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Jelena Luetić
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DOKTORSKI RAD

Mentor:

Prof. dr. sc. Vuko Brigljević
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“Each time new experiments are observed to agree with the predictions, the theory

survives and our confidence in it is increased; but if ever a new observation is found to

disagree, we have to abandon or modify the theory.

At least that is what it is supposed to happen, but you can always question the competence

of the person who carried out the observation.”

Stephan Hawking



Abstract

The goal of this thesis is a measurement of the cross section of the pp ! W + bb +

X process using the data collected during 2012 at
p

s = 8 TeV. The data is provided

by the Large Hadron Collider (LHC) accelerator at CERN, Geneva and collected by

the Compact Muon Solenoid (CMS). The production of a W boson in association with

a pair of b quarks (Wbb) in proton collisions has been the topic of many theoretical

calculations and simulations. It is however still not well described due to divergences

which arise in theoretical calculations, in cases where b quarks are collinear or there is

a low energy massless particle irradiated. A precise measurement of Wbb production

will allow to further constrain theoretical predictions in the framework of perturbative

quantum chromodynamics (pQCD). On the other hand, Wbb is a background in the

measurements of di↵erent standard model processes as well as in several searches for

physics beyond standard model.

The presence of a W boson is identified through the detection of an energetic, isolated

lepton (muon or electron) and a significant amount of missing energy, which indicates the

presence of a neutrino. Jets in the detector are identified as collimated sprays of particles.

Selected jets are required to be tagged as jets originating from b quarks.

The cross section measurement was performed in the fiducial region defined by a

presence of a lepton and exactly two 2 b-tagged jets. The result is quoted separately in

the muon and electron channel. The measured values in the two channels are compatible,

as predicted by the standard model. The theoretical cross section was derived using

MCFM. The measured values are around one standard deviation higher than the predicted

theoretical values. The uncertainty on the measured values is dominated by the systematic

e↵ects. The largest uncertainties are associated with the b tagging procedure, jet energy

scale and jet energy resolution. Reducing these uncertainties in the future, would allow

for more sensitive test of perturbative QCD calculation at next-to-leading order.

Keywords: LHC, CMS, Standard model, Wbb, cross section
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Chapter 1

Introduction

The standard model of particle physics tries to give an answer to the questions what is

matter made of and how does it interact. The predictions of the standard model have

been thoroughly tested through various precision measurements at di↵erent experiments.

Every time the standard model predictions were confirmed. The only missing link, the long

sought Higgs boson, was found in 2012, and its properties were measured in the following

years, thus completing the picture of elementary particles. However, the standard model

still leaves some unexplained phenomena, e.g. neutrino oscillations, matter-antimatter

asymmetry, the existence of dark matter and dark energy, motivating the searches for

physics beyond standard model. The sensitivity to such processes in high energy physics

experiments strongly depends on the precise measurements of known processes. In such

measurements, poorly known yields and kinematics of known processes would lead to high

uncertainties, and thus reducing the sensitivity of the experiment.

The production of a W boson in association with a pair of b quarks (Wbb) in proton

collisions has been the topic of many theoretical calculations and simulations. It is however

still not well described due to divergences which arise in theoretical calculations, in cases

where b quarks are collinear or there is a low energy massless particle irradiated. Several

theoretical approaches, implemented in di↵erent simulation packages, have been used to

describe the Wbb production mechanism. A precise measurement of Wbb production
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Chapter 1. Introduction

will allow to further constrain theoretical predictions in the framework of perturbative

quantum chromodynamics (pQCD) and to test the validity of di↵erent theoretical models

used in simulations. On the other hand, Wbb is a background in the measurements of dif-

ferent standard model processes as well as in several searches for physics beyond standard

model. It is one of the main backgrounds in top quark and Higgs boson measurements.

When Higgs boson is produced in association with a W boson and decays to a pair of b

quarks, this shows the same signature in the detector as the Wbb.

The goal of this thesis is a measurement of the cross section of the pp ! W + bb + X

process using the data collected during 2012 at
p

s = 8 TeV. The data is provided by the

Large Hadron Collider (LHC) accelerator at CERN, Geneva and collected by the Compact

Muon Solenoid (CMS). W boson used in the analysis is decaying either to an electron or

muon, and a corresponding neutrino. The presence of a W boson is identified through the

detection of an energetic, isolated lepton, i.e. a lepton with low additional activity in some

predefined cone around it, and a significant amount of missing energy, which indicates the

presence of a neutrino. Jets in the detector are identified as collimated sprays of particles.

