
Gonality of modular curves and their quotients

Orlić, Petar

Doctoral thesis / Doktorski rad

2025

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of 
Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:587029

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-24

Repository / Repozitorij:

Repository of the Faculty of Science - University of 
Zagreb

https://urn.nsk.hr/urn:nbn:hr:217:587029
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.pmf.unizg.hr
https://repozitorij.pmf.unizg.hr
https://repozitorij.unizg.hr/islandora/object/pmf:14282
https://dabar.srce.hr/islandora/object/pmf:14282


FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS

Petar Orlić
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SUMMARY

Modular curves are one of the significant objects in number theory. One of their important

properties is that points on modular curves represent classes of elliptic curves with some

additional structure. Therefore, we can answer some questions regarding elliptic curves

by studying modular curves.

The central topic of this thesis is the modular curve X0(N) and its quotient curves.

Points on the curve X0(N) parametrize classes of elliptic curves together with a cyclic

subgroup of order N (or equivalently, a cyclic isogeny of degree N).

For an algebraic curve defined over a field k, its k-gonality is the minimal possible

degree of a morphism from that curve to the projective line P1. Problems concerning

determining the Q-gonality and C-gonality of curves defined over Q are particularly in-

teresting. One of the reasons for that is that preimages of degree d rational morphisms to

P1 are the source of degree d points on curves.

All cases when the C-gonality of the curve X0(N) is 2,3, or 4 were determined by

Ogg, Hasegawa and Shimura, and Jeon and Park in [37, 53, 80]. All Q-trigonal curves

X0(N) were also determined by Hasegawa and Shimura in the same paper. The author’s

paper in collaboration with Filip Najman [76] determines all cases when the Q-gonality

of the curve X0(N) is 4,5, or 6. The Q-gonality of all curves X0(N) for N f 144 is also

determined there, along with the C-gonality for many of these curves. These results can

be found in Section 2.1.

For every divisor d of N such that gcd(d,N/d) = 1 there exists an involution wd on

X0(N) defined over Q, called an Atkin-Lehner involution. The curve X+d
0 (N) is a quotient

curve of the modular curve X0(N) by wd . If d = N, we denote this curve as X+
0 (N).

All cases when the C-gonality of the curve X+d
0 (N) is 2 or 3 were determined by

Furumoto and Hasegawa and Hasegawa and Shimura in [32, 38]. The author’s papers
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Summary

[81, 83] determine all cases when the Q-gonality of the curve X+d
0 (N) is 3 or 4 and all

cases when the C-gonality of the curve X+d
0 (N) is equal to 4. These results can be found

in Section 2.2.

For every group {±1} ª ∆ ª (Z/NZ)×, there exists an intermediate modular curve

X∆(N) between the curves X1(N) and X0(N). Since the Q-gonality of curves X1(N) has

been determined for N f 40 in [23] and we know the Q-gonality of curves X0(N) for N f
144, the question of determininng the Q-gonality of intermediate curves X∆(N) naturally

arises.

All cases when the C-gonality of the curve X∆(N) is 2 or 3 were determined by Ishii

and Momose and Jeon and Kim in [43, 48]. The author’s paper [82] determines all cases

when the Q-gonality of the curve X∆(N) is 4 or 5 and all cases when the C-gonality of the

curve X∆(N) is equal to 4. These results can be found in Section 2.3.

The existence of rational maps to P1 and elliptic curves is closely related to the exis-

tence of infinitely many points of a certain degree over Q. Bars [6] determined all cases

when the curve X0(N) has infinitely quadratic points and Jeon [45] determined all cases

when the curve X0(N) has infinitely many cubic points. The author’s paper in collabora-

tion with Maarten Derickx [21] determines all cases when the curve X0(N) has infinitely

many quartic points. These results can be found in Chapter 3.

A lot of the results in this thesis rely on Magma [11] and Sage computations. The codes

that verify all computations in this thesis can be found on

https://github.com/orlic1

and

https://github.com/koffie/mdsage/tree/main/articles/derickx_

orlic-quartic_X0.

Key words: Elliptic curve, Modular curves, Gonality
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SAŽETAK

Modularne krivulje jedan su od značajnijih predmeta istraživanja u teoriji brojeva. Jedno

od njihovih važnijih svojstava je to da točke na modularnim krivuljama reprezentiraju

klase eliptičkih krivulja s nekom dodatnom strukturom. Stoga na neka pitanja koja se tiču

eliptičkih krivulja možemo odgovoriti proučavajući modularne krivulje.

Središnji objekt ove disertacije je modularna krivulja X0(N) i njezine kvocijentne

krivulje. Točke na krivulji X0(N) parametriziraju klase eliptičkih krivulja zajedno s cikličkom

podgrupom reda N (ili ekvivalentno, s cikličkom izogenijom stupnja N).

Za algebarsku krivulju definiranu nad poljem k, njezina k-gonalnost je minimalni

mogući stupanj preslikavanja iz te krivulje u projektivni pravac P1. Osobito su zanimljivi

problemi odredivanja Q-gonalnosti i C-gonalnosti krivulja definiranih nad Q. Jedan od

razloga za to što su praslike racionalnih preslikavanja stupnja d u P1 izvor točaka stupnja

d nad Q na krivuljama.

Sve slučajeve kada je C-gonalnost krivulje X0(N) jednaka 2,3 ili 4 odredili su Ogg,

Hasegawa i Shimura te Jeon i Park u [37, 53, 80]. Hasegawa i Shimura su u istom članku

odredili i sve slučajeve kad je krivulja X0(N) Q-trigonalna. Autorov članak u suradnji

s Filipom Najmanom [76] odreduje sve slučajeve kada je Q-gonalnost krivulje X0(N)

jednaka 4,5 ili 6. Q-gonalnost krivulja X0(N) za N f 144 je takoder odredena u tom

članku, kao i C-gonalnost mnogih of tih krivulja. Ovi rezultati se mogu naći u Poglavlju

2.1.

Za svaki djelitelj d od N za koji je M(d,N/d) = 1 postoji involucija wd krivulje X0(N)

definirana nad Q koju zovemo Atkin-Lehnerova involucija. Krivulja X+d
0 (N) je kvoci-

jentna krivulja modularne krivulje X0(N) po wd . Ako je d = N, označavamo ovu krivulju

s X+
0 (N).

Sve slučajeve kada je C-gonalnost krivulje X+d
0 (N) jednaka 2 ili 3 odredili su Furu-

v



Sažetak

moto i Hasegawa te Hasegawa i Shimura u [32, 38]. Autorovi članci [81, 83] odreduju

sve slučajeve kada je Q-gonalnost krivulje X+d
0 (N) jednaka 3 ili 4 te sve slučajeve kada

je C-gonalnost krivulje X+d
0 (N) jednaka 4. Ovi rezultati se mogu naći u Poglavlju 2.2.

Za svaku grupu {±1} ª ∆ ª (Z/NZ)× postoji modularna medukrivulja X∆(N) koja

se nalazi izmedu krivulja X1(N) i X0(N). Kako je Q-gonalnost krivulja X1(N) odredena

za N f 40 u [23] i kako znamo kolika je Q-gonalnost krivulja X0(N) za N f 144, prirodno

se postavlja pitanje odredivanja Q-gonalnosti krivulja X∆(N).

Sve slučajeve kada je C-gonalnost krivulje X∆(N) jednaka 2 ili 3 odredili su Ishii i

Momose te Jeon i Kim u [43, 48]. Autorov članak [82] odreduje sve slučajeve kada je

Q-gonalnost krivulje X∆(N) jednaka 4 ili 5 te sve slučajeve kada je C-gonalnost krivulje

X∆(N) jednaka 4. Ovi rezultati se mogu naći u Poglavlju 2.3.

Postojanje racionalnog preslikavanja u P1 i eliptičke krivulje je usko povezano s pos-

tojanjem beskonačno mnogo točaka odredenog stupnja nad Q. Bars [6] je odredio sve

slučajeve kada krivulja X0(N) ima beskonačno mnogo kvadratnih točaka, a Jeon [45] je

odredio sve slučajeve kada krivulja X0(N) ima beskonačno kubičnih točaka. Autorov

članak u suradnji s Maartenom Derickxom [21] odreduje sve slučajeve kada krivulja

X0(N) ima beskonalno mnogo kvartičnih točaka. Ovi rezultati se mogu naći u Poglavlju

3.

Dosta rezultata u ovoj disertaciji se oslanja na izračune u računalnim sustavima Magma

[11] i Sage. Kodovi koji opravdavaju sve izračune u ovoj disertaciji se nalaze na

https://github.com/orlic1

i

https://github.com/koffie/mdsage/tree/main/articles/derickx_

orlic-quartic_X0.

Ključne riječi: Eliptičke krivulje, Modularne krivulje, Gonalnost
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1. INTRODUCTION

1.1. ELLIPTIC CURVES

Definition 1.1.1. Let k be a field. An elliptic curve over k is a smooth, projective, al-

gebraic curve of genus 1 defined over k on which there is a specified k-rational point

O .

It is well known that every elliptic curve E has a model of the form

E : y2z+a1xyz+a3yz3 = x3 +a2x2z+a4xz2 +a6z3,

called the long Weierstrass model. Additionally, if char k ̸= 2,3, then it also has a simpler

model of the form

E : y2z = x3 +axz2 +bz3,

called the short Weierstrass model. Here O is the unique point at infinity (0 : 1 : 0). The

elliptic curve is required to be non-singular which is equivalent to the condition that the

discriminant of the curve ∆(E) is non-zero. For elliptic curves in the long Weierstrass

model the formula for ∆(E) is

∆(E) =− (a2
1 +4a2)

2(a2
1a6 −a1a3a4 +4a2a6 +a2a2

3 −a2
4)−8(a1a3 +2a4)

3−

−27(a2
3 +4a6)

2 +9(a2
1 +4a2)(a1a3 +2a4)(a

2
3 +4a6).

In the short Weierstrass model this just translates to ∆(E) = −16(4a3 + 27b2) ̸= 0. We

1



Introduction Elliptic curves

also define the j-invariant of an elliptic curve as

j(E) =
((a2

1 +4a2)
2 −24(a1a3 +2a4))

3

∆(E)
.

In the short Weierstrass form we have j(E) =
1728a3

4a3 +27b2
. The name j-invariant comes

from the fact that the two elliptic curves over k are isomorphic over k if and only if their

j-invariants are equal.

One of the characterizations of the genus of an algebraic curve is as follows. Ev-

ery algebraic curve over C is as a Riemann surface homeomorphic to the sphere with

g handles, where g is the genus of that curve. Therefore, every elliptic curve over C is

homeomorphic to a torus.

On the set of k-rational points of E, denoted by E(k), we can define the operation

+ : E(k)×E(k)→ E(k). This operation is defined algebraically over k and with it E(k)

becomes an abelian group with an identity element O . Moreover, we have the following

result.

Theorem 1.1.2 (Mordell). For an elliptic curve E defined over a number field k, the

group E(k) is a finitely generated abelian group.

This means that for an elliptic curve E over a number field k we have

E(k)∼= E(k)tors ×Zr.

Here E(k)tors is a torsion group, i.e., the group of points of finite order, and r is the rank

of E over k. It is natural to ask what are the possibilities for E(k)tors and r. All possible

torsion groups have been determined for elliptic curves over Q and number fields of small

degree.

Theorem 1.1.3 (Mazur [70]). Let E be an elliptic curve defined over Q. Then the torsion

group of E(Q) is isomorphic to one of the following groups:

Z/mZ, m = 1, . . . ,10,12

Z/2Z×Z/2mZ, m = 1,2,3,4.

2



Introduction Elliptic curves

Theorem 1.1.4 (Kamienny, Kenku, Momose [55,62]). Let E be an elliptic curve defined

over a quadratic field k. Then the torsion group of E(k) is isomorphic to one of the

following groups:

Z/mZ, m = 1, . . . ,16,18

Z/2Z×Z/2mZ, m = 1, . . . ,6,

Z/3Z×Z/3mZ, m = 1,2,

Z/4Z×Z/4Z.

Theorem 1.1.5 (Derickx, Etropolski, van Hoeij, Morrow, Zureick-Brown [18]). Let E be

an elliptic curve defined over a cubic field k. Then the torsion group of E(k) is isomorphic

to one of the following groups:

Z/mZ, m = 1, . . . ,16,18,20,21,

Z/2Z×Z/2mZ, m = 1, . . . ,7.

Theorem 1.1.6 (Derickx, Najman [19]). Let E be an elliptic curve defined over a quartic

field k. Then the torsion group of E(k) is isomorphic to one of the following groups:

Z/mZ, m = 1, . . . ,18,20,21,22,24

Z/2Z×Z/2mZ, m = 1, . . . ,9,

Z/3Z×Z/3mZ, m = 1,2,3,

Z/4Z×Z/4mZ, m = 1,2,

Z/5Z×Z/5Z,

Z/6Z×Z/6Z.

Interestingly, in all these cases except for m = 21 in the cubic field case, there exist

infinitely many elliptic curves over Q with the given torsion. The only elliptic curve over

Q with a torsion group Z/21Z over some cubic field is the elliptic curve with LMFDB

label 162.c3. Over a cubic field Q(ζ9)
+, this curve has a torsion group Z/21Z [75].

Less is known about the possible ranks for elliptic curves, even over Q. It is not even

3



Introduction Elliptic curves

known whether it is bounded or not. The current highest known Q-rank of an elliptic

curve is r = 29 due to Elkies and Klagsbrun in 2024. Prior to this recent result, the

highest known rank was r = 28 due to Elkies in 2006.

1.1.1. Reduction mod p

Definition 1.1.7. Let E be an elliptic curve over Q let and p be a prime. By changing

the coordinates we can obtain an isomorphic curve E ′ with coefficients in Z and with a

minimal Weierstrass model (i.e., with minimal discriminant ∆). The (possibly singular)

curve Ẽ with coefficients over Fp obtained by reducing all coefficients of E ′ mod p is

called the reduction of E modulo p.

We say that the reduction mod p is

(a) good (or stable) if Ẽ is non-singular.

(b) multiplicative (or semistable) if Ẽ has a node.

(c) additive (or unstable) if Ẽ has a cusp.

In cases (b) and (c) the curve Ẽ is singular and we say that the reduction mod p is bad.

The following result gives us an easily computable criterion for determining the re-

duction type mod p.

Proposition 1.1.8. [90, Proposition VII.5.1] Let E/Q be an elliptic curve given by its

minimal Weierstrass model

E : y2 +a1xy+a3y = x3 +a2x2 +a4x+a6.

We define the value c4 = (a2
1 +4a2)

2 −24(a1a3 +2a4).

(a) E has good reduction mod p if and only if p ∤ ∆.

(b) E has multiplicative reduction mod p if and only if p | ∆ and p ∤ c4.

(c) E has additive reduction mod p if and only if p | ∆ and p | c4.

4



Introduction Elliptic curves

Therefore, for each elliptic curve E/Q there are only finitely many bad primes p.

It is also possible to define the good and bad reduction mod p for general algebraic

curves over Q. The reduction will be good if the resulting reduced curve is non-singular

and bad otherwise. In later chapters we will extensively use the reduction mod p proper-

ties of curves.

5



Introduction Isogenies of elliptic curves

1.2. ISOGENIES OF ELLIPTIC CURVES

Definition 1.2.1. Let V1 and V2 be projective varieties over a field k. A rational map from

V1 to V2 is a map of the form

φ : V1 →V2, φ = [ f0, . . . , fn],

where f0, . . . , fn ∈ k(V1). A morphism is a rational map that is regular everywhere on V1.

A morphism φ is an isomorphism if there exists a morphism ψ : V2 → V1 such that

ψ ◦φ = idV1
and φ ◦ψ = idV2

.

Theorem 1.2.2 ( [90, Teorem II.2.3]). Let φ : C1 →C2 be a morphism of curves. Then

φ is either constant or surjective.

Let C1 and C2 be curves over k and let φ : C1 →C2 be a non-constant k-rational map.

Then we have an injection of function fields

φ∗ : k(C2)→ k(C1), φ∗ f = f ◦φ .

Theorem 1.2.3 ( [90, Theorem II.2.4 (a)]). Let C1 and C2 be curves over k and let φ :

C1 →C2 be a non-constant morphism over k. Then k(C1) is a finite extension of φ∗k(C2).

Definition 1.2.4. Let φ : C1 →C2 be a non-constant morphism of curves defined over k.

We define the degree of φ as

degφ = [k(C1) : φ∗k(C2)].

We say that a morphism φ is separable, inseparable, or purely inseparable if the field

extension k(C1)/φ∗k(C2) has the corresponding property.

If φ is separable (which is always true if char k = 0), we can calculate degφ as the

size of the preimage of a generic point on C2. This is an easier alternative to working with

the function fields.

Proposition 1.2.5. [90, Corollary II.2.4.1] Let C1 and C2 be smooth curves and let

φ : C1 →C2 be a degree 1 morphism. Then φ is an isomorphism.

6



Introduction Isogenies of elliptic curves

Definition 1.2.6. Let E1 and E2 be elliptic curves. An isogeny from E1 to E2 is a mor-

phism φ : E1 → E2 satisfying φ(OE1
) =OE2

. We say that E1 and E2 are isogenous if there

exists a non-zero isogeny from E1 to E2.

Example 1.2.7. For every elliptic curve E over k and every m∈Z there is a multiplication-

by-m isogeny [m] : E → E. For m g 0 we define it as

[m] : E → E, P 7→ mP = P+ . . .+P
︸ ︷︷ ︸

m times

,

and for m < 0, we set [m]P = [−m](−P). For m > 0, the kernel of this isogeny is the

m-torsion subgroup of E

E[m] = {P ∈ E(k) : mP = O},

i.e., the set of points of E of order m.

If we have two isogenies φ ,ψ : E → E, we can pointwise define the isogenies φ ±ψ

and φ ◦ψ . Therefore, the endomorphism group End(E) is a ring. It is of characteristic

zero with no zero divisors. If char k = 0, then we usually have End(E) ∼= Z. If the

endomorphism ring is strictly larger than Z, then we say that E has complex multiplication

(CM). We will mention more results regarding the endomorphism rings and CM elliptic

curves at the end of this section.

Proposition 1.2.8 ( [90, Corollary III.6.4]). Let E be an elliptic curve over a field k and

m ∈ Z with m ̸= 0.

(a) deg[m] = m2.

(b) If either char k ̸= 0 or char k = p ∤ m, then

E[m]∼= Z/mZ×Z/mZ.

(c) If char k = p, then one of the following is true:

(i) E[pe]∼= 0 for all e = 1,2,3, . . .

7
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(ii) E[pe]∼= Z/peZ for all e = 1,2,3, . . .

Example 1.2.9. Let φ : E1 → E2 be a non-constant isogeny of degree m. Then there

exists a unique isogeny φ̂ : E2 → E1 such that φ̂ ◦ φ = [m]. This isogeny φ̂ is called the

dual isogeny of φ and it is defined over the same field as φ . Also, the kernel of the dual

isogeny is ker φ̂ = φ(E1[m]).

It follows that ”being isogenous” is an equivalence relation on the set of elliptic curves.

Furthermore, it is a consequence of Shafarevich’s theorem [89] that for elliptic curves

defined over a number field k, up to isomorphism there are only finitely many elliptic

curves in each isogeny class. For example, for k = Q, Kenku [61] showed that there are

at most 8 Q-isomorphism classes of elliptic curves in each Q-isogeny class.

Isogenies of elliptic curves have more interesting properties. We list some of them

below.

Theorem 1.2.10 ( [90, Theorem III.4.8]). Let φ : E1 → E2 be an isogeny. Then φ(P+

Q) = φ(P)+φ(Q) for all P,Q ∈ E1.

We see from Theorem 1.2.2 that every non-zero isogeny φ : E1 → E2 is surjective.

Also, its kernel Ker φ = φ−1(OE2
) is a finite group. It is a group because of Theo-

rem 1.2.10 and finite since it is a preimage of a point OE2
on E2.

Theorem 1.2.11 ( [90, Theorem III.6.2]). The dual isogeny has the following properties:

(a) If φ : E1 → E2 and λ : E2 → E3 are isogenies, then

‘λ ◦φ = φ̂ ◦ λ̂ .

(b) If φ ,ψ : E1 → E2 are isogenies, then

’φ +ψ = φ̂ + ψ̂.

(c) ”[m] = [m] for all m ∈ Z.

(d) deg φ̂ = degφ .

8
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(e) ˆ̂φ = φ .

Proposition 1.2.12 ( [90, Proposition III.4.12, Remark III.4.13]). Let E be an elliptic

curve and let Φ be a finite subgroup of E. Then there are a unique elliptic curve E ′ and a

separable isogeny

φ : E → E ′ satisfying kerφ = Φ.

Furthermore, suppose that E is defined over k and that Φ is Gk/k-invariant. Then E ′ and

φ can be defined over k.

This elliptic curve E ′ is often denoted as E/Φ to signify that it is determined by E

and Φ and that Φ is the kernel of the isogeny. In the spirit of this notation we will also

denote φ(C) as C/Φ for subgroups C that contain Φ. For example, for dual isogenies in

Example 1.2.9 we will write ker φ̂ = E1[m]/kerφ .

Definition 1.2.13. We say that an isogeny φ : E1 → E2 is cyclic if kerφ is a cyclic group.

Every isogeny φ : E1 → E2 is a composition of a cyclic isogeny and a multiplication-

by-m isogeny. More precisely, there exists a cyclic isogeny ψ : E1 → E2 and m ∈ Z such

that

φ = [m]◦ψ.

For the end of this section we give a brief discussion regarding the CM properties of

elliptic curves.

Proposition 1.2.14 ( [90, Corollary 9.4]). The endomorphism ring of an elliptic curve

E/k is either Z, an order of an imaginary quadratic field, or an order in a quaternion

algebra. If char(k) = 0, then only the first two cases are possible.

Therefore, if an elliptic curve E/Q is CM, then R=End(E) is an order of an imaginary

quadratic field. This means that the field of fractions Q(R) is equal to Q(
√
−d) for some

d ∈ N. Furthermore, the ring of integers of this field Q(
√
−d) has class number 1, i.e., it

is a principal ideal domain.

Theorem 1.2.15 (Baker-Stark-Heegner, [90, Example C.11.3.1]). The imaginary quadratic

field Q(
√
−d) has class number 1 exactly for the following 9 values of −d:

−d ∈ {−1,−2,−3,−7,−11,−19,−43,−67,−163}.

9
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All elliptic curves isomorphic to an elliptic curve E have the same endomorphism ring

as E. Therefore, the CM property depends only on the j-invariant. Interestingly, there

are finitely many (exactly 13) CM j-invariants of elliptic curves over Q [90, Example

C.11.3.2].

Table 1.1: j-invariants of CM elliptic curves over Q along

with their corresponding endomorphism rings.

End(E) j

Z

ñ
1+

√
−3

2

ô
0

Z[1+
√
−3] 24 ·33 ·53

Z

ñ
3(1+

√
−3)

2

ô
215 ·33 ·52

Z[
√
−1] 24 ·33

Z[2
√
−1] 24 ·33 ·113

Z

ñ
1+

√
−7

2

ô
−33 ·53

Z[1+
√
−7] 33 ·53 ·173

Z[
√
−2] 24 ·53

Z

ñ
1+

√
−11

2

ô
−215

Z

ñ
1+

√
−19

2

ô
−215 ·33

Z

ñ
1+

√
−43

2

ô
−218 ·33 ·53

Z

ñ
1+

√
−67

2

ô
−215 ·33 ·53 ·113

Z

ñ
1+

√
−163

2

ô
−218 ·33 ·53 ·233 ·293
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1.3. MODULAR CURVES

Let H = {z ∈ C : Im z > 0} be the upper half-plane of the complex numbers and let

H ∗ = H ∪P1(Q) be the compactified half-plane. The modular group SL2(Z) acts on

H ∗ as 


a b

c d



z =
az+b

cz+d
.

Definition 1.3.1. A principal congruence subgroup of level N is the group

Γ(N) =










a b

c d



 ∈ SL2(Z) : a,d ≡ 1 (mod N),b,c ≡ 0 (mod N)






.

A subgroup Γ f SL2(Z) is called a congruence subgroup if there exists N ∈ N such that

Γ(N)f Γ.

Examples of congruence subgroups are

Γ0(N) =










a b

c d



 ∈ SL2(Z) : c ≡ 0 (mod N)






,

Γ1(N) =










a b

c d



 ∈ SL2(Z) : a,d ≡ 1 (mod N),c ≡ 0 (mod N)






,

Γ1(M,N) =










a b

c d



 ∈ SL2(Z) : a,d ≡ 1 (mod N),c ≡ 0 (mod N),b ≡ 0 (mod M)







for M | N.

Modular curves X(Γ) are a type of algebraic curves which can be constructed as quo-

tients of of the upper half-plane H ∗ with a congruence subgroup Γ. Examples of modular

curves are X(N), X0(N), X1(N), and X1(M,N) which correspond to congruence subgroups

Γ(N), Γ0(N), Γ1(N), and Γ1(M,N). As algebraic curves, X0(N) and X1(N) are defined

over Q, X(N) is defined over the cyclotomic field Q(ζN), and X1(M,N) is defined over

the cyclotomic field Q(ζM). Notice that the curve X1(1,N) is isomorphic to X1(N).

The value N present in the modular curves X(N), X0(N), X1(N) is called the level of

these modular curves.

11
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Modular curves X(Γ) are very important because they are also moduli spaces of ellip-

tic curves, i.e., points on modular curves represent isomorphism classes of elliptic curves

with some additional property depending on the group Γ.

For example, non-cuspidal points on X(N) represent k-isomorphism classes [(E,P,Q)],

where E is an elliptic curve and P,Q form a basis for the N-torsion group E[N]. Non-

cuspidal points on X1(N) represent k-isomorphism classes [(E,P)], where E is an elliptic

curve and P is a point on E of order N. Non-cuspidal points on X1(M,N) represent

k-isomorphism classes [(E,P,Q)], where E is an elliptic curve and P,Q are indepen-

dent points of orders M and N, respectively. Non-cuspidal points on X0(N) represent

k-isomorphism classes [(E,CN)], where E is an elliptic curve and CN is a cyclic subgroup

of points on E of order N (or equivalently due to Proposition 1.2.12, classes [(E,φ)],

where φ is a degree N cyclic isogeny from E).

We say that X(N), X1(N), and X1(M,N) are fine moduli spaces and that X0(N) is a

coarse moduli space (due to isomorphism classes being over k and not k).

Therefore, we can look at the modular curves from three perspectives: as smooth

projective algebraic curves defined over Q, as quotients of H ∗, and as moduli spaces.

An additional very important property of modular curves is their cusps. Cusps are

points corresponding to classes Γ \ P1(Q). The following results give the number of

cusps on the curves X(N), X1(N), and X0(N).

Proposition 1.3.2. [25, p. 101–103] The number of cusps on the curve X(N) is equal

to







1 for N = 1,

3 for N = 2,

N2

2
∏
p|N

Å
1− 1

p2

ã
for N > 2.

The number of cusps on the curve X1(N) is equal to

12
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





1 for N = 1,

2 for N = 2,

3 for N = 4,

N2

2
∏
p|N

Å
1− 1

p2

ã
otherwise.

The number of cusps on the curve X0(N) is equal to

∑
d|N

φ((d,N/d)),

where φ is the Euler’s totient function. Moreover, the cusps in each summand are defined

over Q(ζφ((d,N/d))).

As we can see, the cusps on these modular curves are a source of rational points. This

is very important since algebraic curves are not generally expected to contain a rational

point.

Modular curves are a very active area of mathematics. One of the reasons for that is

that we can solve some problems concerning elliptic curves by studying a single modular

curve. For example, Theorem 1.1.3 can be rephrased as follows.

Theorem 1.3.3 (Mazur [70]). The modular curve X1(M,N) has a non-cuspidal ratio-

nal point if and only if (M,N) = (1,n) for n = 1, . . . ,10,12 or (M,N) = (2,2n) for

n = 1,2,3,4.

Theorems 1.1.3, 1.1.4, and 1.1.5 give us all modular curves X1(M,N) that contain

non-cuspidal points of degree f 3. Less is known about the points on X0(N). Mazur and

Kenku determined all curves X0(N) containing a non-cuspidal rational point.

Theorem 1.3.4 ( [57–60, 71]). The modular curve X0(N) has a non-cuspidal rational

point if and only if

N ∈ {1, . . . ,19,21,25,27,37,43,67,163}.

The problem of determining all quadratic points on curves X0(N) is still open, al-

13
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though there are some results in that direction.

1.3.1. Atkin-Lehner involutions

Let d be a divisor of N such that gcd(d,N/d) = 1. Then there exists an involution wd

of the modular curve X0(N). This curve is called an Atkin-Lehner involution and it is

defined over Q. The involution wd is defined on X0(N) through its moduli interpretation

as follows. Take an elliptic curve E with a cyclic subgroup CN . We can decompose CN as

a sum of subgroups Cd +CN/d . Then

wd(E,CN) = wd(E,Cd,CN/d) = (E/Cd,E[d]/Cd,CN/Cd).

The involution wN is also called the Fricke involution. From the definition of wd for

general d we see that

wN(E,CN) = (E/CN ,E[N]/CN).

It is not hard to see that wd is an involution because

wd(E/Cd,E[d]/Cd,CN/Cd) = (E/E[d],(E/Cd)[d]/(E[d]/Cd),(E[d]+CN)/E[d])

= (E,Cd,CN/d).

This is because E[d]/Cd is the kernel of the dual isogeny (see Example 1.2.9 and

Proposition 1.2.12) and E[d] is the kernel of the multiplication-by-d isogeny [d].

Atkin-Lehner involutions of a curve X0(N) form an abelian group B(N) with composi-

tion as the group operation [24, Section 4]. The group B(N) has 2ωN elements, where ωN

is the number of different prime divisors of N. For every subgroup of B(N) there exists a

corresponding quotient curve defined over Q with the rational quotient map from X0(N)

to that quotient curve.

For example, the curve X+d
0 (N) is the quotient curve by the involution wd and the

quotient map X0(N) → X+d
0 (N) has degree 2. When d = N, we write X+

0 (N) instead.

The curve X∗
0 (N) is the quotient curve by the entire group B(N) and the quotient map

X0(N)→ X∗
0 (N) has degree 2ωN .

14
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1.4. DIVISORS AND JACOBIANS

Before we define divisors on a curve, we first introduce function fields which will be

needed in the definition of a special class of divisors, principal divisors.

We can define function fields for general algebraic varieties, but we will restrict our-

selves to curves. First, we define function fields of affine curves, then we will do the same

for the projective curves.

Definition 1.4.1. Let C/k be an affine curve. The affine coordinate ring of C/k is

k[C] = k[X ]/I(C).

Its field of fractions is denoted by k(C) and is called the function field of C/k.

Example 1.4.2. Suppose we have an elliptic curve

E : y2 = x3 +ax+b

defined over Q. Its function ring over Q is Q[x,y]/
〈
y2 − x3 −ax−b

〉
.

Definition 1.4.3. [90, Section I.2] Let C/k be a projective curve in Pn. Choose An ¢ Pn

such that C ∩An ̸= /0. The function field of C, denoted by k(C), is the function field

of C ∩An. We note that for different choices of An, the different k(C) are canonically

isomorphic, so we may identify them.

Remark 1.4.4. [90, Remark I.2.9] The function field of a projective curve C may also

be described as the subfield of k(X) consisting of rational functions F(X) = f (X)/g(X)

such that:

(i) f and g are homogenous of the same degree,

(ii) g /∈ I(C),

(iii) two functions f1/g1 and f2/g2 are identified if f1g2 − f2g1 ∈ I(C).

Definition 1.4.5. A divisor on an algebraic curve C is a finite combination of points on

C with integer coefficients. For a divisor D = ∑P aPP, we define its degree degD = ∑P aP

15
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(the sum is well defined since only finitely many aP are ̸= 0). We say that a divisor D is

effective, denoted by D g 0, if all its coefficients are non-negative.

If f ∈ k(C)× is a non-zero element of a function field, we can define its divisor div f =

∑P ordP f . We can write this divisor in the form

div f = D0 −D∞,

where D0, called the zero divisor, is the sum of all zeros of f counting multiplicities, and

D∞, called the polar divisor, is the sum of all poles of f counting multiplicities.

We say that a divisor D is principal if it is a divisor of some function, i.e., if there exists

some f ∈ k(C)× such that D = div f . The divisors D1 and D2 are linearly equivalent if

there exists a function f such that D1 = div f +D2.

If we have a degree d morphism f = ( f1 : f2) : C → P1, where f1, f2 ∈ k(C)×, we can

define its divisor as

div f = div f1 −div f2.

It is not hard to see that this definition does not depend on the choice of f1 and f2. We will

use this slight abuse of notation throughout the thesis and look at divisors of morphisms

from C to P1.

Proposition 1.4.6. Let f : C → P1 be a degree d morphism and let div f = D0 −D∞.

Then D0 and D∞ are both degree d effective divisors. Therefore, all principal divisors

have degree 0.

Proof. The degree of f is the size of the preimage of any point in P1(Q), counting mul-

tiplicities. Therefore, degD0 = # f−1(0) = d and degD∞ = # f−1(∞) = d. Now we have

degdiv f = d −d = 0. ■

We denote the set of degree d divisors as Divd(C) and the set of principal divisors as

Princ(C). It follows that Princ(C)f Div0(C). We define the zero Picard group

Pic0(C) = Div0(C)/Princ(C).

16
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We also define the Picard group

Pic(C) = Div(C)/Princ(C)

and Picd(C) as the set of classes of degree d divisors, similarly to Pic0(C).

Definition 1.4.7. An abelian variety is a projective algebraic variety that is also an

abelian group with the group operation defined with regular functions.

Elliptic curves are an example of abelian varieties. In fact, they are the only abelian

varieties of dimension 1.

Theorem 1.4.8 (Mordell-Weil). For an abelian variety A defined over a number field k,

the group A(k) is a finitely generated abelian group.

This theorem is a generalization of the Mordell theorem for elliptic curves.

We will not define the Jacobian variety J(C) here, the definition can be found in [74,

Section 1]. Instead, we give a characterization.

Theorem 1.4.9. [74, Theorem 1.1] Let C be a curve over a field k such that C(k) ̸= /0.

Then J(C)(k)∼= Pic0(C)(k).

The Jacobian J(C) is an abelian variety, but its defining equations are not of interest to

us. Instead, it is much more useful as a zero Picard group or as a finitely generated abelian

group (due to Mordell-Weil theorem). It has many other important properties which will

be discussed later in this thesis.

The Jacobians of modular curves X(N), X0(N), X1(N), and X1(M,N) are usually de-

noted by J(N), J0(N), J1(N), and J1(M,N), respectively.

Definition 1.4.10. The Riemann-Roch space of a divisor D is

L(D) = { f : C → P1 : div f +D g 0}∪{0}.

This is a finitely dimensional vector space of dimension ℓ(D).

Notice that for all D g 0 we have ℓ(D) g 1 since the constant functions are in L(D).

Also, it is not hard to see that linearly equivalent divisors have the same dimension ℓ(D)

and that ℓ(D) = 0 for divisors D with negative degree.
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We say that a divisor D on a curve C is canonical if there exists a differential ω on C

such that D = div ω . We will not define differentials on a curve here, the definition can

be found in [90, Section II.4]. Instead we give two results that give a characterization of

canonical divisors.

Proposition 1.4.11. [90, Remark II.4.4] If ω1, ω2 are non-zero differentials, then there

is a function f such that

div ω1 = div f +div ω2.

Therefore, any two canonical divisors differ by a principal divisor.

Proposition 1.4.12. A divisor D on a genus g curve C is canonical if and only if degD =

2g−2 and ℓ(D) = g.

Now we state the Riemann-Roch theorem and Clifford’s theorem on special divisors.

The Riemann-Roch theorem is a very important result and it will be heavily used through-

out this thesis. For example, we will use it to prove Proposition 1.4.12.

Theorem 1.4.13 (Riemann-Roch, [36, Theorem IV.1.3]). Let D be a divisor on a genus

g curve C and let K be a canonical divisor on C. Then we have

ℓ(D)− ℓ(K −D) = degD−g+1.

Theorem 1.4.14 (Clifford’s theorem on special divisors, [36, Theorem IV.5.4]). A divi-

sor D is called special if ℓ(K −D)g 1 (K is again the canonical divisor). For an effective

degree d special divisor D on a curve C we have

2(ℓ(D)−1)f d.

