where the encoder compresses the input into a latent representation, and the
decoder reconstructs it by optimizing network weights to minimize reconstruction error
over the dataset. This framework not only extends PCA to non-linear transformations but
also serves as a foundational approach for learning efficient data representations in modern
machine learning. In the following, we present some of the most common types of simple
autoencoders.

Linear autoencoders

Linear autoencoders perform dimensionality reduction by projecting data onto a linear
subspace, similar to PCA. The network maps input vectors onto themselves, learning an
auto-associative mapping that minimizes the sum-of-squares reconstruction error:

E(w) =
1
2

N∑
n=1

∥ f (xn,w) − xn∥
2.

Despite using neural networks, linear activation functions restrict the representation to lin-
ear mappings. It can be shown that such autoencoders are equivalent to PCA when they
consist of a single hidden layer and the number of hidden units matches the number of
principal components to be extracted.

Deep autoencoders

Deep autoencoders extend the linear autoencoder framework by incorporating non-linear
layers. A typical architecture consists of multiple layers, with non-linear activation func-
tions such as sigmoid or ReLU applied in the hidden layers. The network maps the input
data through successive nonlinear transformations, enabling the latent representation to
capture more complex, non-linear relationships in the data:

F1 : Input→ Latent space︸                            ︷︷                            ︸
encoder

, F2 : Latent space→ Output︸                              ︷︷                              ︸
decoder

.

This flexibility allows deep autoencoders to generalize beyond linear transformations, ef-
fectively performing a non-linear form of PCA.
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Sparse autoencoders
Sparse autoencoders introduce a regularization term to encourage sparsity in the latent rep-
resentation. For instance, an L1 regularizer is added to the reconstruction error to enforce
a sparse activation of the hidden units:

Ẽ(w) =
1
2

N∑
n=1

∥ f (xn,w) − xn∥
2 + λ

K∑
k=1

|zk|,

where zk are the activations of the hidden units. Sparsity helps the model learn a com-
pressed representation with fewer active features, leading to better interpretability and re-
duced dimensionality. Sparse autoencoders are particularly useful for feature selection and
representation learning.

Denoising autoencoders
Denoising autoencoders aim to learn robust representations by reconstructing input data
from a corrupted version. The input data xn is perturbed to produce a noisy version x̃n, and
the autoencoder is trained to minimize the reconstruction error between the clean input xn
and the reconstructed output from its noisy version:

E(w) =
1
2

N∑
n=1

∥ f (x̃n,w) − xn∥
2.

By learning to denoise the input, the model captures meaningful structures in the data.
Denoising autoencoders are effective in discovering dependencies and robustly encoding
features, even in noisy or incomplete datasets.

Applications
As previously mentioned, simple autoencoders are rarely utilized in modern deep learn-
ing because they primarily focus on minimizing reconstruction loss and data compression,
often failing to capture meaningful relationships within the data. However, sparse autoen-
coders have gained popularity due to the emergence of large language models (LLMs).
LLMs are highly complex, consisting of a vast number of parameters, making meaningful
interpretation challenging. Let’s suppose we want to interpret an LLM based on sentences
that differ in tense. For example, we can use the LLM to generate a dataset of such sen-
tences and record the hidden states during their generation. These states can then train
a sparse autoencoder, which creates a latent representation while minimizing the number
of activated neurons due to its inherent design. As a result, we might find that a specific
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neuron h in the latent layer activates most strongly for sentences in the past tense. By iden-
tifying the hidden states that most influence this neuron, we can pinpoint the parts of the
LLM responsible for generating such sentences, providing valuable insights for fine-tuning
the model. For further research and a simulation of the example above, refer to [4].

3.2 Architecture
In the following, we explain the structure of the variational autoencoder. If we examine
deterministic autoencoders, we see that they focus solely on minimizing the reconstruction
loss. The main issue with this approach is the lack of generative capability, as random sam-
pling from the latent space does not produce meaningful outputs. The variational autoen-
coder seeks to address this by introducing, in addition to the reconstruction loss, a penalty
for the lack of compactness in the latent representation in the form of KL divergence. This
additional metric encourages the model to learn a compact and dense latent space, which
remains meaningful due to the reconstruction loss. As we have previously mentioned, the
encoder learns the latent space as a distribution (later we will explain why neural networks
are suitable for this task). In line with the Bayesian approach, the question arises of which
distribution the encoder should target. Specifically, it involves determining which distribu-
tion of the latent variables should be used as the prior and subsequently measured against
the current encoder distribution using KL divergence. In practice, this prior distribution
p is most commonly chosen as a zero-mean, unit-variance Gaussian p(z) = N(z | 0, I).
Additionally, we observe that if the loss function contained only the KL divergence, the
encoder would indeed learn a compact representation, but it would not be meaningful. The
relationship between the three cases of the loss function is illustrated in Figure 3.2. In the
context of neural networks, the encoder is often referred to as the inference model. The
decoder models the distribution pθ(x | z) = p(x | z, θ), where θ represents the parameters
of the neural network, and its output can be the parameters of a Gaussian distribution con-
ditioned on z and θ. For simplicity, suppose that both x and z are scalars. The output is
then calculated as:

ln p(x | z, θ) = −
1
2

ln (2πσ) −
(x − µ)2

2σ2 ,

where µ and σ represent the decoder’s output for a given z and θ.
The development of our model typically starts in the frequentist direction with the

maximization of the log-likelihood expectation:

p(D | θ) =
N∑

n=1

ln p(xn | θ)

under the assumption that the data are independent and identically distributed. However, it
will be shown that this expression in our model is not computable due to the introduction of
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Figure 3.1: We examine the latent representation of the MNIST dataset, consisting of
black-and-white images of digits, in relation to the loss function. In the first case, where
only the reconstruction loss is used, we observe a high probability of selecting meaningless
outputs when randomly sampling. In the second case, where only the KL divergence is
used, we see a compact distribution, but without clear boundaries between classes, making
it uninformative. Naturally, the optimal case is represented in the third image.

latent variables, which implement the Bayesian approach. Nevertheless, the problem will
be solved using the amortized (variational) inference, a technique in Bayesian statistics
for approximating complex probability distributions, which turns inference problems into
optimization problems. To achieve this, we will begin by reformulating the maximum
log-likelihood in a form that is amenable to optimization.