Selected jets are required to be tagged as jets originating from b quarks. This procedure

is called b-tagging and it exploits the unique properties of b quark to derive a single

discriminator value to distinguish between b jets and jets from lighter quarks, or gluons.

The thesis is organized as follows. Chapter 2 gives a brief introduction to the standard

model, including the discovery and the role of W boson and b quarks within the standard

model. An overview of the phenomenology of proton collisions at hadron colliders is shown.

All the steps for the theoretical calculation of the pp ! W + bb + X process are given for

both, single parton scattering and double parton scattering production mechanisms. The

end of the chapter summarizes all previous measurements of W boson and b quarks in

the final state. Chapters 3 and 4 are focused on the description of the LHC and the CMS

respectively. All CMS subsystems are described and their role is explained. Chapter

5 describes the procedure for the reconstruction of various physics objects, including

electrons, muons and jets, and the estimation of missing energy. Chapter 6 lists all data

and Monte Carlo samples used. The criteria for the signal selection are described and

2



Chapter 1. Introduction

all major backgrounds are identified. Chapter 7 describes all steps in the cross section

determination, including the fitting procedure used to extract the final yields, and the

acceptance and e�ciency estimation. In the end, the results are presented, together with

the comparison to theoretical predictions. Chapter 8 briefly summarizes the results, and

shows the prospects for the future research on this topic.
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Chapter 2

Theoretical overview and previous

measurements

The standard model (SM) of elementary particles is a theory which emerged in the 1960s

and 1970s, which describes all of the known elementary particles and interactions ex-

cept gravity. The final formulation of the SM incorporates several theories: quantum

electrodynamics, Glashow-Weinberg-Salam theory of electroweak processes and quantum

chromodynamics. The first steps towards a formulation of SM occurred in 1961. when

Sheldon Glashow unified electromagnetic and weak interactions [1]. The di↵erence in

strength between the weak and electromagnetic forces was puzzling for physicists at that

time, and Glashow proposed that it can be accounted for if the weak force were mediated

by massive bosons. However, he was not able to explain the origin of the mass for such

mediators. The explanation came in 1967 when Steven Weinberg and Abdul Salam used

the Higgs mechanism in the electroweak theory [2, 3], which suggested the existence of

an additional particle called Higgs boson. After the discovery of neutral currents, which

arise from the exchange of the neutral Z boson, the electroweak theory became generally

accepted. The W and Z bosons were discovered in 1983 at CERN [4, 5], and their masses

were in agreement with the SM prediction. The theory describing strong interactions got

its final form in 1974 when it was shown that hadrons consist of quarks. The final missing
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link in the SM, the Higgs boson, was discovered in 2012 at CERN [6, 7]. However, there

are several unexplained phenomena which suggest the existence of physics beyond SM,

but so far its predictions were confirmed every time through numerous experimental tests.

In this chapter a brief overview of the SM particles and interactions will be shown with

the emphasis on the W boson and b quarks, which are the most relevant for this thesis.

An introduction to cross section determination at hadron colliders is given. In the last

part of the chapter an historical overview of the development of W+b-jets theoretical

calculations is described together with the existing experimental results.

2.1 Standard model overview

Elementary particle physics is described within the framework of the SM. We usually

imagine particles as point like objects which are subject to some forces between them.

These particles are fermions, leptons or quarks of spin s = 1/2. There are three charged

leptons, electron, muon and tau whose properties are the same except for their mass.

Each of the leptons has a corresponding neutrally charged neutrino with a very small

mass. There are six di↵erent types of quarks with charge either Q = 2/3 of Q = �1/3

as seen in figure 2.1. They also carry one additional quantum number, which is color

charge. All objects observed in nature are colorless giving rise to the concept of quark

confinement, which will be explained later. Colorless composite objects are classified into

two categories. Baryons are fermions made out of three quarks, protons and neutrons.

The other category is composed of mesons, which are made of quark and antiquark, like

pions. Quarks are divided into three generations with all identical properties except for

the masses of the particles.