The equality holds if and only if D is zero or a canonical divisor, or if C is a hyperelliptic

curve and D is linearly equivalent to an integral multiple of a hyperelliptic divisor.

Proof of Proposition 1.4.12. Apply the Riemann-Roch theorem with D = 0. Since L(0)

contains only constant functions, we get

1− ℓ(K) = 0−g+1 = 1.
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Therefore, ℓ(K) = g. Now apply the theorem with D = K. We get

g−1 = ℓ(K)− ℓ(0) = degK −g+1.

Therefore, degK = 2g−2. Suppose now that there is a divisor D such that degD = 2g−2

and ℓ(D) = g. Applying the theorem again we get

g− ℓ(K −D) = g−1,

meaning that ℓ(K −D) = 1. Therefore, there exists a morphism f such that K −D+

div f g 0. Since deg(K −D) = 0, this implies that K −D is principal and D must be

canonical by Proposition 1.4.11 as a difference of a canonical and a principal divisor. ■

1.4.1. Hyperelliptic and bielliptic curves

Hyperelliptic curves were mentioned in Clifford’s theorem. We will now define them and

mention some of their properties because we will consider them in later chapters.

Definition 1.4.15. A curve C of genus g g 2 is hyperelliptic if there exists a degree 2

morphism f : C → P1.

Every hyperelliptic curve of genus g can be given by an equation of the form

C : y2 +h(x)y = f (x),

where f (x) is a polynomial of degree 2g+1 or 2g+2 without multiple roots and h(x) is

a polynomial of degree f g+1. If the field of definition is not of characteristic 2, we can

take h = 0. From this equation we can easily see that the map x : C → P1, (x,y) 7→ x is a

desired degree 2 morphism.

A hyperelliptic divisor, mentioned in Clifford’s theorem, is a divisor of the for (x,y)+

(x,y′) for some x. If h = 0, this divisor is just (x,y)+(x,−y).

The hyperelliptic curve y2 = f (x) = a2g+2x2g+2 + . . .+ a0 is actually a projective

curve, but it is singular in the standard projective space P2. Therefore, we must use the

weighted projective space where y has weight g+1 and x,z have weight 1. The projective
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model of the curve is

y2 = a2g+2x2g+2 + . . .+a0z2g+2.

We can see that the curve has a single point at infinity ∞ = (1 : 0 : 0) if a2g+2 = 0 and two

points at infinity ∞± = (1 : ±√
a2g+2 : 0) if a2g+2 ̸= 0 (or none, depending on the field of

definition).

Proposition 1.4.16. Every genus 2 curve is hyperelliptic.

Proof. By Proposition 1.4.12, the canonical divisor K of this curve C is of degree 2 and

Riemann-Roch dimension 2. Therefore, there exists a non-constant morphism f : C → P1.

Since div f +K g 0, the degree of f is at most 2. It cannot be 1, otherwise C would

be isomorphic to a genus 0 curve P1. Therefore, deg f = 2 and C is hyperelliptic. ■

For the end of this section, we prove Proposition 1.4.18 to demonstrate the usefulness

of the Riemann-Roch theorem.

Proposition 1.4.17 (Corollary of [14, Theorem 2.1]). Let C/Q be a smooth projective

curve of genus g g 1, and let P ∈ C(Q). Then for all d g 2g, the curve C has infinitely

many points of degree d.

Proposition 1.4.18. Let C/Q be a smooth projective curve of genus g = 2 with a point

P ∈C(Q). If J(C)(Q) is nontrivial, then C has infinitely many cubic points.

Proof. Suppose first that ℓ(2P) = 1. Applying the Riemann-Roch theorem on D = 3P we

get

ℓ(3P) = ℓ(3P)− ℓ(K −3P) = 3−2+1 = 2.

Therefore, there exists a non-constant function f : C → P1 of degree f 3. However, its

degree cannot be f 2, otherwise we would have div f + 2P g 0, a contradiction with

ℓ(2P) = 1. This means that deg f = 3. We can now use [14, Theorem 2.1, Step 2] to find

infinitely many cubic points on C as preimages of points in P1(Q).

Suppose now that ℓ(2P)g 2. Applying the Riemann-Roch theorem on D = 2P we get

ℓ(2P)− ℓ(K −2P) = 2−2+1 = 1 =⇒ ℓ(K −2P)g 1.
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Since K −2P is of degree 0 and ℓ(K −2P)g 1, it is principal. Therefore, 2P must be

canonical as a difference of a canonical and a principal divisor.

Since J(C)(Q) is nontrivial, there exists an effective rational divisor D of degree 2

such that the divisor D−2P is not principal. We again use the Riemann-Roch theorem to

get (since 2P is canonical we may plug in 2P instead of K)

ℓ(D+P)− ℓ(P−D) = 3−2+1 = 2 =⇒ ℓ(D+P) = 2,

ℓ(D)− ℓ(2P−D) = 2−2+1 = 1 =⇒ ℓ(D) = 1.

Therefore, there exists a function f such that D+P+ div f g 0 and D+ div f s 0. We

immediately see that deg f f 3. If deg f = 3, we may apply [14, Theorem 2.1, Step 2]

to conclude that C has infinitely many cubic points. Since g = 2, we have deg f > 1. It

remains to prove that f cannot have degree 2.

Suppose that deg f = 2 and let us write D = D1+D2 for D1,D2 ∈C(k). Since D+P+

div f g 0 and D+ div f s 0, we see that div f = X +Y −D1 −P for some X ,Y ∈ C(k).

This means that ℓ(D1+P)g 2 (one function is f and the other is a constant function) and

so, again by Riemann-Roch, D1 +P must be canonical.

However, since D1 +P and 2P are both canonical, their difference D1 +P− 2P =

D1 −P must be principal and we get a contradiction. ■

Therefore, by Proposition 1.4.17 every genus 2 curve over Q containing at least 1

rational point has infinitely many points of degree d for every d g 4. Since every genus 2

curve is hyperelliptic, it also has infinitely many quadratic points of the form (x,
√

f (x)).

Furthermore, if its Jacobian is nontrivial over Q (automatically true if the curve has at

least 2 rational points P,Q since [P−Q] ̸= 0), it also has infinitely many cubic points by

Proposition 1.4.18.

At the end of this section, we will define the bielliptic curves.

Definition 1.4.19. A curve C of genus g g 2 is bielliptic if there exists a degree 2 mor-

phism from C to an elliptic curve.

Proposition 1.4.20. [35, Proposition 1] If C is a bielliptic curve and f : C → C′ is a

non-constant morphism, then C′ is either of genus 0, elliptic, hyperelliptic, or bielliptic.
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1.5. MODULAR FORMS

Definition 1.5.1. Let Γ f SL2(Z) be a congruence subgroup. A modular form of level

Γ and weight k is a holomorphic function f : H → C such that

f (γ(τ)) = (cτ +d)k f (τ) for every γ =




a b

c d



 ∈ Γ,τ ∈ H

and which is also holomorphic at ∞. The set of modular forms of level Γ and weight k is

denoted by Mk(Γ).

The set Mk(Γ) is a finitely dimensional vector space over C [25, Section 1.1]. If

−I ∈ Γ (as is the case for Γ = Γ0(N), for example), then Mk(Γ) is trivial for odd k. This

is because in that case

f (τ) = f (−Iτ) = (−1)k f (τ) =− f (τ) for every τ ∈ H ,

implying that f = 0. From the fact that limτ→∞ e2πiτ = 0 and because modular forms are

by definition holomorphic at ∞, every modular form has a Fourier expansion

f (τ) =
∞

∑
n=0

anqn,q = e2πiτ .

Definition 1.5.2. A cusp form of level Γ and weight k is a modular form whose Fourier

expansion has leading coefficient a0 = 0, i.e.,

f (τ) =
∞

∑
n=1

anqn,q = e2πiτ .

The set of cusp forms of level Γ and weight k is denoted by Sk(Γ).

The cusp forms Sk(Γ) form a vector subspace of Mk(Γ).

We will particularly be interested in the modular forms associated with the congruence

subgroup Γ0(N). We say that these modular forms are of level N and accordingly define

Mk(N) := Mk(Γ0(N)), Sk(N) := Sk(Γ0(N)).

Definition 1.5.3. Let n∈N. The Hecke operator Tn is a linear operator on Mk(N) defined
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as follows. For f = a0 +a1q+ . . . the Fourier coefficients of Tn f are defined as

am(Tn f ) := ∑
d|gcd(m,n)

dk−1amn/d2 .

The Hecke operators pairwise commute. Furthermore, they satisfy the following rela-

tions [25, Section 5.3]:

Tpr = Tpr−1Tp − pTpr−2 for primes p ∤ M and r > 1,

Tpr = T r
p for primes p | M and r > 0,

Tmn = TmTn if gcd(m,n) = 1.

Let M be a divisor of N. Since Γ0(N) ¢ Γ0(N), we immediately get that Mk(M) ¢
Mk(N). Thus we define the space Mold

k (N) =
⋃

M|N,M ̸=N Mk(M). The orthogonal comple-

ment of Mold
k (N) with respect to the Petersson inner product (we will not define it here

as we do not use it later, its definition can be found in [25, Section 5.4]) is the space

Mnew
k (N), Therefore, we have

Mk(N) = Mold
k (N)

⊕

Mnew
k (N).

If we restrict ourselves to cusp forms, we have a corresponding decomposition into spaces

of oldforms and newforms

Sk(N) = Sold
k (N)

⊕

Snew
k (N).

Definition 1.5.4. A cusp form f ∈ Sk(N) is an eigenform of a Hecke operator Tn if there

is some a ∈ C such that Tn f = a · f .

A newform is a cusp form f ∈ Snew
k (N), normalized so that a1 = 1, that is also an

eigenform of all Hecke operators Tn.

Theorem 1.5.5 ( [25, Theorem 5.8.2]). For every N ∈ N the set of newforms Snew
k (N)

has a basis of newforms. For each such newform f we have Tn f = an( f ) f for all n ∈ N,

that is, its Fourier coefficients are its eigenvalues.

Elliptic curves are closely linked to newforms. To see that, we first need to define the
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trace of Frobenius.

Definition 1.5.6. Let E be an elliptic curve over Fq. Then aq = q+ 1− #E(Fq) is the

trace of Frobenius of E over Fq.

Theorem 1.5.7 (Hasse-Weil Bound, [94]). Let C/Fq be a curve of genus g. Then |q+
1−#C(Fq)| f 2g

√
q.

As an immediate consequence we get a bound |aq| f 2
√

q.

Definition 1.5.8. An elliptic curve E is modular if there exists N ∈N and a non-constant

morphism X0(N)→ E.

Theorem 1.5.9 (Modularity Theorem, [25, Theorem 2.5.1]). Let E/Q be an elliptic

curve. Then there exists N ∈ N and a non-constant rational morphism f : X0(N)→ E.

A minimal such N is called the conductor of E and is denoted by cond(E). The primes

of bad reduction for E are precisely those primes that divide cond(E). Also, if there is a

non-constant rational morphism X0(N)→ E for some N, then cond(E) | N.

A morphism f : X0(cond(E))→E of a minimal degree is called a modular parametriza-

tion of E and its degree is called a modular degree of E.

Lemma 1.5.10. Elliptic curves over Q that are in the same Q-isogeny class have the

same conductor.

Proof. Let us take E/Q and E ′/Q together with a rational isogeny ψ : E → E ′. Then

there exists a dual isogeny ψ̂ : E ′ → E. Now any morphism f : X0(N) → E generates a

morphism ψ ◦ f : X0(N)→ E ′ and any morphism h : X0(N)→ E ′ generates a morphism

ψ̂ : X0(N)→ E. ■

Theorem 1.5.11 (Modularity Theorem, alternative formulation, [25, Theorem 8.8.1]).

Let E/Q be an elliptic curve with conductor N. Then there exists a newform f ∈ Snew
2 (N)

such that ap( f ) = ap(E) for all primes p.

Remark 1.5.12. The converse is also true. Namely, every rational newform f ∈ Snew
2 (N)

arises from some elliptic curve E/Q with conductor N.
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Notice that this correspondence is not bijective because elliptic curves over Q that

are in the same Q-isogeny class will have the same associated newform. This is because

isogenous elliptic curves have the same traces of Frobenius aq(E) as a consequence of

Tate’s Isogeny Theorem [93, Theorem 3.1]. We have the following bijection:

rational newforms f ∈ Snew
2 (N) ⇐⇒Q− isogeny classes of elliptic curves over Q

with conductor N.

From now on we will work only with modular forms of weight 2.

The modularity theorem tells us that all elliptic curves over Q are modular. This was

an important step in proving Fermat’s Last Theorem. Another result used in that proof

was the following proposition.

Proposition 1.5.13. There exist newforms f ∈ Snew
2 (N) if and only if

N /∈ {1,2,3,4,5,6,7,8,9,10,12,13,16,18,22,25,28,60}.

Therefore, there are no elliptic curves over Q with conductor N in this set.

It is a conjecture that all elliptic curves over number fields are modular. This is still

an open problem, although some special cases have been solved. For example, Freitas,

Le Hung, and Siksek have proved that all elliptic curves over real quadratic fields are

modular [30].
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2. GONALITY OF ALGEBRAIC CURVES

Definition 2.0.1. Let k be a field and C a smooth projective curve over k. The k-gonality

gonk(C) of C is defined to be the least degree of a non-constant morphism f : C → P1.

Gonality of algebraic curves has been the subject of research by many researchers.

The topic of this chapter will be the computation of the Q and C-gonalities of modular

curves and their quotients. First, we give two obvious lower bounds on the Q-gonality of

a curve C defined over Q.

gonC(C)f gonQ(C) and

gonFp
(C)f gonQ(C).

In the second inequality p is a prime of good reduction of C. Now we present a result

that gives bounds on the gonality of a general algebraic curve. This result will be very

important to us and we will use it throughout the thesis.

Proposition 2.0.2 ( [85, Proposition A.1]). Let X be a curve of genus g over a field k.

(i) If L is a field extension of k, then gonL(X)f gonk(X).

(ii) If k is algebraically closed and L is a field extension of k, then gonL(X) = gonk(X).

(iii) If g g 2, then gonk(X)f 2g−2.

(iv) If g g 2 and X(k) ̸= /0, then gonk(X)f g.

(v) If k is algebraically closed, then gonk(X)f g+3

2
.

(vi) If π : X →Y is a non-constant k-rational morphism, then gonk(X)f degπ ·gonk(Y ).
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(vii) If π : X → Y is a non-constant k-rational morphism, then gonk(X)g gonk(Y ).

Since all modular curves X0(N), and X1(N) as well as all quotients of the curve X0(N)

have at least 1 rational cusp, by Proposition 2.0.2(iv) their Q-gonality is bounded from

above by their genus.

There exists a lower bound on the C-gonality of any modular curve X(Γ), linear in

terms of the index of the congruence subgroup Γ. This was proven by Zograf [95]. Later,

Abramovich [1] and Kim and Sarnak [64, Appendix 2] improved the constant in that

bound. We here present the result obtained by combining these results.

Theorem 2.0.3. [50, Theorem 1.2.] Let X(Γ) be the algebraic curve corresponding to a

congruence subgroup Γ ¦ SL2(Z) of index

DΓ = [SL2(Z) : ±Γ].

Then

DΓ f 12000

119
gonC(X(Γ)).

Remark 2.0.4. From Kim and Sarnak’s arguments in [64] we can get that the constant

12000

119
can be replaced with a slightly better constant

215

325
. However, their difference is

∼ 0.01572 which does not make any difference in our calculations (we would need to

work with gonality > 100 for it to make a difference). The constant
12000

119
is given here

because it appears in other papers, for example, in [50].

The constant
215

325
is the best one so far. We should also mention that the constant

in Zograf’s inequality was 128 and this constant was improved to
800

7
in Abramovich’s

inequality.
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2.1. GONALITY OF THE MODULAR CURVE X0(N)

The study of gonalities of the classical modular curve X0(N) started with Ogg [80], who

determined the hyperelliptic modular curves X0(N). Hasegawa and Shimura [37] deter-

mined both the X0(N) that are trigonal over C and the X0(N) that are trigonal over Q and

Jeon and Park [53] determined the X0(N) that are tetragonal over C.

In this thesis we will study the gonalities of the modular curves X0(N) over Q instead

of over C. The motivation for this comes from two directions.

First, the Q-gonality of a curve is arguably more interesting from an arithmetical

point of view than its C-gonality. For example, when one wants to determine the modular

curves X0(N) and X1(M,N) with infinitely many degree d points (over Q), a question

of fundamental arithmetical importance, as these curves parametrize elliptic curves with

level structures, then determining all such curves of gonality d plays a key role.

Using the gonality of the modular curves as one of the main ingredients, all the modu-

lar curves X1(M,N) with infinitely many degree d points have been determined for d = 2

by Mestre [72], d = 3 by Jeon, Kim and Schweizer [51], for d = 4 by Jeon, Kim and

Park [50] and for d = 5,6 by Derickx and Sutherland [22]. The same problem has been

solved for the modular curves X0(N) for d = 2 by Bars [6] and for d = 3 by Jeon [45].

The other motivation comes from the database, which is in construction, of modular

curves that will be incorporated in the LMFDB [67], which tabulates L-functions, modular

forms, elliptic curves and related objects. At the moment of writing of this thesis, there

were 235 modular curves X0(N) in LMFDB, all with N f 331. The exact Q-gonality was

listed as known for less than half of them. Our work determines the Q-gonality for all

N f 144 and many other N in this database.

Although our interest lies primarily in Q-gonalities, we compute and document the

C-gonality wherever possible. Our main result is the following theorem.

Theorem 2.1.1. [76, Theorem 1.1] The Q-gonalities and C-gonalities of modular curves

X0(N) are as listed in Table A.1.

One immediate consequence of this result is the determination of all X0(N) that are

tetragonal over Q. A curve that is tetragonal over Q has to have gonality f 4 over C
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and all curves satisfying this are known by the aforementioned results [37,53,80]. As we

determine in Theorem 2.1.1 the Q-gonalities for all N satisfying this, the following result

immediately follows.

Theorem 2.1.2. [76, Theorem 1.2] The modular curve X0(N) is tetragonal over Q if and

only if

N ∈ {38,42,44,51,52,53,55,56,57,58,60,61,62,63,65,66,67,68,69,70,72,73,74,75,

77,78,79,80,83,85,87,88,89,91,92,94,95,96,98,100,101,103,104,107,111,119,

121,125,131,142,143,167,191}.

After Theorem 2.1.2 and the aforementioned results [37, 53, 80] which determine all

X0(N) of C-gonality f 4, the question of determining the pentagonal, and after that,

hexagonal (both over Q and over C) curves X0(N) naturally arises. Surprisingly, there

seems to have been no known curve that is pentagonal either over Q or over C (at least to

our knowledge); see [37, p.139-140] for a short discussion stating this. As a byproduct of

our results and with some additional work, we determine all X0(N) that are pentagonal or

hexagonal over Q.

Theorem 2.1.3. [76, Theorem 1.3] The modular curve X0(N) is pentagonal over Q if

and only if N = 109.

Theorem 2.1.4. [76, Theorem 1.4] The modular curve X0(N) is hexagonal over Q if

and only if

N ∈ {76,82,84,86,90,93,97,99,108,112,113,115−118,122−124,127−129,135,

137,139,141,144,146,147,149,151,155,159,162,164,169,179,181,215,227,239}.

We also show that X0(N) is pentagonal over C for N = 97 and 169, obtaining the first

known such curves.

Some of our methods will be similar to the ones in the work of Derickx and Van

Hoeij [23], where they compute the exact Q-gonalities of the modular curves X1(N) for

N f 40 and give upper bounds for N f 250, but some will be different. The differences
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arise out of the intrinsic properties of the different modular curves. In particular, on

one hand the properties that make X0(N) easier to deal with are its lower genus and an

abundance of involutions (especially for highly composite N). On the other hand, X0(N)

has much fewer cusps and hence much fewer modular units, the main tool in [23] for

obtaining upper bounds. Another difficulty with X0(N), as opposed to X1(N), is that it

is in general hard to obtain reasonable plane models, making computations in function

fields much more computationally demanding.

We now give a brief description of our methods and compare them to the methods

of [23]. The way to determine the exact gonality of a modular curve is to give a lower

bound and an upper bound for the gonality which match each other. We explain both in

more detail and rigor in Sections.

The authors of [23] were (perhaps surprisingly) able to use a single method to obtain

lower bounds and a single method to obtain upper bounds. The lower bounds were ob-

tained using the well-known fact that gonFp
(C)f gonQ(C) for a prime of good reduction

p of C and by then computing gonFp
(C), which is a finite computation. This will be

one of our main tools too, together with the Castelnuovo-Severi inequality (see Proposi-

tion 2.1.5) and using gonC(C)f gonQ(C) together with known results about C-gonalities.

An especially interesting method, described in Section 2.1.4, is Mordell-Weil sieving on

the Brill-Noether varieties W 1
d (X), which we use to show to determine the Q-gonalities of

curves X0(N) for N = 97,133,145. To produce lower bounds on the C-gonality, we will

also use computations on Betti numbers and proven parts of the Green conjecture (see

e.g. Corollary 2.1.14 and Corollary 2.1.15). There will be a few instances in which we

use other methods as well.

Derickx and van Hoeij obtained their upper bounds by constructing modular units

(morphisms to P1 whose zero and polar divisor are supported only on cusps) of a certain

degree. In certain instances we will also obtain upper bounds by explicitly constructing

morphisms of degree d by searching in Riemann-Roch spaces of sets of divisors with

some fixed support. For us, the set of divisors through which we will search will not be

supported only on cusps, but will also include CM points and even non-CM non-cuspidal

rational points. We will also construct morphisms on X0(N) by finding morphisms g of

degree k on curves X0(N)/wd or X0(d) for d|N and then pulling them back via the quotient
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map f : X0(N)→ X0(N)/wd or f : X0(N)→ X0(d), thus obtaining a map f ∗g of degree

k ·deg f . Apart from this, we will also use the Tower theorem (see Corollary 2.1.17) which

allows us to determine the Q-gonality from the C-gonality under certain assumptions.

A lot of our results rely on extensive computation in Magma [11]. To compute models

for X0(N) and their quotients by Atkin-Lehner involutions, we used the code written by

Philippe Michaud-Jacobs as part of a collaborative project on computing points of low

degree on modular curves [3].

It is natural to wonder why we stopped at the point where we did and whether one can

determine Q-gonalities of X0(N) for larger N. We discuss this, the complexity of the most

computationally demanding parts of our computations, and possible further work briefly

in Section 2.1.6.

The code that verifies all our computations can be found on:

https://github.com/orlic1/gonality_X0.

All of our computations were performed on the Euler server at the Department of Math-

ematics, University of Zagreb with an Intel Xeon W-2133 CPU running at 3.60GHz and

with 64 GB of RAM.

2.1.1. Lower bounds

In this section we give all the results used to obtain lower bounds for the gonality of the

curve X0(N).

A very useful tool for producing a lower bound on the gonality is the Castelnuovo-

Severi inequality (see [92, Theorem 3.11.3] for a proof).

Proposition 2.1.5 (Castelnuovo-Severi inequality). Let k be a perfect field, and let X , Y, Z

be curves over k. Let non-constant morphisms πY : X →Y and πZ : X → Z over k be given,

and let their degrees be m and n, respectively. Assume that there is no morphism X → X ′

of degree > 1 through which both πY and πZ factor. Then the following inequality holds:

g(X)f m ·g(Y )+n ·g(Z)+(m−1)(n−1). (2.1)

A field k is called separable if every irreducible polynomial over k has no multiple
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roots over any field extension of k. Since C and Q are both perfect fields as fields of

characteristic 0, we can use Castelnuovo-Severi inequality to get lower bounds on both C

and Q-gonalities.

Remark 2.1.6. One of the assumptions of Castelnuvo-Severi inequality is that there

is no morphism X → X ′ through which both πY and πZ factor. This morphism could,

however, be defined over k and not over k. However, Khawaja and Siksek have recently

shown [63, Theorem 14] that we can weaken this assumption. Namely, that there is no

morphism X → X ′ over k through which both πY and πZ factor.

Another important tool used here is the following inequality of Ogg. It originally

appeared as [80, Theorem 3.1], but we state it in the simpler form as in [37, Lemma 3.1].

Lemma 2.1.7 (Ogg). For a prime p ∤ N, let

Lp(N) :=
p−1

12
ψ(N)+2ω(N),

where ψ(N) = N ∏q|N(1+
1
q
) is the index of the congruence subgroup Γ0(N) is SL2(Z)

and ω(N) is the number of distinct prime divisors of N. Then

Lp(N)f #X0(N)(Fp2).

Lemma 2.1.8. Let C be a curve over Q, p a prime of good reduction for C and q a power

of p. Suppose #C(Fq)> d(q+1) for some d. Then gonQ(C)> d.

Proof. Suppose on the contrary that there exists a rational morphism f : C → P1 of degree

f d. Then for any c ∈ P1(Fq) we have # f−1(c)f d. Since f sends C(Fq) into P1(Fq), it

follows that #X(Fq)f d(q+1). ■

We will use Lemma 2.1.7 in combination with Lemma 2.1.8 to get a reasonable bound

on N such that the curve X0(N) has Q-gonality at most 6. This is a better bound for the

Q-gonality than the one we can obtain from Theorem 2.0.3.

Proposition 2.1.9. If N > 336, then the curve X0(N) has Q-gonality at least 7.
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Proof. The proof is similar to the proof of [37, Lemma 3.2]. Primes of good reduction

for X0(N) are all p ∤ N. It is sufficient to show that there is a prime p ∤ N such that

p−1

12
ψ(N)+2ω(N) > 6(p2 +1).

Suppose that the Q-gonality of X0(N) is f 6. Now we have 6 cases.

(i) 2 ∤ N: take p = 2, from
ψ(N)

12
+2 f 30 we get N f ψ(N)f 336.

(ii) 2 |N, 3 ∤N: take p= 2, from
ψ(N)

6
+2f 60 we get

3N

2
fψ(N)f 348, or N f 232.

(iii) 2,3 | N, 5 ∤ N: take p = 5, from
ψ(N)

3
+ 4 f 156 we get 2N f ψ(N) f 456, or

N f 228.

(iv) 2,3,5 | N, 7 ∤ N: take p = 7, from
ψ(N)

2
+ 8 f 300 we get

5N

2
f ψ(N) f 584, or

N f 234.

(v) 2,3,5,7 | N, 11 ∤ N: take p = 11, from
5ψ(N)

6
+16 f 732 we get

20N

7
f ψ(N)f

716, or N f 251.

(vi) 2,3,5,7,11 |N: take p= p0, the smallest prime not dividing N. Let q0 be the largest

prime dividing N. We have

p0 −1

12
· 240 ·210q0

77
+32f p0 −1

12
· 240N

77
+32f (p0 −1)ψ(N)

12
+2ω(N)f 6(p2

0+1).

Simplifying this we get
600(p0 −1)q0

11
f 6p2

0 − 26. Due to Bertrand’s postulate

we have p0 < 2q0, therefore
300(p0 −1)p0

11
f 6p2

0 − 26. However, this quadratic

inequality never holds and we get a contradiction in this case.

Therefore, for N > 336 we can always find a suitable prime p. ■

Now we use proven parts of Green’s conjecture to obtain a lower bound on the C-

gonality, which in turn gives us a lower bound on the Q-gonality. We mostly follow the

notation of [53], stated in the language of divisors instead of line bundles.

Definition 2.1.10. A gr
d is a subspace V of L(D), for a divisor D on a curve C, such that

degD = d and dimV = r+1.
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Since removing the base locus of a linear series decreases the degree while preserving

r, the gonality gonCC is the smallest d such that C has a g1
d . This will be further elaborated

in the proof of Corollary 2.1.14.

Definition 2.1.11. Let D be a divisor on C and K a canonical divisor on C. The Clifford

index of D is the integer

Cliff(D) := degD−2(ℓ(D)−1),

and the Clifford index of C is

Cliff(C) := min{Cliff(D) | ℓ(D)g 2 and ℓ(K −D)g 2}.

The Clifford dimension of C is defined to be

CD(C) := min{ℓ(D)−1 | ℓ(D)g 2, ℓ(K −D)g 2,Cliff(D) = Cliff(C)}.

For every such divisor D that achieves the minimum we say that it computes the Clifford

dimension.

The Clifford index gives bounds for the C-gonality of X (see [15]):

Cliff(C)+2 f gonCX f Cliff(C)+3. (2.2)

We can see that CD(X) g 1 immediately from the definition. In most cases we have

CD(X) = 1. It is a classical result that CD(X) = 2 if and only if X is a smooth plane curve

of degree g 5 [53, Page 309]. Martens [69] proved that CD(X) = 3 if and only if X is a

complete intersection of two irreducible cubic surfaces in P3, and hence its genus is 10.

Let C be a non-hyperelliptic curve. It has a canonical embedding C ↪→ Pg−1. Let

S := C[X0, . . .Xg−1], let IC be the ideal of C and SC be S-module SC := S/IC. Let

0 → Fg−1 → ·· ·F2 → F1 → S → SC → 0 (2.3)

35



Gonality of algebraic curves Gonality of the modular curve X0(N)

be the minimal free resolution of SC, where

Fi =
⊕

j∈Z
S(−i− j)βi, j .

The numbers βi, j are called graded Betti numbers. Green’s conjecture relates graded Betti

numbers with the existence of gr
d . We state it as in [88, p.84] (note that the indices of Betti

numbers are defined differently there).

Conjecture 2.1.12 (Green [33]). Let C be a curve of genus g. Then βp,2 ̸= 0 if and

only if there exists a divisor D on C of degree d such that a subspace gr
d of L(D) satisfies

d f g−1, r = ℓ(D)−1 g 1 and d −2r f p.

The “if” part of the statement has been proved by Green and Lazarsfeld in the appendix

to [33].

Theorem 2.1.13 (Green and Lazarsfeld, Appendix to [33]). Let C be a curve of genus

g. If βp,2 = 0, then there does not exist a divisor D on C of degree d such that a subspace

gr
d of L(D) satisfies d f g−1, r = ℓ(D)−1 g 1 and d −2r f p.

For the ease of the reader we state the direct consequences of this theorem that we are

going to use.

Corollary 2.1.14. Let C be a curve of genus g g 5 with β2,2 = 0. Suppose that C is

neither hyperelliptic nor trigonal. Then gonC(C)g 5.

Proof. Suppose that gonC(C) = 4. Then there is a degree 4 morphism f : C → P1. We

have div( f ) = P−Q, where P is a zero divisor and Q is a polar divisor. This means that

ℓ(Q)g 2.

Suppose that ℓ(Q) = 2. Since d = degQ = 4, this implies the existence of g1
4. How-

ever, from the assumptions we have β2,2 = 0 and by Theorem 2.1.13 (by plugging in

d = 4, r = 1, p = 2) this is impossible. Therefore, we must have ℓ(Q)g 3 and there exists

another morphism g : C → P1 such that div(g) = R−Q and 1, f ,g are linearly indepen-

dent.
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Let us fix P0 ∈C(Q). Then the morphisms f ′ := f − f (P0) and g′ := g−g(P0) are in

L(D) and have a common zero P0. We now have

div( f ′) = P0 +P′−Q, div(g′) = P0 +R′−Q

for some effective degree 3 divisors P′,R′. Also, P′ ̸= R′ since the morphisms 1, f ,g

are linearly independent. Therefore, div( f ′/g′) = P′ − R′ and f ′/g′ is a non-constant

morphism from C to P1 of degree f 3, a contradiction. ■

Corollary 2.1.15. Let C be a curve of genus gg 6 with β3,2 = 0. Suppose that gonC(C)g
5. Then gonC(C)g 6.

Proof. The proof is similar to the proof of Corollary 2.1.14. ■

2.1.2. Upper bounds

In this section we give the results used to obtain upper bounds on the gonality of the

curve X0(N). Most upper bounds were obtained using Proposition 2.0.2 with known

rational maps from curves X0(N). We now state the Tower theorem and its two very

useful corollaries.

Theorem 2.1.16 (The Tower theorem, [78, Theorem 2.1]). Let C be a curve defined over

a perfect field k and f : C → P1 be a non-constant morphism over k of degree d. Then

there exists a curve C′ defined over k and a non-constant morphism C →C′ defined over

k of degree d′ dividing d such that

g(C′)f
Å

d

d′ −1

ã2

.

Proof. For a published proof, see [85, Proposition 2.4]. ■

Corollary 2.1.17. Let C be a curve defined over a perfect field k such that C(k) ̸= /0 and

let f : C → P1 be a non-constant morphism over k of prime degree d such that g(C) >

(d −1)2. Then there exists a non-constant morphism C → P1 of degree d defined over k.

Proof. From [37, Corollary 1.7.] it immediately follows that there exists a curve C′ of
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genus 0 and a non-constant morphism C →C′ of degree d defined over k. Since C(k) ̸= /0,

it follows C′(k) ̸= /0. Hence C′ is isomorphic to P1 over k, proving our claim. ■

Corollary 2.1.18. (i) Let C be a curve over Q of genus g 5 which is trigonal over C

and such that C(Q) ̸= /0. Then C is trigonal over Q.

(ii) Let C be a curve defined over Q with gonC(X) = 4 and g(X) g 10 and such that

C(Q) ̸= /0. Then gonQ(X) = 4.

Proof. Part (i) follows immediately from Corollary 2.1.17 by specializing C′ to be P1 and

d to be 3.

To prove part (ii) we note that, by Theorem 2.1.16, C will have a map of degree d′

over Q dividing 4 to a curve of genus f (4/d′− 1)2, so d′ cannot be 1. If d′ is 2, then

C is bielliptic because it admits a degree 2 rational map to an elliptic curve defined over

Q. Since every elliptic curve E/Q admits a degree 2 rational morphism to P1 (for curves

in the long Weierstrass model this morphism is simply x), the curve is tetragonal over Q

with a morphism C → E → P1. If d′ is 4, then C is tetragonal over Q, as required. ■

2.1.3. Results

In this section we apply the results of Section 2.1.1 and Section 2.1.2 to the modular

curves X0(N) to obtain upper and lower bounds for their Q and C-gonality. An overview

of the results and the location of the proofs for each curve can be found in Appendix A,

Table A.1.

Proposition 2.1.19. The C-gonality of the curve X0(N) is at least 6 for N g 198 and

N ∈ {114,132,134,135,140,145,150,151,152,160,165,166,168,170,171,

172,174,175,176,178,182,183,185,186,189,192,194,195,196}.

Proof. This is [37, Proposition 4.4]. ■

Upper bounds obtained by searching in Riemann-Roch spaces

One way of obtaining an upper bound of d on the gonality over Q of modular curves is

to explicitly construct a morphism f of degree d. This can be done by finding an effective

Q-rational divisor D such that ℓ(D)g 2.
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Proposition 2.1.20. The Q-gonality of X0(N) for N = 85 and 88 is at most 4.

Proof. To prove the upper bound, we construct a morphism to P1 of degree 4 by look-

ing at the Riemann-Roch spaces of Q-rational divisors of degree 4 whose support is in

the quadratic points obtained by the pullbacks of rational points on X∗
0 (85) and X+

0 (88),

respectively. We note that in the case N = 85 we were unable to obtain such morphisms

by looking at pullbacks from rational points on X0(N)/wd , for any of the Atkin-Lehner

involutions. ■

Proposition 2.1.21. The Q-gonality of X0(109) for N = 109 is at most 5.

Proof. We construct a morphism to P1 of degree 5 by looking at the Riemann-Roch spaces

of Q-rational divisors of degree 5 whose support is in the quadratic points obtained by the

pullbacks of rational points on X+
0 (109). ■

Proposition 2.1.22. The Q-gonality of X0(112) is at most 6.

Proof. We explicitly find a modular unit of degree 6 whose polar divisor is supported on

the 8 rational cusps (Proposition 1.3.2 tells us that the curve X0(112) has 8 rational cusps

and 4 cusps defined over Q(i)). The Magma computations took 10 hours to finish; see the

accompanying code on Github. ■

Proposition 2.1.23. The curve X0(N) has Q-gonality at most 6 for

N = 84,93,115,116,129,137,155,159.

Proof. The quotients X+
0 (N) have genus 4. We find degree 3 morphisms in Q(X+

0 (N))

by searching the Riemann-Roch spaces of divisors of the form P1 +P2 +P3, where Pi ∈
X+

0 (N)(Q). It follows that gonQX0(N) f 2 · gonQX+
0 (N) = 6 by Proposition 2.0.2 (vi).