To summarize, the architecture of a variational autoencoder consists of two neural net-
works that generate parameterized distributions. A latent variable model pθ(x, z), whose
distribution is parameterized by a neural network, is referred to as a deep latent variable
model (DLVM). The most common form of such models, which we will also employ, is
represented as follows:

pθ(x, z) = pθ(z)︸︷︷︸
Gaussian prior

pθ(x | z)︸   ︷︷   ︸
decoder

, (3.1)

where pθ(z) and pθ(x | z) are predefined. A major advantage of these models is that the
marginal likelihood pθ(x) can exhibit significant complexity, even when each factor in (3.1)
is simple. This makes them powerful tools for estimating complex distributions p∗(x).
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Figure 3.2: The architecture of a variational autoencoder (VAE). We observe a com-
plex and irregular data-generating distribution compared to a much simpler prior dis-
tribution pθ(z) in the latent space. The generative model defines a joint distribution
pθ(x, z) = pθ(z)pθ(x | z) where pθ(z) is the prior distribution over the latent space, and
pθ(x | z) is the decoder. The encoder qϕ(z | x), also known as the inference model, approx-
imates the true but intractable posterior pθ(z | x) of the generative model. The previously
mentioned statements and notations will be introduced later in the chapter; they are pre-
sented here for easier reference and understanding.
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3.3 Evidence lower bound (ELBO)
Recall that the likelihood function for the latent-variable model is given by:

p(x | θ) =
∫

p(x, z | θ) dz =
∫

p(x | z, θ)p(z | θ) dz, (3.2)

in which p(x | z, θ) is defined by decoder neural network. Due to the complex transforma-
tions from the neural network, the integral in (3.2) becomes difficult to compute and lacks
a closed-form solution. As a result, we rely on numerical approximations, but traditional
grid-based methods like Trapezoidal or Simpson’s Rule face challenges in high dimensions
due to the curse of dimensionality. As the number of dimensions increases, the computa-
tional resources required to improve precision and reduce variance grow exponentially,
making these methods infeasible for higher-dimensional problems.

To overcome these difficulties, we reformulate equation (3.2) as an optimization prob-
lem, seeking an extremum. This approach is advantageous due to the availability of effi-
cient algorithms for solving such problems, providing a computationally feasible solution.

Let q be an arbitrary density function over the latent space. Then, the following holds:

ln pθ(x) = Eq(z)[ln pθ(x)]

= Eq(z)

[
ln

pθ(x, z)
pθ(z|x)

]
= Eq(z)

[
ln

( pθ(x, z)
q(z)

q(z)
pθ(z|x)

)]
= Eq(z)

[
ln

pθ(x, z)
q(z)

+ ln
q(z)

pθ(z|x)

]
= Eq(z)

[
ln

pθ(x, z)
q(z)

]
+ Eq(z)

[
ln

q(z)
pθ(z|x)

]
︸              ︷︷              ︸

DKL(q(z)∥pθ(z|x))

.

Thus, the log-likelihood can be expressed as:

ln pθ(x) = L(q, θ) + DKL(q(z)∥pθ(z|x)), (3.3)

where

L(q, θ) =
∫

q(z) ln
(

p(x, z | θ)
q(z)

)
.

The Kullback-Leibler divergence is non-negative, so ln p(x | θ) ≥ L(q, θ). Therefore, the
quantityL is called the evidence lower bound (ELBO), also known as the variational lower
bound. Additionally, we observe that increasing the ELBO reduces the KL divergence of
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Figure 3.3: The decomposition of the log-likelihood into the KL divergence and ELBO.

the approximation q from the true posterior distribution, thereby improving the accuracy
of q.

Assume that the sample setD = {x1, . . . , xN} for training is independent and identically
distributed. Then, from (3.3), we obtain the log-likelihood function for this dataset:

ln p(D | θ) =
N∑

n=1

Ln +

N∑
n=1

KL (qn(zn)∥p(zn|xn, θ)) (3.4)

where

Ln(qn, θ) =
∫

qn(zn) ln
{

p(xn|zn, θ)p(zn)
qn(zn)

}
dzn.