The SM is based on a gauge symmetry SU(3)C ⇥SU(2)L ⇥U(1)Y . Strong interaction

symmetries are described by SU(3)C group, while the electroweak sector is described by

SU(2)L ⇥ U(1)Y . All interactions within the SM are mediated by elementary particles

which are a spin 1 bosons. In the case of electromagnetic interactions, the mediator is a
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massless photon. Thus the range of electromagnetic interaction is infinite. For the weak

force the mediators are the three massive bosons W± and Z and its range is very small

(10�16 m). These four bosons are the gauge bosons of the SU(2)L ⇥ U(1)Y group. The

interaction between electroweak bosons is allowed in the SM as long as charge conservation

principle remains valid. The strong force is mediated by the exchange of 8 massless gauge

bosons for SU(3)C called gluons. Although gluons are massless, the range of the strong

force is not infinite. Due to the e↵ect of confinement, the range of the strong force is

approximately the size of the lightest hadrons (10�13cm).

Figure 2.1: List of the SM elementary particles.

The fact that weak gauge bosons are massive indicates that SU(2)L ⇥ U(1)Y is not

a good symmetry of the vacuum. Photons, on the other hand, are massless, U(1)em is

thus a good symmetry of the vacuum. This means that the SU(2)L ⇥ U(1)Y electroweak

symmetry is somehow spontaneously broken to U(1)em of electromagnetism. Spontaneous

symmetry breaking is implemented through the Higgs mechanism, which gives masses to

fermions, W± and Z boson and leaves the photon massless. Details of the mechanism can

be found elsewhere, e.g. [8] but the main point is that it also predicts a new scalar and

electrically neutral particle which is called Higgs boson. The search for the Higgs boson

lasted few decades before finally in 2012, a new particle was discovered with a mass of 125
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GeV [6, 7]. In the last three years, properties of this new particle have been measured. At

this point, all measurements agree within the experimental and theoretical uncertainties

with SM predictions for the Higgs boson.

2.1.1 The bottom quark

The history of the bottom quark begins in 1973, when Makoto Kobayashi and Toshihide

Maskawa first introduced the third generation of quarks to explain the charge-parity (CP)

violation observed in neutral K mesons [9]. CP violation is introduced as a small phase

factor � in the Cabibbo-Kobayashi-Maskawa (CKM) matrix provided there are at least

three generations of quarks. This prediction was done even before the discovery of c quark.

Kobayashi and Maskawa received the 2008 Nobel Prize in Physics for their explanation

of CP-violation after several experiments confirmed that the predicted behavior is not

exclusive for K mesons, but can be seen also in B mesons [10, 11].

The name ”bottom” was introduced in 1975 by Haim Harari. The bottom quark

was discovered in 1977 by the Fermilab E288 experiment team led by Leon M. Lederman

through the observation of the ⌥ resonance, which is formed from a bottom quark and

its antiparticle [12].

At the LHC, the main production mechanism for b quarks is through strong inter-

action (any diagram involving g ! bb). Other important contribution for this analysis is

also from top quark decay (t ! Wb). Every b quark, after production, goes through the

process of hadronization, forming one of the color neutral B hadrons. Excited B hadrons

decay strongly or electromagnetically, while ground state B hadrons decay weakly, result-

ing in relatively long lifetime of ⇠1.5 ps. Bottom quark can decay either to c quark or u

quark. Both of these decays are suppressed by the CKM matrix 2.1.

0

BBB@

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

CCCA
=

0

BBB@

0.974 0.225 0.003

0.225 0.973 0.041

0.009 0.040 0.999

1

CCCA
(2.1)
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B mesons traverse a substantial distance inside the detector before decaying due to their

long lifetime. The displacement of the decay vertex is of the order of few millimetres,

which is well above the precision of CMS Pixel detector. This fact is used in the creation

of various b-tagging algorithms which are taking into account tracks originating from

displaced vertices, discussed in Section 5.4.4.

2.1.2 W boson

The W boson is one of the massive mediators of the weak interaction. It has with a mass of

mW = 80.1 GeV. The discovery of W and Z bosons in proton-antiproton collisions at UA1

and UA2 experiments was one of the major successes of the CERN experimental facility.

The Super Proton Synchrotron was the first accelerator powerful enough to produce W

and Z bosons. Both collaborations reported their findings in 1983 [13, 14]. The W

boson at the LHC is primarily produced through quark-antiquark annihilation. In the

majority of the cases, the W boson decays to quark-antiquark pair (66% of all W boson

decays). Other decay channels include creation of a lepton and its corresponding neutrino

(⇠ 10% per lepton generation). This decay channel was the most important for the W

boson discovery and it is still essential for W boson detection at hadron colliders despite

the large hadronic backgrounds because it includes easily identifiable isolated lepton and

significant missing energy.