■

Upper bounds obtained by considering a dominant map

Another way of obtaining an upper bound is to explicitly construct a morphism f :=

X0(N) → Y , where gonQY is known. Then gonQX0(N) f deg f · gonQY by Proposi-

tion 2.0.2 (vi).
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Proposition 2.1.24. The Q-gonality of X0(N) is at most 4 for

N = 51,55,56,60,62,63,65,69,75,79,83,89,92,95,101.

Proof. This was proved in [37, p.139]; but as the proof is short and instructive, we repeat

it here. By [6] all these curves are bielliptic and have a bielliptic involution w of Atkin-

Lehner type. Hence the maps π : X → X/w are defined over Q, and hence so is the degree

4 morphism obtained by composing π with a degree 2 rational morphism from the elliptic

curve X/w to P1. ■

Proposition 2.1.25. The Q-gonality of X0(N) is at most 4 for the following values of N,

with Y := X0(N)/wd .

Table 2.1: The values of N in Proposition 2.1.25.

N g(X0(N)) d g(Y ) N g(X0(N)) d g(Y )

42 5 42 2 77 7 77 2

52 5 52 2 80 7 80 2

57 5 57 2 87 9 87 2

58 6 29 2 91 7 91 2

66 9 11 2 98 7 98 2

67 5 67 2 100 7 4 2

68 7 68 2 103 8 103 2

70 9 35 2 107 9 107 2

73 5 73 2 121 6 121 2

74 8 74 2 125 8 125 2

Proof. This is proved in [37, p.139] and the argument of the proof is the same as of

Proposition 2.1.24, with the only difference being that the quotients X0(N)/wd are of

genus 2 and hence necessarily hyperelliptic. ■

Now we produce upper bounds on the Q-gonality by considering the degeneracy maps

X0(N) → X0(d) for d|N. We will elaborate more on the degeneracy maps in Chapter 3.
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For now, it is enough to know that the projection map X0(N)→ X0(d)

(E,C) 7→ (E,C[d])

is one of the degeneracy maps and that it is defined over Q.

Also, for a prime p, the degree of the degeneracy map X0(N p)→ X0(N) is p if p | N

and p+ 1 if p ∤ N since this is a number of groups C that have the same subgroup C[d].

Therefore, for M | N, it is an easy calculation that the degree of the degeneracy map

X0(N)→ X0(M) is equal to
ψ(N)

ψ(M)
(the function ψ is defined in Lemma 2.1.7).

Proposition 2.1.26. The Q-gonality of X0(N) is bounded from above for the following

values of N, where deg denotes the degree of the degeneracy map X0(N)→ X0(d).

Table 2.2: The values of N for Proposition 2.1.26.

N gonQ(X0(N))f d deg N gonQ(X0(N))f d deg

72 4 36 2 144 6 48 3

82 6 41 3 148 8 74 2

90 6 30 3 150 8 50 4

96 4 48 2 156 8 78 2

99 6 33 3 160 8 80 2

108 6 36 3 175 8 25 8

117 6 39 3 176 8 88 2

118 6 59 3 184 8 92 2

132 8 66 2 192 8 96 2

136 8 68 2 196 8 98 2

140 8 70 2 200 8 100 2

Proof. There exists a morphism f : X0(N) → X0(d) of degree deg over Q by the above

discussion. Therefore, gonQ(X0(N))f deg ·gonQ(X0(d)). ■

Next, we obtain upper bounds on gonQX0(N) by considering Atkin-Lehner quotients.
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Proposition 2.1.27. The C-gonality of X0(N) is bounded above by 6 and the Q-gonality

is bounded from above for the following values of N, with X :=X0(N) and Y :=X0(N)/wd .

Table 2.3: The values of N for Proposition 2.1.27.

N gonQ(X)f d g(Y ) gonQY f N gonQ(X)f d g(Y ) gonQY

76 6 76 3 3 145 8 29 4 4

86 6 86 3 3 149 6 149 3 3

97 6 97 3 3 151 6 151 3 3

105 6 35 3 3 161 8 161 4 4

110 8 55 4 4 169 6 169 3 3

113 6 113 3 3 173 8 173 4 4

123 6 41 3 3 177 8 59 4 4

124 6 31 3 3 179 6 179 3 3

127 6 127 3 3 188 8 47 4 4

128 6 128 3 3 199 8 199 4 4

133 8 19 4 4 215 6 215 4 3

135 6 135 4 3 239 6 239 3 3

139 6 139 3 3 251 8 251 4 4

141 6 47 3 3 311 8 311 4 4

Proof. In all the above cases Y is known to not be hyperelliptic. As there exists a mor-

phism of degree 2 over Q to X0(N)/wd , it follows from Proposition 2.0.2 (v),(vi) that

gonQ(X0(N))f 2gonQ(Y )f 2g(Y ).

In the cases N = 135 and 215 in the table above where we have gonQY f 3 < g(Y ) = 4,

this was obtained by explicitly computing the trigonal map Y → P1 and observing that it

is defined over Q. ■

Proposition 2.1.28. The Q-gonality of X0(N) is f 8 for the following values of N, with

Y := X0(N)/
〈
wd1

,wd2

〉
.
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Table 2.4: The values of N for Proposition 2.1.28.

N d1, d2 g(Y ) N d1, d2 g(Y )

102 2, 51 2 171 9, 19 3

106 2, 53 2 190 19, 95 2

114 3, 38 2 195 5, 39 3

120 8, 15 2 205 5, 41 2

126 2, 63 2 206 2, 103 2

130 10, 26 2 209 11, 19 2

134 2, 67 2 213 3, 71 2

138 3, 69 2 221 13, 17 2

153 9, 17 2 279 9, 31 5

158 2, 79 2 284 4, 71 2

165 11, 15 3 287 7, 41 2

166 2, 83 2 299 13, 23 2

168 24, 56 4

Proof. There exists a morphism of degree 4 over Q to X0(N)/
〈
wd1

,wd2

〉
. All these quo-

tients are hyperelliptic by [32]. Therefore, gonQ(X0(N))f 4 ·2 = 8. ■

Proposition 2.1.29. The Q-gonality of X0(N) is at most 6 for the following values of N,

where Y := X0(N)/wd .

Table 2.5: The values of N for Proposition 2.1.29.

N g(X0(N)) d g(Y ) N g(X0(N)) d g(Y )

105 13 35 3 147 11 3 5

118 14 59 3 149 12 149 3

122 14 122 5 162 16 162 7

123 13 41 3 164 19 164 6

124 14 31 3 181 14 181 5
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139 11 139 3 227 19 227 5

141 15 47 3 239 20 239 3

146 17 146 5

Proof. For N = 105,118,123,124,139,141,149,239 the quotients Y = X0(N)/wd are

trigonal over Q since they are of genus 3. For N = 122,146,147,162,164,181,227, the

quotients are trigonal over Q since they are trigonal over C of genus g 5 by [38] and we

can apply Corollary 2.1.18 (i). It follows that gonQX0(N)f 6. ■

Proposition 2.1.30. The curve X0(N) has Q-gonality at most 8 for

N = 152,157,163,183,185,197,203,211,223,263,269,359.

Proof. The quotients X+
0 (N) have genus 5 or 6 and are not trigonal by [38]. We explicitly

find degree 4 functions in Q(X+
0 (N)) using the Magma functions Genus5GonalMap(C)

and Genus6GonalMap(C). It follows that gonQX0(N)f 2 ·gonQX+
0 (N)f 8. ■

Lower bounds obtained by reduction modulo p

An important technique for obtaining a lower bound for the Q-gonality is comput-

ing the Fp-gonality. We will use certain tricks to greatly reduce the computational time

needed to give a lower bound for the Fp-gonality. The following propositions explain how

we do this in more detail. The following lemma will be useful in making the computation

of gonFp
C much quicker.

Lemma 2.1.31. Let C/Fp be a curve such that #C(Fp) = n. Suppose that there exists a

morphism f : C → P1 of degree d. Then

(a) there exists a morphism g of degree d such that its polar divisor is supported on at

most

õ

n

p+1

û

points P ∈C(Fp).

(b) there exists a morphism h of degree d such that its polar divisor is supported on at

least

°

n

p+1

§

points P ∈C(Fp).
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Proof. We will prove (a), as (b) is proved analogously. As f maps C(Fp) into P1(Fp), it

follows by the pigeonhole principle that there exists a c∈P1(Fp) such that f−1(c) consists

of at most

õ

n

p+1

û

points. If c=∞, then let g := f , otherwise we define g(x) :=
1

f (x)− c
.

The morphism g obviously satisfies the claim. ■

Proposition 2.1.32. The Q-gonality of X0(N) for N = 99 is at least 6.

Proof. Let C := X0(99). We compute #C(F5) = 6. Suppose f is an F5-rational mor-

phism of degree f 5. By the pigeonhole principle (as in Lemma 2.1.31), it follows that

either there is a point c ∈ P1(F5) such that f−1(c) contains no F5-rational points, or

# f−1(c)(F5) = 1 for every c ∈ P1(F5).

Suppose the former and let g(x) :=
1

f (x)− c
. Therefore g−1(∞) has no F5-rational

points. Hence g lies in the Riemann-Roch space of a divisor of one of the following

forms: D5, D4, D3 + D2 or D2 + D′
2, where Di is an irreducible F5-rational effective

divisor of degree i. Searching among the Riemann-Roch spaces of such divisors, we find

that there are no such non-constant morphisms.

Suppose now the latter. Now we can fix a P ∈ C(F5) and suppose without loss of

generality that g−1(∞)(F5) = P. Hence g will be found in the Riemann-Roch spaces

of P+D4, P+D2 +D′
2 or P+D3, where the notation is as before. Searching among

the Riemann-Roch spaces of such divisors, we find that there are no such non-constant

morphisms. ■

Proposition 2.1.33. The Q-gonality of X0(N) for N = 130 is at least 8.

Proof. Let C := X0(130). We compute #C(F3) = 8. Suppose f is an F3-rational function

of degree f 7. By the pigeonhole principle (as in Lemma 2.1.31), it follows that either

there is a point c ∈ P1(F3) such that f−1(c)(F3) contains at most one F3-rational point or

# f−1(c)(F3) = 2 for every c ∈ P1(F3).

Suppose the former and let g(x) :=
1

f (x)− c
. Therefore g−1(∞) has one F3-rational

point. Hence f lies in the Riemann-Roch space of an effective degree 7 divisor supported

on at most 1 rational point. Searching among the Riemann-Roch spaces of such divisors,

we find that there are no such non-constant morphisms.

Suppose now the latter. Now we can fix a P ∈ C(F3) and suppose without loss of

generality that g−1(∞)(F3) = {P,Q} for some Q ∈ C(F3). Hence g will be found in the
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Riemann-Roch space of an effective degree 7 divisor for which the set of rational points

in the support is exactly {P,Q}, with Q varying through all Q ∈C(F3). Searching among

the Riemann-Roch spaces of such divisors, we find that there are no such non-constant

functions. ■

We apply a similar approach by producing a lower bound for the Fp-gonality to obtain

a lower bound for the Q-gonality for a large number of N.

Proposition 2.1.34. A lower bound (LB) for the Q-gonality of X0(N) is given in the

following table, where p is a prime of good reduction for X0(N)

Table 2.6: The values of N for Proposition 2.1.34 along with

the running times of corresponding Magma programs.

N LB p time N LB p time N LB p time

38 4 5 2 sec 44 4 5 4 sec 53 4 5 9 sec

61 4 3 1 sec 76 6 5 8 sec 82 6 5 62 sec

84 6 5 67 min 86 6 3 135 sec 93 6 5 4 sec

99 6 5 94 sec 102 8 5 3.3 hrs 106 8 7 35 hrs

108 6 5 27 min 109 5 3 83 sec 112 6 3 10 hrs

113 6 3 4 sec 114 8 5 53.2 hrs 115 6 3 56 sec

116 6 3 10 sec 117 6 5 10 sec 118 6 3 12 sec

122 6 3 55 sec 127 6 3 24 sec 128 6 3 4 sec

130 8 3 20 min 132 8 5 22.2 hrs 134 8 3 1.2 hrs

136 8 5 13.4 hrs 137 6 3 4 sec 140 8 3 25.6 hrs

144 6 5 56 sec 147 6 5 4.5 min 148 8 5 3.2 hrs

150 8 7 34.5 hrs 151 6 5 94 sec 152 8 3 20.5 min

153 8 5 2 hrs 154 8 5 2 days 157 8 3 37 sec

160 8 7 173 sec 162 6 5 53 sec 163 7 5 3 min

169 6 5 2.5 min 170 8 3 100.5 hrs 172 8 3 3.3 hrs

175 2 2 18.7 sec 176 8 3 12 min 178 8 3 4.5 hrs

179 6 5 10 min 180 7 7 9 days 181 6 3 9 sec
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187 8 2 1.5 hrs 189 8 2 3 min 192 8 5 4 days

193 6 3 28 sec 196 8 5 2.9 hrs 197 6 3 36 min

198 8 5 7 days 200 8 3 1.6 hrs 201 8 2 4 hrs

217 8 2 2 min 229 8 3 6.5 min 233 8 2 2 hrs

241 8 2 2.5 min 247 8 2 4 hrs 277 8 5 7 days

Proof. In all the cases we compute that there are no functions of degree < d in Fp(X0(N)),

where p is as listed in the table. In computationally more demanding cases, i.e. when d, p

and the genus of X0(N) are larger, we use techniques as in Propositions 2.1.32 and 2.1.33.

All the Magma computations proving this can be found in our repository. ■

Corollary 2.1.35. The curve X0(212) is not hexagonal over Q.

Proof. The curve X0(106) has Q-gonality equal to 8 by Proposition 2.1.28 and Proposi-

tion 2.1.34. Therefore, the Q-gonality of the curve X0(212) must be at least 8 by Propo-

sition 2.0.2 (vii). ■

Proposition 2.1.36. The following genus 4 quotients X0(N)/wd are not trigonal over Q,

where p is a prime of good reduction for X0(N).

Table 2.7: The values of N for Proposition 2.1.36.

N d p N d p

110 55 7 188 47 3

145 29 11 199 199 5

161 161 5 251 251 3

173 173 5 311 311 5

177 59 5

Proof. We find that the quotients X0(N)/wd have no functions of degree 3 over Fp for d

and p listed in the table above. ■
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Remark 2.1.37. It is worth mentioning that Bars and Dalal [7] determined all quotients

X+
0 (N) which are trigonal over Q, thereby independently obtaining the results for N =

161,173,199,251,311 in Proposition 2.1.36.

We can also directly use Lemma 2.1.7 and Lemma 2.1.8 to compute the number of

Fp2-points on X0(N) get a lower bound on the Fp-gonality.

Proposition 2.1.38. The curve X0(N) is not hexagonal over Q for N > 335 and

N ∈ {220,222,224−226,228,230−232,234,236−238,242,244−246,248,250,252,

254−256,258,260−262,264−268,270,272−276,278,280,282,285,286,288,

290,292,294−298,300−306,308−310,312,314−316,318−330,332−335}.

Proof. If the curve X0(N) were hexagonal over Q, we must have #X0(N)(Fp2)f 6(p2+1)

by setting q = p2 in Lemma 2.1.8. Therefore, the inequality Lp(N)f 6(p2+1) must hold

for every prime p ∤ N. Now, using the same technique as in Proposition 2.1.9 we complete

the proof. ■

Proposition 2.1.39. The curve X0(N) is not hexagonal over Q for the following N.

Table 2.8: The values of N for Proposition 2.1.39.

N p #X0(N)(Fp2) N p #X0(N)(Fp2)

182 3 64 253 2 32

207 2 32 259 2 34

208 3 68 283 3 64

216 5 168 289 2 32

218 3 64 307 3 68

235 2 32 313 3 68

240 7 312 317 2 35

243 2 33 331 2 37
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Proof. For each of these N we have that #X0(N)(Fp2)> 6(p2 +1) from which it follows

by Lemma 2.1.8 that X0(N) is not hexagonal over Q. ■

Lower bounds obtained by the Castelnuovo-Severi inequality

Proposition 2.1.40. The Q-gonality and C-gonality of X0(N) are at least 6 for N in the

table below, where Y := X0(N)/wd .

Table 2.9: The values N for Proposition 2.1.40.

N g(X0(N)) d g(Y ) N g(X0(N)) d g(Y )

105 13 35 3 141 15 47 3

116 13 116 4 146 17 146 5

118 14 59 3 149 12 149 3

123 13 41 3 164 19 164 6

124 14 31 3 227 19 227 5

139 11 139 3 239 20 239 3

Proof. By [53] it follows that gonCX0(N) g 5. Suppose that gonCX0(N) = 5. We apply

Castelnuovo-Severi inequality with this hypothetical degree 5 morphism to P1 and the

degree 2 quotient map to Y = X0(N)/wd and get

g(X0(N))f 5 ·0+2 ·g(Y )+4 ·1.

These two morphisms definitely do not factor through a same morphism of degree > 1

since their degrees are 5 and 2, respectively.

However, from the table we can easily see that this is not true. Therefore, this hypo-

thetical degree 5 morphism does not exist and we have gonCX0(N)g 6. ■

Proposition 2.1.41. The Q-gonality of X0(N) is at least 8 and the C-gonality of X0(N)

is at least 6 for

N ∈ {110,161,173,177,188,199,251,311}.
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Proof. All these curves X0(N) have genus 4 quotients X0(N)/wd as mentioned in Propo-

sition 2.1.36, genus g g 14, and C-gonality at least 5 by [53]. These genus 4 quotients

X0(N)/wd are not trigonal over Q.

Applying Castelnuovo-Severi inequality with the hypothetical degree 5 morphism to

P1 and the degree 2 quotient map proves gonC g 6, similarly as in Proposition 2.1.40.

For N ̸= 173 we repeat this procedure to prove gonQX0(N) ̸= 6,7. For gon = 7 the

application of CS is exactly the same and for gon = 6 we need to check that the rational

degree 6 morphism to P1 and the degree 2 quotient map do not factor through the same

rational morphism of degree > 1 (we use Remark 2.1.6 here). However, if that were

true, then the curve X0(N)/wd would have to be Q-trigonal, which is not the case by

Proposition 2.1.36. Therefore, gonQX0(N)g 8 in these cases.

For N = 173, using the same method as above we obtain gonQ(X0(173)) ̸= 6. How-

ever, Castelnuovo-Severi inequality will not prove that gonQ ̸= 7 since g(X0(173)) = 14.

We explicitly compute that there are no degree 7 morphisms over F3 as in Proposi-

tion 2.1.34 (the computation takes 26 seconds). Therefore, gonQX0(173)g 8. ■

Proposition 2.1.42. The Q-gonality and C-gonality of X0(N) are at least 8 for the fol-

lowing values of N, where Y := X0(N)/wd .

Table 2.10: The values of N for Proposition 2.1.42.

N g(X0(N)) d g(Y ) N g(X0(N)) d g(Y )

120 17 15 5 203 19 203 6

126 17 63 5 205 19 41 6

138 21 23 5 206 25 206 8

156 23 39 6 209 19 209 5

158 19 79 5 213 23 71 5

165 21 11 7 221 19 221 6

166 20 83 6 263 22 263 5

168 25 56 9 269 22 269 6

171 17 171 5 279 29 279 9

183 19 183 6 284 34 71 7

50



Gonality of algebraic curves Gonality of the modular curve X0(N)

184 21 23 5 287 27 287 7

185 17 185 5 299 27 299 6

190 27 95 6 359 30 359 6

195 25 39 9

Proof. Since the quotients Y = X0(N)/wd are not trigonal over C by [38], by applying

Castelnuvo-Severi inequality in the same way as in Proposition 2.1.41 the result follows.

■

Proposition 2.1.43. The Q-gonality of X0(N) for N = 271 is 10 and the C-gonality is 8.

Proof. The quotient X+
0 (271) is of genus 6 and pentagonal over Q (we found a function

of degree 5 using the Magma function Genus6GonalMap(C)). Furthermore, the quotient is

not tetragonal over Q since it is not tetragonal over F3, but it is tetragonal over C because

of Proposition 2.0.2(v). It now follows from Castelunovo-Severi and Remark 2.1.6 that

there are no morphisms f : X0(271)→ P1 of degree f 7 defined over C and that there are

no morphisms f : X0(271)→ P1 of degree f 9 defined over Q. ■

Proposition 2.1.44. The C-gonality for is bounded from below for the following values

of N, where Y := X0(N)/wd .

Table 2.11: The levels N for Proposition 2.1.44.

N g(X0(N)) d g(Y ) gonC g N g(X0(N)) d g(Y ) gonC g
102 15 51 5 6 202 24 101 9 7

129 13 129 4 6 204 31 68 12 8

150 19 75 7 6 210 41 35 15 8

152 17 152 6 6 211 17 211 6 6

155 15 155 4 6 214 26 107 9 8

159 17 159 4 6 219 23 219 8 7

174 27 87 8 8 223 18 223 6 7

175 15 175 5 6 257 21 257 7 7
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186 29 62 11 8 281 23 281 7 8

194 23 97 7 8 293 24 293 8 8

Proof. Using the degree 2 quotient maps to X0(N)/wd , we can apply the Castelnuovo-

Severi inequality similarly as in Proposition 2.1.41 and get the lower bound for gonC(X0(N)).

■

Lower bounds by Green’s conjecture

Proposition 2.1.45. The C-gonality and the Q-gonality of X0(90) are equal to 6.

Proof. Let X := X0(90). We first note that the degree 3 degeneracy map to a hyperel-

liptic curve X0(30) gives an upper bound on the Q-gonality. From [53, Theorem 0.1],

it follows that gonCX > 4. By [50, Table 1], we see that β3,2 = 0, and we conclude by

Corollary 2.1.15 that X has no g1
5 and that gonCX g 6. Hence gonCX = gonQX = 6. ■

Proposition 2.1.46. The C-gonality of X0(N) is at least 6 for

N ∈ {84,86,93,106,115,127,128,133,137}.

Proof. By [53], gonCX0(N)g 5. By [50, Table 1], we see that β3,2 = 0 for all N in this list

except 86 and 127, while for N = 86,127 we compute β3,2 = 0 in Magma (the computations

take 3.5 and 1.5 hours, respectively). Similarly as in Proposition 2.1.45, we conclude by

Corollary 2.1.15 that X0(N) has no g1
5 and that gonCX0(N)g 6. ■

2.1.4. Mordell-Weil sieving on Brill-Noether varieties

The only cases for N < 145 when we still have not determined the Q-gonality of X0(N)

are N = 97, 133. So far, we have 5 f gonQX0(97) f 6 and gonQX0(133) f 8. In this

section we show that the upper bound is correct in both cases and also prove that 7 f
gonQX0(145).

Definition 2.1.47. For a curve X , we define

W r
d (X) = {[D] : D g 0,degD = d, ℓ(D)g r+1}.
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This is a closed subvariety of Picd(X).

Obviously a curve X with X(Q) ̸= /0 has a function of degree d over Q if and only if

W 1
d (X)(Q) ̸= /0.

Let X := X0(N) and µ : PicdX → J0(N) be the map defined by µ(D) := D−w(D).

For every level N the Jacobian J0(N) can be decomposed (up to isogeny) as

J0(N)≃ J0(N)+× J0(N)−,

where

J0(N)+ = (1+wN)J0(N)¢ J0(N),

J0(N)− = (1−wN)J0(N)¢ J0(N).

These are sub-abelian varieties, defined over Q. The subvarieties J0(N)+ and J0(N)− are

also isomorphic to quotients of J0(N) on which wN acts as +1, and −1 respectively [70,

Section 10]. The abelian variety J0(N)+ can be identified with the Jacobian of the quotient

curve X+
0 (N).

Therefore, we obviously have that µ(J0(N)) ¢ J0(N)−. For N = 97 and 133, we

compute that J0(N)−(Q) is of rank 0 by computing that its analytic rank is 0 (see e.g. [18,

Section 3]). Actually, it is a conjecture that J0(N)−(Q) is of rank 0 for almost all levels

N.

Suppose D ∈ W 1
d (X)(Q) and let p > 2 be a prime of good reduction for X . We have

the commutative diagram

W 1
d (X)(Q)

µ
//

redp

��

J0(N)−(Q)

redp

��

W 1
d (X)(Fp)

µ
// J0(N)−(Fp)

,

where the vertical maps are reduction modulo p. Suppose now that there exists a D ∈
W 1

d (X)(Q). Then µ(D) lies in red−1
p (µ(W 1

d (X)(Fp))). The set W 1
d (X)(Fp) can be com-

puted in practice by simply finding all the effective degree d divisors whose Riemann-

Roch spaces have dimension g 2. Note that in our cases J0(N)−(Q) is a torsion group

and redp is injective on the torsion of J0(N)(Q) [56, Appendix]. The same procedure can
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be applied for a set S of multiple primes p > 2 of good reduction, in which case we get

µ(D) ∈
⋂

p∈S

red−1
p (µ(W 1

d (X)(Fp))).

If
⋂

p∈S

red−1
p (µ(W 1

d (X)(Fp))) = /0

it follows that W 1
d (X)(Q) = /0 and indeed this is what we will show. In our cases it will be

enough to take S consisting of a single prime.

Proposition 2.1.48. The Q-gonality of X0(97) is 6 and the Q-gonality of X0(133) is 8.

The Q-gonality of X0(145) is g 7.

Proof. By [70, Theorem 4] we know that for primes p the torsion is J0(p)tors ≃ Z/mZ,

where p is the numerator of
p−1

12
. It is generated by D0 = [0−∞], where 0 and ∞ are the

two cusps of X0(p). Therefore, J0(97)−(Q)≃ Z/8Z. We compute

red−1
3 (µ(W 1

5 (X0(97)(F3)))) = {0}, red−1
5 (µ(W 1

5 (X0(97)(F5)))) = {D0,7D0},

red−1
7 (µ(W 1

5 (X0(97)(F7)))) = /0.

Hence sieving with either {3,5} or just the prime 7 proves that W 1
5 (X0(97))(Q) = /0. It

follows that X0(97) is of gonality 6 over Q.

The cases of X0(133) and X0(145) are more involved than X0(97) because we can-

not compute the torsion group exactly. The rank of J0(N)−(Q) is 0 in both cases, so

J0(N)−(Q) is contained in J0(N)(Q)tors.

First, we solve the case N = 133. Using the methods of [18, Section 4], we obtain that

J0(N)(Q)tors is isomorphic to a subgroup of Z/6Z×Z/360Z. We find cuspidal divisors

(i.e. divisors supported on cusps of X0(N)) A,B which generate a subgroup T := ïA,Bð ≃
Z/6Z×Z/180Z. Thus it follows that for any x ∈ J0(N)−(Q), we have 2x ∈ T . Hence

we use the map 2µ , sending a divisor D to 2(D−w(D)) instead of µ (which we used for

X0(97)). For sieving, we will just need to use the prime 3.

We observe that #X0(133)(F3) = 8, so if there exists a function of degree 7 on X0(133)

over Q, then there has to exist a function of degree 7 over Q whose reduction modulo

54



Gonality of algebraic curves Gonality of the modular curve X0(N)

3 has a polar divisor that is supported on at most 2 F3-rational points, using the same

arguments as in Lemma 2.1.31. Thus we need only search effective divisors supported on

at most 2 F3-rational points; if R ¢ W 1
7 (X0(133))(F3) is the set of all divisors classes in

W 1
7 (X0(133))(F3) represented by divisors supported on at most 2 F3-rational points, then

red−1
3 (2 ·µ(R)) = /0 implying that red−1

3 (2 ·µ(W 1
7 (X0(133))(F3))) = /0.

This proves that gonQ(X0(133)) = 8.

Now we give a lower bound for N = 145. Using the methods of [18, Section 4]

again, we obtain that J0(N)(Q)tors is isomorphic to a subgroup of Z/2Z×Z/2Z×Z/2Z×
Z/14Z×Z/140Z.

We find cuspidal divisors A,B which generate a subgroup T := ïA,Bð ≃ Z/14Z×
Z/140Z. Hence we use the map 2µ as in the case N = 133. For sieving, we will again

just need to use the prime 3. Using the same techniques as for the N = 133 we obtain

red−1
3 (2 ·µ(R)) = /0 implying that red−1

3 (2 ·µ(W 1
6 (X0(145))(F3))) = /0

which proves that the Q-gonality of X0(145) is g 7 as desired. ■

For N = 97, the program described in Proposition 2.1.48 terminates after 7.6 minutes,

for N = 133 after 6.3 hours, and for N = 145 after 1.6 minutes.

Remark 2.1.49. The Mordell-Weil sieve fails to prove that gonQX0(145)g 8 because

⋂

pf19

red−1
p (2 ·µ(W 1

7 (X0(145))(Fp))) ̸= /0.

The computations take too long for the larger primes and would likely give the same

result. On the other hand, we were unable to find a degree 7 rational morphism to P1.

All rational points on X0(145) are the 4 rational cusps by Theorem 1.3.4. There are

finitely many quadratic points on X0(145) since it is neither hyperelliptic nor bielliptic [35,

Corollary 3]. However, all degree 7 rational effective divisors supported on the rational

cusps and quadratic points we found have Riemann-Roch dimension 1.
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2.1.5. Proofs of the main theorems

First, observe that Theorem 2.1.1 follows from the fact that the upper and lower bounds in

Table A.1 agree. We now prove Theorems 2.1.2, 2.1.3 and 2.1.4. Before proceeding with

the proofs, recall that Ogg [80] determined the hyperelliptic curves X0(N) and Hasegawa

and Shimura [37] determined all X0(N) that are trigonal over Q.

Proof of Theorem 2.1.2. By [37, Proposition 4.4] the C-gonality (and therefore the Q-

gonality) of X0(N) is g 5 for N g 192. Hence, we only need to consider the N f 191 such

that X0(N) is not of gonality f 3 over Q and such that the gonality over C is not g 5. For

these values, the results follow from Theorem 2.1.1. ■

Proof of Theorem 2.1.3. In Theorem 2.1.2 we determined all the curves X0(N) that are

tetragonal over Q. Proposition 2.1.21 and Proposition 2.1.34 tell us that for N = 109 the

curve is pentagonal over Q.

Hasegawa and Shimura [37, Proposition 4.4] have proved that the C-gonality (and

therefore the Q-gonality) of the curve X0(N) is g 6 for N g 198. In Theorem 2.1.1 we

proved that for the remaining (i.e. those not of Q-gonality f 4) X0(N) with N f 197, the

Q-gonality is g 6. Hence it follows that for N ̸= 109 the Q-gonality is either smaller or

larger than 5, proving the result. ■

Proof of Theorem 2.1.4. The proof is similar to the proofs of Theorems 2.1.2 and 2.1.3.

It follows from Theorem 2.1.1 and Propositions 2.1.19 - 2.1.48. ■

2.1.6. Limits of our methods

It is a natural question what stopped us from going further, i.e. determining the gonality

for larger N. Unfortunately, as N gets larger, computations get much harder. As the

genus of X0(N) becomes larger, computing models, their quotients, and computations

in Riemann-Roch spaces over Q all become much more difficult. Furthermore, as the

gonalities get larger, the degrees of divisors and the sheer number of divisors needed to

be considered (as in Proposition 2.1.34) makes computations of the Fp-gonality far more

difficult.
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In particular, the most computationally demanding computations that we do are the

ones to determine a lower bound for the Fp-gonality. This requires computing the dimen-

sion of a huge number of Riemann-Roch spaces. While the complexity of computing a

single Riemann-Roch space is polynomial in the size of the input (see [41]), the number

of Riemann-Roch spaces that need to be computed to give a lower bound of d for the

Fp-gonality is O(pd). By [1, Theorem 0.1] we can expect the gonality of X0(N) to grow

linearly in N, which suggests that the number of Riemann-Roch spaces that need to be

checked grows exponentially with N (and doubly exponentially with the size of N). The

necessity of choosing (very) small p when computing the Fp-gonality is clear from the

complexity discussion above.

It should be clear that our methods do not give an algorithm for computing the gonality

of X0(N). They produce a lower bound and an upper bound, but there is no guarantee that

they will be equal. In practice, this (the bounds not matching) is exactly what happens

for N larger than the ones that we list in our results. It often happens that for a curve X ,

one has gonFp
X < gonQX . For example, this happens when n = gonCX < gonQX , and a

degree n map to P1 is defined over a number field K in which p splits completely. Then it

follows that gonFp
X f n, hence the lower bound obtained by computing gonFp

X will not

be sharp.

In practice, for the levels N where we started encountering difficulties and could not

compute the exact gonality, the bounds not matching was the more common problem than

the computations being too demanding.
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2.2. TETRAGONAL MODULAR QUOTIENTS

X+d
0 (N)

After determining the gonality of modular curves X0(N), we now consider quotient curves

X+d
0 (N) = X0(N)/wd . Much progress has been made in studying the Q-gonality of the

quotients of X0(N) as well. Furumoto and Hasegawa [32] determined all hyperelliptic

quotients of X0(N), Hasegawa and Shimura [38–40] determined all trigonal quotients of

X0(N) over C and partially determined the Q-trigonal quotients (more precisely, they

solved all cases when the genus is not equal to 4). Furthermore, Bars, Gonzalez and

Kamel [8] determined all bielliptic quotients of X0(N) for squarefree levels, Jeon [44]

determined all bielliptic curves X+
0 (N), and Bars, Kamel and Schweizer [9] determined

all bielliptic quotients of X0(N) for non-squarefree levels.

The next logical step is determining all tetragonal quotients of X0(N). In this thesis

we will study the Q and C-gonality of quotient curves X+d
0 (N) = X0(N)/wd (wd being an

Atkin-Lehner involution).

One of the reasons we study the gonality of X+d
0 (N), apart from being an interesting

question in itself, is that it can help us to determine the gonality of X0(N). The reason

for that is, of course, that we have a natural rational quotient map X0(N) → X+d
0 (N) of

degree 2. Therefore, any map X+d
0 (N)→ P1 of degree d induces a map X0(N)→ P1 of

degree 2d defined over the same base field.

Also, the existence of rational degree d maps to P1 is closely linked to the problem of

determining whether that curve has infinitely many points of degree d, as can for example

be seen in [2, 35], and, more recently, Theorems 3.0.4 and 3.4.1.

For a field K, a K-curve is an elliptic curve defined over some finite separable exten-

sion of K which is isogenous over K to all its Gal(K/K) conjugates [27, Page 81]. The

Q-curves are the most studied of the K-curves. There is a number of papers which use

Frey Q-curves defined over quadratic fields to solve Diophantine equations. Some of the

more recent ones are [68, 84].

Non-cuspidal rational points on the curve X+
0 (N) correspond to a pair of elliptic curves

with a degree N isogeny between them. Furthermore, these two elliptic curves are either
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[77, Section 2]

• a Q-curve defined over a quadratic field together with its Galois conjugate, or

• two elliptic curves over Q.

Similarly, for a number field K, K-rational points on the curve X+
0 (N) represent pairs

of K-curves of degree N defined over a quadratic extension of K and pairs of elliptic curves

over K with a degree N isogeny between them. Therefore, determining the Q-gonality of

curves X+
0 (N) could be useful in determining whether there are infinitely many K-curves

of a certain degree defined over a quadratic extension of K (see Section 3 for further

explanation).

Our main results are the following theorems (though the first theorem was already

mostly proved by Hasegawa and Shimura).

Theorem 2.2.1. The curve X+d
0 (N) := X0(N)/wd is of genus 4 and has Q-gonality equal

to 3 if and only if

(N,d) ∈ {(66,33),(74,37),(84,84),(86,43),(88,88),(93,93),(108,4),(112,7),

(115,115),(116,116),(129,129),(135,135),(137,137),(147,147),

(155,155),(159,159),(215,215)}.

Theorem 2.2.2. The curve X+d
0 (N) := X0(N)/wd has Q-gonality equal to 4 if and only

if the pair (N,d) is in the following table. In all cases when the genus of the curve X+d
0 (N)

is not 4 (all genus 4 cases are listed in Proposition 2.2.6), the C-gonality is also equal to

4.

Additionally, for N = 243,271, the curve X+
0 (N) is tetragonal over C, but not over Q.
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Table 2.12: Q-tetragonal curves X+d
0 (N).