The motivation for choosing the distribution q in (3.4) comes directly from the expectation-
maximization algorithm. To mimic the E-step, we should define q(zn) = p(zn | xn, θ):

ln pθ(xn) = L(pθ(zn|xn), θ) + DKL(pθ(zn|xn) ∥ pθ(zn|xn)) = L(pθ(zn|xn), θ)

However, the exact posterior distribution of zn:

p(zn|xn, θ) =
p(xn|zn, θ)p(zn)

p(xn|θ)

introduces intractable likelihood function in the denominator. Therefore we need to find
an approximation to the posterior distribution. Another problem is that the log-likelihood
function (3.4) introduces a separate latent variable zn for each sample xn, with its own
distribution q(zn) that could be numerically optimized separately. However, this is compu-
tationally expensive, particularly for large datasets.
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3.4 Amortized inference

In the previous section, we observed the issues related to the posterior distribution in terms
of computational cost. Now, we aim to amortize this cost across the entire dataset using an
approximation distribution. Instead of learning the distribution p(zn|xn, θ) for each sample
individually, we will define a shared distribution q(z|x,ϕ), which will be approximated
by a neural network—the encoder. This leads us to the final structure of the variational
autoencoder, where the first neural network learns the latent representation of the samples,
and the second one attempts to reconstruct the input based on this compressed information.

A common approach for defining the encoder is to assume a Gaussian distribution with
a diagonal covariance matrix. The parameters of this distribution, namely the mean µ j

and variance σ2
j , are determined as outputs of a neural network that takes x as input. The

distribution can be expressed as:

q(z | x,ϕ) =
M∏
j=1

N
(
z j | µ j(x,ϕ), σ2

j(x,ϕ)
)
,

where M denotes the dimension of the latent space. Note that the means µ j(x,ϕ) can take
any finite value, providing flexibility in the choice of activation functions for the output
neurons. In contrast, the variances σ2

j(x,ϕ) are required to be non-negative, which is typi-
cally ensured by using an exponential activation function.

We observed that the E-step in the EM algorithm is achieved by choosing q(z) = p(z |
x, θold). However, we noted that instead of computing the exact posterior distribution, we
approximate it with q(z | x,ϕ) using a neural network. As a result, optimizing the loss
function with respect to ϕ generally does not reduce the KL divergence to zero. Instead,
there will always be a residual gap between the true log-likelihood and the ELBO. This
is due to several factors. While neural networks are capable of modeling highly complex
distributions, we cannot expect them to represent the posterior distribution exactly for sev-
eral reasons: the true conditional posterior is generally not a factorized Gaussian, neural
networks have their own inherent limitations, and the training process itself provides only
an approximate solution to the optimization problem.

By incorporating two neural networks with parameters ϕ and θ, it follows that the loss
function of the variational autoencoder will depend on these parameters. In the following,
we will highlight the challenge of performing backpropagation with respect to ϕ due to
the stochastic nature of selecting the latent representation of the input. This challenge is
addressed using the reparameterization trick, which enables gradient-based optimization
despite the stochasticity.
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Figure 3.4: Comparison of the EM algorithm with ELBO optimization. We observe that
by optimizing the encoder parameters, a residual gap remains between the log-likelihood
and the ELBO. In contrast, in the EM algorithm, this is not the case because the posterior
distribution is exact, not approximated. Additionally, we note that the M-step corresponds
to optimizing the decoder parameters.

3.5 Reparametrization trick
Contribution of each sample xn to the loss function (3.4) is given by:

Ln(ϕ, θ) =
∫

q(zn|xn,ϕ) ln
{

p(xn|zn, θ)p(zn)
q(zn|xn,ϕ)

}
dzn

=

∫
q(zn|xn,ϕ) ln p(xn|zn, θ) dzn︸                                  ︷︷                                  ︸

reconstruction loss

−KL(q(zn|xn,ϕ)∥p(zn))︸                      ︷︷                      ︸
regularization term

. (3.5)

The KL divergence between two multivariate Gaussian distributions q(z) = N(µq,Σq) and
p(z) = N(µp,Σp) is given by:

KL(q∥p) =
1
2

(
ln

det Σq

det Σp
− d + tr

(
Σ−1

p Σq

)
+ (µp − µq)⊤Σ−1

p (µp − µq)
)
, (3.6)

where d is the dimensionality of the random variable. The proof of the previous statement
is highly technical and will not be provided here. However, it can be found in detail in [7].
According to the assumptions of our model, we have q(zn | xn,ϕ) = N(µ(xn,ϕ), diag(σ2(xn,ϕ)))
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and p(zn) = N(0, I). By substituting those Gaussian distributions into (3.6), we obtain:

KL(q(zn | xn,ϕ) ∥ p(zn)) =
1
2

M∑
j=1

(1 + lnσ2
j(xn,ϕ) − µ2

j(xn,ϕ) − σ2
j(xn,ϕ)).

So, we found the closed-form solution of the second term in the (3.5). The first term can
be approximated with a simple Monte Carlo estimator:

Eqϕ(zn |xn)[ln p(xn | zn, θ)] =
∫

q(zn | xn,ϕ) ln p(xn | zn, θ) dzn ≈
1
L

L∑
l=1

ln p(xn | z(l)
n , θ).

This is easily differentiated with respect to θ:

∇θEqϕ(zn |xn)[ln p(xn | zn, θ)] = ∇θ

(∫
q(zn | xn,ϕ) ln p(xn | zn, θ) dzn

)
=

∫
q(zn | xn,ϕ)∇θ ln p(xn | zn, θ) dzn

≈
1
L

L∑
l=1

∇θ ln p(xn | z(l)
n , θ).