The detailed study of W boson production in association with jets at hadron colliders

started in the 1980s motivated by the top quark searches. Additional jets come from radi-

ation of additional quarks or gluons. Because they carry color charge, quarks and gluons

undergo the process of parton shower and hadronization forming jets in the detector.

Parton shower is a process in which a high energy colored particle emits a low energy

colored particles, while hadronization is a process in which colored particles combine to

form color neutral particles. Parton shower and hadronization cannot be computed ana-

lytically. They have to be modelled using Monte Carlo simulations. As a result of these
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processes, the number of jets in the final state doesn’t necessarily correspond to the num-

ber of partons outgoing from the hard process. Many theoretical issues arise when trying

to compute cross sections for W+jets processes. Divergences while calculating amplitudes

come from emission of low energy particles or collinear jets. These problems are solved by

introducing a cut-o↵ called factorization scale. Other divergences come from integrating

higher-order loops. Usually this type of divergence is than included into renormalized

coupling constant. This procedure, however introduces a certain scale dependence into

the result which will be further discussed in Section 2.2.1.

2.2 W + b jets at hadron colliders

First theoretical computations of W boson production in association with b jets were

published in 1993 [15]. However only recently enough luminosity has been collected at

hadron colliders to allow cross section measurements. This process was first interesting

as a background to top quark searches and measurements where top quark decays to W

boson and a b quark. In the past few years, with the Higgs boson discovery, an important

open question is whether this new particle also couples to fermions, and in particular

to bottom quarks. SM Higgs boson (mH = 125 GeV) branching ratio for decays into a

bottom quark-antiquark pair (bb̄) is ⇡ 58%. The study of this decay channel is therefore

essential in determining the nature of the newly discovered boson. The measurement of

the H ! bb̄ decay will be the first direct test the observed boson interaction with the quark

sector. Direct measurement of this coupling requires a measurement of the corresponding

Higgs boson decay. The result of the study of Higgs decay to bottom quarks was recently

reported by the CMS experiment in [16, 17] which shows Standard model Higgs boson

coupling with the significance of 2.1 standard deviations. Higgs coupling to the top quark

is measured in the gluon-gluon fusion production channel. In the SM this process is

dominated by the virtual top quark loop. Measurement for the top-quark couplings show

agreement with the SM prediction [18]. There are also searches for beyond SM physics
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where contributions from W+b jets process is substantial, among others supersymmetry

searches with lepton, b jets and missing energy in the final state [19].

The complexity of the proton collisions is arising from the composite nature of pro-

tons. Although protons are mainly composed of valence uud quarks, other quarks, called

sea quarks, can be excited as well. In principle, all these partons have a probability to

participate in the collision. The accurate description of the collision events heavily relies

on the combination of theoretical calculations and experimental findings. Usually this

description is divided into separate stages, which occur at di↵erent energy scales. Going

from higher energy scales and smaller distances, processes which describe particle are ad-

ded depending on the available phase space ending in the stable particles detected in the

detector. This evolution can be summarized as follows:

• Hard process - resulting in the production of heavy or highly energetic particles

and subsequent decay of a heavy particle, all of which is described through matrix

elements.

• Parton shower - the process of radiating lighter particles, e.g photons or gluons,

which tend to be collinear with the originating particle

• Hadronization - quarks and gluons form hadrons, which are usually unstable and

eventually decay into long lived particles detected in the detector.

All these stages are represented in figure 2.2 in an event where top quark pair is

produced in association with a Higgs boson.

2.2.1 Cross sections at hadron colliders

Determining cross sections for processes at hadron collides is not an easy task. The proton

is a composite object consisting of partons, thus it is necessary to include its internal

structure as well as the diagrams for the hard scattering process of interest. Quarks and
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Figure 2.2: Drawing represents a proton-proton collision production a ttH event.
The hard interaction, represented with big red circle, is followed by the decay of both
top quarks and the Higgs boson. Additional hard QCD radiation and a secondary
interaction, shown in red and purple, take place before the final-state partons hadronise
(light green) and hadrons decay (dark green). Photon radiation is shown in yellow and

it can occur at any stage [20].

gluons within the proton interact through strong force and are described using quantum

chromodynamics. Calculations within QCD are possible thanks to asymptotic freedom

and factorization theorem. Since the strong force coupling constant ↵s depends on the

scale of the process, for high momentum transfers (Q >> ⇤QCD ⇡ 200 MeV) it becomes

su�ciently small to make perturbative expansion in ↵s possible. This feature is called

asymptotic freedom and it is used to determine the hard process cross section. Figure 2.3

shows the results of the ↵s measurements which is in complete agreement with the QCD

predictions of asymptotic freedom.