N d N d N d

60 3, 5 66 2, 3, 22 68 17

70 2, 5, 7, 70 74 2 76 4

77 11 78 2, 3, 6, 13, 78 80 5

82 2, 82 84 3,4,7,12,21,28 85 5, 17

88 8, 11 90 2,5,9,10,18,45,90 91 7

93 3, 31 96 3 98 2

99 9 100 25 102 2, 3, 17, 51, 102

104 8, 13 105 3,5,7,15,21,35,105 106 2,53,106

108 27, 108 110 2,5,10,11,22,55,110 111 3, 37

112 16, 112 114 2, 3, 19, 38, 114 115 5, 23

116 4, 29 117 9, 117 118 2, 59, 118

120 5, 8, 15, 24, 40, 120 122 2, 61 123 3, 41, 123

124 4, 31, 124 126 2,7,9,14,18,63,126 129 3, 43

130 2, 10, 13, 26, 65 132 4, 11, 44 133 19, 133

134 2, 67, 134 135 5, 27 136 8, 17, 136

138 3, 6, 23, 69, 138 140 4, 35, 140 141 3, 47, 141

142 2, 71, 142 143 11, 13 144 9, 16, 144

145 29, 145 146 2, 73 147 49

148 4, 148 152 152 153 9, 17

155 5, 31 156 4, 39, 156 157 157

158 2, 79, 158 159 3, 53 160 32, 160

161 7, 23, 161 163 163 165 11, 15, 165

166 2, 83, 166 168 21, 24, 56 171 9, 19, 171

173 173 175 175 176 11, 16, 176

177 3, 59, 177 183 183 184 8, 23, 184

185 185 188 4, 47, 188 190 5, 10, 19, 95

192 192 193 193 194 194

195 5, 39, 195 196 4 197 197
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199 199 200 200 203 203

205 5, 41, 205 206 2, 103, 206 207 9, 23, 207

209 11, 19, 209 211 211 213 3, 71, 213

215 5, 43 221 13, 17, 221 223 223

224 224 229 229 241 241

251 251 257 257 263 263

269 269 279 9, 31, 279 281 281

284 4, 71, 284 287 7, 41, 287 299 13, 23, 299

311 311 359 359

As a consequence, in Corollary 2.2.19 we were able to determine the Q-gonality of

X0(N) for several new levels N that were not previously solved in [76].

It is perhaps surprising that we were able to determine all tetragonal curves X+
0 (N)

using mostly previously known methods. One of the reasons for that is that in many

cases we can get the degree 4 map from a degree 2 quotient map to X0(N)/ïwd,wNð, as

presented in Proposition 2.2.10 and Proposition 2.2.11. If one would, for example, search

for all pentagonal curves X+
0 (N), there is no such natural source of degree 5 maps.

We use similar methods to the ones used in Section 2.1 to determine the tetragonal

curves X+d
0 (N). In Section 2.2.1, we give lower bounds on the Q-gonality by computing

the gonality over finite fields. In Section 2.2.2, we give lower bounds on the C-gonality

via the Castelnuovo-Severi inequality. In Section 2.2.3, we construct degree 4 rational

morphisms to P1, either via quotient maps to curves X0(N)/ïwd,wd′ð or by finding degree

4 effective rational divisors of Riemann-Roch dimension 2 using Magma. In Section 2.2.4,

we use Theorem 2.0.3 and graded Betti numbers to disprove the existence of degree 4

morphisms to P1.

Note that for each level N that is not a prime power, there are multiple quotients

X+d
0 (N) that need to be checked. For example, for N = 210 which has four different

prime factors, there are 15 such quotients. Therefore, it can be hard to track whether all

quotients have been solved.

For the reader’s convenience, in Appendix B at the end of the thesis we put Table B.1.
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In this table, for each level N, we give the links to all propositions used to solve the

quotients at that level.

A lot of the results in this section rely on Magma computations. The codes that verify

all computations in this section can be found on

https://github.com/orlic1/gonality_X0_quotients.

Additionally, code and data associated with the paper [86] by Jeremy Rouse, An-

drew V. Sutherland, and David Zureick-Brown was used in Proposition 2.2.3 and Propo-

sition 2.2.4. Their code can be found on

https://github.com/AndrewVSutherland/ell-adic-galois-images/tree/

209c2f888669785151174f472ea2c9eafb6daaa9.

2.2.1. Fp-gonality

From Lemma 2.1.7 and Lemma 2.1.8 we can get a lower bound on the Q-gonality of the

curve X+d
0 (N). Namely, if the quotient curve X+d

0 (N) is tetragonal over Q, then there

exists a rational composition map X0(N) → X+d
0 (N) → P1 of degree 8. Therefore, we

must have

Lp(N)f 8(p2 +1) (2.4)

for all primes p ∤ N. However, similarly as in Proposition 2.1.9, we get that for N g 456

there exists a prime p for which this inequality does not hold. This means that we have

eliminated all but finitely many levels N. This inequality can in the same way be used to

eliminate

N ∈ {255,260,266,276,280,282,285,286,290,292,294,296,304,306,308,310,312,314,

315,316,318,320,322,324,326,327,328,330,332,333,334,336,338,339,340,342,

344,345,346,348,350,351,352,354,356,357,358,360,362−366,368,369,370,

372,374,375,376,378,380,381,382,384−388,390,392−396,398,399,400,

402−408,410−418,422−430,432,434−438,440,441,442,444−448,450−455}.

62



Gonality of algebraic curves Tetragonal modular quotients X+d
0 (N)

We can also use Lemma 2.1.8 directly to deal with some cases.

Proposition 2.2.3. The curve X+
0 (N) is not tetragonal over Q for the following values

of N.

Table 2.13: The values of N in Proposition 2.2.3.

N p #X+
0 (N)(Fp2) N p #X+

0 (N)(Fp2) N p #X+
0 (N)(Fp2)

268 3 46 272 3 42 273 2 26

274 3 48 288 5 116 291 2 21

297 2 27 298 3 45 301 2 21

305 2 24 309 2 23 323 2 23

325 2 23 341 2 25 343 3 43

347 2 21 349 2 22 353 2 22

355 2 22 361 2 22 367 2 46

371 2 25 373 2 21 377 2 24

379 2 22 389 2 24 391 2 24

397 3 41 401 2 24 409 2 25

419 2 23 421 2 25 433 2 23

439 2 22 443 2 25 449 2 26

Proof. Using Magma, we calculate the number of Fp2 points on X+
0 (N). It is now easy to

check that #X+
0 (N)(Fp2)> 4(p2 +1) in all these cases. ■

Proposition 2.2.4. The curve X+d
0 (N) is not tetragonal over Q for N = 420 and all 15

possible values of d.

Proof. Using Magma, we calculate that the curve X0(420) has 1128 points over F112 .

Lemma 2.1.8 now tells us that the Q-gonality of the curve X0(420) is at least 10. There-

fore, the Q-gonality of all quotient curves X+d
0 (420) is at least 5. ■

We continue computing the Fp-gonality of curves X+d
0 (N), similarly as in Proposi-

tion 2.1.34.
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Proposition 2.2.5. The Fp-gonality of the curve X+
0 (N) is bounded from below for the

following values of N.

Table 2.14: The values of N in Proposition 2.2.5.

N p gonFp
g N p gonFp

g N p gonFp
g N p gonFp

g
70 11 4 82 3 4 90 11 4 108 5 4

117 7 4 130 3 5 132 5 5 150 7 5

154 3 5 161 2 4 168 5 5 170 3 5

172 3 5 173 5 4 174 5 5 178 3 5

180 7 5 182 3 5 187 3 5 189 2 5

196 3 5 198 5 5 199 5 4 201 2 5

202 3 5 204 5 5 208 3 5 212 3 5

216 5 5 217 2 5 218 3 5 219 2 5

225 2 5 226 3 5 228 5 5 230 3 5

231 2 5 232 3 5 233 2 5 234 5 5

235 2 5 237 2 5 240 7 5 242 3 5

243 7 5 244 3 5 245 2 5 247 3 5

250 3 5 251 2 4 253 2 5 256 3 5

259 2 5 261 2 5 265 2 5 271 3 5

275 2 5 277 2 5 283 2 5 289 2 5

293 2 5 307 2 5 311 2 4 313 2 5

317 2 5 319 2 5 331 2 5 335 2 5

337 2 5 383 2 5

Proof. Using Magma, we compute that there are no functions of degree < d in Fp(X
+
0 (N)).

We can reduce the number of divisors that need to be checked by noting the following: If

there exists a function f over a field k of a certain degree and if c ∈ k, then the function

g(x) := 1
f (x)−c

has the same degree and its polar divisor contains a k-rational point. ■
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Proposition 2.2.6. The Q-gonality of the genus 4 curve X+d
0 (N) is equal to 4 for the

following values of N and d.

Table 2.15: The values of N and d in Proposition 2.2.6.

(N,d)) p (N,d) p (N,d) p (N,d) p

(60,3) 7 (60,5) 7 (66,2) 13 (68,17) 3

(70,5) 17 (74,2) 3 (76,4) 5 (77,11) 3

(80,5) 7 (82,2) 7 (85,5) 23 (85,17) 7

(88,8) 5 (91,7) 11 (93,3) 5 (98,2) 11

(100,25) 3 (108,27) 5 (110,55) 7 (133,19) 5

(145,29) 11 (177,59) 5 (188,47) 3

Proof. Using Magma, we compute that there are no functions of degree f 3 in Fp(X
+d
0 (N)),

similarly as in Proposition 2.2.5.

On the other hand, all these curves are of genus 4 and have at least one rational cusp.

By Proposition 2.0.2(iv), this implies that their Q-gonality is at most 4. ■

Proposition 2.2.7. The Q-gonality of the curve X+d
0 (N) is at least 5 for the following

values of N and d.

Table 2.16: The values of N and d in Proposition 2.2.7.

(N,d) p (N,d) p (N,d) p (N,d) p (N,d) p

(132,33) 5 (140,5) 3 (140,28) 3 (150,25) 7 (154,2) 3

(154,7) 3 (154,11) 3 (154,14) 5 (154,22) 5 (154,77) 3

(164,41) 3 (165,3) 2 (165,5) 2 (165,33) 7 (165,55) 2

(168,3) 5 (168,7) 5 (168,8) 5 (170,2) 7 (170,5) 3

(170,10) 3 (170,17) 3 (170,34) 3 (170,85) 3 (172,4) 3

(180,4) 7 (180,5) 7 (180,9) 7 (180,20) 7 (180,36) 7

(180,45) 7 (186,2) 5 (186,31) 5 (186,62) 5 (192,3) 5

65



Gonality of algebraic curves Tetragonal modular quotients X+d
0 (N)

(192,64) 5 (195,13) 2 (198,11) 5 (198,22) 5 (198,99) 5

(200,8) 3 (200,25) 3 (201,3) 2 (201,67) 2 (204,68) 5

(208,13) 3 (210,35) 11 (212,4) 3 (212,53) 5 (216,8) 5

(216,27) 5 (218,2) 5 (218,109) 5 (219,3) 5 (219,73) 2

(220,55) 3 (224,7) 5 (225,25) 2 (226,2) 3 (226,113) 3

(232,8) 3 (232,29) 3 (234,13) 5 (234,26) 5 (234,117) 5

(235,5) 7 (235,47) 3 (237,3) 2 (232,79) 7 (240,80) 11

(242,2) 3 (242,121) 3 (244,4) 3 (244,61) 3 (247,13) 5

(247,19) 5 (250,125) 3 (252,63) 5 (253,11) 2 (253,23) 3

(254,127) 3 (258,86) 5 (259,7) 5 (261,29) 2 (265,5) 3

(265,53) 3 (268,4) 3 (268,67) 3 (272,16) 3 (274,137) 3

(275,11) 2 (278,139) 3 (288,9) 5 (288,32) 5 (291,3) 5

(297,11) 2 (298,149) 3 (301,7) 3 (301,43) 3 (302,151) 3

(323,19) 3 (325,25) 7 (355,71) 3

Proof. Similarly as in the previous proposition, we use Magma to compute that there are

no functions of degree f 4 in Fp(X
+d
0 (N)). ■

Some computations in Proposition 2.2.7 were running for more than an hour, espe-

cially in the higher genus cases. This approach is not feasible for the curves in the next

proposition which are all of high genus. For example, the curve X+6
0 (246) is of genus

20 and the curve X+3
0 (300) is of genus 22. Instead, we can prove that the quotient curve

X0(N)/ïwd,wd′ð, which is of smaller genus, is not tetragonal.

Proposition 2.2.8. The Q-gonality of the curve X+d
0 (N) is at least 5 for the following

values of N and d.
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Table 2.17: The values of N and d in Proposition 2.2.8.

N d p Y N d p Y

228 3, 19, 57 5 X0(228)/ïw3,w19ð 228 12, 57, 76 5 X0(228)/ïw12,w57ð
228 4, 57 5 X0(228)/ïw4,w57ð 240 3, 5, 15 11 X0(240)/ïw3,w5ð
240 3, 16, 48 11 X0(240)/ïw3,w16ð 246 6, 82, 123 5 X0(246)/ïw6,w82ð
246 3,82 5 X0(246)/ïw3,w82ð 264 3, 8, 24 5 X0(264)/ïw3,w8ð
264 3, 11, 33 5 X0(264)/ïw3,w11ð 264 8, 11, 88 5 X0(264)/ïw8,w11ð
270 5, 27, 135 7 X0(270)/ïw5,w27ð 300 3, 100 7 X0(300)/ïw3,w100ð
300 12, 25 7 X0(300)/ïw12,w25ð 309 3, 103 5 X0(309)/ïw3,w103ð

Proof. Using Magma, we compute that there are no Fp-rational functions of degree f 4

from Y to P1. in Fp(X0(N)/ïwd,wd′ð). Since there is a rational degree 2 quotient map

X+d
0 (N)→ Y , Proposition 2.0.2(vii) tells us that Fp-gonality of X+d

0 (N) is g 5. ■

In Section 2.2.4, we will use Corollary 2.1.18 to see that all curves of genus at least

10 that are not Q-tetragonal are also not C-tetragonal. Furthermore, all such curves have

been solved in this section.

2.2.2. Castelnuovo-Severi inequality

In this section we use the Castelnuovo-Severi inequality (Proposition 2.1.5) to obtain a

lower bound on the Q and C-gonality of curves X+d
0 (N).

Proposition 2.2.9. The C-gonality of the curve X+d
0 (N) is at least 5 for the following

values of N and d. Here g denotes the genus of the curve X+d
0 (N) and g′ denotes the genus

of the quotient curve X0(N)/ïwd,wd′ð.
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Table 2.18: The values of N and d in Proposition 2.2.9.

(N,d) g d′ g′ (N,d) g d′ g′ (N,d) g d′ g′

(132,3) 10 44 3 (132,12) 10 11 3 (138,2) 11 23 3

(138,46) 11 2 3 (140,7) 10 20 3 (150,2) 10 75 3

(150,3) 10 50 3 (156,3) 11 13 3 (156,12) 11 52 3

(156,13) 12 3 3 (156,52) 12 12 3 (174,2) 14 87 3

(174,3) 14 29 3 (174,6) 13 58 4 (174,29) 13 3 3

(174,58) 14 6 4 (182,2) 13 91 4 (182,7) 13 26 4

(182,13) 12 14 4 (182,14) 11 26 3 (182,26) 10 14 3

(182,91) 10 14 3 (183,61) 10 3 3 (186,3) 14 62 4

(186,6) 14 62 5 (186,62) 14 6 5 (186,186) 12 3 3

(190,2) 14 95 3 (190,38) 14 10 3 (190,190) 13 2 3

(195,3) 13 65 3 (195,15) 13 39 3 (198,2) 14 99 5

(198,9) 15 11 5 (204,3) 16 68 5 (204,4) 15 51 5

(204,12) 16 51 5 (204,17) 16 4 6 (210,2) 21 35 8

(210,3) 21 35 7 (210,5) 19 7 7 (210,6) 19 35 6

(210,7) 21 5 7 (210,10) 21 14 6 (210,14) 16 10 6

(210,15) 21 21 7 (210,21) 19 15 7 (210,30) 21 35 8

(210,42) 21 35 8 (210,70) 21 2 8 (210,105) 19 3 7

(210,210) 19 6 6 (214,214) 12 4 4 (220,4) 16 55 4

(220,5) 16 11 3 (220,11) 13 5 4 (220,20) 16 44 4

(220,44) 13 20 4 (220,220) 14 4 4 (222,2) 18 111 4

(222,3) 17 37 5 (222,6) 18 74 3 (222,37) 18 3 5

(222,74) 13 6 3 (222,111) 10 6 3 (222,222) 15 2 4

(230,2) 17 115 5 (230,5) 16 46 5 (230,10) 16 23 6

(230,23) 17 10 6 (230,46) 15 5 5 (230,115) 14 2 5

(231,3) 15 77 3 (231,7) 15 33 4 (231,11) 15 21 4

(231,21) 13 33 4 (231,33) 13 21 4 (231,77) 11 3 3

(234,18) 18 117 7 (234,9) 17 26 6 (234,18) 18 26 7

(236,236) 10 4 3 (238,2) 17 119 3 (238,7) 17 17 3
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(238,14) 17 34 3 (238,17) 15 7 3 (238,34) 15 14 3

(238,238) 15 3 3 (245,5) 10 49 3 (246,2) 19 123 7

(246,3) 20 41 7 (246,6) 20 41 7 (246,82) 20 2 8

(248,8) 15 31 3 (248,248) 11 8 3 (249,3) 14 83 3

(249,249) 11 3 3 (250,2) 14 125 5 (252,4) 17 63 5

(252,7) 19 9 7 (252,9) 19 7 7 (252,28) 19 36 7

(252,36) 19 28 7 (252,252) 17 4 5 (254,2) 16 127 4

(254,254) 12 2 4 (258,2) 20 43 8 (258,3) 20 86 7

(258,6) 21 86 7 (258,43) 21 2 8 (258,129) 18 6 7

(258,258) 19 3 7 (259,37) 12 7 4 (261,9) 13 29 4

(262,2) 16 131 4 (262,262) 15 2 4 (266,266) 14 14 5

(267,3) 15 89 4 (267,267) 13 3 4 (270,2) 22 135 7

(270,5) 21 27 8 (270,10) 22 54 7 (270,27) 22 5 8

(270,54) 19 10 7 (270,270) 19 2 7 (272,17) 16 16 6

(274,2) 16 137 6 (275,25) 13 11 4 (276,276) 18 12 5

(278,2) 17 139 5 (278,278) 14 2 5 (282,282) 21 6 6

(286,286) 17 2 4 (291,97) 16 3 6 (295,5) 15 59 3

(295,295) 11 5 3 (297,27) 16 11 6 (298,2) 18 149 7

(300,4) 19 75 7 (300,75) 19 4 7 (300,300) 19 4 7

(302,2) 19 151 5 (302,302) 16 2 5 (303,3) 17 101 3

(303,101) 10 3 3 (303,303) 12 3 3 (305,5) 14 61 4

(305,61) 12 5 4 (310,310) 21 3 8 (312,312) 23 8 8

(316,316) 17 4 5 (318,318) 23 2 7 (319,11) 15 29 4

(319,29) 12 11 4 (321,3) 18 107 4 (321,107) 12 3 4

(323,17) 15 19 5 (329,7) 16 47 3 (329,47) 11 7 3

(329,329) 10 7 3 (330,330) 31 3 13 (335,5) 16 67 4

(335,67) 17 5 4 (341,11) 14 31 4 (341,31) 16 11 4

(355,5) 18 71 4 (371,7) 17 53 5 (371,53) 18 7 5

(377,13) 16 29 5 (377,29) 14 13 5 (391,17) 16 23 5

(391,23) 18 17 5
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Proof. The results of [32] and [38] tell us that these curves X+d
0 (N) are not hyperelliptic

nor trigonal over C.

We have a degree 2 quotient map from X+d
0 (N) to X0(N)/ïwd,wd′ð. If there existed

a degree 4 map from X+d
0 (N) to P1, then we apply the Castelnuovo-Severi inequality to

this hypothetical degree 4 map and the degree 2 quotient map. Since g(X+d
0 (N))> 4 ·0+

2 · g(X0(N)/ïwd,wd′ð)+ 3 · 1, we conclude that the degree 4 map would have to factor

through the quotient map X+d
0 (N) → X0(N)/ïwd,wd′ð and the curve X0(N)/ïwd,wd′ð

would need to be elliptic or hyperelliptic. However, we can again use [32] to eliminate

this possibility. ■

2.2.3. Rational morphisms to P1

In Section 2.2.1 and Section 2.2.2, we were proving that the curve X+d
0 (N) is not Q-

tetragonal by arguing that C or Fp-gonalities are too large. Now we find degree 4 rational

morphisms from X+d
0 (N) to P1 for all levels N listed in Theorem 2.2.2.

In most cases, when there exists a degree 4 morphism X+d
0 (N)→ P1, we can realise

it via the quotient map to the curve X0(N)/ïwd,wd′ð, as the following two propositions

show.

Proposition 2.2.10. The quotient curve X0(N)/ïwd,wd′ð is an elliptic curve for the fol-

lowing values of N,d,d′.

Table 2.18: The values of N,d,d′ in Proposition 2.2.10.

N (d,d′) N (d,d′) N (d,d′) N (d,d′)

70 (2,35) 86 (2,43) 96 (3,32) 99 (9,11)

105 (3,35) 110 (2,5) 111 (3,37) 118 (2,59)

123 (3,41) 124 (4,31) 141 (3,47) 142 (2,71)

143 (11,13) 145 (5,29) 155 (5,31) 159 (3,53)

188 (4,47)
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Proposition 2.2.11. The quotient curve X0(N)/ïwd,wd′ð is a hyperelliptic curve for the

following values of N,d,d′. Here g denotes the genus of the curve X0(N)/ïwd,wd′ð.

Table 2.19: The values of N,d,d′ in Proposition 2.2.11.

N (d,d′) g N (d,d′) g N (d,d′) g

66 (3,22) 2 70 (7,10) 2 78 (2,3) 3

84 (3,4),(7,12), 2 88 (8,11) 2 90 (2,45),(5,18),(9,10) 2

(4,21),(3,28)

93 (3,31) 2 102 (2,51),(3,17) 2 104 (8,13) 2

105 (3,5),(3,7),(7,15) 3 106 (2,53) 2 110 (2,5),(2,11),(5,22) 3

112 (7,16) 2 114 (2,19) 3 114 (3,38) 2

115 (5,23) 2 116 (4,29) 2 117 (9,13) 2

120 (8,15),(15,24) 2 120 (5,24) 3 122 (2,61) 2

126 (2,63),(14,18) 2 126 (7,9),(9,14) 3 129 (3,43) 2

130 (10,26) 2 130 (2,13) 3 132 (4,11) 2

133 (7,19) 2 134 (2,67) 2 135 (5,27) 2

136 (8,17) 3 138 (3,23),(6,23) 2 140 (4,35) 2

146 (2,73) 2 147 (3,49) 2 150 (6,50) 2

153 (9,17) 2 156 (4,39) 2 158 (2,79) 2

161 (7,23) 2 165 (11,15) 3 166 (2,83) 2

168 (21,24) 4 171 (9,19) 3 176 (11,16) 4

177 (3,59) 2 184 (8,23) 2 190 (5,19) 2

195 (5,39) 3 205 (5,41) 2 206 (2,103) 2

207 (9,23) 3 209 (11,19) 2 213 (3,71) 2

215 (5,42) 2 221 (13,17) 2 279 (9,31) 5

284 (4,71) 2 287 (7,41) 2 299 (13,23) 2

Proof. Every curve of genus 2 is hyperelliptic and [32] gives us all hyperelliptic quotients

of genus g g 3. ■

71



Gonality of algebraic curves Tetragonal modular quotients X+d
0 (N)

Now we deal with the cases when there does not exist such a quotient map.

Proposition 2.2.12. There exists a degree 3 rational morphism from X+d
0 (N) to P1 for

(N,d) ∈ {(66,33),(74,37),(84,84),(86,43),(88,88),(93,93),(108,4),(112,7),

(115,115),(116,116),(129,129),(135,135),(137,137),(147,147),

(155,155),(159,159),(215,215)}.

Proof. The curve X+d
0 (N) is of genus 4 in these cases and we can use the inbuilt Magma

function Genus4GonalMap(C) to get the desired morphism.

It is good to mention here that this function always returns a morphism of degree f 3

to P1 since all genus 4 curves have C-gonality at most 3 by Proposition 2.0.2 (v). In

the cases listed in this proposition, that morphism will be defined over Q. However, the

degree 3 morphism can, in the general case, be defined over a quadratic field. ■

Proposition 2.2.13. There exists a degree 4 rational morphism from X+
0 (N) to P1 for

N ∈ {136,152,163,183,197,203,211,223,269,359}.

Proof. The curve X+
0 (N) is of genus 6 in these cases and we can use the inbuilt Magma

function Genus6GonalMap(C) to get the desired morphism.

Similarly to the function Genus4GonalMap(C), this function always returns a mor-

phism of degree f 4 to P1 since all genus 6 curves have C-gonality at most 4 by Propo-

sition 2.0.2 (v). In these cases, that morphism will be defined over Q. However, not

all genus 6 curves are Q-tetragonal, for example X+
0 (243), as we have seen in Proposi-

tion 2.2.18. ■

Proposition 2.2.14. There exists a degree 4 rational morphism from X+d
0 (N) to P1 for

(N,d) ∈ {(144,9),(144,16),(144,144),(148,148),(157,157),(171.171),(175,175),

(176,176),(185,185),(193,193),(194.194),(196,4),(200,200),(263,263)}.

Proof. We find a morphism of degree 4 by searching the Riemann-Roch spaces of divisors

of the form P1 +P2 +P3 +P4, where Pi ∈ X+
0 (N)(Q). ■
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Proposition 2.2.15. There exists a degree 4 rational morphism from X+d
0 (N) to P1 for

(N,d) ∈ {(148,4),(160,32),(160,160),(192,192),(208,16),(217,31),

(224,224),(229,229),(241,241),(257,257),(281,281)}.

Proof. In these cases we were not able to find a degree 4 morphism whose polar divisor

is supported on rational points so we had to search for quadratic points.

We searched for quadratic points by intersecting the curve X+d
0 (N) with hyperplanes

of the form

b0x0 + . . .+bkxk = 0,

where b0, . . . ,bk ∈ Z are coprime and chosen up to a certain bound, a similar idea as

in [13, Section 3.2]. We can improve this by noting that, in a quadratic point (x0, . . . ,xk),

already its first three coordinates must be linearly dependent over Q. Therefore, it is

enough to check the hyperplanes

b0x0 +b1x1 +b2x2 = 0.

In all of these cases we found a function of degree 4 lying in the Riemann-Roch space of

a divisor of the form P1 +P2 +Q+σ(Q), where P1,P2 ∈ X+d
0 (N)(Q), and Q is one of the

quadratic points we found. ■

It is worth mentioning here that the running time was ∼ 20 minutes for (N,d) =

(192,192) and ∼ 4.5 hours for (N,d) = (224,224). Most of that time was spent on

searching for points. Other computations in this section were faster.

2.2.4. Betti numbers

In this section we will prove that the remaining curves X+d
0 (N) are not C-tetragonal. A

helpful tool here is the Tower theorem (Theorem 2.1.16). We use Corollary 2.1.18 which

says that for curves of genus g 10, the existence of a map to P1 over C is equivalent with

the existence of a rational map to P1.

Since in Section 2.2.1 we solved all cases when g g 10, the only curves we need to
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look at are those of genus at most 9. In order to bound the number of levels we need to

check, we can use the following corollary of Theorem 2.0.3.

Corollary 2.2.16. The curve X+d
0 (N) is not C-tetragonal for N g 807.

Proof. Suppose X+d
0 (N) is C-tetragonal. Then X0(N) has a degree 8 map to P1. Since

−I ∈ Γ0(N), we have that ψ(N) = DΓ0(N) f 12000
119

· 8 (here ψ(N) = N ∏q|N(1+
1
q
), as

mentioned in Lemma 2.1.7). ■

This leaves us with reasonably many cases that are not yet solved. The only pairs

(N,d) we need to check are in the table below.

Table 2.20: Curves X+d
0 (N) of genus at most 9 that are not

Q-tetragonal.

(N,d) g(X+d
0 (N)) (N,d) g(X+d

0 (N)) (N,d) g(X+d
0 (N))

(102,6) 8 (102,34) 8 (114,6) 9

(114,57) 8 (120,3) 9 (130,5) 9

(130,130) 8 (132,132) 8 (140,20) 8

(148,37) 9 (150,150) 8 (152,8) 8

(152,19) 9 (154,7) 9 (154,77) 9

(154,154) 9 (160,5) 9 (162,2) 8

(162,81) 7 (164,4) 9 (170,170) 9

(172,43) 9 (172,172) 9 (174,87) 8

(175,7) 8 (175,25) 8 (178,89) 8

(178,178) 9 (183,3) 9 (185,5) 9

(185,37) 9 (187,11) 9 (187,17) 7

(187,187) 7 (189,189) 7 (196,49) 9

(196,196) 7 (201,201) 8 (202,101) 9

(203,7) 9 (214,107) 9 (217,217) 8

(219,219) 8 (225,9) 9 (225,225) 8

(231,231) 9 (233,233) 7 (238,119) 7

(242,242) 9 (243,243) 7 (245,49) 9

74



Gonality of algebraic curves Tetragonal modular quotients X+d
0 (N)

(247,247) 8 (248,31) 9 (249,83) 8

(256,256) 9 (259,259) 8 (262,131) 9

(267,89) 9 (271,271) 6 (275,275) 9

(283.283) 9 (289,289) 7 (293,293) 8

(295,59) 9 (335,335) 8 (341,341) 9

(361,361) 9 (383,383) 8 (419,419) 9

(431,431) 9 (479,479) 8

By Proposition 2.0.2(v), we immediately see that for N = 271 there exists a degree 4

morphism since the genus is 6. For the other cases we will use graded Betti numbers βi, j.

Proposition 2.2.17. The curve X+d
0 (N) is not tetragonal for all (N,d) in Table 2.20

except (243,243) and (271,271).

Proof. For all these curves we compute β2,2 = 0 using Magma and use Corollary 2.1.14 to

finish the proof.

The computation time for (N,d) = (361,361) was around 1 hour, the other computa-

tions were much faster and took less than 10 minutes. ■

To prove that the curve X+
0 (243) is C-tetragonal, we will use the Clifford index and

Clifford dimension, defined in Definition 2.1.11.

Proposition 2.2.18. The curve X+
0 (243) is tetragonal over C.

Proof. We compute the genus g(X+
0 (243)) = 7 and the Betti table. In particular, we

get β2,2 = 9. By [87, Table 1.], this implies the existence of g2
6. Now we use a similar

argument as in [53, Page 310, Case 3].

Since there exists a g2
6, there is a divisor D such that degD = 6 and ℓ(D) = 3. By

definition, for this D we have Cliff(D) = 2. We now apply Riemann-Roch theorem to get

3− ℓ(K −D) = ℓ(D)− ℓ(K −D) = 6−7+1 = 0.

Therefore, ℓ(K −D) = 3 and we have proven that Cliff(X+
0 (243))f 2.

75



Gonality of algebraic curves Tetragonal modular quotients X+d
0 (N)

The homogenous ideal of the canonical embedding of this curve is generated by

quadrics (Magma function X0NQuotient(243,[243]) gives the canonical embedding for

example). By [53, Theorem 1.1], this implies that Cliff(X+
0 (243)) g 2 and we conclude

that Cliff(X+
0 (243)) = 2.

Since Cliff(X+
0 (243)) = Cliff(D) = 2, from the definition of the Clifford dimension

CD(X) we get that CD(X+
0 (243)) f 2. Since g(X+

0 (243)) = 7, it is not a smooth plane

curve of degree d g 5 (a smooth plane curve of dimension d has genus (d −1)(d −2)/2)

and we have that CD(X+
0 (243)) = 1.

Let us now take a divisor D′ that computed the Clifford dimension. We have ℓ(D′) =

2 and Cliff(D′) = Cliff(X+
0 (243)) = 2. Therefore, from the definition of Cliff(D′) we

compute that degD′ = 4. We may assume that D′ > 0, otherwise we can take an effective

divisor linearly equivalent to D′ (which exists because ℓ(D′)g 1) and it will also compute

the Clifford dimension of X+
0 (243).

There exists a non-constant morphism f ∈ L(D′) and its degree is at most 4, otherwise

div( f )+D′ s 0 (here we used that D′ is effective). Since gonC(X
+
0 (243))g 4 by [38], f

is the desired degree 4 morphism from X+
0 (243) to P1. ■

2.2.5. Proofs of the main theorems

Proof of Theorem 2.2.1. Hasegawa and Shimura [38, Proposition 1] already solved the

cases when g(X+d
0 (N)) ̸= 4. Proposition 2.2.6 and Proposition 2.2.12 solve the cases

when the genus is equal to 4. ■

Proof of Theorem 2.2.2. We can suppose that the genus of the curve X+d
0 (N) is at least 4,

otherwise the Q-gonality is at most 3 due to Proposition 2.0.2(iv).

The results of [32] give us all hyperelliptic quotients of X0(N) and the results of [38]

give us all C-trigonal curves X+d
0 (N). There are exactly 8 cases when the curve X+d

0 (N)

is C-trigonal of genus g g 5, namely [38, Theorem 1]

(N,d) ∈ {(117,13),(122,122),(146,146),(147,3),

(162,162),(164,164),(181,181),(227,227)},

and in these cases the Tower theorem implies that the Q-gonality is also equal to 3.
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For genus 4 curves listed in the statement of the theorem, we used Proposition 2.2.6

to prove that there are no degree 3 rational maps to P1. Therefore, the Q-gonality of these

curves must be equal to 4.

We can now suppose that the curve X+d
0 (N) is of genus g g 5 and is not hyperelliptic

nor trigonal over C. For the curves listed in the theorem, in Section 2.2.3 we find a

rational degree 4 map to P1. In the remaining cases, we prove in Sections 2.2.1, 2.2.2,

and 2.2.4 that there are no degree 4 rational maps to P1, and so gonQX+d
0 (N) > 4 in

these cases. Moreover, in Section 2.2.4, we prove that gonCX+d
0 (N) > 4 for (N,d) /∈

{(243,243),(271,271)}.

The curve X+
0 (243) is C-tetragonal due to Proposition 2.2.18 and the genus 6 curve

X+
0 (271) is C-tetragonal due to Proposition 2.0.2(v). ■

Corollary 2.2.19. The Q-gonality of the curve X0(N) is equal to 8 for

N ∈ {193,194,207,224,229,241,257,281}.

For N ∈ {194,224,257,281} the C-gonality of the curve X0(N) is also 8.

Proof. The composition map X0(N)→ X+
0 (N)→ P1 is a degree 8 rational map and from

[76, Tables 1,2,3] we get that gonQ(X0(N)) > 7. For N = 193,207,229,241 this follows

from the bound on Fp-gonality; codes for that can be found on

https://github.com/orlic1/gonality_X0/tree/main/Fp_gonality).

For N = 194,224,257,281 we can use the Castelnuovo-Severi inequality to prove it,

meaning that we also get the lower bound on C-gonality in these cases. ■
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2.3. TETRAGONAL INTERMEDIATE MODULAR

CURVES

For every group ∆ ¦ (Z/NZ)×, there exists a modular curve X∆(N) defined over Q. It

corresponds to the congruence subgroup

Γ∆(N) =











a b

c d



 ∈ SL2(Z) : (a mod N) ∈ ∆, c ≡ 0 (mod N)







.

Since −I acts trivially on the upper half plane H ∗ (where I ∈ SL2(Z) is an identity

matrix), the curves X∆(N) and X±∆(N) are isomorphic. Therefore, in this section we will

always assume that −1 ∈ ∆.

For every group {±1} ¦ ∆ ¦ (Z/NZ)×, there exists a modular curve X∆(N) lying

between the curves X1(N) and X0(N). Notice that, when ∆ = (Z/NZ)×, the curve X∆(N)

is actually the curve X0(N) and that, when ∆= {±1}, the curve X∆(N) is the curve X±1(N)

which is isomorphic to the curve X1(N). Moreover, if

{±1} ¦ ∆1 ¦ ∆2 ¦ (Z/NZ)×,

then we have natural projections

X1(N)→ X∆1
(N)→ X∆2

(N)→ X0(N)

defined over Q. If {±1}ª ∆ ª (Z/NZ)×, then we call the curve X∆(N) an intermediate

modular curve.

It is also possible to define modular curves in another way. For every group H ¦
GL2(Z/NZ), there exists a modular curve XH defined over Q. Using the same argument

as before with the curves X∆(N), we may assume that −I ∈ H without loss of generality.

If H has full determinant (that is, if detH = (Z/NZ)×), the curve XH is ensured to be

geometrically irreducible.