However, the gradient of the expectation with respect to ϕ is a bit more complicated. To
illustrate this problem, we define:

fϕ(zn) = ln p(xn | zn, θ), (3.7)

where it is important to note that zn implicitly depends on ϕ because it is sampled from
a distribution defined by the encoder which is parametrized by ϕ. We then arrive at the
following:

∇ϕEqϕ(zn |xn)[ fϕ(z)] = ∇ϕ

[∫
z

qϕ(zn | xn) fϕ(z) dz
]

=

∫
z

fϕ(z)∇ϕqϕ(zn | xn) dz +
∫

z
qϕ(zn | xn)∇ϕ fϕ(z) dz

=

∫
z

fϕ(z)∇ϕqϕ(zn | xn) dz︸                        ︷︷                        ︸
not an expectation in general

+Eqϕ(zn |xn)

[
∇ϕ fϕ(z)

]

Thus, we arrive at an expression that, in general, is not an expectation and, as such, can-
not be directly approximated using a Monte Carlo estimator. To address this, we apply
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the previously mentioned reparameterization trick. Instead of directly sampling zn from
N(µ(xn,ϕ), diag(σ2(xn,ϕ))), we sample ϵ ∼ N(0, 1) and then define:

zn = µ(xn,ϕ) + σ2(xn,ϕ))ϵ.

Generating random samples for ϵ decouples the stochasticity from ϕ, ensuring that the
dependence on ϕ remains explicit which enables the efficient computation of gradient:

Eqϕ(zn |xn)

[
fϕ(zn)

]
= Ep(ϵ)

[
fϕ(zn)

]
where zn = g(ϵ,ϕ, xn) = µ(xn,ϕ) + σ2(xn,ϕ))ϵ. Now, we can finally form a simple Monte
Carlo estimator:

∇ϕEqϕ(zn |xn)

[
fϕ(zn)

]
= ∇ϕEp(ϵ)

[
fϕ(zn)

]
= Ep(ϵ)

[
∇ϕ fϕ(zn)

]
≈

1
L

L∑
l=1

∇ϕ fϕ(zn).

Now, we have precisely defined the entire flow of an input within the variational autoen-
coder and ensured the smooth operation of backpropagation, allowing us to finally define
the total loss function:

L =

N∑
n=1

(1
2

M∑
j=1

(1 + lnσ2
j(xn,ϕ) − µ2

j(xn,ϕ) − σ2
j(xn,ϕ)) +

1
L

L∑
l=1

ln p(xn | z(l)
n , θ)

)
.

where N is the number of samples, M is the dimension of the latent space, and L is the
number of sampled latent representations of xn for an approximation of the expectation.

A crucial question in applications is how to compute the reconstruction loss, ln p(xn |

z(l)
n , θ). Typically, the number of latent samples is set to L = 1, as sampling from the

distribution inherently introduces noise, and using a single sample per input data point
generally leads to better optimization. For simplicity of notation, we will consider ln pθ(x |
z), implicitly assuming that z depends on x and ϕ. In probabilistic models, the form of
the reconstruction loss is dictated by the assumed distribution of ln pθ(x | z). In [9], the
authors assume that ln pθ(x | z) follows a multivariate Gaussian distribution with a diagonal
covariance matrix, given by C = diag(σ2

1, σ
2
2, . . . , σ

2
k). From equation (1.3), we directly

obtain

pθ(x | z) =
1

(2π)k/2 ∏k
i=1 σi

exp

−1
2

k∑
i=1

(xi − µi)2

σ2
i


= −

k
2

ln(2π) −
k∑

i=1

lnσi −
1
2

k∑
i=1

(xi − µi)2

σ2
i

, x ∈ Rk.
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Algorithm 4 Variational autoencoder training
1: Input: Training data setD = {x1, . . . , xN}

2: Encoder network q(z | x,ϕ)
3: Decoder network p(x | z, θ)
4: Initial weight vectors θ,ϕ
5: Learning rate η
6: Output: Final weight vectors θ,ϕ
7: repeat
8: L ← 0
9: for n ∈ {1, . . . ,N} do

10: for j ∈ {1, . . . ,M} do
11: ϵn j ∼ N(0, 1)
12: zn j ← µ j(xn,ϕ) + σ2

j(xn,ϕ)ϵn j

13: L ← L + 1
2 (1 + lnσ2

j(xn,ϕ) − µ2
j(xn,ϕ) − σ2

j(xn,ϕ))
14: end for
15: zn ← (zn1, . . . , znM)
16: L ← L + ln p(xn | zn, θ)
17: end for
18: θ ← θ + η∇θL ▷ Update decoder weights
19: ϕ← ϕ + η∇ϕL ▷ Update encoder weights
20: until converged
21: return θ,ϕ

In practical applications, assuming σ2
i to be constant simplifies the objective, making the

maximization of ln pw(x | z) equivalent to minimizing the mean squared error (MSE) which
we observe in summation term. Consequently, MSE will be used as the reconstruction loss
in the implementation described in Section 4.3. It is also worth noting that, in practice, the
log-variance is often computed to ensure its positivity and numerical stability. The variance
can then be easily obtained using the formula σi = exp

(
1
2 logσ2

i

)
.

A different variant of the variational autoencoder, discussed in Section 4.4, employs
an alternative reconstruction loss defined in [15]. In this approach, the authors modify
the ELBO objective to accommodate an arbitrary differential loss ∆(x, x̂) by replacing the
probabilistic decoder with a deterministic mapping from the latent representation:

x̂ = fw(z).

The resulting objective function consists of a weighted sum of the expected loss of x̂ under
the encoder’s distribution over z and the KL regularization term:

L̂ = C · Eqϕ[∆(x, x̂)] + DKL(qϕ(z|x)||p(z)),
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where the constant C controls the trade-off between the image-specific loss and the regu-
larization term.