The factorization theorem is introduced to separate the two contributions in the cross

section calculation, the contribution from the hard process calculated using perturbative

QCD and the contribution from the internal structure of the proton. This means that

hard scattering between partons is independent from the proton internal structure. The

factorization scale is introduced as a cut-o↵ below which perturbative QCD calculation
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134 9. Quantum chromodynamics

The wealth of available results provides a rather precise and stable
world average value of ↵s(M2

Z), as well as a clear signature and proof
of the energy dependence of ↵s, in full agreement with the QCD
prediction of Asymptotic Freedom. This is demonstrated in Fig. 9.4,
where results of ↵s(Q2) obtained at discrete energy scales Q, now also
including those based just on NLO QCD, are summarized. Thanks
to the results from the Tevatron [346,347] and from the LHC [259],
the energy scales at which ↵s is determined now extend to several
hundred GeV up to 1 TeV�.

QCD αs(Mz) = 0.1185 ± 0.0006

Z pole fit  

0.1

0.2

0.3

αs (Q)

1 10 100
Q [GeV]

Heavy Quarkonia (NLO)

e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

Sept. 2013

Lattice QCD (NNLO)

(N3LO)

τ decays (N3LO)

1000

pp –> jets (NLO)
(–)

Figure 9.4: Summary of measurements of ↵s as a function of
the energy scale Q. The respective degree of QCD perturbation
theory used in the extraction of ↵s is indicated in brackets (NLO:
next-to-leading order; NNLO: next-to-next-to leading order; res.
NNLO: NNLO matched with resummed next-to-leading logs;
N3LO: next-to-NNLO).
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Figure 2.3: Summary of measurement of strong coupling constant ↵s as a function of
momentum transfer[21].

cannot be performed. The facorization is possible because hard and soft parts of the

process happen at di↵erent time scales. The cross section calculation for a process with
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Figure 3.1: Sketch of the factorization between the non-perturbative dynamics within
the proton and the perturbative hard scattering. Partons i and j are extracted from
the incoming protons, and the hard scattering process is ij ! abcd

partons, and two non-perturbative parton distribution functions (PDFs) describing

the dynamics of the incoming protons. This convolution can be written as:

1X

n=1

↵n
s (µ2

R)
X

i,j

Z
dx1dx2fi/p

�
x1, µ

2
F

�
fj/p

�
x2, µ

2
F

�
�(n)

ij!X

�
x1x2s, µ

2
R, µ2

F

�
(3.1)

Equation 3.1 is a perturbation series in ↵s, and the coe�cients �(n)
ij!X represent

the parton-level cross-sections calculated at order n (n = 1 being the LO, n = 2

the NLO, and so on). The i and j represent the initial state partons, and they are

summed over by the
P
i,j

term.

The functions of type fi/p(x) are parton distribution functions (PDFs), describing

the density within the proton p of partons of type i carrying a fraction x of the proton

momentum. The PDFs cannot be calculated in perturbative QCD, but they can be

extracted from other measurements or experiments2. The integral over dx1 and dx2

2One important class of events used for the study of PDFs is deep inelastic scattering (DIS),
in which an electron and a proton interact (ep ! e + X), and the virtual photon mediating the
interaction accesses directly the structure of the proton.

14

Figure 2.4: Drawing of a proton-proton collision.

two protons in the initial state and some interesting final state which we call X requires

the following steps (as described in [22]):

1. Identify the leading order (LO) partonic processes that contribute to X

2. Calculate the corresponding hard scattering cross section

3. Determine the appropriate PDFs for initial state partons

4. Make a specific choices for factorization(µF ) and renormalization(µR) scales
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5. Perform integration over the fraction of momentum available for a given parton(x)

The cross section at hadron collides is thus a convolution of the hard scattering perturb-

ative cross section and two incoming parton distribution functions.