Suppose that H ¦ GL2(Z/NZ) such that −I ∈ H and that H has full determinant.
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Then there is a congruence subgroup Γ such that the curves XH and X(Γ) are isomorphic.

It is defined as follows:

H0 := SL2(Z/NZ)∩H, Γ := {A ∈ SL2(Z) : (A mod N) ∈ H0}.

It is not hard to check that Γ(N) ¦ Γ, therefore Γ is indeed a congruence subgroup of

SL2(Z). Conversely, in the case of intermediate modular curves X∆(N), its isomorphic

curve XH is defined as

H :=











a b

c d



 ∈ GL2(Z/NZ) : a ∈ ∆, c = 0







.

We can easily see that −I ∈ H and that H has full determinant.

Recall from Section 2.1 that the Q-gonality of the curve X0(N) has been determined

for all N f 144 (Theorem 2.1.1). Also, we know all curves X0(N) with Q-gonality at

most 6 (Theorems 2.1.2, 2.1.3, 2.1.4) and all curves X0(N) with C-gonality at most 4

( [37, 53, 80]).

Regarding the curve X1(N), Kenku and Momose [62, p. 126] determined all hyperel-

liptic, Jeon, Kim, and Schweizer [51, Theorem 2.3] determined all trigonal curves X1(N)

over C and Q, Jeon, Kim, and Park [50, Theorem 2.6] determined all tetragonal curves

X1(N) over C and Q, and Derickx and van Hoeij [23, Proposition 6] determined all curves

X1(N) with Q-gonality equal to d for d = 5,6,7,8. They also determined the Q-gonality

of the curve X1(N) for N f 40 and gave upper bounds on the Q-gonality of X1(N) for

N f 250.

Now we move on to the intermediate modular curves X∆(N). Ishii and Momose [43]

determined (although with a slight error regarding the curve X∆1
(21)) all hyperelliptic

curves X∆(N) and Jeon and Kim [49] determined all trigonal curves X∆(N) over C and

fixed this error. Jeon, Kim, and Schweizer [52] also determined all bielliptic curves

X∆(N). Derickx and Najman [20, Table 1] determined the fields of definition of trigo-

nal maps for genus 4 curves X∆(N). This, together with the information about C-trigonal

curves X∆(N) from [49], determines all curves X∆(N) which are trigonal over Q.

Theorem 2.3.1. [20, Table 1] The genus 4 intermediate modular curves X∆(N) that are
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trigonal over Q are

(N,∆) ∈ {(26,{±1,±5}),(26,{±1,±3,±9}),(28,±1,±3,±9),(28,{±1,±13}),

(29,ï−1,4ð),(37,ï−1,8ð),(37,ï−1,4ð),(50,{±1,±9,±11,±19,±21})}.

The only genus 4 intermediate modular curve that is not trigonal over Q is (N,∆) =

(25,{±1,±7}). For expository reasons, for larger groups ∆ we give only their generators

instead of all their elements.

The next logical step is to determine all tetragonal curves X∆(N) over C and Q. Also,

since we know the Q-gonality of curves X0(N) for N f 144 and the Q-gonality of curves

X1(N) for N f 40, we would like to obtain a similar result for intermediate curves X∆(N)

for N f 40.

The main results of this section are the following theorems.

Theorem 2.3.2. The Q-gonalities of intermediate modular curves X∆(N) for all N f 40

and {±1}ª ∆ ª (Z/NZ)× are given in Table C.1.

Theorem 2.3.3. The intermediate modular curve X∆(N) is tetragonal over Q if and only

if N and ∆ are listed in the following table. For expository reasons, we do not list all

elements of larger groups ∆. Instead, we give the generators and the number of elements

of such groups ∆.

Table 2.21: The values of N and ∆ for Theorem 2.3.3.

N ∆ N ∆

25 {±1,±7} 30 {±1,±11}
32 {±1,±15} 33 {±1,±2,±4,±8,±16}
34 {±1,±9,±13,±15} 35 {±1,±6,±8,±13}
35 ï−1,4ð, #∆ = 12 36 {±1,±17}
39 {±1,±5,±8,±14} 39 ï−1,4ð, #∆ = 12

40 {±1,±3,±9,±13} 40 {±1,±7,±9,±17}
40 {±1,±9,±11,±19} 41 ï−1,2ð, #∆ = 20
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45 ï−1,4ð, #∆ = 12 48 {±1,±5,±19,±23}
48 {±1,±7,±17,±23} 48 {±1,±11,±13,±23}
55 ï−1,4ð, #∆ = 20 64 ï−1,9ð, #∆ = 16

75 ï−1,4ð, #∆ = 20

Theorem 2.3.4. The intermediate modular curve X∆(N) is tetragonal over C and has

Q-gonality at least 5 if and only if

(N,∆) ∈ {(31,{±1,±5,±6}),(31,{±1,±2,±4,±8,±15})}.

Moreover, the Q-gonality of both these curves is equal to 5.

Theorem 2.3.5. The intermediate modular curve X∆(N) is pentagonal over Q and over

C if and only if

(N,∆) ∈ {(44,{±1,±5,±7,±9,±19}),(125,ï−1,4ð)}.

For N = 125, this group ∆ has 50 elements.

In Section 2.3.1 we present the results needed to prove the above theorems. More

precisely, in Section 2.3.2 we give lower bounds on the Q-gonality of curves X∆(N) via

Fp-gonality, in Section 2.3.3 we give lower bounds on the C-gonality obtained using

the Castelnuovo-Severi inequality (Proposition 2.1.5), in Section 2.3.4 we give rational

morphisms from X∆(N) to P1, and in Section 2.3.5 we determine the C-tetragonal curves

X∆(N). After that, in Section 2.3.6 we prove the main theorems of this section.

For the reader’s convenience, in Appendix C at the end of the thesis we put Table C.1.

There we list the curves X∆(N) for all levels N studied in the section (the list of these

levels N is given and explained at the beginning of Section 2.3.1). For these curves X∆(N)

we also give their C and Q-gonality with the links to all results used to determine the

gonality of that curve.

A lot of the results in this section rely on Magma [11] and Sage computations as well.

An important part in determining the gonality of algebraic curves is finding their mod-
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els, preferably non-singular ones. For the modular curve X0(N) and its quotient curves

X0(N)/W (where W is some group of Atkin-Lehner involutions wd) there exists an inbuilt

Magma function X0NQuotient() that gives a canonical model. However, this is not the case

for the intermediate curves X∆(N). Therefore, we have to manually find a regular model

for them.

Let C/k be a curve of genus g. Then its space of regular differentials has dimension g

with a basis ω1, . . . ,ωg. The canonical map of C is the map

(ω1 : . . . : ωg) : C → Pg−1.

For non-hyperelliptic curves of genus g g 3, this map is an embedding, and its image is

called the canonical model of C.

There is also an equivalent definition of the canonical map which does not use dif-

ferentials. Let K be a canonical divisor on C. We know from Proposition 1.4.12 that

degK = 2g−2 and ℓ(D) = g. Let f1, . . . , fg be a basis for L(D). The canonical map of C

is the map

( f1 : . . . : fg) : C → Pg−1.

For i g 2, we denote by Li the Q-vector space of homogenous degree d polynomials

P ∈Q[x1, . . . ,xg] such that P(ω1, . . . ,ωg) = 0.

Theorem 2.3.6 (Noether, [26, Section 8B]). dimL2 =
(g−2)(g−3)

2
.

Theorem 2.3.7 (Petri, [5, 79]). Let C/k be a smooth non-hyperelliptic curve of genus

g g 3.

(a) If g = 3, then dimL2 = dimL3 = 0,dimL4 = 1. Any generator of L4 provides an

equation of C. In other words, any genus 3 non-hyperelliptic curve C/Q is a smooth

plane quartic.

(b) If g > 3, then the basis of L2

⊕

L3 provides a canonical model of C. Furthermore,

if C is neither trigonal nor a smooth plane quintic (only possible if g = 6), then the

basis of L2 provides a canonical model of C

Example 2.3.8. Any non-hyperelliptic curve of genus 4 is an intersection of a cubic and
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a quadric (that is, a common zero locus of two homogenous polynomials of degrees 3 and

2, respectively).

Since we are only interested in curves of genus g g 5 (none of them are trigonal

by [49]) and there are no intermediate modular curves that are smooth plane quintics

by [4, Theorem 1.1], the
(g−2)(g−3)

2
quadrics will give canonical models of these

curves X∆(N).

We used a function vanishing quadratic forms() from Maarten Derickx’s Sage pack-

age MD Sage to find these quadrics and, consequently, canonical models of intermedi-

ate curves X∆(N). Following that, we loaded these models into Magma codes for giving

bounds on Q and C-gonality.

Another reason we use Sage instead of Magma for finding the models of curves X∆(N)

is that in Sage it is easier to work with congruence subgroups. We can use a Sage function

GammaH() to get congruence subgroups ΓH . For example, GammaH(29,[12,-1]) gives a

subgroup Γ{±1,±12}(29). On the other hand, Magma only has such functions for subgroups

Γ(N), Γ0(N), Γ1(N), and Γ1(M,N).

It should also be mentioned that David Zwyina’s Magma function FindCanonicalModel()

on

https://github.com/davidzywina/ActionsOnCuspForms,

used in [96], also gives canonical models of modular curves XΓ for groups ΓfGL2(Z/NZ).

However, this function is much slower than the MD Sage function vanishing quadratic forms()

used here.

The codes that verify all computations in this section can be found on

https://github.com/orlic1/gonality_X_Delta.

Additionally, code and data associated to the paper [86] by Jeremy Rouse, Andrew V.

Sutherland, and David Zureick-Brown was used in Proposition 2.3.9. Their code can be

found on

https://github.com/AndrewVSutherland/ell-adic-galois-images/tree/

209c2f888669785151174f472ea2c9eafb6daaa9.
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2.3.1. Preliminaries

If we have

{±1} ¦ ∆1 ¦ ∆2 ¦ (Z/NZ)×,

then, due to the natural projections

X1(N)→ X∆1
(N)→ X∆2

(N)→ X0(N)

and Proposition 2.0.2(vii), we conclude that

gonQ(X1(N))g gonQ(X∆1
(N))g gonQ(X∆2

(N))g gonQ(X0(N)), (2.5)

gonC(X1(N))g gonC(X∆1
(N))g gonC(X∆2

(N))g gonC(X0(N)). (2.6)

Therefore, when searching for tetragonal curves X∆(N), we may restrict ourselves

to the levels N for which the curve X0(N) has C-gonality at most 4. Similarly, when

searching for Q-pentagonal curves X∆(N), we may restrict ourselves to the levels N for

which the curve X0(N) has Q-gonality at most 5. These levels N are listed in [53] and

Theorem 2.1.3. They are

N ∈ {1−75,77−81,83,85,87−89,91,92,94−96,98,100,101,

103,104,107,109,111,119,121,125,131,142,143,167,191}.

We can also eliminate those levels N for which the Q-gonality of the curve X1(N) is

at most 3, namely [23, Table 1]

N ∈ {1−16,18,20}.

Therefore, there are only finitely many intermediate modular curves X∆(N) we need

to deal with. Moreover, from the group structure of the group (Z/NZ)×, we can easily

see that for

N ∈ {22,23,46,47,59,83,94,107,167},
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there are actually no intermediate modular curves X∆(N) because in these cases (Z/NZ)×∼=
Z/2pZ for some prime p.

2.3.2. Fp-gonality

In this section we use the results on the Fp-gonality to get a lower bound on the Q-gonality

of the modular curves X∆(N).

Proposition 2.3.9. The modular curve X∆(N) has Q-gonality at least 6 for the following

values of N and ∆:

Table 2.22: The values of N and ∆ for Proposition 2.3.9.

N ∆ p #X∆(N)(Fp2)

71 ï−1,5ð 5 182

78 ï−1,5,31ð 5 192

80 ï−1,3,49ð 3 68

88 ï−1,21,25ð 3 68

91 ï−1,2ð 2 38

96 ï−1,5ð 5 160

104 ï−1,3,25ð 3 72

104 ï−1,5,27ð 5 192

143 ï−1,8ð 5 180

Proof. We use Magma to compute the number of Fp2 rational points on these curves

X∆(N). It is easy to check that #X∆(N)(Fp2) > 5(p2 + 1) and we can use Lemma 2.1.8

with q = p2 to finish the proof. ■

Here we used Andrew Sutherland’s Magma function GL2PointCount(Γ, q) which, for

Γ f GL2(Z/NZ), returns the number of Fq-rational points of XΓ. For a given group

∆ f (Z/NZ)×, the corresponding group Γ (from the discussion at the beginning of Sec-

tion 2.3) has the following generators:

85



Gonality of algebraic curves Tetragonal Intermediate Modular Curves





a 0

0 1



 : a is a generator of ∆,





1 0

0 d



 : d is a generator of (Z/NZ)×,





1 1

0 1



 .

We can also directly obtain the lower bound on the Fp-gonality of X∆(N) by checking

that the dimensions of Riemann-Roch spaces of all degree f d effective Fp-rational divi-

sors are equal to 1. This is a finite task since the number of such divisors is finite. We can

also use certain tricks (like the ones used in Propositions 2.1.32, 2.1.33, 2.2.5) to reduce

the number of divisors that need to be checked.

Proposition 2.3.10. The Fp-gonality of the curve X∆(N) at least 5 for the following

values of N and ∆:

Table 2.23: The values of N and ∆ for Proposition 2.3.10.

N ∆ p

31 {±1,±5,±6} 7

31 {±1,±2,±4,±8,±16} 2

125 ï−1,4ð 2

Proof. Using Magma, we compute that there are no functions of degree f 4 in Fp(X∆(N)).

■

Proposition 2.3.11. The Fp-gonality of the curve X∆(N) at least 6 for the following

values of N and ∆:
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Table 2.24: The values of N and ∆ for Proposition 2.3.11.

N ∆ p N ∆ p

29 {±1,±12} 3 33 {±1,±10} 5

34 {±1,±13} 3 35 {±1,±11,±16} 3

37 {±1,±10,±11} 3 38 {±1,±7,±11} 3

39 {±1,±16,±17} 5 40 {±1,±19} 3

41 ï−1,4ð 3 41 {±1,±3,±9,±14} 2

42 {±1,±5,±17} 5 42 {±1,±13} 5

43 {±1,±2} 3 43 {±1,±6,±7} 3

44 {±1,±21} 3 45 {±1,±8,±17,±19} 2

45 {±1,±14,±16} 2 48 {±1,±23} 5

49 {±1,±18,±19} 2 51 ï−1,2ð 2

52 ï−1,21ð 3 52 ï−1,3ð 3

53 ï−1,4ð 19 54 {±1,±17,±19} 5

55 ï−1,16ð 2 55 {±1,±12,±21,±23} 2

56 ï−1,3ð 3 56 ï−1,9,15ð 3

56 ï−1,5,9ð 3 56 {±1,±13,±15,±27} 3

57 ï−1,8,20ð 2 57 ï−1,2ð 3

58 ï−1,9ð 3 60 {±1,±11,±19,±29} 7

60 {±1,±11,±13,±23} 7 60 {±1,±7,±11,±17} 7

61 ï−1,4ð 5 61 ï−1,8ð 2

61 ï−1,29ð 2 62 ï−1,27ð 2

63 ï−1,4,5ð 2 63 ï−1,8,20ð 2

63 ï−1,8,10ð 2 63 ï−1,5,8ð 2

63 ï−1,2ð 2 64 {±1,±15,±17,±31} 3

65 ï−1,2,7ð 2 65 ï−1,4,6ð 2

65 ï−1,3,4ð 2 65 ï−1,8,12ð 2

66 ï−1,25ð 5 67 ï−1,8ð 2

68 ï−1,9ð 3 69 ï−1.4ð 2
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70 ï−1,27ð 3 70 ï−1,9ð 3

71 ï−1,20ð 3 72 ï−1,13,25ð 5

72 ï−1,17,25ð 5 72 ï−1,5ð 5

73 ï−1,21ð 2 73 ï−1,25ð 3

74 ï−1,25ð 3 75 ï−1,16ð 2

77 ï−1,32ð 2 77 ï−1,8ð 2

77 ï−1,4ð 2 78 ï−1,35,49ð 5

79 ï−1,27ð 2 80 ï−1,7,9ð 3

80 ï−1,21,49ð 3 81 ï−1,8ð 2

85 ï−1,2,9ð 2 85 ï−1,3,4ð 3

87 ï−1,4ð 2 88 ï−1,5ð 3

88 ï−1,25,105ð 3 89 ï−1,9ð 2

91 ï−1,8,12ð 2 91 ï−1,8,24ð 2

91 ï−1,8,48ð 2 91 ï−1,4,12ð 2

92 ï−1,9ð 3 95 ï−1,4ð 2

95 ï−1,8ð 2 96 ï−1,17,25ð 5

96 ï−1,11,25ð 5 100 ï−1,9ð 3

101 ï−1,4ð 2 103 ï−1,22ð 2

104 ï−1,5,9ð 3 109 ï−1,2ð 2

109 ï−1,36ð 2 111 ï−1,8ð 2

111 ï−1,4ð 2 119 ï−1,27ð 2

119 ï−1,9ð 2

Proof. Using Magma, we compute that there are no functions of degree f 5 in Fp(X∆(N)).

■

Proposition 2.3.12. The Fp-gonality of the curve X∆(N) is bounded from below by d

for the following values of N and ∆:
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Table 2.24: The values of N and ∆ for Proposition 2.3.12.

N ∆ p d

35 {±1,±6} 2 8

37 {±1,±6} 2 9

39 {±1,±14} 2 8

40 {±1,±11} 3 7

40 {±1,±9} 3 8

Proof. Using Magma, we compute that there are no functions of degree f d−1 in Fp(X∆(N)).

■

Remark 2.3.13. Most computations for Propositions 2.3.10, 2.3.11, and 2.3.12 were rel-

atively fast (several minutes). However, there were some cases that took longer to finish,

For example, the cases (N,∆)= (78,ï−1,35,49ð),(96,ï−1,11,25ð),(104,ï−1,5,9ð) took

around 2 hours to finish.

Also, the computation time for (N,∆) = (53,ï−1,4ð) was around 4 hours, mostly due

to the larger field F19 the program was working with. This is because the number of

Riemann-Roch spaces that need to be computed to give a lower bound of d on the Fp-

gonality is O(pd) (see Section 2.1.6)) and it is therefore advisable to choose small values

of p when computing the Fp-gonality.

From this we can also see that the complexity grows exponentially with d, meaning

that computing the Fp-gonality using this method becomes more difficult and increasingly

unfeasible as the gonality grows, especially in the high genus cases.

2.3.3. Castelnuovo-Severi inequality

Proposition 2.3.14. The C-gonality of the curve X∆(N) is at least 6 for the following

values of N and ∆:
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Table 2.25: The values of N and ∆ for Proposition 2.3.14.

N ∆ X∆(N) - LMFDB label g(X∆(N)) Y deg g(Y )

48 {±1,±7} 48.384.19.b j.1 19 X{±1,±7,±17,±23}(48) 2 7

48 {±1,±17} 48.384.19.bc.1 19 X{±1,±7,±17,±23}(48) 2 7

50 {±1,±7} 50.450.22. f .1 22 25.150.4. f .1 3 4

62 {±1,±5,±25} 62.480.31.c.1 31 31.160.6.c.1 3 6

72 {±1,±17,±19,±35} 72.432.21.tx.1 21 36.216.7.u.1 2 7

74 ï−1,23ð 74.342.22.b.1 22 37.114.4.b.2 3 4

98 ï−1,27ð 98.504.19.b.1 19 49.168.3.b.1 3 3

Proof. We know from [43] and [49] that these curves X∆(N) are neither hyperelliptic nor

trigonal. Therefore, their C-gonality is at least 4.

Suppose that the curve X∆(N) is tetragonal for some values of N and ∆ from this table.

This would mean that there is a degree 4 morphism from X∆(N) to P1. We can easily

check on LMFDB that there is a degree deg morphism from X∆(N) to the curve Y .

If deg = 3, then these two morphisms surely do not factor through a morphism of

degree > 1. If deg = 2 and these two morphisms factor through a morphism X∆(N)→ X ′,

then this morphism X∆(N)→X ′ must be of degree 2 and we must have X ′ ∼=Y . Therefore,

we must have

X∆(N)
2−→ Y

2−→ P1,

meaning that the curve Y is hyperelliptic. However, we can easily check on LMFDB that

this is not the case and we get a contradiction.

This means that we can apply Castelnuovo-Severi inequality to these two morphisms

to get

g(X∆(N))f 4 ·0+deg ·g(Y )+3(deg−1).

This inequality does not hold for these values of N and ∆, however, meaning that there is

no degree 4 morphism from X∆(N) to P1.

Suppose now that the curve X∆(N) is pentagonal for some values of N and ∆ from
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the table. This would mean that there is a degree 5 morphism from X∆(N) to P1. Since

deg = 2,3 for all entries in the table, this hypothetical morphism and the degree deg

morphism to Y surely do not factor through a morphism of degree > 1.

This means that we can apply Castelnuovo-Severi inequality to these two morphisms

to get

g(X∆(N))f 5 ·0+deg ·g(Y )+4(deg−1).

This inequality does not hold for these values of N and ∆, however, meaning that there is

no degree 5 morphism from X∆(N) to P1. ■

2.3.4. Rational morphisms to P1

In Section 2.3.2 and Section 2.3.3, we were giving lower bounds on the C and Q-gonality

of curves X∆(N). Now we give upper bounds by finding rational morphisms from X∆(N)

to P1.

Proposition 2.3.15. There exists a degree 4 rational morphism from X∆(N) to P1 for the

following values of N and ∆:

Table 2.26: The values of N and ∆ for Proposition 2.3.15.

N ∆

30 {±1,±11}
32 {±1,±15}
33 {±1,±2,±4,±8,±16}
35 {±1,±4,±6,±9,±11,±16}
36 {±1,±17}
39 {±1,±4,±10,±14,±16,±17}
40 {±1,±9,±11,±19}
41 ï−1,2ð
45 {±1,±4,±11,±14,±16,±19}
64 ï−1,9ð
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Proof. All these curves X∆(N) are of genus 5 and from the discussion at the end of the

introduction of Section 2.3 we know that their canonical models are intersections of three

quadrics. Using Sage, we obtained canonical models for these curves. With these models,

we used a Magma function Genus5GonalMap(C) which returned that the C-gonality of the

curve X∆(N) is 4 and also gave the equations of this degree 4 morphism. The equations

were all defined over Q, therefore these curves X∆(N) are all Q-tetragonal. ■

Remark 2.3.16. Magma has inbuilt functions Genus2GonalMap(C), Genus3GonalMap(C),

Genus4GonalMap(C), Genus5GonalMap(C), and Genus6GonalMap(C) which return the

C-gonality of the curve C (required to be of that genus) and a gonal map to P1, defined

over some number field.

However, these functions seem to expect the ’usual’ model of C. For example, they

expect the model of a genus 3 curve to be a single quartic and a model of a genus 5 curve

to be an intersection of three quadrics (models mentioned in Theorem 2.3.7). Otherwise,

Magma can return an error (the current version of Magma at the time of writing of this thesis

was V2.28-14).

For example, for genus 5 quotients of the modular curve X0(N), the inbuilt Magma

function X0NQuotient() returns a canonical model that is an intersection of cubics instead

of an intersection of three quadrics.

Proposition 2.3.17. There exists a degree d rational morphism from X∆(N) to P1 for the

following values of N and ∆:

Table 2.27: The values of N and ∆ for Proposition 2.3.17.

N ∆ d

29 {±1,±12} 6

31 {±1,±2} 5

31 {±1,±5,±6} 5

33 {±1,±10} 6

34 {±1,±13} 6

35 {±1,±11,±16} 6
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35 {±1,±6,±8,±13} 4

37 {±1,±10,±11} 6

39 {±1,±16,±17} 6

40 {±1,±11} 7

44 {±1,±5,±7,±9,±19} 5

55 ï−1,4ð 4

Proof. We used Sage to find a canonical model for these curves X∆(N). After that, we

used Magma to find a degree d rational effective divisor with Riemann-Roch dimension at

least 2. In all cases except for (N,∆) = (37,{±1,±10,±11}) this divisor was a sum of d

rational points.

For (N,∆) = (37,{±1,±10,±11}) we were not able to find a degree 6 function whose

polar divisor is supported on rational points so we had to search for quadratic points.

We searched for quadratic points by intersecting the curve with hyperplanes of the

form

b0x0 +b1x1 +b2x2 = 0,

where b0,b1,b2 ∈ Z are coprime and chosen up to a certain bound, a similar idea as in

Proposition 2.2.15. Following that, we found a degree d effective rational divisor with

Riemann-Roch dimension 2. This divisor is a sum of rational points and divisors of the

form Q+σ(Q), where Q is one of the quadratic points. ■

Proposition 2.3.18. There exists a degree d rational morphism from X∆(N) to P1 for the

following values of N and ∆:
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Table 2.28: The values of N and ∆ for Proposition 2.3.18.

N ∆ d X∆(N) - LMFDB label Y deg gonQ(Y )

33 {±1,±2,±4,±8,±16} 4 33.96.5.a.4 X0(33) 2 2

34 {±1,±13} 6 34.216.9.a.1 17.72.1.a.2 3 2

35 {±1,±6} 8 35.288.13.a.2 X{±1,±6,±8,±13}(35) 2 4

36 {±1,±17} 4 36.216.7.u.1 X±1(18) 2 2

37 {±1,±6} 9 37.342.16.c.2 Xï−1,8ð(37) 3 3

38 {±1,±7,±11} 6 38.180.10.a.1 19.60.1.a.2 3 2

39 {±1,±5,±8,±14} 4 39.168.9.a.1 13.42.0.a.2 4 1

39 {±1,±14} 8 39.336.17.c.1 X±1(13) 4 2

40 {±1,±3,±9,±13} 4 40.144.7. f p.1 X0(40) 2 2

40 {±1,±7,±9,±17} 4 40.144.7. f s.1 X0(40) 2 2

40 {±1,±19} 6 40.288.9.bh.1 X±1(20) 2 3

40 {±1,±9} 8 40.288.13.sp.1 X{±1,±9,±11,±19}(40) 2 4

48 {±1,±5,±19,±23} 4 48.192.7.h j.1 X0(48) 2 2

48 {±1,±7,±17,±23} 4 48.192.7.ho.1 X0(48) 2 2

125 ï−1,4ð 5 125.300.16.a.1 25.60.0.a.1 5 1

Proof. This degree d morphism is obtained as a composition map

X∆(N)
deg−−→ Y

gonQ(Y )−−−−−→ P1.

The map from X∆(N) to Y is a rational projection map and can be checked on LMFDB. It

only remains to discuss the Q-gonality of the curve Y .

If Y is of genus 0,1 or is hyperelliptic, this is obvious. The Q-gonalities of the curves

X{±1,±6,±8,±13}(35) and X{±1,±9,±11,±19}(40) were proved in Propositions 2.3.17 and

2.3.15. The Q-gonality of the curve Xï−1,8ð(37) was proved in Theorem 2.3.1 and the

Q-gonalities of the curves X±1(N)∼= X1(N) were proved in [23]. ■
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2.3.5. C-gonalities

In this section we will determine the cases when gonC(X∆(N)) = 4.

Proposition 2.3.19. The modular curve X∆(N) has C-gonality at least 6 for the following

values of N and ∆:

Table 2.29: The values of N and ∆ for Proposition 2.3.19.

N ∆ [SL2(Z) : ∆] N ∆ [SL2(Z) : ∆]

53
〈

−1,213
〉

702 58
〈

−1,37
〉

630

66
〈

−1,55
〉

720 67
〈

−1,211
〉

748

69
〈

−1,211
〉

1056 75
〈

−1,25
〉

600

79
〈

−1,313
〉

1040 87
〈

−1,27
〉

840

88
〈

−1,21,55
〉

720 89
〈

−1,311
〉

990

92
〈

−1,311
〉

1584 98
〈

−1,37
〉

1176

100
〈

−1,35
〉

900 101
〈

−1,25
〉

510

103
〈

−1,517
〉

1763 121 ï−1,32ð 660

121
〈

−1,211
〉

1452 125 ï−1,32ð 750

131
〈

−1,25
〉

660 131
〈

−1,213
〉

1716

142
〈

−1,75
〉

1080 142
〈

−1,77
〉

1512

143
〈

−1,25
〉

840 191
〈

−1,195
〉

960

191
〈

−1,1919
〉

3648

Proof. From Theorem 2.0.3, we can see that X∆(N) cannot be d-gonal for d f 5 because

[SL2(Z) : ∆]> +5 · 12000
119

,= 504 in all these cases. ■

Proposition 2.3.20. The curves X∆(N) are C-tetragonal for

(N,∆) ∈ {(31,{±1,±5,±6}),(31,{±1,±2,±4,±8,±15})}.

Proof. These curves are of genus 6. Therefore, they have C-gonality at most 4 by Propo-

sition 2.0.2(v). We also know that they are neither hyperelliptic nor trigonal by [43]
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and [49]. Hence their C-gonality is equal to 4. ■

From Theorem 2.1.16 and Corollary 2.1.17 we see that in order to prove that a curve

of genus g g 10 has C-gonality at least 5, it is enough to prove that its Q-gonality is at

least 5. All such non-tetragonal curves X∆(N) have been dealt with in Sections 2.3.2,

2.3.3, and Proposition 2.3.19. Therefore, the remaining curves are those with genus f 9.

In order to prove that these curves are not tetragonal, we will use graded Betti numbers

βi, j.

Proposition 2.3.21. The modular curve X∆(N) has C-gonality at least 5 for the following

values of N and ∆:

Table 2.30: The values of N and ∆ for Proposition 2.3.21.

N ∆ N ∆ N ∆

29 {±1,±12} 34 {±1,±13} 35 {±1,±11,±16}
39 {±1,±16,±17} 40 {±1,±19} 42 {±1,±5,±17}
43 ï−1,2ð 44 {±1,±5,±7,±9,±19} 45 {±1,±14,±16}
51 ï−1,2ð 52 ï−1,3ð 53 ï−1,4ð
55 ï−1,4ð 56 ï−1,3ð 57 ï−1,2ð
61 ï−1,4ð 63 ï−1,4,5ð 65 ï−1,2,7ð
72 ï−1,11,25ð 73 ï−1,25ð

Proof. In all these cases we use Magma to compute β2,2 = 0 and the result follows from

Corollary 2.1.14 since these curves are neither hyperelliptic nor trigonal. ■

2.3.6. Proofs of the main theorems

By the results of Ishii and Momose [43] and Jeon and Kim [49], we know that the only

hyperelliptic curve X∆(N) ̸= X0(N),X1(N) is a curve X{±1,±8}(21) and that all C-trigonal

curves X∆(N) ̸= X0(N),X1(N) are of genus 3 or 4. Moreover, Theorem 2.3.1 tells us

which genus 4 curves are Q-trigonal (we know from Proposition 2.0.2(iv) that genus 3
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curves have Q-gonality f 3). In the proofs of the main theorems, we may now suppose

that all remaining curves we consider have C-gonality at least 4.

Proof of Theorem 2.3.3. The curve X{±1,±7} is tetragonal over Q due to Theorem 2.3.1.

Other listed curves are tetragonal over Q due to Propositions 2.3.15, 2.3.17, and 2.3.18.

Suppose now that X∆(N) is a curve of C-gonality at least 4 not listed in the theorem.

In the first case, we prove that the Q-gonality of this curve is at least 5 in Propositions

2.3.9, 2.3.10, 2.3.11, 2.3.12, and Proposition 2.3.14, Otherwise, there is a projection map

X∆(N)→ X∆1
(N)

to a curve X∆1
(N) for which we have already proven that it is not Q-tetragonal. In that

case we can use Proposition 2.0.2(vii) to prove that the curve X∆(N) is not Q-tetragonal.

For example, we consider the case N = 41. Since (Z/41Z)× ∼= Z/40Z, there are 4

intermediate modular curves X∆(41), namely

∆ ∈ {{±1,±9},{±1,±3,±9,±14},{±1,±4,±10,±16,±18},ï−1,2ð}.

The curve with ∆ = ï−1,2ð is Q-tetragonal due to Proposition 2.3.15 and the curves with

∆ = {±1,±3,±9,±14},{±1,±4,±10,±16,±18} are not Q-tetragonal due to Proposi-

tion 2.3.11. Then the curve with ∆ = {±1,±9} is automatically not Q-tetragonal since it

maps to a curve with ∆ = {±1,±3,±9,±14}. ■

Proof of Theorem 2.3.4. The two listed curves are C-tetragonal due to Proposition 2.3.20

and they admit a degree 5 rational morphism to P1 due to Proposition 2.3.17. However,

they are not Q-tetragonal due to Proposition 2.3.10.

Suppose now that X∆(N) is a curve of C-gonality at least 4 not listed in Theorems 2.3.3

and 2.3.4. Then we either prove that its C-gonality is at least 5 using Proposition 2.3.14,

Proposition 2.3.19, Proposition 2.3.21, the bound on Fp-gonality in Section 2.3.2 along

with Corollary 2.1.17 for curves of genus g g 10, or we use Proposition 2.0.2(vii) with a

map X∆(N)→ X∆1
(N), similarly as in the proof of the previous theorem. ■

Proof of Theorem 2.3.5. The two listed curves are Q-pentagonal due to Propositions 2.3.17

and 2.3.18. We proved that the curve with N = 44 has C-gonality at least 5 in Proposi-
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tion 2.3.21 and that the curve with N = 125 has Q-gonality at least 5 in Proposition 2.3.10.

Since the genus of the curve Xï−1,4ð(125) is equal to 16, we can use Corollary 2.1.17 to

prove that its C-gonality is at least 5.

Suppose now that X∆(N) is a curve of C-gonality at least 4 not listed in Theorems

2.3.3, 2.3.4, and 2.3.5. Then we know that its C-gonality is at least 5. It remains to prove

that its Q-gonality is at least 6.

In the first case, we either use Propositions 2.3.11, 2.3.12, 2.3.14, or Proposition 2.3.19

to prove that the Q-gonality is at least 6. Otherwise, we use Proposition 2.0.2(vii) with a

map X∆(N)→ X∆1
(N), similarly as in the previous two proofs. ■
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Let C be a smooth, projective, and geometrically integral curve defined over a number

field k. Determining whether the set of points of degree f d over k on C is finite or

infinite is an important problem in arithmetic geometry. Faltings’ Theorem solves the

base case d = 1.

Theorem 3.0.1 (Faltings’ Theorem, [28]). Let k be a number field and let C be a non-

singular curve defined over k of genus g g 2. Then the set C(k) is finite.

Therefore, if C(k) ̸= /0, then it is infinite if and only if C is isomorphic to P1 (g = 0) or

C is an elliptic curve (g = 1) with positive k-rank. The next step is considering the same

problem for d > 1.

Definition 3.0.2. Let C be a curve defined over a number field k. The arithmetic degree

of irrationality a.irrkC is the smallest integer d such that C has infinitely many points of

degree d over k, i.e.

a.irrkC := min
Ä

d,#
¶

∪[F :k]fdC(F)
©

= ∞
ä

.

We also define

a.irrk C := min
[L:k]<∞

a.irrL C.

It is obvious that a.irrkC g a.irrk C.

Harris and Silverman [35, Corollary 3] proved that if a curve of genus g g 2 has

infinitely many quadratic points, then it must be either hyperelliptic or bielliptic. Also,

Abramovich and Harris [2, Theorem 1] gave a conjecture

a.irrk C f d ⇐⇒ C admits a map of degree f d to P1 or an elliptic curve
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which they proved for d = 2,3. However, Debarre and Fahlaoui constructed counterex-

amples for d g 4 [17]. One way to characterize when there are infinitely many points of

degree d on C is the following theorem.

Theorem 3.0.3 ( [12, Theorem 4.2. (1)]). Let C be a curve over a number field. There

are infinitely many degree d points on C if and only if either there exists a map C → P1 of

degree d or the image of Symd C in PicdC contains a translate of a positive rank abelian

variety.

It can be hard to check, however, whether the image of Symd C in PicdC contains a

translate of a positive rank abelian variety. Kadets and Vogt gave a simpler characteriza-

tion for d = 2,3, which encompasses the previous results of Harris-Silverman [35] and

Abramovich-Harris [2].

Theorem 3.0.4 ( [54], Theorem 1.2). Suppose X/k is a smooth, projective, and geomet-

rically integral curve. Then the following statements hold:

(1) If a.irrkX = 2, then X is a double cover of P1 or an elliptic curve of positive rank

over k.