Score function estimator - REINFORCE
Note that the generative model creates a parameterized continuous distribution. In the past,
discrete distributions were commonly used, and in line with that, we will present an addi-
tional technique that is applicable to discrete distributions, unlike the reparameterization
trick. Specifically, we aim to enable backpropagation through the sampling process of z,
i.e., to approximate the gradient

∇ϕEqϕ(z|x)[ f (z)],

where f is an example function, such as the one in Equation (3.7).
To find the gradient with respect to ϕ, we apply the gradient operator to the expectation

and product rule to the integrand:

∇ϕEqϕ(z|x)[ f (z)] = ∇ϕ

∫
f (z)qϕ(z | x) dz =

∫
∇ϕ

(
f (z)qϕ(z | x)

)
dz

=

∫
f (z)∇ϕqϕ(z | x) dz +

∫
qϕ(z | x)∇ϕ f (z)dz

=

∫
f (z)∇ϕqϕ(z | x) dz + Eqϕ(z|x)[∇ϕ f (z)]︸            ︷︷            ︸

MC estimator

.

Now we focus on the first term of the equation above because the second one is easily
approximated with the Monte Carlo estimator. The gradient of qϕ(z | x) with respect to ϕ
is related to the gradient of the log-likelihood:

∇ϕ log qϕ(z | x) =
∇ϕqϕ(z | x)

qϕ(z | x)
=⇒ ∇ϕqϕ(z | x) = qϕ(z | x)∇ϕ log qϕ(z | x).

Substituting this back into the integral, we obtain the gradient expressed as a sum of ex-
pectations, which can then be easily approximated:

∇ϕEqϕ(z|x)[ f (z)] =
∫

f (z)qϕ(z | x)∇ϕ log qϕ(z | x) dz + Eqϕ(z|x)[∇ϕ f (z)]

= Eqϕ(z|x)[ f (z)∇ϕ log qϕ(z | x)] + Eqϕ(z|x)[∇ϕ f (z)]
= Eqϕ(z|x)[ f (z) ∇ϕ log qϕ(z | x) + ∇ϕ f (z)].

This gives us an alternative gradient estimator for the expectation, which supports the mod-
eling of discrete distributions by the generative model. This estimator is also known as the
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score function estimator or the REINFORCE gradient estimator. In the literature, it is most
commonly presented in the following form:

∇ϕEqϕ(z)[ f (z)] = Eqϕ(z)[ f (z)∇ϕ log qϕ(z)].

However, the reason we will not use this estimator when approximating the ELBO is that
it has been experimentally shown in several studies to have high variance when compared
to the reparametrization trick. This can be observed in Figure 3.5, where the example is
shown using a simple function. Despite the substantial empirical evidence demonstrating
the high variance of this estimator, there are relatively few studies that rigorously explain
why the reparameterization trick is so effective. In the paper [17], appropriate assumptions
on the parameterized distribution qϕ are introduced, and the claim is rigorously proven.
However, the doctoral dissertation [5, Section 3.1.2] provides examples where the score
function estimator yields lower variance than the reparameterization trick. Nonetheless,
it also presents a proposition and specific conditions on the distribution that demonstrate
the opposite, explaining when and why the reparameterization trick outperforms other ap-
proaches.

Figure 3.5: Variance comparison of two different approaches for approximating the gra-
dient of an expectation. The testing was performed on the function f (z) = z2 and 1000
samples were used over 50 epochs.





Chapter 4

Application - Image synthesis

Variational autoencoders can be applied across various domains. They are used in anomaly
detection (comparing the reconstruction error and the likelihood of observed data), natu-
ral language processing (creating coherent sentences by sampling from the latent space),
and recommender systems (learning latent factors for user-item interactions and generat-
ing recommendations). However, their primary application lies in image processing and
synthesis, which is the focus of the following discussion. We will test the standard VAE
and its variant, multiscale structural similarity VAE (MSSIM-VAE), which integrates the
multiscale structural similarity index (MSSIM) into its loss function to improve the quality
of generated images.

4.1 Dataset
During the training, validation, and testing of the models, the Large-scale CelebFaces At-
tributes (CelebA) Dataset was utilized. This dataset is widely used in computer vision tasks
such as recognition, detection, editing, and generation of human faces. It is characterized
by high diversity among the images and a wealth of useful features for each photograph.
The dataset, with a size of 1.37 GB, consists of 202,599 images with dimensions of 178
x 218 pixels, featuring 10,177 individual celebrities. Each image includes 5 landmark lo-
cations for identifying facial features (left eye, right eye, nose tip, left mouth corner, right
mouth corner) and 40 binary attributes, such as those indicating characteristics like bald,
big lips, mustache, eyeglasses, male, etc. Examples of images from the dataset can be seen
in Figure 4.1, while for additional details and similar datasets, refer to [12].

However, for our purposes, we will only use images without facial features or attributes,
along with the file list eval partition.txt, which contains information on whether
an image is intended for training, validation, or testing. This file is necessary because a
LightningDataModule for automatically configuring datasets from pytorch lightning
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library, requires information to correctly assign data to training, validation, and testing
sets. This module also supports initialization using the pre-defined CelebA module from
torchvision.datasets, which only requires local download of the dataset for use.
Upon closer inspection, it becomes evident that some images contain noise around the

Figure 4.1: Three randomly selected photos from the dataset.

human portrait. Therefore, we applied a center crop of 148 x 148 pixels on each image, ef-
fectively cutting out the surrounding noise while preserving the main content—the human
portrait. Additionally, to prevent overfitting and improve the model’s learning, we applied
random horizontal flipping to each image. Finally, to reduce the number of model parame-
ters and speed up the process, we resized each image to 64x64 pixels and normalized their
pixel intensities to the range [0, 1]. An example of such transformations can be seen in
Figure 4.2. Overall, a total of 202,599 images were used to create the model, of which
162,770 were used for training, 19,867 for validation, and 19,962 for testing.