�AB =
1X

n=1

↵n
s (µ2

R)
X

i,j

Z
dx1dx2fi/A(x1, µ

2
F )fj/B(x2, µ

2
F )�(n)

ij!X(x1x2s, µ
2
R, µ2

F ) (2.2)

Equation 2.2 shows cross section perturbation series in ↵s, n denotes the order of the

series where n = 1 is LO, n = 2 is NLO, etc. Hard process cross section between two

partons �(n)
ij!X is computed in the framework of perturbative QCD and depends on s which

is the squared center of mass energy. Two functions denoted with fi/A and fj/B correspond

to the probability density that parton i(j) with proton momentum fraction x1(x2) will

be found inside a proton. and are called parton distribution functions (PDFs). These

functions cannot be computed using perturbative QCD because momentum transfer values

are small and the coupling constant becomes large. This phenomenon is called confinement

and it requires di↵erent treatment for the quarks inside the proton. The internal structure

of a proton is described using parton distribution functions(PDF) which are determined

through deep inelastic scattering experiments. The sum over all combinations of partons

has to be computed. The integral over available phase space for proton fraction momentum

dx is usually carried out numerically. Here µF represents the factorization scale and µR

is the renormalization scale for running coupling constant. They are arbitrary cut-o↵s

used to remove nonperturbative e↵ects and be able to make perturbative calculations. If

the cross section is computed in full series, µF and µR should cancel out, and the scale

dependence should disappear. However, since fewer orders are used and some residual scale

dependence is still present, this dependency can be used to estimate the contribution of

the missing orders in the series.

The factorization scale controls soft and collinear emissions that can spoil the per-

turbative calculation. These emissions are then absorbed into the PDF for transverse

momenta below µF . Using DGLAP equations, PDFs can be evolved to any momentum
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transfer value which is described in detail in [22], and make the factorization cut-o↵ pos-

sible. PDF evolutions are shown figure 2.5 for one specific PDF function (MSTW) at

momentum transfer values of Q2 = 10 GeV2 and Q2 = 104 GeV2 which corresponds to

the typical momentum transfers for W boson production. At high momentum transfer

values, sea quarks and gluons carry a much larger portion of the proton momentum and b

quark distributions become relevant. The renormalization scale is another cut-o↵ used to

Chapter 3: W+b-jets: Theory and Previous Measurements

undergoes large changes between the two scales. At the smaller scale its momentum is

mostly carried by the valence quarks (u and d), while at the large scale the sea quarks

and the gluons play a much larger role. At the large scales, the b and b̄ distributions

also become relevant.
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Figure 3.2: Parton distribution functions at two di↵erent scales, Q2 = 10 GeV and
Q2 = 104 GeV, as calculated by the MSTW group [57].

The renormalization scale, µR, is also used as a cut-o↵. The renormalization

scale is necessary to control the divergences coming from high-momentum loops in

the parton-level cross-section �ij!X . Instead of integrating over these loops up to

infinitely high momentum, the loops are absorbed in a redefined (or renormalized)

coupling strength, ↵s, as long as they have momenta larger than µR. The �ij!X is then

calculated only for loops with momenta larger than µR. The resulting dependency
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Figure 2.5: Parton distribution functions calculated by the MSTW group for Q2 = 10
GeV2 (left) and Q2 = 104 GeV2 (right) [23]

control divergences from the integration of high momentum loops in parton cross sections.

If the momenta are larger than µR, the divergences are absorbed in a redefined coupling

constant ↵s and the cross section calculation becomes finite. This approach is common in

renormalizable field theories. However, such result depends on the renormalization scale

and the resulting dependency can be calculated using renormalization group equation

(RGE) [24].

Usually the factorization and renormalization scales are chosen to be identical and

close to the scale of the process in question (µF = µR = µ0 ⇡ Q). The choice of the scale
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in the case of W boson production is usually around the mass of the W boson. Taking

into account specific kinematical properties of each event, a dynamic scale can be defined,

for example µ2
0 = m2

w + p2
T,W . In case of W boson and b jets production, adding the b

quark mass or transverse momentum to the scale is also a viable option.

Hard Interactions of Quarks and Gluons: a Primer for LHC Physics 7
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Figure 2. Standard Model cross sections at the Tevatron and LHC colliders.

deep inelastic and other hard-scattering data. This will be discussed in more detail in

Section 4. Note that for consistency, the order of the expansion of the splitting functions
should be the same as that of the subprocess cross section, see (3). Thus, for example,

a full NLO calculation will include both the �̂1 term in (3) and the P (1)
ab terms in the

determination of the pdfs via (4) and (5).