(2) If a.irrkX = 3, then one of the following three cases holds:

(a) X is a triple cover of P1 or an elliptic curve of positive rank over k.

(b) X is a smooth plane quartic with no rational points, positive rank Jacobian,

and at least one cubic point.

(c) X is a genus 4 Debarre-Fahlaoui curve [17, Section 4].

(3) If a.irrkX = d f 3, then Xk is a degree d cover of P1 or an elliptic curve.

(4) If a.irrkX = d = 4,5, then either Xk is a Debarre-Fahlaoui curve [17, Section 4], or

Xk is a degree d cover of P1 or an elliptic curve.

The question of determining a.irrkC is closely related to the k-gonality of C and degree

k maps to elliptic curves. Frey [31, Proposition 2] proved that if a curve C defined over a

number field k has infinitely many points of degree f d over k, then gonkC f 2d.
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Regarding the curves C = X1(M,N) and k = Q, all cases when C has infinitely many

points of degree d f 6 were determined by Mazur [70] (for d = 1), Kenku, Momose, and

Kamienny [55,62] (for d = 2), Jeon, Kim, and Schweizer [51] (for d = 3), Jeon, Kim, and

Park [50] (for d = 4), and Derickx and Sutherland [22] (for d = 5,6). Additionally, Der-

ickx and van Hoeij [23] determined all curves X1(N) which have infinitely many points of

degree d = 7,8 and Jeon determined all trielliptic [46] and tetraelliptic [47] curves X1(N)

over Q.

In this thesis, we will study the curve C = X0(N) and k = Q. The curve X0(N) has

infinitely many rational points if and only if N ∈ {1− 10,12,13,16,18,25} (i.e. when

g(X0(N)) = 0). This was proved by Mazur [71] and Kenku [57–60].

Ogg [80] determined all hyperelliptic curves X0(N), Bars [6] determined all bielliptic

curves X0(N), as well as all curves X0(N) with infinitely many quadratic points, and

Jeon [45] determined all curves X0(N) with infinitely many cubic points.

Theorem 3.0.5 (Bars). The modular curve X0(N) has infinitely many points of degree 2

over Q if and only if

N ∈ {1−33,35−37,39−41,43,46−50,53,59,61,65,71,79,83,89,101,131}.

Theorem 3.0.6 (Jeon). The modular curve X0(N) has infinitely many points of degree 3

over Q if and only if

N ∈ {1−29,31,32,34,36,37,43,45,49,50,54,64,81}.

We here determine all curves X0(N) with infinitely many quartic points. Our main

result is the following theorem.

Theorem 3.0.7. The modular curve X0(N) has infinitely many points of degree 4 over

Q if and only if

N ∈ {1−75,77−83,85−89,91,92,94−96,98−101,103,104,107,111,

118,119,121,123,125,128,131,141−143,145,155,159,167,191}.
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For N in the above set, we prove in Section 3.3 that X0(N) has infinitely many quartic

points. The harder part of the proof is proving that for the other N, there are only finitely

many quartic points on X0(N).

Remark 3.0.8. This result has in the meantime been proven by Jeon and Hwang in [42]

using different methods. However, the methods presented here could be used to solve the

higher degree cases (i.e. d = 5). Moreover, with some modifications, our methods could

be used to determine all trielliptic and tetraelliptic curves X0(N) and also all trielliptic

quotients of X0(N) (all bielliptic quotients of X0(N) were determined in [9]).

Thus, we put emphasis on our method of determining the possible degrees of a rational

morphism to an elliptic curve. The classification of curves X0(N) with infinitely many

quartic points is given afterwards as an application.

Section 3.1 contains the technical results used in Section 3.2, where we determine all

positive rank tetraelliptic curves X0(N). Our main tool for proving that a curve C over Q

does not admit a degree 4 morphism to an elliptic curve E over Q is the representation of

rational morphisms from J0(N) to E by a quadratic form.

Proposition 3.0.9 (Part of the proof of Theorem 3.0.11). Let C be a curve over Q with

at least one rational point and E an elliptic curve over Q that occurs as an isogeny factor

of J(C) with multiplicity n g 1. Then the degree map deg : HomQ(C,E) → Z can be

extended to a positive definite quadratic form on HomQ(J0(N),E)∼= Zn.

This statement is a generalization of [90, Corollary III.6.3], which deals with the case

when C is an elliptic curve. The proof uses optimal E-isogenous quotients defined in

Section 3.2 to prove that HomQ(J(C),E)∼= HomQ(E
n,E)∼=Zn. We do not give the proof

here because we do not need Proposition 3.0.9 to prove Theorem 3.0.11, but are instead

able to manually construct a desired quadratic form in all our cases.

In Section 3.1.2 we define a pairing on HomQ(J(C),E) which is an extension of the

degree map. Proposition 3.1.5 tells us that it is a positive definite symmetric bilinear

quadratic form. It turns out that, in all our cases, the degeneracy maps ιd,N,M (defined in

Section 3.1.3) form a basis for HomQ(J(C),E). More precisely, we have the following

result.

102



Degree d points on curves

Proposition 3.0.10. Take a positive integer N < 408. Let E be an elliptic curve of

positive Q-rank and conductor Cond(E) = M | N, and let f : X0(M) → E be a modu-

lar parametrization of E. Then (with the natural embedding X0(N) → J0(N)), the maps

f ◦ ιd,N,M form a basis for HomQ(J(C),E), where d ranges over all divisors of
N

M
.

Therefore, the coefficients of the quadratic form are the values of the pairing on the

base elements f ◦ ιd,N,M. The main result of Section 3.1, Theorem 3.1.13, allows us to

explicitly compute these coefficients in terms of the q-expansion of the modular form

associated with E. We use these quadratic forms in Section 3.4 to prove the following

theorem.

Theorem 3.0.11. The curve X0(N) is positive rank tetraelliptic over Q if and only if

N ∈{57,58,65,74,77,82,86,91,99,111,118,121,123,128,141,142,143,145,155,159}.

One step of the proof of Theorem 3.0.11 is to check for finitely many cases that the

suitable quadratic form does not take 4 as a value and conclude that there are no degree

4 rational morphisms from X0(N) to E. The quadratic forms considered are listed in

Appendix D.

The last two sections are an application of our methods developed in Section 3.1 and

Section 3.2. In Section 3.3, we find degree 4 morphisms for all levels N when curve X0(N)

has infinitely many quartic points.

In Section 3.4, we prove that any curve C/Q of genus g g 8 with infinitely many

quartic points and finitely many cubic points has a degree 4 morphism to P1 or a positive

rank elliptic curve. Using this result for C = X0(N), along with the fact that all curves

X0(N) with infinitely many cubic points are tetragonal over Q (since all of them either

have genus 0 or 1, or are hyperelliptic or bielliptic), we get that any curve X0(N) of genus

g g 8 with infinitely many quartic points must admit a degree 4 rational morphism to a

positive rank elliptic curve (we will call such curves positive rank tetraelliptic). Therefore,

only finitely many levels N (actually, only N = 97) need to be solved separately.

Finally, at the end of Section 3.4, we prove Theorem 3.0.11 and Theorem 3.0.7 and

give a few examples to illustrate the application of our methods.

The reason why we only solved the case d = 4 is the following. Although we could
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get a similar result as in Theorem 3.0.11 for d g 5, there is a large number of small genus

curves X0(N) for which we cannot use Theorem 3.4.1 to connect the degree d maps with

the points of degree f d.

For example, when d = 5, Theorem 3.4.1 can only be used for curves of genus g g 12.

Although we can use the Jacobi inversion theorem to deal with the cases g f 5, there are

34 curves X0(N) with genus g ∈ [6,11] such that J0(N) has positive rank over Q (for d = 4

we were lucky to have only one such small genus case, N = 97). Furthermore, there exists

only one pentagonal curve X0(N), namely X0(109) (Theorem 2.1.3), and we did not find

any degree 5 maps from X0(N) to an elliptic curve. Therefore, we expect that in most

g g 6 cases the curve X0(N) will have only finitely many degree 5 points.
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3.1. PROPERTIES OF JACOBIANS

3.1.1. Notation and definitions

Let C,C′ be curves over a field k. A morphism f : C →C′ induces maps f∗ : J(C)→ J(C′)

and f ∗ : J(C′) → J(C) which are defined as follows. If D = ∑niPi and D′ = ∑n′iP
′
i are

divisors on C and C′ respectively, then

f∗([D]) = [∑ni f (Pi)] and

f ∗([D′]) = [∑n′i f−1(P′
i )].

When seeing J(C) not as divisors modulo principal divisors but as Pic0(C), the map f ∗ is

sometimes also denoted as f( or Pic( f ).

Lemma 3.1.1. f∗ ◦ f ∗ = [deg f ].

Proof. f∗( f ∗([D′]))= f∗( f ∗([∑n′iP
′
i ]))= f∗([∑n′i f−1(P′

i )])= [∑n′i ·(deg f )P′
i ] = [(deg f )D′].

■

By [74, Theorem 6.6], the abelian variety J(C) comes with a canonical principal po-

larization

φΘC
: J(C)→ J(C)(

induced by the theta divisor of C. This map is an isomorphism.

If P ∈C(k), then we can define the embedding morphism

fP : C → J(C),

x 7→ [x−P].

If A is an abelian variety over k, we can use this point to define

HomP(C,A) := { f ∈ Hom(C,A) | f (P) = 0} .

With this definition, the universal property of the Jacobian [74, Theorem 6.1] states that
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the map

ιP : Hom(J(C),A)→ HomP(C,A),

h 7→ h◦ fP

is an isomorphism. The map

sP : Hom(C,A)→ HomP(C,A),

f 7→ t− f (P) ◦ f ,

where t− f (P) denotes the translation by − f (P) map, is a retraction of the canonical inclu-

sion HomP(C,A)→ Hom(C,A) whose kernel are the constant maps. Since the constant

maps can be identified with A(k), we have a direct sum decomposition

Hom(C,A)∼= HomP(C,A)×A(k).

If A is an elliptic curve, then f and sP( f ) have the same degree because t− f (p) is an

isomorphism. In particular, if one wants to study the possible degrees that occur for

elements in Hom(C,A), it suffices to restrict to those in HomP(C,A).

Note that the maps f(P : J(C)( → J(C) and φΘC
: J(C)→ J(C)( are closely related to

each other, namely f(P ◦φΘC
=− IdJ(C). For elliptic curves, one often takes P = 0E to be

the zero section of the elliptic curve, and then the map f0E
: E → J(E) is used to identify

E with its Jacobian/dual. So the above means that this identification differs by the one

coming from the polarization φΘE
: J(E)→ J(E)( = E(( ∼= E by a minus sign.

3.1.2. Degree pairing

We already saw in Section 3.1.1 that if f :C →C′ is a map of curves, then f∗◦ f ∗= [deg f ].

This motivates the following definition:

Definition 3.1.2. Let C,E be curves over a field k with E being an elliptic curve. The
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degree pairing is defined on Hom(C,E) as

ï , ð : Hom(C,E)×Hom(C,E)→ End(J(E))

f ,g 7→ f∗ ◦g∗.

If P ∈C(k), then we can define the degree pairing on Hom(J(C),E) as

ï , ð : Hom(J(C),E)×Hom(J(C),E)→ End(J(E)),

f ,g 7→ ( f ◦ fP)∗ ◦ (g◦ fP)
∗.

We will also write ï f ,gð := f∗ ◦ g∗ for f ,g ∈ Hom(C,C′) (this is not a pairing when

C′ is not elliptic since Hom(C,C′) is not an abelian group in that case). With this notation

we have ï f , f ð= [deg f ] for f ∈ Hom(C,C′).

Note that the definition on Hom(J(C),E) is slightly unsatisfactory since a priori it

seems to depend on the base point P. Additionally, it is not defined in terms of intrinsic

properties of the abelian variety J(C), but instead just defined by using fP : C → J(C) to

transport the definition on Hom(C,E) to that on Hom(J(C),E). So let’s try to give a more

intrinsic definition.

Let A and B be two polarized abelian varieties over k with polarizations φA and φB

respectively and assume the polarization φA is principal. Then one can define the map

† : Hom(A,B)→ Hom(B,A),

f 7→ φ−1
A ◦ f( ◦φB.

When A = B this is just the Rosati involution, defined in Section 17 of [73].

Definition 3.1.3. Let (A,φA) and (B,φB) be two polarized abelian varieties over k with

φA a principal polarization. Then the dagger pairing on Hom(A,B) is defined as

ï , ð† : Hom(A,B)×Hom(A,B)→ End(B),

f ,g 7→ f ◦g†.

The following lemma shows how the dagger pairing relates to the degree pairing.
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Lemma 3.1.4. Let C,E be curves over a field k with E being an elliptic curve, and let

P ∈C(k). Then for f ,g ∈ Hom(J(C),J(E)) we have

ï f ,gð† = ï f−1
0E

◦ f ◦ fP, f−1
0E

◦g◦ fP ð,

where the principal polarizations on J(C) and J(E) needed for the definition of ï , ð†

are taken to be those coming from the theta divisors on C and E.

Proof. We prove this by showing ( f−1
0E

◦ f ◦ fP)∗ = f and ( f−1
0E

◦g◦ fP)
∗ = g†.

For the equality ( f−1
0E

◦ f ◦ fP)∗ = f it suffices to show equality on points over the

algebraic closure of k. So let D = ∑niPi be a degree zero divisor representing a point in

J(C)(k). Then

( f−1
0E

◦ f ◦ fP)∗(∑niPi) = ∑ni( f−1
0E

◦ f )(Pi −P) = ( f−1
0E

◦ f )(∑ni(Pi −P)) = . . .

. . .= f−1
0E

( f (∑niPi)− f (∑niP)) = f−1
0E

( f (∑niPi)− f (0)) = f (∑niPi).

The equality ( f−1
0E

◦g◦ fP)
∗ = g† follows since ∗ and ( denote the same operation and

( f−1
0E

◦g◦ fP)
( = f(P ◦g( ◦ ( f−1

0E
)( = (−φΘC

)−1 ◦g( ◦ (−φΘE
) = φ−1

ΘC
◦g( ◦φΘE

= g†,

where the second equality follows by applying Lemma 6.8 of [74] twice.

■

Proposition 3.1.5. Let C,E be curves over Q with E being an elliptic curve. Then the

dagger pairing is a positive definite symmetric bilinear form on HomQ(J(C),J(E)) taking

values in EndQ(J(E)) = Z.

Proof. The dagger pairing is obviously bilinear. It is also symmetric because for f ,g ∈
HomQ(J(C),J(E)) we have

ï f ,gð† = f ◦g† = (g◦ f †)† = g◦ f †.

Here the last equality holds because g◦ f † ∈ EndQ(J(E)) is of the form [n] for some n ∈Z

and [n]† = [n]. The positive definiteness follows from Lemma 3.1.4 since we can compute
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ï f , f ð† over Q by choosing a P ∈C(Q) as follows:

ï f , f ð† = ï f−1
0E

◦ f ◦ fP, f−1
0E

◦ f ◦ fP ð= [deg f−1
0E

◦ f ◦ fP],

and deg f−1
0E

◦ f ◦ fP > 0 if f ̸= 0. ■

Remark 3.1.6. If E is a CM elliptic curve over C, we could also consider the dagger

pairing HomC(J(C),J(E))×HomC(J(C),J(E)) → EndC(J(E)). This is a positive def-

inite hermitian form instead of a symmetric one since the Rosati involution † acts as

complex conjugation on EndC(J(E)).

3.1.3. Degeneracy maps

Let M and N be positive integers such that M | N. For every divisor d of
N

M
there exists a

degeneracy map

ιd,N,M : X0(N)→ X0(M),(E,G) 7→ (E/G[d],(G/G[d])[M]).

The degeneracy map acts on τ ∈ H ∗ in the extended upper half-plane as

ιd,N,M(τ) = dτ.

From this or directly from the definition, we can easily see that when dM | N and d′N | N′,

then

ιd,N,M ◦ ιd′,N′,N = ιdd′,N′,M. (3.1)

We want to describe
〈

ιd1,N,M, ιd2,N,M

〉

for different divisors d1, d2 of
N

M
in terms of Hecke

operators on J0(M) (the case d1 = d2 is solved by Lemma 3.1.1). We recall from Section

7.3 of [24] that Hecke operators Tn act on Y0(M) as

Tn(E,G) = ∑
#C=n

C∩G={0}

(E/C,(G+C)/C)
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and have the following properties (mentioned previously in Section 1.5):

Tpr = Tpr−1Tp − pTpr−2 for primes p ∤ M and r > 1,

Tpr = T r
p for primes p | M and r > 0,

Tmn = TmTn if gcd(m,n) = 1.

We want to determine
〈

ιd1,N,M, ιd2,N,M

〉

. When N = Mp for a prime p, we already

know from Section 7.3 of [24] that
〈

ι1,N,M, ιp,N,M

〉

= Tp. The remaining case is when
N

M

is a composite number. Before we consider that case, we prove a technical group theory

lemma.

Lemma 3.1.7. Let G be an abelian group of order N that has a cyclic subgroup G′ of

order d. If dG ∼= Z/
Å

N

d
Z
ã

, then G is cyclic.

Proof. We know that G ∼= (Z/(d1Z))× . . .× (Z/(dkZ)), where di are integers such that

d1 | . . . | dk, d1 . . .dk = N and d | dk. Thus,

dG f (Z/(d1Z))× . . .×
Å

Z/
Å

dk

d
Z
ãã

.

However, dG ∼= Z/
Å

N

d
Z
ã

implying that d1 = . . .= dk−1 = 1 and dk = N. ■

Lemma 3.1.8. If
N

M
is square-free, then

〈

ι1,N,M, ιN/M,N,M

〉

= TN/M.

Proof. Suppose that (E,G) represents a point on Y0(M). We compute

〈

ι1,N,M, ιN/M,N,M

〉

(E,G) = ∑
E ′/G′[N/M]=E

G′/G′[N/M]=G

(E ′,G′[M]),

TN/M(E,G) = ∑
#C=N/M
C∩G={0}

(E/C,(G+C)/C).

In order to prove that these sums are equal, it is enough to find a bijection between the

summands. We will now construct a map that sends (E ′,G′[M]) to (E/C,(G+C)/C) (i.e.

define C in terms of E ′ and G′) and prove that it is a bijection.
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By definition, there is a map f : E ′ → E such that ker f = G′[N/M]. We set

C := ker f(.

This means that for the map f( : E → E ′ we have E ′ = E/C. Further,

(G+C)/C = f((G) = f(( f (G′)) =
N

M
G′ = G′[M],

meaning that G∩C = {0} (since f((G) is a group of order M) and (E/C,(G+C)/C =

(E ′,G′[M])). To prove bijectivity, we define the inverse map, i.e. we define E ′ and G′ in

terms of C.

By definition, there is a map g : E → E/C. We set

E ′ := E/C,

G′ := (g()−1(G).

First, we need to prove that G′ is a cyclic subgroup of order N. It is obviously a group of

order N. We have

N

M
G′ = (g◦g()(g()−1(G) = g(G) = (G+C)/C.

Also, Z/
Å

N

M
Z
ã

∼= kerg( f G′ so we can use Lemma 3.1.7 to conclude that G′ is a cyclic

subgroup of order N. This further implies that G′[M] =
N

M
G′ = (G+C)/C.

To prove that these two maps are inverse to each other it is enough to prove g = f(.

This holds because

ker f =G′[N/M] = (g()−1(G)[N/M] =M(g()−1(G)= (g()−1(MG)= (g()−1(0)= kerg(.

■

Lemma 3.1.9. If
N

M
is square-free, then

〈

ιN/M,N,M, ι1,N,M

〉

= wM ◦TN/M ◦wM.

Proof. We will prove the equivalent statement wM ◦
〈

ιN/M,N,M, ι1,N,M

〉

= TN/M ◦wM. Sup-

pose that (E,G) represents a point on Y0(M). We compute (similarly as in the previous
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lemma)

〈

ιN/M,N,M, ι1,N,M

〉

(E,G) = ∑
#G′=N

G′[M]=G

(E/G′[N/M],G′/G′[N/M]) = ∑(E ′,G′′),

wM ◦
〈

ιN/M,N,M, ι1,N,M

〉

(E,G) = ∑
#G′=N

G′[M]=G

(E ′/G′′,E ′[M]/G′′),

TN/M ◦wM(E,G) = ∑
#H=N/M

(E[M]/G)∩H={0}

(E/G/H,((E[M]/G)+H)/H).

It remains to prove that there is a bijection between the summands. We have the following

situation:

E
f1→E ′ f2→E ′/G′′,

E
g1→E/G

g2→E/G/H

where we know that G′ = ker( f2 ◦ f1) because ker f2 = G′/G′[N/M] = G′/ker f1.

We can express G′ in terms of H as G′ := g−1
1 (H) = ker(g2 ◦ g1). By Lemma 3.1.7,

this is a cyclic group of order N because Z/(MZ)∼= G f G′ and

MG′ = (g(1 ◦g1)g
−1
1 (H) = g(1 (H)∼= H ∼= Z/

Å

N

M
Z
ã

.

Here the third equality holds because (E[M]/G)∩H = {0}. Now, since G′ = g−1
1 (H) =

ker(g2 ◦g1), we get f2 ◦ f1 = g2 ◦g1. Further, G = kerg1 ¢ G′ implying that G′[M] = G.

Let us now express H in terms of G′. Since G is a subgroup of G′ = ker( f2 ◦ f1), there

exist isogenies g1 and g2 such that g2 ◦g1 = f2 ◦ f1 and G = kerg1. We set H := kerg2. It

remains to prove that (E[M]/G)∩H = {0}. This holds because

g2(E[M]/G) = g2(g1(E[M])) = f2( f1(E[M])) = E[M]/(E[M]∩G′)∼= E[M]/G.

■

Remark 3.1.10. When the number
N

M
is not square-free, then the proofs of Lemma 3.1.8

and Lemma 3.1.9 still work provided one replaces the Hecke operator TN/M by a slightly
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different operator T ′
N/M

, which is defined as

T ′
n(E,G) := ∑

#C=n
C cyclic

C∩G={0}

(E/C,(G+C)/C).

Note that the only difference between T ′ and T is that the sum in T ′ is restricted to cyclic

subgroups. If N/M is coprime to M, then TN/M, seen as element of End(J0(M)), can be

easily expressed as TN/M = ∑m2|N/M µ(m)T ′
N/(Mm2)

. Using the Möbius inversion formula

one then gets
〈

ι1,N,M, ιN/M,N,M

〉

= T ′
N/M = ∑

m2|N/M

µ(m)TN/(Mm2),

〈

ιN/M,N,M, ι1,N,M

〉

= wM ◦T ′
N/M ◦wM = wM ◦ ∑

m2|N/M

µ(m)TN/(Mm2) ◦wM,

where µ denotes the Möbius function.

Proposition 3.1.11. Let M,d1,d2 be positive integers with gcd(d1,d2) = 1. Then

ι1,d1d2M,d1M,∗ ◦ ι∗1,d1d2M,d2M = ι∗1,d1M,M ◦ ι1,d2M,M,∗ and

〈

ιd1,d1d2M,M, ιd2,d1d2M,M

〉

=
〈

ιd1,d1M,M, ι1,d1M,M

〉

◦
〈

ι1,d2M,M, ιd2,d2M,M

〉

.

Proof. Let E be an elliptic curve with a cyclic subgroup G of order d2M. The first equality

can be verified on a pair (E,G) since

ι1,d1d2M,d1M,∗ ◦ ι∗1,d1d2M,d2M(E,G) = ∑
H1§G cyclic
#H1=d1d2M

(E,H1[d1M])

= ∑
H2§G[M] cyclic

#H2=d1M

(E,H2)

= ι∗1,d1M,M ◦ ι1,d2M,M,∗(E,G).

Furthermore, H1 and H2 are related to each other via H2 = H1[d1M] and H1 = H2 +G.
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The second equality follows from the first because

〈

ιd1,d1d2M,M, ιd2,d1d2M,M

〉

= ιd1,d1d2M,M,∗ ◦ ι∗d2,d1d2M,M

= ιd1,d1M,M,∗ ◦ ι1,d1d2M,d1M,∗ ◦ ι∗1,d1d2M,d2M ◦ ι∗d2,d2M,M

= ιd1,d1M,M,∗ ◦ ι∗1,d1M,M ◦ ι1,d2M,M,∗ ◦ ι∗d2,d2M,M

=
〈

ιd1,d1M,M, ι1,d1M,M

〉

◦
〈

ι1,d2M,M, ιd2,d2M,M

〉

.

■

Combining the previous results we get the following proposition.

Proposition 3.1.12. Assume that
N

M
is either squarefree or coprime to M and let d1

and d2 be divisors of
N

M
. We write just gcd instead of gcd(d1,d2) and lcm instead of

lcm(d1,d2) for simplicity. Then

〈

ιd1,N,M, ιd2,N,M

〉

= wM ◦

Ñ

∑
m2|d1/gcd

µ(m)Td1/(m2 gcd)

é

◦wM◦

◦

Ñ

∑
m2|d1/gcd

µ(m)Td2/(m2 gcd)

é

◦ [deg ιgcd,N,Mlcm/gcd].

Proof. Note that

ιd1,N,M = ιd1/gcd,Mlcm/gcd,M ◦ ιgcd,N,Mlcm/gcd

and similarly for d2. This shows that ιd1,N,M and ιd2,N,M both factor through the map

ιgcd,N,Mlcm/gcd allowing us to write

〈

ιd1,N,M, ιd2,N,M

〉

= ιd1/gcd,Mlcm/gcd,M,∗ ◦ ιgcd,N,Mlcm/gcd,∗ ◦ ι∗gcd,N,Mlcm/gcd ◦ ι∗d2/gcd,Mlcm/gcd,M

= ιd1/gcd .Mlcm/gcd,M,∗ ◦ [deg ιgcd,N,Mlcm/gcd]◦ ι∗d2/gcd,Mlcm/gcd,M

=
〈

ιd1/gcd,Mlcm/gcd,M, ιd2/gcd,Mlcm/gcd,M

〉

◦ [deg ιgcd,N,Mlcm/gcd].

Further, by Proposition 3.1.11 we have

〈

ιd1/gcd,Mlcm/gcd,M, ιd2/gcd,Mlcm/gcd,M

〉

=
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=
〈

ιd1/gcd,Md1/gcd,M, ι1,Md1/gcd,M

〉

◦
〈

ι1,Md2/gcd,M, ιd2/gcd,Md2/gcd,M

〉

.

Now we get the desired result by applying Lemma 3.1.8, Lemma 3.1.9, and Remark 3.1.10.

■

Theorem 3.1.13. Using the assumptions and notation of Proposition 3.1.12, let E be an

elliptic curve of conductor M with corresponding newform ∑
∞
n=1 anqn and let f : X0(M)→

E be the modular parametrization of E. If we define

a =

Ñ

∑
m2|(d1/gcd)

µ(m)ad1/(gcdm2)

éÑ

∑
m2|(d2/gcd)

µ(m)ad2/(gcdm2)

é

,

where µ is the Möbius function (when
d1d2

gcd2
is squarefree, a is equal to ad1d2/gcd2 , simi-

larly as in Remark 3.1.10), then

〈

f ◦ ιd1,N,M, f ◦ ιd2,N,M

〉

=



a · ψ (N)

ψ
Ä

Mlcm
gcd

ä ·deg f



 .

Here ψ(N) = N ∏q|N(1+
1

q
), as in Lemma 2.1.7.

Proof. For the sake of simplicity, we will assume that
d1d2

gcd2
is squarefree. We have

〈

f ◦ ιd1,N,M, f ◦ ιd2,N,M

〉

= f∗ ◦ ιd1,N,M,∗ ◦ ι∗d2,N,M ◦ f ∗ = f∗ ◦
〈

ιd1,N,M, ιd2,N,M

〉

◦ f ∗.

Let E ′ be f ∗(E) ¢ J0(M). Then E ′ is an elliptic curve isogenous to E. Since, up to

isogeny, E occurs with multiplicity one in the factorization of J0(M) (because cond(E) =

M), it follows that
〈

ιd1,N,M, ιd2,N,M

〉

is a rational endomorphism of E ′. Therefore,
〈

ιd1,N,M, ιd2,N,M

〉

is of the form [k] for some k ∈ Z and we get that

f∗ ◦
〈

ιd1,N,M, ιd2,N,M

〉

◦ f ∗ = f∗ ◦ f ∗ ◦
〈

ιd1,N,M, ιd2,N,M

〉

= [deg f ]◦
〈

ιd1,N,M, ιd2,N,M

〉

.
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Proposition 3.1.12 now tells us that

〈

f ◦ ιd1,N,M, f ◦ ιd2,N,M

〉

= wM ◦Td1/gcd ◦wM ◦Td2/gcd ◦ [deg ιgcd,N,Mlcm/gcd]◦ [deg f ].

(3.2)

We see that here both the Atkin-Lehner involution wM and Hecke operators act on E.

As wM acts as ±1 on E, the action of wM cancels itself. Furthermore, the Hecke opera-

tors Tn act on E as multiplication by an (the coefficient in the corresponding newform).

Therefore,

〈

f ◦ ιd1,N,M, f ◦ ιd2,N,M

〉

= [ad1/gcd]◦ [ad2/gcd]◦ [deg ιgcd,N,Mlcm/gcd]◦ [deg f ]

= [ad1d2/gcd2 ·deg ιgcd,N,Mlcm/gcd ·deg f ].

The last equality holds due to the fact that anam = anm for relatively prime m,n. Finally,

since the degrees of all degeneracy maps from X0(N) to X0(Mlcm/gcd) are equal to

ψ (N)

ψ
Ä

Mlcm
gcd

ä by Proposition 2.1.26, we get the desired formula.

If
d1d2

gcd2
is not squarefree, in Equation (3.2) we will get the Möbius sums from Re-

mark 3.1.10 instead of Tdi/gcd. We can then use the same argument to get the desired result

since the sums ∑m2|(di/gcd) µ(m)Tdi/(gcdm2) act on E as ∑m2|(di/gcd) µ(m)adi/(gcdm2). ■

This result is useful because all items on the right-hand side are easily computable

(deg f is the modular degree of E and a is determined by the coefficients of the corre-

sponding newform of E), and in fact already have been computed for all elliptic curves of

conductor f 500,000 and lcm(d1,d2)/gcd(d1,d2) f 1,000. This data is available in the

LMFDB [67].

Remark 3.1.14. Alternatively, we can compute
〈

f ◦ ιd1,N,M, f ◦ ιd2,N,M

〉

using either Sage

or Magma since ιd1,N,M,∗ and ι∗d2,N,M are explicitly computable on modular symbols, see

Proposition 8.26 of [91].
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3.2. d-ELLIPTIC MODULAR CURVES

Definition 3.2.1. Let d be a positive integer. We call a curve C over a field k d-elliptic

if there exists an elliptic curve E over k and a morphism C → E of degree d defined over

k. If in addition k is a number field and E has positive Mordell-Weil rank over k, then we

call C positive rank d-elliptic.

In this section, we will describe some ideas that allow one to determine for given

integers N and d whether X0(N) is d-elliptic over Q.

If we fix a point P ∈ X0(N)(Q), then, as we have seen in Section 3.1.1, there exists

an element of HomQ(X0(N),E) of degree d if and only if there exists an element of

HomQ,P(X0(N),E) of degree d. Furthermore, by the universal property of J0(N), every

f ∈ HomQ,P(X0(N),E) factors uniquely through J0(N) via the map fP.

We define a map HomQ(X0(N),E)→ HomQ(J0(N),E) as follows:

f 7→ t− f (P)◦ f 7→ homomorphism induced from t− f (P)◦ f by the universal property of J0(N).

In this section, to make the text more readable, we sometimes use a slight abuse of no-

tation. We will sometimes work with maps defined on X0(N) as if they were defined

on J0(N). For example, in the proof of Theorem 3.0.11, we will say that the maps

f ◦ di : X0(N) → E form a basis for HomQ(J0(N),E), but this will actually hold for the

images of f ◦di via the above map.

Definition 3.2.2. An abelian variety is called simple if it is not isogenous to a product of

abelian varieties of lower dimension.

Definition 3.2.3. Let A and B be abelian varieties over a field k with B simple. An abelian

variety A′ together with a quotient map π : A → A′ is an optimal B-isogenous quotient if

A′ is isogenous to Bn for some integer n and every morphism A → B′ with B′ isogenous to

Bm for some integer m uniquely factors via π .

Proposition 3.2.4. Optimal B-isogenous quotients exist, and are unique up to a unique

isomorphism.
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Proof. By the Poincaré reducibility theorem [73, Chapter 12], [10, Theorem 5.3.7], there

exists an integer s and simple abelian subvarieties A1, . . . ,As of A such that the sum map

A1 × ·· ·×As → A is an isogeny. By reordering the Ai if necessary we can let n f s be

the integer such that A1, . . . ,An are isogenous to B while An+1, . . . ,As are not. Define

A′ = A/(An+1 + · · ·+As) then A′ is isogenous to Bn since the composition of the maps

A1 ×·· ·×An → A → A′ is an isogeny.

To show that the quotient π : A → A′ is an optimal B-isogenous quotient, let B′ be an

abelian variety isogenous to Bm and let f : A → B′ be a morphism. Since B′ is isogenous

to Bm but all the Ai for i > n are not isogenous to B, meaning that for i > n, Ai ¢ ker f .

However, A′ was obtained by quotienting out the Ai with i > n meaning that f factors

uniquely via π which is what we needed to prove.

The uniqueness up to unique isomorphism follows formally because optimal B-isogenous

quotients are defined using a universal property. ■

Remark 3.2.5. An elliptic curve over Q of conductor M is called the strong Weil curve

if it is an optimal E-isogenous quotient of J0(M) with the quotient map induced from

the modular parametrization f : X0(M) → E as in Section 3.1.1. Every Q-isogeny class

contains a unique strong Weil curve and for any curve E ′ in the Q-isogeny class of E the

modular parametrization of E ′ factors through f .

The dual notion of optimal B-isogenous quotient is the following:

Definition 3.2.6. Let A and B be abelian varieties over a field k with B simple. An abelian

variety A′ together with an isogeny ι : A′ → A is a maximal B-isogenous subvariety if A′

is isogenous to Bn for some integer n and every morphism B′ → A with B′ isogenous to

Bm for some integer m uniquely factors via ι .

The following follows formally from duality since we can just take ι = π( where π is

an optimal B-isogenous quotient of A(. The reason for calling A′ a subvariety is because,

by the universal property, ι actually induces an isomorphism between A′ and ι(A′).

Proposition 3.2.7. Maximal B-isogenous subvarieties exist, and are unique up to a unique

isomorphism.
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Remark 3.2.8. The above proposition can also be proved constructively. Namely, if

A1, . . . ,As are simple abelian subvarieties of A such that the sum map A1 ×·· ·×As → A

is an isogeny and additionally A1, . . . ,An are isogenous to B while An+1, . . . ,As are not.

Then A1 + · · ·+An ¦ A is a maximal B-isogenous subvariety.

Definition 3.2.9. Let N and M be positive integers with M | N and let n denote the

number of divisors of N/M. Then we define the maps τN,M : J0(N) → J0(M)n, τ∗N,M :

J0(M)n → J0(N) as

τN,M := (ι1,N,M,∗, . . . , ιN/M,N,M,∗),

τ∗N,M := (ι∗1,N,M, . . . , ι∗N/M,N,M),

where the first subscript of ι runs over all divisors of N/M. Further, let A be an abelian

variety and f : J0(M)→ A a morphism. Then we define the map ξ f ,N : J0(N)→ An as

ξ f ,N := f n ◦ τN,M.

If A is a strong Weil curve E of conductor M and f is its modular parametrization, then

we use the notation ξE,N := ξ f ,N .

With the above notation we have τN,M = ξidJ0(M),N .

Proposition 3.2.10. Suppose N < 408 and let E be a strong Weil curve over Q of positive

rank and conductor Cond(E) = M | N. If n is the number of divisors of N/M, then

ξ(
E,N : En → J0(N) has a trivial kernel. Hence ξ(

E,N : En → J0(N) is a maximal E-isogenous

abelian subvariety and ξE,N : J0(N)→ En is an optimal E-isogenous quotient of J0(N).

Proof. The claim that ξ(
E,N : En → J0(N) is injective for N < 408 was verified computa-

tionally using Sage. It is a finite computation since the restriction on N means there are

only finitely pairs (N,E) for which we need to verify that ξ(
E,N : En → J0(N) is injective.