Figure 4.2: The first picture shows the original image, where some unexplained noise is
visible around the hair. In the second picture, we apply the center crop and horizontal flip
transformations. Finally, the last picture displays the image after it has been resized.
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4.2 Model architecture

As mentioned earlier, we will compare two types of variational autoencoders that primarily
differ in their loss functions, specifically the reconstruction loss, while the KL divergence
term remains the same. In order to make a fair comparison, everything except the loss
functions is identical, so the configuration outlined below applies to both types of models.

The encoder processes input images with 3 channels (RGB) through a series of convo-
lutional layers, each increasing the number of output channels which are set by default to
[32, 64, 128, 256, 512], while the spatial dimensions of the image are halved at each
layer. Each convolutional layer is followed by a LeakyReLU activation function, which al-
lows small negative values for inactive neurons, in contrast to the standard ReLU, which
outputs zero for negative inputs. The encoder outputs two 128-dimensional vectors repre-
senting the mean and log-variance of the latent space distribution, which are used to sample
the latent variable. These vectors are produced by two fully connected layers, which take
the output of the final convolutional layer. The decoder reconstructs the input image from
the latent variable by first mapping it to a higher-dimensional feature representation using
a fully connected layer. This feature map is then reshaped and progressively upsampled
through a series of transposed convolutional layers, where the number of output channels
decreases in the reverse order of the encoder’s hidden dimensions, set by default to [512,
256, 128, 64, 32]. The final layer applies a transposed convolution followed by a stan-
dard convolution to generate the reconstructed image with 3 channels. A Tanh activation
function is used to scale the pixel values between -1 and 1, ensuring consistency with the
normalized input data. Recall that during the dataset preprocessing, each image was con-
verted into a tensor with pixel values ranging from 0 to 1. The reason we can still use Tanh
in the final layer is that, when generating or reconstructing images that will be shown later,
we utilize a built-in function that ensures proper scaling from [-1, 1] to [0, 1]. Finally, with
this setup, the models resulted in a total of 3,937,635 learnable parameters.

Regarding the remaining configuration, each model was trained for 50 epochs with a
batch size of 64 images, a learning rate of 0.005, and a latent space dimension of 128.
The training was performed on the Kaggle platform [1], utilizing two T4 GPUs in paral-
lel, which significantly improved the overall efficiency of the training process. The en-
tire process was carried out using PyTorch Lightning, a high-level framework built on
top of PyTorch, which significantly simplified the workflow, particularly in terms of log-
ging, checkpointing, and multi-GPU scaling. The most important components were the
LightningModule and Trainer, which enabled efficient and modular code, allowing the
focus to remain primarily on improving model quality rather than dealing with the setup of
training loops, low-level operations, and other repetitive tasks.

The original code used to reproduce the examples from this chapter is available at
GitHub Repository.

https://github.com/RobertoGrabovac/Variational-Autoencoder
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4.3 Variational autoencoder (VAE)
We apply all the theoretical considerations related to variational autoencoders, where the
reconstruction loss is defined as the mean squared error between the input image and the
reconstructed image:

Reconstruction Loss =
1
k

k∑
i=1

(xi − x̂i)2,

where:

• xi is the i-th pixel of the input image,

• x̂i is the i-th pixel of the reconstructed image,

• k is the total number of pixels in the image.

In Figure 4.3, we observe the behavior of the training and validation losses as a function of
the batches, while Figures 4.4 and 4.5 show the reconstructed and generated images over
epochs. The reconstructed and generated images lack detail and appear somewhat blurry,
with improvements expected in the MSSIM variant of the variational autoencoder.

Figure 4.3: Training and validation losses based on the number of epochs.
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Figure 4.4: The first column illustrates the input images, while the second column presents
their corresponding reconstructions during the training process. The first row depicts the
results from the initial epoch, whereas the second row showcases the outcomes from the
final, fiftieth epoch.
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Figure 4.5: Generated images over the epochs. The first row shows the 1st and 25th epochs,
while the second row shows the 37th and final 50th epochs.

4.4 MSSIM - VAE

The structural similarity index measure (SSIM) evaluates the perceived quality of images
based on three components: luminance, contrast, and structure. For the two images x and
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y being compared, the formula is given by:

SSIM(x, y) =
[
l(x, y)

]α
·
[
c(x, y)

]β
·
[
s(x, y)

]γ ,
where the individual components are defined as follows:

l(x, y) =
2µxµy +C1

µ2
x + µ

2
y +C1︸                      ︷︷                      ︸

luminace

, c(x, y) =
2σxσy +C2

σ2
x + σ

2
y +C2︸                       ︷︷                       ︸

contrast

, s(x, y) =
σxy +C3

σxσy +C3︸                    ︷︷                    ︸
structure

.

Setting the weights α, β, γ to 1, the formula can be reduced to the form shown below:

SSIM(x, y) =
(2µxµy +C1)(2σxy +C2)

(µ2
x + µ

2
y +C1)(σ2

x + σ
2
y +C2)

.