Figure 2 shows the predictions for some important Standard Model cross sections

at pp̄ and pp colliders, calculated using the above formalism (at next-to-leading order

in perturbation theory, i.e. including also the �̂1 term in (3)).
We have already mentioned that the Drell–Yan process is the paradigm hadron–

collider hard scattering process, and so we will discuss this in some detail in what

Figure 2.6: SM cross sections as a function of center of mass energy.[22]

Figure 2.6 shows some interesting SM cross sections in proton-proton and proton-

antiproton collisions as a function of a the center of mass energy. All cross sections have

been computed to the NLO order in QCD using the above described procedure.
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2.2.2 Theoretical contributions to Wbb cross section

From the theoretical point of view, calculations of W+b jets processes can be divided into

two categories:

• only light quarks in the initial state as shown in figure 2.7 - four flavour scheme

(4FS)

• b quark in the initial state as shown in Figure 2.8 - five flavor scheme (5FS)

An additional contribution to Wbb production at hadron colliders comes from double

parton interactions where a W boson and a pair of b quarks is produced in di↵erent

hard process inside the same collision as shown in Figure 2.11. This contribution will be

discussed in Section 2.2.2.1.

The rationale behind using 4FS or 5FS is discussed in detail in [25]. The four flavor

scheme approach assumes that bottom quarks are heavy and can only be created as pairs

in collisions with high momentum transfer or as a decay product of t quark. Heavy

quarks are not included in the initial state and their parton distribution function is set

to zero, which means an e↵ective theory is created where heavy quarks do not enter

the computation of running coupling and the evolution of PDFs. If it happens that the

scale of the process is much higher than the mass of the b quark, for example in the

production of massive bosons, large logarithms of the type log(Q2/m2
b) appear and can

spoil the convergence of a fixed order perturbative expansion and introduce a large scale

dependence into the final result. In the five flavor scheme calculations include b quark in

the initial state allowing for some new and simpler processes to become available. These

calculations allow resummation of possibly large logarithms of type log(Q2/m2
b) into the b

quark parton distributions function possibly transforming some higher order calculations

into much simpler LO calculations. The result in [25] shows that at the LHC 4-flavor

calculations are well behaved and two schemes are in good agreement. The typical size of

the possibly problematic logarithms in four flavor scheme at hadron colliders is not large
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enough to spoil convergence. On the other hand, five flavor scheme is less dependent on

the scale of the process and show smaller uncertainties which is in general very good for

predictions of inclusive observables like the total cross section.

First LO calculations for associated production of a W boson and heavy quarks at

hadron colliders were presented in 1993 [15]. Feynmann diagram for LO W + 2 b jets

production is shown in figure 2.7. Exact LO matrix element has been computed and higher

order corrections were estimated using Monte Carlo. Their results are summarized in the

Figure 2.9 where the di↵erential cross section for W+2 b jets as a function of the leading

b jet pT is shown. Two scale choices have been studied, the first one with µ0 = Mbb,

which is the invariant mass of the dijet system and is represented with a solid line. The

second choice is µ0 = mW + pW
T and is represented with the dotted line. Looking at the

normalizations of two diagrams, the di↵erence is clearly visible which indicates a strong

dependence of the total cross section scale. However, the shape of the di↵erential cross

section shows the same behavior in both cases, which means that the scale only a↵ects

the total cross section.

Chapter 3: W+b-jets: Theory and Previous Measurements

Figure 3.3: Leading order production of W + bb.

collinear and soft final states lead to a divergent cross-section. They can be taken into

account using non-perturbative techniques (parton showering), or they can be avoided

completely by imposing angular and momentum cuts. But they cannot be included in

the perturbative calculation. On the other hand, in W +bb̄ events these configurations

don’t lead to diverging amplitudes, because the scale of the process does not reach

below 2mb. These configuration can therefore be calculated perturbatively, leading

to logarithms of the form (↵s ln (µ/mb)). These logarithms result in a large scale (µ)

dependence of the result.

The result of the LO calculation for a center of mass energy of 1.8 TeV is sum-

marized in Figure 3.4, which shows the di↵erential cross section as a function of the

b-jet pT. Due to the inclusion of the non-zero b-quark mass, the pT reaches all the

way down to 0 GeV. The dashed line will not be discussed, since they correspond to

tt̄ cross-section predictions for di↵erent hypotheses for the top quark mass. The plain

and dotted lines represent the pT distribution of b-jets from pp̄ ! Wbb̄ events. The

plain line is calculated using the scale µ2
0 = m2

bb̄
, where mbb̄ is the invariant mass of

18

Figure 2.7: LO Wbb Feynmann diagram. The pair of b quarks is created from a gluon
through a process called gluon splitting.