The second part follows from Atkin-Lehner-Li Theory. The decomposition

S2(Γ0(N)) =
⊕

M|N

⊕

d|N/M

ι∗d,N,M(S2(Γ0(M))new)
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from [91, Theorem 9.4] yields the isogeny decomposition

J0(N) =
⊕

M|N

⊕

d|N/M

ι∗d,N,M(J0(M)new).

If E/Q is an elliptic curve of conductor M, then M is the only integer such that E occurs

as an isogeny factor of J0(M)new, and does so with multiplicity one. In particular, this

decomposition implies that if E is an elliptic curve of conductor M and f : J0(M)→ E is

its modular parametrization, then the maps ( f ◦ ιd,N,M)( : E → J0(N) give all the isogeny

factors of J0(N) that are isogenous to E, where d ranges over all divisors of N/M. From

Remark 3.2.8 it then follows that the image of ξ(
E,N inside J0(N) is a maximal E-isogenous

subvariety of J0(N). However, since we already verified that ξ(
E,N has a trivial kernel, we

have that ξ(
E,N is an isomorphism onto its image. In particular, ξ(

E,N is also a maximal

E-isogenous subvariety of J0(N). ■

The fact that the map ξ(
E,N has a trivial kernel for the cases in which the above propo-

sition is applicable makes it significantly easier to determine the positive rank tetraelliptic

X0(N). All elliptic curves of positive Q-rank and conductor at most 408 have rank 1, with

the exception of the curve 389.a1 which has rank 2. Proposition 3.2.14 is not needed

for the classification of the positive rank tetraelliptic curves X0(N) in Theorem 3.0.11.

Instead, it is an attempt to explain why we observed that the kernel of ξ(
E,N was always

trivial in Proposition 3.2.10.

We now introduce the analytic rank of an elliptic curve and mention some of its prop-

erties.

Definition 3.2.11. The L-function of an elliptic curve E/Q of conductor N is defined as

L(E,s) = ∏
p

(1−ap p−s +1p∤N p1−2s)−1.

This product converges for ℜ(s)>
3

2
and can be analytically extended to the whole C [25,

Chapter 5.9]. The analytic rank of E is the order of vanishing of L(E,1).

Let f be a rational newform. We define its L-function L( f ,s) = L(E,s), where E is a

corresponding elliptic curve over Q.
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Lemma 3.2.12. We have ap =±1 when the reduction mod p is multiplicative and ap = 0

when the reduction mod p is additive.

Proof. For an elliptic curve Ẽ : y2 = x3 + ãx+ b̃ defined over Fp we have

#Ẽ(Fp) = p+1+
p−1

∑
i=0

Ç

i3 +ai+b

p

å

.

Here

Å

x

p

ã

denotes the Legendre symbol. If the reduction mod p is multiplicative,

then the equation of the reduced curve is of the form

Ẽ : y2 = (x− s)(x− t)2

for some s ̸= t ∈ Fp and the formula for the number of Fp-points becomes

#Ẽ(Fp) = p+1+
p−1

∑
i=0

Ç

(i− s)(i− t)2

p

å

.

There are exactly
p−1

2
quadratic residues and non-residues mod p. If s− t is a quadratic

residue, then #Ẽ(Fp) = 2 · p−1

2
− 1+ 1+ 1 = p. The last three summands are for the

points (t,0), (0,0), and O , respectively. Therefore, ap = p+ 1− p = 1. If s− t is not

a quadratic residue, we similarly get #Ẽ(Fp) = 2 · p−1

2
+ 1+ 1+ 1 = p+ 2 and ap =

p+1− (p+2) =−1.

If the reduction mod p is additive, then the equation of the reduced curve is of the

form

Ẽ : y2 = (x− t)3

for some t ∈ Fp and the formula for the number of Fp-points becomes

#Ẽ(Fp) = p+1+
p−1

∑
i=0

Ç

(i− t)3

p

å

= 2 · p−1

2
+1+1 = p+1.

The last two summands are for the points (t,0) and O , respectively. Therefore, ap =

p+1− (p+1) = 0. ■

Conjecture 3.2.13 (Birch and Swinnerton-Dyer conjecture). Let E/Q be an elliptic
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curve. Then its algebraic and analytic ranks are equal.

Only some special cases of this conjecture have been proven. Gross and Zagier [34]

proved that

analytic rank = 1 =⇒ algebraic rank g 1

and Kolyvagin [65] improved this result. He proved that for r = 0,1 we have

analytic rank = r =⇒ algebraic rank = r.

Proposition 3.2.14. Let E be a strong Weil curve over Q of conductor M | N and let us

suppose that
N

M
is squarefree and coprime to M. If E has an odd analytic rank, then the

kernel of ξ(
E,N : En → J0(N) is a 2-group (n is again the number of divisors of

N

M
).

The main ingredient in the proof of this proposition is Theorem 3.2.16.

Definition 3.2.15. Let M be a positive integer and let π : X1(M) → X0(M) be the nat-

ural map (E,P) 7→ (E,ïPð). The Shimura subgroup Σ(M) is the kernel of the map

π∗ : J0(M) → J1(M). For an abelian subvariety A ¦ J0(M) we define the Shimura sub-

group of A to be A∩Σ(M)

Theorem 3.2.16 ( [66, Theorem 4]). Let N be a positive integer, and let M be a divisor

of N such that
N

M
= q1 . . .qt (distinct primes) and gcd

Å

M,
N

M

ã

= 1. We define

Σ(M)2t

0 :=

{

(x1, . . . ,x2t ) : xi ∈ Σ(M),
2t

∑
1

xi = 0

}

.

We recall from Definition 3.2.9 the map τ∗N,M := (ι∗1,N,M, . . . , ι∗
N/M,N,M) : J0(M)2t → J0(N).

(i) If M is odd or
N

M
is a prime, then kerτ∗N,M = Σ(M)2t

0 .

(ii) If M is even and
N

M
is not a prime, then kerτ∗N,M and Σ(M)2t

0 are equal up to a

2-group.

Lemma 3.2.17. Let E be an elliptic curve with conductor M. Then the Atkin-Lehner

involution wM acts on E ¢ J0(M) as 1 if the analytic rank of E is odd and as −1 if the

analytic rank of E is even.
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Proof. E occurs with multiplicity 1 in the factorisation of J0(M). Therefore, we have that

wM acts on E. Moreover, by taking the corresponding cusp form f , we get that (since

f is an eigenform for Atkin-Lehner involutions and Hecke operators) wM acts on E as

multiplication by a constant ε . Since wM is an involution, we get ε2 = 1, i.e. ε =±1.

For a rational newform f of level N we define the function

Λ( f ,s) = Ns/2(2π)−sΓ(s)L( f ,s),

where Γ(s) =
∫ ∞

0 ts−1e−tdt is the usual Gamma function. From Section 10.5.1 of [91] we

have the functional equation

Λ( f ,s) =−εΛ( f ,2− s).

If we define Λ′( f ,s) := Λ( f ,s+1), the equation becomes

Λ′( f ,s) =−εΛ′( f ,−s).

Now, if ε = 1, then Λ′( f , ·) is an odd function so only odd powers appear in the series

expansion. Since Γ(1) = 1, the analytic rank of E is odd. We similarly conclude that

ε =−1 implies that the analytic rank of E is even. ■

Proof of Proposition 3.2.14. Theorem 3.2.16 tells us that the kernel of τ∗N,M is equal to

Σ(M)2t

0 up to a 2-group. Since E is a strong Weil curve, we have that f( : E → J0(M)

actually turns E into a subvariety of J0(M). Therefore, we have kerξ(
E,N = kerτ∗N,M ∩E2t

.

This is, up to a 2-group, equal to Σ(M)2t

0 ∩E2t
, which is isomorphic to (Σ(M)∩E)2t−1.

Now it is enough to prove that Σ(M)∩E is a 2-group.

By [70, Chapter II, Proposition 11.7], the Atkin-Lehner involution wM acts as −1 on

Σ(M). Further, since E has an odd analytic rank, it follows by looking at the functional

equation for L(E,s) that wM acts as 1 on E. Therefore, −1 = 1 on Σ(M)∩E meaning that

Σ(M)∩E must be a 2-group. ■

Theorem 3.2.16 is not enough to prove that ξ(
E,N is always injective for strong Weil

curves of odd analytic rank. However, the computational evidence of Proposition 3.2.10
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seems to indicate the possibility that the 2-group admitted by Theorem 3.2.16 cannot

actually occur. We therefore make the following conjecture.

Conjecture 3.2.18. Let E be a strong Weil curve over Q of conductor M | N. If E has

an odd analytic rank, then ξ(
E,N is injective.

All but one of the strong Weil curves E considered in the proof of Proposition 3.2.10

have analytic rank 1, the exception being the curve 389.a1 with analytic rank 2. Therefore,

if this conjecture turns out to be correct, in the first part of Proposition 3.2.10, Sage will

only be needed to prove that ξE,N has a trivial kernel for the elliptic curve 389.a1.

Note that the above conjecture, if true, makes the determination of all positive rank

d-elliptic X0(N) significantly easier. Since the above conjecture together with Theo-

rem 3.1.13 implies the following:

Corollary 3.2.19. Assume Conjecture 3.2.18. Let E be a strong Weil curve over Q of

odd analytic rank, conductor M, and parametrization f : X0(M)→ E. If N is a multiple of

M and g : X0(N)→ E ′ is a map with E ′ isogenous to E, then deg f | degg.

This would give us a lower bound on degg, allowing us to consider significantly fewer

elliptic curves E in the determination of positive rank d-elliptic X0(N).
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3.3. CURVES X0(N) WITH INFINITELY MANY

QUARTIC POINTS

In this section, we will prove that for levels N listed in the Theorem 3.0.7 the curve X0(N)

has infinitely many quartic points. When X0(N) already has infinitely many quadratic

points (these N are listed in Theorem 3.0.5), this is trivial. Now we consider the other

cases.

We will use two methods for obtaining quartic points on a curve C defined over a

number field k. Both methods obtain quartic points as pullback via rational maps from

C. The first method uses a degree 4 morphism to a curve C′ with infinitely many rational

points (recall that Faltings’ theorem implies that the only such curves C′ are of genus 0

or genus 1 with positive k-rank), and the second method uses a degree 2 morphism to a

curve C′ with infinitely many quadratic points. The following proposition verifies these

methods.

Proposition 3.3.1. Let k be a number field and let d be a positive integer. Suppose C

and C′ are smooth, projective, and geometrically integral curves defined over k and let

f : C →C′ be a morphism of degree d′ | d defined over k. If C′ has infinitely many points

of degree
d

d′ over k, then C has infinitely many points of degree f d over k.

Proof. Let P be a point on C′ of degree
d

d′ over k and let K £ k be its field of definition.

Then the preimage f−1(P) has size f d′. Let Q ∈ C(Q) be an element of f−1(P). For

every automorphism σ ∈ GK , where GK is an absolute Galois group over K, we have

f (σ(Q)) = σ( f (Q)) = σ(P) = P.

Therefore, σ(Q) ∈ f−1(P) for every σ ∈ GK . This means that, since # f−1(P) f d′, Q

must be defined over some field L such that [L : K]f d′, or equivalently [L : k]f d. ■

As we can see, this pullback method gives points of degree f d over k. Therefore, if

there are infinitely many points of degree f d−1 on C, we cannot immediately conclude

that C has infinitely many points of degree d. This can be resolved, however, using The-
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orems 4.2 and 4.3 of [12] which tell us that, as soon as one of the points in the pullback

has degree d, there will be infinitely many points of degree d on C. We will use this

proposition to find infinitely many quartic points X0(N) by taking d = 4 and d′ = 1 or 2.

Remark 3.3.2. Interestingly, from Theorems 3.0.5 and 3.0.6 it follows that if X0(N) has

infinitely many cubic points, then X0(N) also has infinitely many quadratic points. This

means that the curve X0(N) has infinitely many points of degree f 4 if and only if it has

infinitely many points of degree 4.

Proposition 3.3.3. The curve X0(N) has infinitely many quartic points for

N ∈ {34,45,54,64,81}.

Proof. For each of these N, the quotient X0(N)/ïwNð is an elliptic curve and therefore has

infinitely many quadratic points. Now we use Proposition 3.3.1 for the degree 2 quotient

map from X0(N) to X0(N)/ïwNð. ■

Proposition 3.3.4. The curve X0(N) has infinitely many quartic points for

N ∈ {38,42,44,51,52,55−58,60,62,63,66−70,72−75,77,78,80,85,87,88,

91,92,94−96,98,100,103,104,107,111,119,121,125,142,143,167,191}.

Proof. For each of these N the curve X0(N) has Q-gonality equal to 4 by [76, Tables

1,2,3]. Using Proposition 3.3.1 we now conclude that there are infinitely many points of

degree f 4 on X0(N) for these N. Therefore, these curves X0(N) have infinitely many

quartic points by Remark 3.3.2. ■

Proposition 3.3.5. The curve X0(N) has infinitely many quartic points for the following

values of N:
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Table 3.1: The values of N for Proposition 3.3.5.

N LMFDB label of X∗
0 (N)

82 82.a2

86 43.a1

99 99.a2

118 118.a1

123 123.b1

141 141.d1

145 145.a1

155 155.c1

159 53.a1

Proof. For each of these N we can use the Magma function X0NQuotient() to prove

that the quotient X∗
0 (N) is an elliptic curve with the LMFDB label as in the table above.

LMFDB also tells us that this elliptic curve is of rank 1 over Q. Now we use Proposi-

tion 3.3.1 for the degree 4 quotient map from X0(N) to X∗
0 (N). ■

Remark 3.3.6. The proof of Proposition 3.3.5 applies to the following levels N as well:

Table 3.2: The values of N for Remark 3.3.6.

N LMFDB label of X∗
0 (N)

57 57.a1

58 58.a1

74 37.a1

77 77.a1

91 91.a1

111 37.a1

142 142.a1
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143 143.a1

Also, the curve X+
ns(11) is an elliptic curve with LMFDB label 121.b2. It has conduc-

tor 121, modular degree 4, and rank 1 over Q. Therefore, we have a degree 4 rational

morphism from X0(121) to a positive rank elliptic curve.

We list these cases here separately since they have already been solved in Proposi-

tion 3.3.4, but we need a morphism to a positive rank elliptic curve for Theorem 3.0.11.

Proposition 3.3.7. The curve X0(128) has infinitely many quartic points.

Proof. The elliptic curve y2 = x3 + x2 + x+1 has conductor 128, modular degree 4, and

rank 1 over Q. This curve has Cremona label 128a1 [16] and LMFDB label128.a2. Now

we use Proposition 3.3.1 for the degree 4 morphism from X0(128) to this elliptic curve.

■
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3.4. CURVES X0(N) WITH FINITELY MANY

QUARTIC POINTS

In this section, we will prove that for levels N not listed in the Theorem 3.0.7 the curve

X0(N) has only finitely many quartic points. The first step to do that is to reduce this

problem to a finite problem by giving an upper bound for N such that the curve X0(N) has

infinitely many quartic points.

As we mentioned in the introduction of Chapter 3, Frey’s result [31, Proposition 2]

gives us that any curve defined over Q with infinitely many quartic points must have Q-

gonality f 8. Furthermore, Theorem 2.0.3 gives us the lower bound on the C-gonality

of any modular curve. In our case, we get gonCX0(N) g 119

12000
N which means that for

N >
8 ·12000

119
the curve X0(N) has only finitely many quartic points (here we used a

trivial fact that gonQC g gonCC for any curve C defined over Q). However, this bound is

impractical here.

When the genus of C is high enough, the following theorem by Kadets and Vogt tells

us that this pullback method is the only way to obtain points of a certain degree.

Theorem 3.4.1 ( [54], Theorem 1.3). Suppose X/k is a curve of genus g and a.irrkX = d.

Let m := +d/2,−1 and let ε := 3d −1−6m < 6. Then one of the following holds:

(1) There exists a nonconstant morphism of curves φ : X → Y of degree at least 2 such

that d = a.irrkY ·degφ .

(2) g f max

Å

d(d −1)

2
+1,3m(m−1)+mε

ã

.

Corollary 3.4.2. Suppose C/Q is a curve of genus g g 8 and a.irrQC = 4. Then there

exists a nonconstant morphism of degree 4 from C to P1 or an elliptic curve defined over

Q with positive Q-rank.

Proof. We compute m = 1 and ε = 5. Therefore, case (2) of the previous theorem is

impossible and we have a morphism f : C → Y of degree 2 or 4.

If the degree of f is 2, then we have a.irrQY = 2 and Y is a double cover of P1 or an

elliptic curve with a positive Q-rank by Theorem 3.0.4. If the degree of f is 4, then we
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have a.irrQY = 1 and Y is isomorphic to P1 or an elliptic curve with a positive Q-rank by

Faltings’ theorem. ■

This means that for levels N such that the genus of the curve X0(N) is at least 8 the

existence of infinitely many quartic points is equivalent with the existence of a degree 4

morphism to P1 or to an elliptic curve with a positive Q-rank.

Since for all levels N not listed in Theorem 3.0.7 the curve X0(N) has Q-gonality > 4

by Theorem 2.1.2 and since g(X0(N)) > 7 for all N > 100, Corollary 3.4.2 gives us that

any potential X0(N) with infinitely many quartic points must be tetraelliptic. Now we can

get a much better bound for N using Lemma 2.1.7.

Corollary 3.4.3. If the curve X0(N) is tetraelliptic, then for every prime p ∤ N we must

have

4(p+1)2 g Lp(N) =
p−1

12
ψ(N)+2ω(N).

Proof. Suppose we have a degree 4 rational morphism X0(N)→ E for some elliptic curve

E/Q. Therefore cond(E) | N and p is a prime of good reduction for E.

Theorem 1.5.7 tells us that the number of Fp2-rational points on E is at most p2 +1+

2 ·1 · p=(p+1)2. We conclude that #X0(N)(Fp2)f 4(p+1)2 similarly as in Lemma 2.1.8.

Lemma 2.1.7 tells us that #X0(N)(F2
p)g Lp(N), completing the proof. ■

Now, applying Corollary 3.4.3 in the same way as in Proposition 2.1.9, we get

Corollary 3.4.4. The curve X0(N) is not tetraelliptic for all N g 402 and

N ∈ {154,174,190,198,202,204,212,222,224,228,231,232,234,236,244,246,

248,256,258,260,262,270,272,273,276,279,282,284−287,290,296,301,

303−306,308,310,312,316,318,320−322,324−328,330,332−336,

338−340,342,344−346,348,350−352,354−358,360,362−366,

368−372,374−378,380−382,384−388,390−396,398−400}.

This means that we only need to check a reasonably small number of levels N for

tetraellipticity. First, though, we separately solve the cases when g(X0(N)) f 7 and we
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cannot use Theorem 3.4.1. The only N not discussed already for which g(X0(N)) f 7 is

N = 97.

Proposition 3.4.5. The curve X0(97) has only finitely many quartic points.

Proof. Suppose that there are infinitely many quartic points on X0(97). Since the curve

X0(97) has Q-gonality 6 by Theorem 2.1.4 and genus 7, we can apply [50, Proposition

1.6] and get that the Jacobian J0(97) must contain an elliptic curve with a positive Q-rank.

However, up to isogeny, J0(97) only contains abelian varieties of dimension 3 and 4 and

we get a contradiction. ■

It is worth mentioning here that for levels N in the following table there exist mor-

phisms of degree 4 to elliptic curves. For N ̸= 109, these morphisms are quotient maps

which are, for N divisible by 4, composed with degree 2 degeneracy maps from X0(N) to

X0

Å

N

2

ã

. However, these elliptic curves are of rank 0 over Q and therefore generate only

finitely many quartic points.

Table 3.3: Levels N for which there exist morphisms of de-

gree 4 to an elliptic curve E of rank 0 over Q

N E

76 X0(38)/ïw38ð, X0(38)/ïw19ð
105 X0(105)/ïw3,w35ð
108 X0(54)/ïw54ð, X0(54)/ïw27ð
109 y2 + xy = x3 − x2 −8x−7 (LMFDB label 109.a1)

110 X0(110)/ïw2,w55ð
112 X0(56)/ïw56ð, X0(56)/ïw7ð
124 X0(62)/ïw31ð
184 X0(92)/ïw23ð
188 X0(94)/ïw47ð

Now we are ready to prove the two main theorems: Theorem 3.0.7 and Theorem 3.0.11.
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Proof of Theorem 3.0.11. The proofs of Propositions 3.3.5, 3.3.7 and Remark 3.3.6 tell

us that X0(N) is positive rank tetraelliptic for all levels N listed in Theorem 3.0.11. Now

we prove that for the other N the curve X0(N) is not positive rank tetraelliptic. We only

need to consider N < 408 not already eliminated in Corollary 3.4.4 for which there exists

an elliptic curve of conductor M | N of positive Q-rank. Further, if M = N, then any

morphism from X0(N) factors through the modular parametrization of a strong Weil curve

in the corresponding isogeny class. However, the modular degree is strictly greater than 4

in all such cases. Therefore, we may suppose M < N.

Let E be a strong Weil curve of conductor M | N and positive Q-rank, n the number of

divisors of N/M, and f : X0(M)→ E its modular parametrization. Since ξE,N : J0(N)→
En for N < 408 is an E-isogenous optimal quotient by Proposition 3.2.10, every map from

J0(N) to E uniquely factors through En. Therefore, we get that the maps f ◦di, where di

runs over the degeneracy maps X0(N) → X0(M), form a basis for HomQ(J0(N),E) ∼=
HomQ(E

n,E)∼= Zn. Theorem 3.1.13 and Remark 3.1.14 allow us to compute the degree

pairing on this basis. Now, the degree of a map ∑i|N/M xi( f ◦ di) is given by a positive

definite quadratic form

∑
i|N/M

∑
j|N/M

xix j

〈

f ◦di, f ◦d j

〉

.

All levels N and strong Weil curves E which were considered in this proof are given in

the Table D.1.

Using the norm induced by this quadratic form, we can use the Fincke-Pohst algo-

rithm for enumerating integer vectors of small norm [29] to determine that there are

no nonconstant elements of HomQ(J0(N),E) of degree f 4, and hence no elements of

HomQ(X0(N),E) of degree f 4. So this proves the statement for strong Weil curves.

If E is not a strong Weil curve, let E ′ be a strong Weil curve in the isogeny class

of E. Then by the E-isogenous optimality of ξE ′,N : J0(N) → (E ′)n we have that any

g ∈ HomQ(J0(N),E) factors as h◦ξE ′,N for some h ∈ HomQ((E
′)n,E). Also, the map

π : HomQ((E
′)n,E)→ HomQ(E

′,E)n, π( f ) = ( f ↾E ′
1
, . . . , f ↾E ′

n
),
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where E ′
i is the i-th component of (E ′)n, is an isomorphism with an inverse map

π−1(( f1, . . . , fn))(x1, . . . ,xn) = f1(x1)+ . . .+ fn(xn).

Furthermore, we have that HomQ(E
′,E) is a free HomQ(E

′,E ′)(∼= Z)-module of rank 1,

generated by a single element g2. In particular, any f ∈ HomQ(E
′,E) can be written as

g2 ◦ [m] for some m ∈ Z.

Therefore, we have π(h) = ( f1, . . . , fn) = g2 ◦ ([m1], . . . , [mn]) and h(x1, . . . ,xn) =

g2(m1x1 + . . .+mnxn). This means that h = g2 ◦m for some m ∈ HomQ((E
′)n,E ′). Re-

turning back to our g ∈ HomQ(J0(N),E), we see that it factors as g2 ◦m◦ξE ′,N . It follows

that

degg = degg2 ·deg(m◦ξE ′,N)g deg(m◦ξE ′,N)> 4

since E ′ is a strong Weil curve and m◦ξE ′,N is a rational map. ■

In most cases, especially when we have only 2 degeneracy maps, we do not actu-

ally need the Fincke-Pohst algorithm to prove that there are no nonconstant elements of

HomQ(J0(N),E) of degree f 4. We show several examples where we prove that with

elementary methods.

Example 3.4.6. We take N = 122. There exist two elliptic curves E of positive Q-

rank and conductor cond(E) | N. One of them has conductor equal to N and modular

degree 8 and can therefore be eliminated. The other one is E = X+
0 (61). Its modular

parametrization f is the quotient map X0(61)→ X+
0 (61).

By the proof of Theorem 3.0.11, the basis for HomQ(J0(122),E) is { f ◦ d1, f ◦ d2}
and both of these maps have degree 2 ·3 = 6. Further, by Theorem 3.1.13, we have

ï f ◦d1, f ◦d2ð= [a2 ·1 ·2] = [−2].

This means that any map J0(122)→ E must have degree equal to

6x2 −4xy+6y2

for some integers x,y. It remains to prove that this expression can never be equal to 4.
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Let us suppose the contrary. If both x and y are not 0, then 6x2 − 4xy+ 6y2 = 4x2 +

2(x− y)2 + 4y2 g 8. Therefore, we may without loss of generality set y = 0. However,

the expression now becomes 6x2 which cannot be equal to 4, contradiction.

Example 3.4.7. We take N = 129. There exist two elliptic curves E of positive Q-

rank and conductor cond(E) | N. One of them has conductor equal to N and modular

degree 8 and can therefore be eliminated. The other one is E = X+
0 (43). Its modular

parametrization f is the quotient map X0(43)→ X+
0 (43).

By the proof of Theorem 3.0.11, the basis for HomQ(J0(129),E) is { f ◦ d1, f ◦ d3}
and both of these maps have degree 2 ·4 = 8. Further, by Theorem 3.1.13, we have

ï f ◦d1, f ◦d3ð= [a3 ·1 ·2] = [−4].

This means that any map J0(129)→ E must have degree equal to

8x2 −8xy+8y2

for some integers x,y. This expression is divisible by 8 and cannot therefore be equal to

4.

Example 3.4.8. We take N = 148. There exist two elliptic curves E of positive Q-

rank and conductor cond(E) | N. One of them has conductor equal to N and modular

degree 12 and can therefore be eliminated. The other one is E = X+
0 (37). Its modular

parametrization f is the quotient map X0(37)→ X+
0 (37).

In this case N/M is not squarefree like in the previous two examples. However, N/M

and M are coprime and we can still use Theorem 3.1.13.

By the proof of Theorem 3.0.11, the basis for HomQ(J0(148),E) is { f ◦d1, f ◦d2, f ◦
d4} and these maps have degree 2 ·6 = 12. Further, by Theorem 3.1.13, we have

ï f ◦d1, f ◦d2ð= [a2 ·2 ·2] = [−8],

ï f ◦d1, f ◦d4ð= [(a4 −a1)) ·1 ·2] = [2],

ï f ◦d2, f ◦d4ð= [a2 ·2 ·2] = [−8].
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This means that any map J0(148)→ E must have degree equal to

12x2 +12y2 +12z2 −16xy+4xz−16yz

for some integers x,y,z. This expression is equal to

2(x+ z−2y)2 +2(2x− y)2 +2(2z− y)2 +2x2 +2z2.

Let us suppose that it is equal to 4 for some x,y,z. If both x and z are not 0, then

2x2 +2z2 g 4 and the other terms must be equal to 0. This would mean that x+ z−2y =

2x− y = 2z− y = 0. We can easily check that this is impossible.

Therefore, we may without loss of generality set z = 0. The expression now becomes

12x2 − 16xy+ 12y2 = 8(x− y)2 + 4x2 + 4y2. As before, we see that x or y must be 0

(otherwise 4x2 + 4y2 g 8) and that x = y (otherwise 8(x − y)2 g 8). This means that

x = y = z = 0 and we get a contradiction.

Proof of Theorem 3.0.7. The results in Section 3.3 give us the cases when X0(N) has in-

finitely many quartic points and Proposition 3.4.5 tells us that the curve X0(97) has only

finitely many quartic points.

For the other levels N, we have g(X0(N)) g 8, a.irrQ(X0(N)) > 3, gonQ(X0(N)) > 4

by [76, Tables 1,2,3], and that X0(N) is not positive rank tetraelliptic over Q by Theo-

rem 3.0.11. Therefore, Corollary 3.4.2 tells us that X0(N) has only finitely many quartic

points for these levels N. ■
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APPENDIX A

This appendix contains the tables with the Q-gonalities of modular curves X0(N) asso-

ciated with Section 2.1. For each value of N, there are 7 entries, listed in the order that

they appear in: the genus g, the gonality of X0(N) over Q (denoted by gonQ), references

to how the lower and upper bound for the Q-gonality were obtained (denoted by LB and

UB, respectively), the gonality of X0(N) over C (denoted by gonC) and finally references

to how the lower and upper bound for the C-gonality were obtained (again denoted by LB

and UB, respectively).

For larger N, we show only those whose Q-gonality we have determined and skip the

others.

Table A.1: Gonality of the curve X0(N).

N g gonQ LB UB gonC LB UB

f 10 0 1 1

11 1 2 [80] [80] 2 [80] [80]

12 0 1 1

13 0 1 1

14 1 2 [80] [80] 2 [80] [80]

15 1 2 [80] [80] 2 [80] [80]

16 0 1 1

17 1 2 [80] [80] 2 [80] [80]

18 0 1 1

19 1 2 [80] [80] 2 [80] [80]

20 1 2 [80] [80] 2 [80] [80]
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21 1 2 [80] [80] 2 [80] [80]

22 2 2 [80] [80] 2 [80] [80]

23 2 2 [80] [80] 2 [80] [80]

24 1 2 [80] [80] 2 [80] [80]

25 0 1 1

26 2 2 [80] [80] 2 [80] [80]

27 1 2 [80] [80] 2 [80] [80]

28 2 2 [80] [80] 2 [80] [80]

29 2 2 [80] [80] 2 [80] [80]

30 3 2 [80] [80] 2 [80] [80]

31 2 2 [80] [80] 2 [80] [80]

32 1 2 [80] [80] 2 [80] [80]

33 3 2 [80] [80] 2 [80] [80]

34 3 3 gonC [37] 3 [37] [37]

35 3 2 [80] [80] 2 [80] [80]

36 1 2 [80] [80] 2 [80] [80]

37 2 2 [80] [80] 2 [80] [80]

38 4 4 2.1.34 [37] 3 [37] [37]

39 3 2 [80] [80] 2 [80] [80]

40 3 2 [80] [80] 2 [80] [80]

41 3 2 [80] [80] 2 [80] [80]

42 5 4 gonC 2.1.25 4 [53] [53]

43 3 3 gonC [37] 3 [37] [37]

44 4 4 2.1.34 [37] 3 [37] [37]

45 3 3 gonC [37] 3 [37] [37]

46 5 2 [80] [80] 2 [80] [80]

47 4 2 [80] [80] 2 [80] [80]

48 3 2 [80] [80] 2 [80] [80]

49 1 2 [80] [80] 2 [80] [80]

50 2 2 [80] [80] 2 [80] [80]

51 5 4 gonC 2.1.24 4 [53] [53]
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52 5 4 gonC 2.1.25 4 [53] [53]

53 4 4 2.1.34 [37] 3 [37] [37]

54 4 3 gonC [37] 3 [37] [37]

55 5 4 gonC 2.1.24 4 [53] [53]

56 5 4 gonC 2.1.24 4 [53] [53]

57 5 4 gonC 2.1.25 4 [53] [53]

58 6 4 gonC 2.1.25 4 [53] [53]

59 5 2 [80] [80] 2 [80] [80]

60 7 4 gonC 2.1.25 4 [53] [53]

61 4 4 2.1.34 [37] 3 [37] [37]

62 7 4 gonC 2.1.24 4 [53] [53]

63 5 4 gonC 2.1.24 4 [53] [53]

64 3 3 gonC [37] 3 [37] [37]

65 5 4 gonC 2.1.24 4 [53] [53]

66 9 4 gonC 2.1.25 4 [53] [53]

67 5 4 gonC 2.1.25 4 [53] [53]

68 7 4 gonC 2.1.25 4 [53] [53]

69 7 4 gonC 2.1.24 4 [53] [53]

70 9 4 gonC 2.1.25 4 [53] [53]

71 6 2 [80] [80] 2 [80] [80]

72 5 4 gonC 2.1.26 4 [53] [53]

73 5 4 gonC 2.1.25 4 [53] [53]

74 8 4 gonC 2.1.25 4 [53] [53]

75 5 4 gonC 2.1.24 4 [53] [53]

76 8 6 2.1.34 2.1.27 5 [53] 2.0.2(v)

77 7 4 gonC 2.1.25 4 [53] [53]

78 11 4 gonC [37] 4 [53] [53]

79 6 4 gonC 2.1.24 4 [53] [53]

80 7 4 gonC 2.1.25 4 [53] [53]

81 4 3 gonC [37] 3 [37] [37]

82 9 6 2.1.34 2.1.26 [5,6] [53] gonQ
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83 5 4 gonC 2.1.24 4 [53] [53]

84 11 6 2.1.34 2.1.23 6 2.1.46 gonQ

85 7 4 gonC 2.1.20 4 [53] [53]

86 10 6 2.1.34 2.1.27 6 2.1.46 gonQ

87 9 4 gonC 2.1.25 4 [53] [53]

88 9 4 gonC 2.1.20 4 [53] [53]

89 7 4 gonC 2.1.24 4 [53] [53]

90 11 6 gonC 2.1.26 6 2.1.45 gonQ

91 7 4 gonC 2.1.25 4 [53] [53]

92 10 4 gonC 2.1.24 4 [53] [53]

93 9 6 2.1.34 2.1.23 6 2.1.46 gonQ

94 11 4 gonC [37] 4 [53] [53]

95 9 4 gonC 2.1.24 4 [53] [53]

96 9 4 gonC 2.1.26 4 [53] [53]

97 7 6 2.1.48 2.1.27 5 [53] 2.0.2(v)

98 7 4 gonC 2.1.25 4 [53] [53]

99 9 6 2.1.32 2.1.26 4 [53] [53]

100 7 4 gonC 2.1.25 4 [53] [53]

101 8 4 gonC 2.1.24 4 [53] [53]

102 15 8 2.1.34 2.1.28 [6,8] 2.1.44 gonQ

103 8 4 gonC 2.1.25 4 [53] [53]

104 11 4 gonC [37] 4 [53] [53]

105 13 6 2.1.40 2.1.29 6 2.1.40 gonQ

106 12 8 2.1.34 2.1.28 [6,7] 2.1.46 2.0.2(v)

107 9 4 gonC 2.1.25 4 [53] [53]

108 10 6 2.1.34 2.1.24 [5,6] [53] gonQ

109 8 5 2.1.34 2.1.21 4 [53] [53]

110 15 8 2.1.41 2.1.27 6 2.1.41 2.1.27

111 9 4 gonC [37] 4 [53] [53]

112 11 6 2.1.34 2.1.22 [5,6] [53] gonQ

113 9 6 2.1.34 2.1.27 [5,6] [53] gonQ
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114 17 8 2.1.34 2.1.28 [6,8] 2.1.19 gonQ

115 11 6 2.1.34 2.1.23 6 2.1.46 gonQ

116 13 6 2.1.40 2.1.23 6 2.1.40 gonQ

117 11 6 2.1.34 2.1.26 [5,6] [53] gonQ

118 14 6 2.1.40 2.1.29 6 2.1.40 gonQ

119 11 4 gonC [37] 4 [53] [53]

120 17 8 2.1.42 2.1.28 8 2.1.42 gonQ

121 6 4 gonC 2.1.25 4 [53] [53]

122 14 6 2.1.34 2.1.29 [5,6] [53] gonQ

123 13 6 2.1.40 2.1.29 6 2.1.40 gonQ

124 14 6 2.1.40 2.1.29 6 2.1.40 gonQ

125 8 4 gonC 2.1.25 4 [53] [53]

126 17 8 2.1.42 2.1.28 8 2.1.42 gonQ

127 10 6 2.1.34 2.1.27 6 2.1.46 gonQ

128 9 6 2.1.34 2.1.27 6 2.1.46 gonQ

129 13 6 2.1.34 2.1.23 6 2.1.44 gonQ

130 17 8 2.1.33 2.1.28 [6,8] 2.1.19 gonQ

131 11 4 gonC [37] 4 [53] [53]

132 19 8 2.1.34 2.1.26 [6,8] 2.1.19 gonQ

133 11 8 2.1.48 2.1.27 6 2.1.46 2.1.27

134 16 8 2.1.34 2.1.27 [6,8] 2.1.19 gonQ

135 13 6 gonC 2.1.27 6 2.1.19 gonQ

136 15 8 2.1.34 2.1.26 [5,8] [53] gonQ

137 11 6 2.1.34 2.1.23 6 2.1.46 gonQ

138 21 8 2.1.42 2.1.28 8 2.1.42 gonC

139 11 6 2.1.40 2.1.27 6 2.1.40 gonQ

140 19 8 2.1.34 2.1.26 [6,8] 2.1.19 gonQ

141 15 6 2.1.40 2.1.27 6 2.1.40 gonQ

142 17 4 gonC [37] 4 [53] [53]