Note that the constant C3 is absent in the equation above. It is commonly set as C3 =
C2
2 to

obtain a simpler expression. The means µx and µy represent the average intensities of the
pixels, while σ2

x and σ2
y are the variances, indicating intensity spread. The covariance σxy

shows the correlation between pixel intensity changes in both images, while the constants
C1 and C2 ensure numerical stability, preventing division by zero in the calculations. These
constants are typically derived based on the dynamic range L of pixel values in the input
images. The general equations are given as:

C1 = (K1 · L)2, C2 = (K2 · L)2,

where K1 and K2 are small constants, often set to K1 = 0.01 and K2 = 0.03, and L is
the dynamic range of the pixel values (e.g., 255 for 8-bit images). In the provided im-
plementation, the dynamic range is normalized to L = 1, so the constants are computed
as:

C1 = (0.01 · 1)2 = 0.0001, C2 = (0.03 · 1)2 = 0.0009.

These specific values are suitable for our normalized images with a pixel value range of
[0, 1].

SSIM is a perception-based metric that evaluates image quality by assessing changes
in structural information, unlike other metrics, like MSE, which focus on absolute error
measurement. It accounts for human visual perception elements such as luminance and
contrast masking. Structural information reflects strong inter-dependencies among nearby
pixels, integral to understanding object structures in a scene. Luminance masking refers to
the reduced visibility of distortions in brighter areas, while contrast masking describes the
decreased visibility of distortions amidst active or textured regions.

Next, we define a more advanced variant of SSIM, known as multiscale SSIM (MS-
SSIM). This approach involves the application of SSIM across multiple image scales, al-
lowing for a more comprehensive comparison of image structures at various resolutions.
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Definition 4.4.1. Let x and y be two images, S be the total number of scales, and {α1, α2, . . . , αS }

be the weights assigned to each scale. The multiscale SSIM (MS-SSIM) is given by:

MS-SSIM(x, y) =
S∏

j=1

[
SSIM j(x, y)

]α j
,

where SSIM j is an SSIM calculated at the j-th scale of the images.

Example 4.4.2 (MS-SSIM calculation). Suppose we have two grayscale images x and y:

x = [50, 51, 49, 52], y = [48, 50, 47, 51]

We calculate the following:

µx = 50.5, µy = 49, σ2
x = 1.25, σ2

y = 2, σxy = 1.

Let C1 = 0.01 and C2 = 0.03. Then:

S S IM(x, y) =
(2 · 50.5 · 49 +C1)(2 · 1 +C2)

(50.52 + 492 +C1)(1.25 + 2 +C2)
=

(4950.01)(2.03)
(5050.01)(3.28)

≈ 0.98

This value is close to 1, indicating high similarity which completes the SSIM calculation.
Calculating MS-SSIM involves the sequential application of SSIM across multiple image
scales. For simplicity, we outline only the calculation steps:

(i) start with two 256 × 256 images I1 and I2,

(ii) compute SSIM at full resolution,

(iii) downsample the images to 128 × 128, and compute SSIM again,

(iv) repeat for 64 × 64, 32 × 32, and 16 × 16 resolutions,

(v) combine SSIM scores using predefined weights, e.g., [0.0448, 0.2856, 0.3001, 0.2363, 0.1333].

The coefficients for the SSIM scores in the previous example are not arbitrary; they
were derived through empirical evaluation, as described in the paper [16, Section 3.2].

In the MSSIM-VAE implementation, the coefficients mentioned earlier were utilized,
and the reconstruction loss was formulated based on the MS-SSIM metric. To ensure dif-
ferentiability, we employed its variant, developed following the approach outlined in [14].
Analogously to the previous variant, in Figure 4.6, the behavior of the training and valida-
tion losses as a function of the batches is observed, while Figures 4.7 and 4.8 display the
reconstructed and generated images over the epochs. What can be observed is a significant
improvement in the quality of both the reconstructed and generated images, which aligns
with the newly introduced metric, providing a more accurate assessment of the similarity
between the two images.
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Figure 4.6: Training and validation losses based on the number of epochs.

4.5 Conclusion
We compared two different implementations of a variational autoencoder and examined
their inference and generative capabilities. Both models produced meaningful reconstruc-
tions and generated examples, indicating that posterior collapse did not occur. At the
beginning of training, the term ln pθ(x | z) is relatively weak, making the state where
qϕ(z | x) ≈ pθ(z) desirable for maximizing the ELBO. This undesirable stable equilibrium
is known as posterior collapse, and escaping from it is generally quite difficult. However,
several methods exist to prevent such behaviour. One common approach is KL annealing,
where the latent cost DKL(qϕ(z | x) ∥ pθ(z)) is introduced gradually during training. This is
achieved by multiplying it with a coefficient α, which increases from 0 to 1 as the number
of training epochs progresses.

By visually inspecting the generated images, we observe that MSSIM-VAE outper-
forms the standard VAE due to its reconstruction loss function being better adapted to the
image dataset. However, both models exhibit a certain degree of blurriness. This primarily
occurs because we assume a relatively simple Gaussian posterior distribution qϕ(z | x),
which, due to its characteristics (e.g., unimodality), cannot fully capture all details—both
due to dimensionality constraints and amortized inference. An improvement involves in-
creasing the flexibility of the inference model (encoder) by further transforming the poste-
rior distribution qϕ(z | x) through a series of invertible transformations, thereby obtaining a
more complex distribution. This concept is known as normalizing flows, and more details
can be found in [10, Chapter 3].

Regardless of all considerations, we have observed that a remarkably simple mecha-
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Figure 4.7: The first column illustrates the input images, while the second column presents
their corresponding reconstructions during the training process. The first row depicts the
results from the initial epoch, whereas the second row showcases the outcomes from the
final, fiftieth epoch.

nism for approximating intractable distributions using parameterized neural networks can
lead to highly effective generative modeling. The explained flow of collaboration between
two neural network models has served as both an introduction and a foundation for the
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Figure 4.8: Generated images over the epochs. The first row shows the 1st and 25th epochs,
while the second row shows the 37th and final 50th epochs.

future development of more complex models based on the same principle. One of the most
well-known examples is generative adversarial networks (GANs), where the roles of the
encoder and decoder are taken over by the discriminator and generator, respectively.
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Sažetak

U ovom radu izložena je teorijska pozadina i opisana konkretna implementacija varijaci-
jskog autoenkodera, jednog od primjera generativnih modela koji su kao važan dio umjetne
inteligencije značajno utjecali na današnje trendove.

Prvim poglavljem detaljno razradujemo algoritam maksimizacije očekivanja koji pred-
stavlja polazišnu točku za motivaciju funkcije gubitka našeg modela gdje enkoder nastoji
što bolje aproksimirati pravu posteriori distribuciju, a dekoder smanjiti rekonstrukcijski gu-
bitak u svrhu što boljih generativnih sposobnosti. Drugo poglavlje uvodi neuronsku mrežu
koja upravo predstavlja tip modela enkodera i dekodera, a zbog čije fleksibilnosti vari-
jacijski autoenkoder dobiva mogućnost modelirati vrlo kompleksne distribucije. Točnije,
promatramo poseban tip konvolucijske neuronske mreže pogodnom za probleme obrade,
odnosno kreiranja slika. Treće poglavlje definira oba modela koji medusobnim funkcioni-
ranjem čine varijacijski autoenkoder, zajedno s funkcijom gubitka (eng. evidence lower
bound) i reparametrizacijskim trikom koji, naspram tradicionalnog REINFORCE aproksi-
matora, smanjuje varijancu gradijenata tijekom provodenja algoritma propagacije unatrag.
U četvrtom poglavlju prikazujemo dvije implemetacije varijacijskog autoenkodera koje se
razlikuju po svojim rekonstrukcijskim funkcijama gubitka. Prva varijanta implementira
prosječnu kvadratnu pogrešku, dok druga ipak uzima u obzir prirodu podataka (slike) te
koristi MSSIM metriku za mjeru različitosti izmedu ulaznog podatka i onog dobivenog
rekonstrukcijom iz dekodera.

Rezultati ovog rada nastojali su približiti teoriju, razumijevanje i intuiciju iza načina
kako funkcioniraju generativni modeli, a koji su danas sve češće videni, pogotovo u po-
dručju obrade i kreiranja slika.





Summary

This thesis presents the theoretical background and describes the concrete implementa-
tion of the variational autoencoder (VAE), a key example of generative models that, as an
integral part of artificial intelligence, have significantly influenced current trends.

The first chapter thoroughly explores the expectation-maximization (EM) algorithm,
which serves as the foundational motivation for the loss function of our model. Here, the
encoder aims to approximate the true posterior distribution as closely as possible, while
the decoder minimizes the reconstruction loss to enhance the generative capabilities. The
second chapter introduces the neural network, which forms the type of model for both the
encoder and the decoder. Due to its flexibility, the VAE is capable of modeling highly
complex distributions. Specifically, we focus on a special type of convolutional neural net-
work, which is well-suited for image processing and generation tasks. The third chapter
defines the encoder and decoder models, which together make up the VAE, along with the
evidence lower bound loss function and the reparameterization trick, which reduces gradi-
ent variance during backpropagation, compared to the traditional REINFORCE estimator.
The fourth chapter presents two VAE implementations, differing in their reconstruction
loss functions. The first variant uses mean squared error, while the second takes the nature
of the data (images) into account and uses the MSSIM metric to measure the difference
between the input data and the reconstruction from the decoder.

The results of this work aim to bridge theory, understanding, and intuition behind
how generative models function, especially in fields like image processing and generation,
where such models are becoming increasingly prevalent.
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program. In the later years of elementary school, I developed an interest in mathematics,
primarily because I found it easy to grasp without much effort. However, this advantage did
not persist in my first year of high school, and I only regained my interest in mathematics
in my second year. Over time, I discovered a genuine passion for the subject, which led
me to attend the Center of Excellence for Mathematics in Bjelovar in my final year of high
school.

This experience ultimately influenced my decision to enroll in the undergraduate Math-
ematics program at the Faculty of Science, University of Zagreb, in 2019. In 2022, I re-
ceived an award for the most successful final-year undergraduate student. This period will
also be remembered for the numerous lectures I held in linear algebra, mathematical anal-
ysis, and geometry, which captured significant interest from my colleagues. Throughout
my undergraduate studies, I developed a strong interest in computer science, leading to
the decision to pursue a master’s degree in Computer Science and Mathematics in 2022.
In 2024, I received another award for the most successful final-year graduate student. In
February of the same year, I started an internship at Infobip, where I now work as a Data
Scientist.


	Contents
	Introduction
	Probabilistic models
	Probability theory fundamentals
	Machine learning models: Concepts and types
	Frequentist and Bayesian approach
	Latent space
	Kullback–Leibler divergence
	Expectation maximization algorithm

	Neural networks
	Motivation
	Artificial neuron
	Neural network
	Gradient descent
	Backpropagation
	Challenges

	Variational autoencoder
	Deterministic autoencoder
	Architecture
	Evidence lower bound (ELBO)
	Amortized inference
	Reparametrization trick

	Application - Image synthesis
	Dataset
	Model architecture
	Variational autoencoder (VAE)
	MSSIM - VAE
	Conclusion

	Bibliography