143 13 4 gonC [37] 4 [53] [53]

144 13 6 2.1.34 2.1.26 [5,6] [53] gonQ
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145 13 [7,8] 2.1.48 2.1.27 6 2.1.19 2.1.27

146 17 6 2.1.40 2.1.29 6 2.1.40 gonQ

147 11 6 2.1.34 2.1.29 [5,6] [53] gonQ

148 17 8 2.1.34 2.1.26 [5,8] [53] gonQ

149 12 6 2.1.40 2.1.27 6 2.1.40 gonQ

150 19 8 2.1.34 2.1.26 [6,8] 2.1.44 gonQ

151 12 6 2.1.34 2.1.27 6 2.1.19 gonQ

152 17 8 2.1.34 2.1.30 [6,8] 2.1.44 gonQ

153 15 8 2.1.34 2.1.28 [5,8] [53] gonQ

154 21 [8,12] 2.1.34 2.1.26 [5,12] [53] gonQ

155 15 6 gonC 2.1.23 6 2.1.44 gonQ

156 23 8 2.1.42 2.1.26 8 2.1.42 gonQ

157 12 8 2.1.34 2.1.30 [5,7] [53] 2.0.2(v)

158 19 8 2.1.42 2.1.28 8 2.1.42 gonQ

159 17 6 gonC 2.1.23 6 2.1.44 gonQ

160 17 8 2.1.34 2.1.26 [6,8] 2.1.19 gonQ

161 15 8 2.1.41 2.1.27 6 2.1.41 2.1.27

162 16 6 2.1.34 2.1.29 [5,6] [53] gonQ

163 13 [7,8] 2.1.34 2.1.30 [5,8] [53] gonQ

164 19 6 2.1.40 2.1.29 6 2.1.40 gonQ

165 21 8 2.1.42 2.1.28 8 2.1.42 gonQ

166 20 8 2.1.42 2.1.28 8 2.1.42 gonQ

167 14 4 [37] [37] 4 [53] [53]

168 25 8 2.1.42 2.1.28 8 2.1.42 gonQ

169 8 6 2.1.34 2.1.27 5 [53] 2.0.2(v)

171 17 8 2.1.42 2.1.28 8 2.1.42 gonQ

173 14 8 2.1.41 2.1.27 6 2.1.41 2.1.27

175 15 8 2.1.34 2.1.26 [6,8] 2.1.44 gonQ

176 19 8 2.1.34 2.1.26 [6,8] 2.1.19 gonQ

177 19 8 2.1.41 2.1.27 6 2.1.41 2.1.27

179 15 6 2.1.34 2.1.27 [5,6] [53] gonQ
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181 14 6 2.1.34 2.1.29 [5,6] [53] gonQ

183 19 8 2.1.42 2.1.30 8 2.1.42 gonQ

184 21 8 2.1.42 2.1.26 8 2.1.42 gonQ

185 17 8 2.1.42 2.1.30 8 2.1.42 gonQ

188 22 8 2.1.41 2.1.27 6 2.1.41 2.1.27

190 27 8 2.1.42 2.1.28 8 2.1.42 gonQ

191 16 4 [37] [37] 4 [53] [53]

192 21 8 2.1.34 2.1.26 [6,8] [37] gonQ

195 25 8 2.1.42 2.1.28 8 2.1.42 gonQ

196 17 8 2.1.34 2.1.26 [6,8] 2.1.19 gonQ

197 16 8 2.1.42 2.1.30 8 2.1.42 gonQ

199 16 8 2.1.41 2.1.41 6 2.1.41 gonQ

200 19 8 2.1.34 2.1.26 [6,8] 2.1.19 gonQ

203 19 8 2.1.42 2.1.30 8 2.1.42 gonQ

205 19 8 2.1.42 2.1.28 8 2.1.42 gonQ

206 25 8 2.1.42 2.1.28 8 2.1.42 gonQ

209 19 8 2.1.42 2.1.28 8 2.1.42 gonQ

211 17 8 2.1.34 2.1.30 [6,8] 2.1.44 gonQ

213 23 8 2.1.42 2.1.28 8 2.1.42 gonQ

215 21 6 gonC 2.1.27 6 2.1.19 gonQ

221 19 8 2.1.42 2.1.28 8 2.1.42 gonQ

223 18 8 2.1.34 2.1.30 [7,8] 2.1.44 gonQ

227 19 6 2.1.40 2.1.29 6 2.1.40 gonQ

239 20 6 2.1.40 2.1.29 6 2.1.40 gonQ

251 21 8 2.1.41 2.1.27 6 2.1.41 2.1.27

263 22 8 2.1.42 2.1.30 8 2.1.42 gonQ

269 22 8 2.1.42 2.1.30 8 2.1.42 gonQ

271 22 10 2.1.43 2.1.43 8 2.1.43 2.1.43

279 29 8 2.1.42 2.1.28 8 2.1.42 gonQ

284 34 8 2.1.42 2.1.28 8 2.1.42 gonQ

287 27 8 2.1.42 2.1.28 8 2.1.42 gonQ
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299 27 8 2.1.42 2.1.28 8 2.1.42 gonQ

311 26 8 2.1.41 2.1.27 6 2.1.41 2.1.27

359 30 8 2.1.42 2.1.30 8 2.1.42 gonQ
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APPENDIX B

This appendix contains the results of Section 2.2. We summarize the results in the fol-

lowing table. For each value of N, we give links to all results used to solve the curves

X+d
0 (N). We skip the curves of genus at most 3 and in the table we write g ≤ 3 when we

want to say that all curves X+d
0 (N) for that level N are of genus g ≤ 3.

Table B.1: Methods used to find tetragonal curves X+d
0 (N).

Levels N eliminated by Equation (2.4) are omitted.

N Results used N Results used

≤ 59 g ≤ 3 60 g ≤ 3 for d = 4,15,20, 2.2.7, [32]

61 g ≤ 3 62 g ≤ 3 for d = 31, [32]

63 g ≤ 3 64 g ≤ 3

65 g ≤ 3 66 2.2.7, 2.2.11, 2.2.12, [32]

67 [32] 68 g ≤ 3 for d = 4, 2.2.7

69 g ≤ 3 for d = 23, [32] 70 g ≤ 3(d = 14,35), 2.2.5, 2.2.7, 2.2.10, 2.2.11, [32]

71 g ≤ 3 72 g ≤ 3

73 [32] 74 2.2.7, 2.2.12

75 g ≤ 3 76 g ≤ 3 for d = 19, 2.2.7

77 g ≤ 3 for d = 7, 2.2.7 78 2.2.11, [32]

79 g ≤ 3 80 g ≤ 3 for d = 16, 2.2.7

81 g ≤ 3 82 g ≤ 3 for d = 41, 2.2.5, 2.2.7

83 g ≤ 3 84 2.2.11, 2.2.12

85 2.2.7 86 2.2.10, 2.2.12

87 [32] 88 2.2.7, 2.2.11, 2.2.12
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89 g ≤ 3 90 2.2.5, 2.2.7, 2.2.11

91 g ≤ 3 for d = 13, 2.2.7 92 [32]

93 2.2.7, 2.2.11, 2.2.12 94 [32]

95 [32] 96 g ≤ 3 for d = 32, 2.2.10

97 [38] 98 g ≤ 3 for d = 49, 2.2.7

99 g ≤ 3 for d = 11, 2.2.10 100 g ≤ 3 for d = 4, 2.2.7

101 g ≤ 3 102 2.2.11, 2.2.17

103 [32] 104 2.2.11

105 2.2.10, 2.2.11 106 2.2.11

107 [32] 108 2.2.5, 2.2.7, 2.2.12

109 [38] 110 2.2.7, 2.2.10, 2.2.11

111 2.2.10 112 2.2.11, 2.2.12, 2.2.15

113 [38] 114 2.2.11, 2.2.17

115 2.2.11, 2.2.12 116 2.2.11, 2.2.12

117 2.2.5, 2.2.7, 2.2.11, [38] 118 2.2.10

119 [32] 120 2.2.11, 2.2.17

121 [32] 122 2.2.11

123 2.2.10 124 2.2.10

125 [32] 126 2.2.11

127 [38] 128 [38]

129 2.2.11, 2.2.12 130 2.2.7, 2.2.11, 2.2.17

131 g ≤ 3 132 2.2.7, 2.2.7, 2.2.9, 2.2.11, 2.2.17

133 2.2.7, 2.2.11 134 2.2.11

135 2.2.11, 2.2.12 136 2.2.11, 2.2.13

137 2.2.12 138 2.2.9, 2.2.11

139 [38] 140 2.2.7, 2.2.9, 2.2.11, 2.2.17

141 2.2.10 142 2.2.10

143 2.2.10 144 2.2.14

145 2.2.6, 2.2.10 146 2.2.11

147 2.2.11, 2.2.12, [38] 148 2.2.14, 2.2.15 2.2.17

149 [38] 150 2.2.5, 2.2.7, 2.2.9, 2.2.11, 2.2.17
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151 [38] 152 2.2.13, 2.2.17

153 2.2.11 154 2.2.5, 2.2.7, 2.2.17

155 2.2.10, 2.2.12 156 2.2.9, 2.2.11

157 2.2.14 158 2.2.11

159 2.2.10, 2.2.12 160 2.2.7, 2.2.15

161 2.2.5, 2.2.11 162 2.2.17

163 2.2.13 164 2.2.7, 2.2.17

165 2.2.7, 2.2.11 166 2.2.11

167 [32] 168 2.2.5, 2.2.7, 2.2.11

169 [38] 170 2.2.5, 2.2.7, 2.2.17

171 2.2.11, 2.2.14 172 2.2.5, 2.2.7, 2.2.17

173 2.2.5 174 2.2.5, 2.2.9, 2.2.17

175 2.2.14, 2.2.17 176 2.2.11, 2.2.14

177 2.2.6, 2.2.11 178 2.2.5, 2.2.9, 2.2.17

179 [38] 180 2.2.5, 2.2.7

181 [38] 182 2.2.5, 2.2.9

183 2.2.9, 2.2.13, 2.2.17 184 2.2.11

185 2.2.7, 2.2.14, 2.2.17 186 2.2.7, 2.2.9

187 2.2.5, 2.2.17 188 2.2.6, 2.2.10

189 2.2.5, 2.2.9, 2.2.17 190 2.2.9, 2.2.11

191 [32] 192 2.2.7, 2.2.15

193 2.2.14 194 2.2.9, 2.2.14

195 2.2.7, 2.2.9, 2.2.11, 2.2.17 196 2.2.5, 2.2.14, 2.2.17

197 2.2.13 198 2.2.5, 2.2.7, 2.2.9

199 2.2.5 200 2.2.7, 2.2.14

201 2.2.5, 2.2.7 202 2.2.5, 2.2.9, 2.2.17

203 2.2.9, 2.2.13, 2.2.17 204 2.2.5, 2.2.7, 2.2.9

205 2.2.11 206 2.2.11

207 2.2.11 208 2.2.5, 2.2.7, 2.2.15

209 2.2.11 210 2.2.7, 2.2.9

211 2.2.13 212 2.2.5, 2.2.7
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213 2.2.11 214 2.2.9, 2.2.17

215 2.2.11, 2.2.12 216 2.2.5, 2.2.7

217 2.2.5, 2.2.9, 2.2.15, 2.2.17 218 2.2.5, 2.2.7

219 2.2.5, 2.2.7, 2.2.17 220 2.2.7, 2.2.9

221 2.2.11 222 2.2.9

223 2.2.13 224 2.2.7, 2.2.9, 2.2.15

225 2.2.5, 2.2.7, 2.2.17 226 2.2.5, 2.2.7

227 [38] 228 2.2.5, 2.2.8

229 2.2.15 230 2.2.5, 2.2.9

231 2.2.5, 2.2.9, 2.2.17 232 2.2.5, 2.2.7

233 2.2.5, 2.2.17 234 2.2.5, 2.2.7, 2.2.9

235 2.2.5, 2.2.7 236 2.2.9

237 2.2.5, 2.2.7 238 2.2.9, 2.2.17

239 [38] 240 2.2.5, 2.2.7, 2.2.8

241 2.2.15 242 2.2.5, 2.2.7, 2.2.17

243 2.2.5, 2.2.18 244 2.2.5, 2.2.7

245 2.2.5, 2.2.9, 2.2.17 246 2.2.8, 2.2.9

247 2.2.5, 2.2.7, 2.2.17 248 2.2.9, 2.2.17

249 2.2.9, 2.2.17 250 2.2.5, 2.2.7, 2.2.9

251 2.2.5 252 2.2.7, 2.2.9

253 2.2.5, 2.2.7 254 2.2.7, 2.2.9

255 2.4 256 2.2.5, 2.2.17

257 2.2.15 258 2.2.7, 2.2.9

259 2.2.5, 2.2.7, 2.2.9, 2.2.17 260 2.4

261 2.2.5, 2.2.7, 2.2.9 262 2.2.9, 2.2.17

263 2.2.14 264 2.2.8

265 2.2.5, 2.2.7 266 2.4

267 2.2.9, 2.2.17 268 2.2.3, 2.2.7

269 2.2.13 270 2.2.8, 2.2.9

271 2.2.5, 2.0.2(v) 272 2.2.3, 2.2.7, 2.2.9

273 2.2.3, 2.2.7, 2.2.8 274 2.2.3, 2.2.7, 2.2.9

148



Appendix B

275 2.2.5, 2.2.7, 2.2.9, 2.2.17 276 2.4

277 2.2.5 278 2.2.7, 2.2.9

279 2.2.11 280 2.4

281 2.2.15 282 2.4

283 2.2.5, 2.2.17 284 2.2.11

285 2.4 286 2.4

287 2.2.11 288 2.2.3, 2.2.7

289 2.2.5, 2.2.17 290 2.4

291 2.2.3, 2.2.7, 2.2.9 292 2.4

293 2.2.5, 2.2.17 294 2.4

295 2.2.9, 2.2.17 296 2.4

297 2.2.3, 2.2.7, 2.2.9 298 2.2.3, 2.2.7, 2.2.9

299 2.2.11 300 2.2.8, 2.2.9

301 2.2.3, 2.2.7 302 2.2.7, 2.2.9

303 2.2.9 304 2.4

305 2.2.3, 2.2.9 307 2.2.5

309 2.2.3, 2.2.8 311 2.2.5

313 2.2.5 317 2.2.5

319 2.2.5, 2.2.9 321 2.2.9

323 2.2.3, 2.2.7, 2.2.9 325 2.2.3, 2.2.7

329 2.2.9 331 2.2.5

335 2.2.5, 2.2.9 337 2.2.5

341 2.2.3, 2.2.9 343 2.2.3

347 2.2.3 349 2.2.3

353 2.2.3 355 2.2.3, 2.2.7, 2.2.9

359 2.2.13 361 2.2.3

367 2.2.3 371 2.2.3, 2.2.9

373 2.2.3 377 2.2.3, 2.2.9

379 2.2.3 383 2.2.5

389 2.2.3 391 2.2.3, 2.2.9

397 2.2.3 401 2.2.3
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409 2.2.3 419 2.2.3

420 2.2.4 421 2.2.3

431 2.2.5, 2.2.17 433 2.2.3

439 2.2.3 443 2.2.3

449 2.2.3
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This appendix contains the results of Section 2.3. For each level N, there are 7 entries,

listed in the order they appear in: the structure of the group (Z/NZ)× along with its

generators, the group ∆, the genus g of X∆(N), the Q-gonality of X∆(N), the C-gonality

of X∆(N) (if determined), and all results used to obtain the gonalities.

We only list the curves X∆(N) with genus g g 3. Some information about the genera

of curves X∆(N) was taken from [52, Table 6]. Some groups ∆ have been omitted from

the table, especially for bigger N when there are many groups ∆, since we can use Propo-

sition 2.0.2(vii) for them to prove that they are neither C-tetragonal nor Q-pentagonal.

For non-tetragonal curves with genus g g 10 we also omit their C-gonality if the bound

gonC g 5 can be deduced from Corollary 2.1.17.

Table C.1: The Q-gonalities of curves X∆(N) for N f 40.

N (Z/NZ)× generators ∆ g gonQ gonC results used

21 C2 ×C6 −1,2 {±1,±8} 3 2 2 [43], [49]

24 C2 ×C2 ×C2 −1,5,7 {±1,±5} 3 3 3 g = 3, 2.0.2(iv)

{±1,±7} 3 3 3 g = 3, 2.0.2(iv)

25 C20 2 {±1,±7} 4 4 3 2.3.1

26 C12 7 {±1,±5} 4 3 3 2.3.1

{±1,±3,±9} 4 3 3 2.3.1

28 C2 ×C6 3,13 {±1,±13} 4 3 3 2.3.1

{±1,±3,±9} 4 3 3 2.3.1

29 C28 2 {±1,±12} 8 6 5 2.3.11, 2.3.17, 2.3.21
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ï−1,4ð 4 3 3 2.3.1

30 C2 ×C4 7,11 {±1,±11} 5 4 4 2.3.15

31 C30 3 {±1,±5,±6} 6 5 4 2.3.10, 2.3.17, 2.3.20

{±1,±2,±4,±8,±15} 6 5 4 2.3.10, 2.3.17, 2.3.20

32 C2 ×C8 −1,3 {±1,±15} 5 4 4 2.3.15

33 C2 ×C10 2,10 {±1,±10} 11 6 g 5 2.3.11, 2.3.17, 2.1.17

{±1,±2,±4,±8,±16} 5 4 4 2.3.15

34 C16 3 {±1,±13} 9 6 g 5 2.3.11, 2.3.17, 2.3.21

{±1,±9,±13,±15} 5 4 4 2.3.15

35 C2 ×C12 −1,2 {±1,±6} 13 8 g 5 2.3.12, 2.3.18, 2.1.17

{±1,±11,±16} 9 6 g 5 2.3.11, 2.3.17 2.3.21

{±1,±6,±8,±13} 7 4 4 2.3.17

ï−1,4ð 5 4 4 2.3.15

36 C2 ×C6 5,19 {±1,±17} 7 4 4 2.3.18

{±1,±11,±13} 3 3 3 g = 3, 2.0.2(iv)

37 C36 2 {±1,±6} 16 9 g 5 2.3.12, 2.3.18

{±1,±10,±11} 10 6 g 5 2.3.11, 2.3.17, 2.1.17

ï−1,8ð 4 3 3 2.3.1

ï−1,4ð 4 3 3 2.3.1

38 C18 3 {±1,±7,±11} 10 6 g 5 2.3.11, 2.3.18, 2.1.17

39 C2 ×C12 −1,2 {±1,±14} 17 8 g 5 2.3.12, 2.3.18, 2.1.17

{±1,±16,±17} 9 6 g 5 2.3.11, 2.3.17, 2.3.21

{±1,±5,±8,±14} 9 4 4 2.3.18

ï−1,4ð 5 4 4 2.3.15

40 C2 ×C2 ×C4 −1,3,11 {±1,±9} 13 8 g 5 2.3.12, 2.3.18, 2.1.17

{±1,±11} 13 7 g 5 2.3.12, 2.3.17, 2.1.17

{±1,±19} 9 6 g 5 2.3.11, 2.3.18, 2.3.21

{±1,±3,±9,±13} 7 4 4 2.3.18

{±1,±7,±9,±17} 7 4 4 2.3.18

{±1,±9,±11,±19} 5 4 4 2.3.15

41 C40 6 {±1,±9} 21 g 6 2.0.2(vii)
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{±1,±3,±9,±14} 11 g 6 2.3.11, 2.1.17

{±1,±4,±10,±16,±18} 11 g 6 2.3.11, 2.1.17

ï−1,5ð 5 4 4 2.3.15

42 C2 ×C6 5,13 {±1,±13} 13 g 6 2.3.11

{±1,±5,±17} 9 g 6 g 5 2.3.11, 2.3.21

43 C42 3 {±1,±6,±7} 15 g 6 2.3.11

ï−1,27ð 9 g 6 g 5 2.3.11, 2.3.21

44 C2 ×C10 −1,3 {±1,±21} 16 g 6 2.3.11

{±1,±5,±7,±9,±19} 8 5 5 2.3.17, 2.3.21

45 C2 ×C12 −1,2 {±1,±19} 21 g 6 2.0.2(vii)

{±1,±14,±16} 9 g 6 g 5 2.3.11, 2.3.21

{±1,±8,±17,±19} 11 g 6 2.3.11

ï−1,4ð 5 4 4 2.3.15

48 C2 ×C2 ×C4 −1,5,7 {±1,±7} 19 g 6 g 6 2.3.14

{±1,±17} 19 g 6 g 6 2.3.14

{±1,±23} 13 g 6 2.3.11

{±1,±5,±19,±23} 7 4 4 2.3.18

{±1,±7,±17,±23} 7 4 4 2.3.18

{±1,±11,±13,±23} 5 4 4 2.3.15

49 C42 3 {±1,±18,±19} 19 g 6 2.3.11

ï−1,27ð 3 3 3 g = 3, 2.0.2(iv)

50 C20 3 {±1,±7} 22 g 6 g 6 2.3.14

{±1,±9,±11,±19,±21} 4 3 3 2.3.1

51 C2 ×C16 −1,3 {±1,±16} 33 g 6 2.0.2(vii)

{±1,±4,±13,±16} 17 g 6 2.0.2(vii)

ï−1,9ð 9 g 6 g 5 2.3.11, 2.3.21

52 C2 ×C12 −1,7
〈

−1,73
〉

13 g 6 2.3.11

ï−1,3ð 9 g 6 g 5 2.3.11, 2.3.21

other 2.0.2(vii)

53 C52 2 {±1,±23} 40 g 6 2.3.19
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ï−1,4ð 8 g 6 g 5 2.3.11, 2.3.21

54 C18 5 {±1,±17,±19} 10 g 6 2.3.11

55 C2 ×C20 2,21 {±1,±21} 41 g 6 2.0.2(vii)

{±1,±12,±21,±23} 21 g 6 2.3.11

{±1,±16,±19,±24,±26} 17 g 6 2.3.11

ï−1,4,21ð 9 4 4 2.3.17

56 C2 ×C2 ×C6 3,13,29 {±1,±13,±15,±27} 13 g 6 2.3.11

ï−1,9,13ð 11 g 6 2.3.11

ï−1,9,15ð 11 g 6 2.3.11

ï−1,3ð 9 g 6 g 5 2.3.11, 2.3.21

other 2.0.2(vii)

57 C2 ×C18 2,20 ï−1,8,20ð 13 g 6 2.3.11

ï−1,2ð 9 g 6 g 5 2.3.11, 2.3.21

other 2.0.2(vii)

58 C28 3
〈

−1,37
〉

g 6 g 6 2.3.19

ï−1,9ð 12 g 6 2.3.11

60 C2 ×C2 ×C4 7,11,19 {±1,±7,±11,±17} 15 g 6 2.3.11

{±1,±11,±13,±23} 15 g 6 2.3.11

{±1,±11,±19,±29} 13 g 6 2.3.11

other 2.0.2(vii)

61 C60 2
〈

−1,25
〉

16 g 6 2.3.11

ï−1,8ð 12 g 6 2.3.11

ï−1,4ð 8 g 6 g 5 2.3.11, 2.3.21

other 2.0.2(vii)

62 C30 3 {±1,±5,±25} 31 g 6 g 6 2.3.14

{±1,±15,±23,±27,±29} 19 g 6 2.3.11

63 C6 ×C6 2,5 ï−1,2ð 17 g 6 2.3.11

ï−1,5ð 17 g 6 2.3.11

ï−1,8,10ð 17 g 6 2.3.11

ï−1,8,20ð 13 g 6 2.3.11

ï−1,4,5ð 9 g 6 g 5 2.3.11, 2.3.21
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other 2.0.2(vii)

64 C2 ×C16 −1,3 {±1,±31} 37 g 6 2.0.2(vii)

{±1,±15,±17,±31} 13 g 6 2.3.11

ï−1,9ð 5 4 4 2.3.15

65 C4 ×C12 2,12 ï−1,8,12ð 13 g 6 2.3.11

ï−1,4,12ð 11 g 6 2.3.11

ï−1,4,24ð 11 g 6 2.3.11

ï−1,2ð 9 g 6 g 5 2.3.11, 2.3.21

other 2.0.2(vii)

66 C2 ×C10 −1,5 ï−1,25ð 17 g 6 2.3.11
〈

−1,55
〉

g 6 g 6 2.3.19

67 C66 2
〈

−1,211
〉

g 6 g 6 2.3.19

ï−1,8ð 15 g 6 2.3.11

68 C2 ×C16 −1,3 ï−1,9ð 13 g 6 2.3.11

69 C2 ×C22 −1,2 {±1,±22} 67 g 6 g 6 2.3.19

ï−1,4ð 13 g 6 2.3.11

70 C2 ×C12 −1,3 ï−1,27ð 25 g 6 2.3.11

ï−1,9ð 17 g 6 2.3.11

other 2.0.2(vii)

71 C70 7 {±1,±5±14,±17,±25} 36 g 6 2.3.9
〈

−1,75
〉

26 g 6 2.3.11

72 C2 ×C2 ×C6 −1,5,17 {±1,±17,±19,±35} 21 g 6 g 6 2.3.14

ï−1,5ð 13 g 6 2.3.11

ï−1,17,25ð 13 g 6 2.3.11

ï−1,13,25ð 9 g 6 g 5 2.3.11, 2.3.21

other 2.0.2(vii)

73 C72 5
〈

−1,53
〉

13 g 6 2.3.11

ï−1,25ð 9 g 6 g 5 2.3.11, 2.3.21

other 2.0.2(vii)

74 C36 5
〈

−1,53
〉

22 g 6 g 6 2.3.14

ï−1,25ð 16 g 6 2.3.11
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other 2.0.2(vii)

75 C2 ×C20 −1,2 {±1,±26} 73 g 6 2.0.2(vii)

{±1,±7,±26,±32} 37 g 6 g 6 2.3.19

{±1,±14,±16,±29,±31} 17 g 6 2.3.11

ï−1,4ð 9 4 4 2.3.18

77 C2 ×C30 −1,2 ï−1,32ð 31 g 6 2.3.11

ï−1,8ð 19 g 6 2.3.11

ï−1,4ð 13 g 6 2.3.11

other 2.0.2(vii)

78 C2 ×C12 5,7
〈

−1,5,73
〉

31 g 6 2.3.9

ï−1,35,49ð 31 g 6 2.3.11

other 2.0.2(vii)

79 C78 3 {±1,±23,±24} 66 g 6 g 6 2.3.19

ï−1,27ð 18 g 6 2.3.11

80 C2 ×C4 ×C4 −1,3,7 ï−1,7,9ð 15 g 6 2.3.11

ï−1,3,49ð 15 g 6 2.3.11

ï−1,21,49ð 13 g 6 2.3.11

other 2.0.2(vii)

81 C54 2 {±1,±26,±28} 46 2.0.2(vii)

ï−1,8ð 10 g 6 2.3.11

85 C4 ×C16 3,13 ï−1,3ð 15 g 6 2.3.11

ï−1,9,13ð 13 g 6 2.3.11

other 2.0.2(vii)

87 C2 ×C28 −1,2
〈

−1,27
〉

g 6 g 6 2.3.19

ï−1,4ð 17 g 6 2.3.11

88 C2 ×C2 ×C10 −1,5,21
〈

−1,21,55
〉

41 g 6 g 6 2.3.19

ï−1,21,25ð 19 g 6 2.3.9

ï−1,25,105ð 19 g 6 2.3.11

ï−1,5ð 17 g 6 2.3.11

other 2.0.2(vii)

89 C88 3 {±1,±34} 133 g 6 2.0.2(vii)
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{±1,±12,±34,±37} 67 g 6 g 6 2.3.19
〈

−1,34
〉

27 g 6 2.0.2(vii)

ï−1,9ð 13 g 6 2.3.11

91 C6 ×C12 2,12 ï−1,8,12ð 23 g 6 2.3.11

ï−1,8,48ð 23 g 6 2.3.11

ï−1,8,24ð 21 g 6 2.3.11

ï−1,2ð 21 g 6 2.3.9

ï−1,4,12ð 13 g 6 2.3.11

other 2.0.2(vii)

92 C2 ×C22 −1,3 {±1,±45} 100 g 6 g 6 2.3.19

ï−1,9ð 20 g 6 2.3.11

95 C2 ×C36 −1,2 ï−1,8ð 25 g 6 2.3.11

ï−1,4ð 17 g 6 2.3.11

other 2.0.2(vii)

96 C2 ×C2 ×C8 −1,5,17 ï−1,17,25ð 17 g 6 2.3.11

ï−1,25,85ð 17 g 6 2.3.11

ï−1,5ð 17 g 6 2.3.9

other 2.0.2(vii)

98 C42 3
〈

−1,37
〉

g 6 g 6 2.3.19

ï−1,27ð 19 g 6 g 6 2.3.14

100 C2 ×C20 −1,3
〈

−1,35
〉

g 6 g 6 2.3.19

ï−1,9ð 12 g 6 2.3.11

101 C100 2 ï−1,32ð 36 g 6 g 6 2.3.19

ï−1,4ð 16 g 6 2.3.11

other 2.0.2(vii)

103 C102 5
〈

517
〉

g 6 g 6 2.3.19
〈

−1,53
〉

24 g 6 2.3.11

other 2.0.2(vii)

104 C2 ×C2 ×C12 −1,15,51
〈

−1,153,51
〉

31 g 6 2.3.9

ï−1,15ð 23 g 6 2.3.11
〈

−1,152,15 ·51
〉

23 g 6 2.3.11
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〈

−1,152,51
〉

21 g 6 2.3.9

other 2.0.2(vii)

109 C108 6
〈

−1,63
〉

22 g 6 2.3.11

ï−1,36ð 16 g 6 2.3.11

other 2.0.2(vii)

111 C2 ×C36 −1,2 ï−1,8ð 31 g 6 2.3.11

ï−1,4ð 21 g 6 2.3.11

other 2.0.2(vii)

119 C2 ·C48 −1,3 ï−1,27ð 31 g 6 2.3.11

ï−1,9ð 21 g 6 2.3.11

other 2.0.2(vii)

121 C110 2
〈

−1,211
〉

g 6 g 6 2.3.19

ï−1,32ð g 6 g 6 2.3.19

125 C100 2 ï−1,32ð g 6 g 6 2.3.19

ï−1,4ð 16 5 5 2.3.11, 2.3.18

other 2.0.2(vii)

131 C130 2 all ∆ g 6 g 6 2.3.19

142 C70 7 all ∆ g 6 g 6 2.3.19

143 C2 ×C60 −1,2 ï−1,32ð g 6 g 6 2.3.19

ï−1,8ð 37 g 6 2.3.9

ï−1,4ð 25 g 6 2.3.11

other 2.0.2(vii)

191 C190 19 all ∆ g 6 g 6 2.3.19
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Table D.1: Levels N and strong Weil curves E (given by their

LMFDB labels) considered in the proof of Theorem 3.0.11.

N E Modular Degree Quadratic Form

106 53.a1 2 6x2 −4xy+6y2

114 57.a1 4 12x2 −16xy+12y2

116 58.a1 4 8x2 −8xy+8y2

122 61.a1 2 6x2 −4xy+6y2

129 43.a1 2 8x2 −8xy+8y2

130 65.a1 2 6x2 −4xy+6y2

148 37.a1 2 12x2 +12y2 +12z2 −16xy+4xz−16yz

158 79.a1 2 6x2 −4xy+6y2

164 82.a1 4 8x2 −8xy+8y2

166 83.a1 2 6x2 −4xy+6y2

171 57.a1 4 12x2 −8xy+12y2

172 43.a1 2 12x2 +12y2 +12z2 −16xy+4xz−16yz

176 88.a1 8 16x2 +16y2

178 89.a1 2 6x2 −4xy+6y2

182 91.a1 4 12x2 −16xy+12y2

91.b2 4 12x2 +12y2

183 61.a1 2 8x2 −8xy+8y2

184 92.a1 6 12x2 +12y2
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185 37.a1 2 12x2 −8xy+12y2

195 65.a1 2 8x2 −8xy+8y2

215 43.a1 2 12x2 −16xy+12y2

237 79.a1 2 8x2 −4xy+8y2

242 121.b2 4 12x2 +12y2

249 83.a1 2 8x2 −4xy+8y2

259 37.a1 2 16x2 −4xy+16y2

264 88.a1 8 32x2 −48xy+32y2

265 53.a1 2 12x2 +12y2

267 89.a1 2 8x2 −4xy+8y2

297 99.a2 4 12x2 +12y2
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CONCLUSION

In this thesis we have two main chapters, one about the gonality of modular curves, the

second about the modular curves with infinitely many degree d points. These are Chap-

ter 2 and Chapter 3, respectively. Here we will give an overview of the main results in

those chapters.

In Section 2.1 we determined the Q and C-gonality of the modular curve X0(N). The

results are given in Table A.1. We determined the Q-gonality of the curve X0(N) for all

N f 144. Also, we determined all curves X0(N) with Q-gonality equal to d for d = 4,5,6

in Theorems 2.1.2, 2.1.3, 2.1.4. Interestingly, there exists only one curve X0(N) with Q-

gonality equal to 5, namely X0(109). We used a variety of methods to obtain these results

and computations in Magma computer algebra system were of great help to us.

In Section 2.2 we computed the Q and C-gonality of quotient curves X+d
0 (N). The

results are given in Table B.1. In Theorem 2.2.2 we determined all Q-tetragonal curves

X+d
0 (N) as well as all C-tetragonal curves X+d

0 (N). As a consequence of these results,

we were able to compute the Q-gonality of the curve X0(N) for several new levels N in

Corollary 2.2.19.

In Section 2.3 we computed the Q and C-gonality of intermediate modular curves

X∆(N). The results are given in Table C.1. In Theorems 2.3.1, 2.3.3, 2.3.4, 2.3.5 we

determined all curves X∆(N) with Q-gonality equal to d for d = 4,5 as well as all curves

X∆(N) with C-gonality equal to 4.

In Chapter 3 we studied the problem of determining the existence of infinitely many

degree d points on a curve. Our results mostly deal with the modular curve X0(N). In

Theorem 3.0.7 we determine all curves X0(N) with infinitely many quartic points. To

prove this result, we used results about the Q-gonality from Section 2.1. A big part

of the proof was finding all curves X0(N) that admit a degree 4 rational morphism to
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Conclusion

a positive rank elliptic curve E/Q. This was solved in Theorem 3.0.11 by finding a

quadratic form that represents all possible degrees of such morphisms. We used the Sage

computer algebra system to prove that these quadratic forms (listed in Table D.1) represent

all possible degrees of morphisms.
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[21] M. Derickx and P. Orlić. Modular curves X0(N) with infinitely many quartic points.

Res. Number Theory, 10(42), 2024. ↑ iv, vi.

164



Bibliography Bibliography

[22] M. Derickx and A. V. Sutherland. Torsion subgroups of elliptic curves over quintic

and sextic number fields. Proc. Am. Math. Soc., 145(10):4233–4245, 2017. ↑ 29,

101.

[23] M. Derickx and M. van Hoeij. Gonality of the modular curve X1(N). J. Algebra,

417:52–71, 2014. ↑ iv, vi, 30, 31, 79, 84, 94, 101.

[24] F. Diamond and J. Im. Modular forms and modular curves. Conference proceedings,

Can. Math. Soc., 17, 1995. ↑ 14, 109, 110.

[25] F. Diamond and J. Shurman. A first course in modular forms, volume 228 of Grad-

uate Texts in Mathematics. Springer-Verlag, New York, 2005. ↑ 12, 22, 23, 24, 120.

[26] D. Eisenbud. The Geometry of Syzygies: A Second Course in Algebraic Geometry

and Commutative Algebra. Graduate Texts in Mathematics. Springer, 2005. ↑ 82.

[27] N. D. Elkies. On elliptic K-curves. In Modular curves and Abelian varieties. Based

on lectures of the conference, Bellaterra, Barcelona, July 15–18, 2002, pages 81–91.
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[82] P. Orlić. Tetragonal intermediate modular curves, 2024. preprint, available at:

arxiv.org/abs/2407.14512. ↑ iv, vi.

169



Bibliography Bibliography
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