Later development of theoretical calculations was strongly motivated by reducing

the scale dependence of the result and it included adding additional partons to the final

state. This was a first step towards the full NLO calculation. The only thing missing

18
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Chapter 3: W+b-jets: Theory and Previous Measurements

3.4.1 Adding the b-quark PDF

The qg ! Wbb̄q̄0 process (Figure 3.5) is particularly important in pp collisions at

the LHC, and it involves a gluon splitting (g ! bb̄) either in the initial or in the final

state. The configuration in which the gluon splitting takes place in the initial state,

and with one of the b-quark either collinear or very soft, can be written as bq ! Wbq̄0

(Figure 3.6).

Figure 3.6: Diagram for bq ! Wbq̄0, where the b-quark is extracted directly from the
proton through a b-quark PDF. This diagram corresponds to the one in Figure 3.5
for the case in which one of the b-quarks is soft. This compact representation makes
it possible for the bq ! Wbq̄0 process to be calculated at NLO.

In this configuration, the initial-state b-quark is not generated through an ex-

plicit gluon splitting, but it is extracted directly from the proton through a PDF. To

describe this configuration, a technique called “5-flavor-number-scheme” (5FNS) is

used, in which 5 quark flavors are considered in the proton (u, d, c, s, b), as opposed

to the standard “4-flavor-number-scheme” in which only u, d, c, s are considered. The

advantages to this approach are two: first, the large logarithms coming from the

initial state gluon splitting are avoided, and the DGLAP evolution equations are in-

25

Figure 2.8: Wbb production within 5 flavor scheme

Chapter 3: W+b-jets: Theory and Previous Measurements

the bb̄ pair. The dotted line is calculated using the scale µ2
0 = m2

W + p2
T,W . Looking

at their normalization, it is clear that the total production cross-section has a large

scale dependence. However, at least at LO, the scale dependence appears to only

a↵ect the total cross section, and not the shape of the b-jet pT distribution. The total

cross-sections are in the range 22–48 pb, depending on the scale choice.

Figure 3.4: Leading-order pp̄ ! Wbb̄ production at the Tevatron. Inclusive pT

distribution of central b and b̄ quark, with two choices of scale [63]. The dashed lines
represent spectra obtained from tt̄ production with di↵erent top-quark masses.
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Figure 2.9: Scale dependence of Wbb cross section [15].

was to take into account the loop e↵ects. This approach made it possible to access some

previously inaccessible kinematics, however at the expense of introducing additional scale

dependence. The list of new final states is simple and it includes Wbb̄q, Wbb̄qq̄, Wbb̄q̄q0q̄0...

For the measurements at the LHC in particular, calculations for new initial states qg and

gg were of great importance. First results for W+2 jets were published in [26]. Additional

calculations were shown in [27] for up to six additional jets in the final state. Although

these processes are suppressed by an additional ↵s factor, the gluon PDF inside a proton
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is much larger than anti-quark. This production mechanism is therefore significant at the

LHC energies.

First full NLO calculations were published in 2006 [28]. Events with b jet pair

in the final state were selected, with momentum of the dijet system pT >15 GeV and a

pseudorapidity less than 2. Results were shown for two categories, inclusive and exclusive,

depending on the treatment of extra jets. In the inclusive case events with additional jets

were included, while in the exclusive case exactly two jets were required. Figure 2.10 shows

the overall scale dependence of LO, NLO inclusive and NLO exclusive total cross-sections,

when both renormalization scale and factorization scale are varied independently between

µ0/2 and 4µ0 (with µ0 = mb + MW /2), including full bottom-quark mass e↵ects. NLO

cross sections have a reduced scale dependence over most of the range of scales shown,

and the exclusive NLO cross-section is more stable than the inclusive one especially at

low scales. The e↵ect of the b quark mass has been shown to a↵ect the total NLO cross

section on the order of approximately 8%. This is expected to be small when considering

well separated jets.

checked that our implementation of the kT jet algorithm coincides with the one in MCFM.

We require all events to have a bb̄ jet pair in the final state, with a transverse momentum

larger than 15 GeV (pb,b̄
T > 15 GeV) and a pseudorapidity that satisfies |⌘b,b̄| < 2. We impose

the same pT and |⌘| cuts also on the extra jet that may arise due to hard non-collinear real

emission of a parton, i.e. in the processes Wbb̄ + g or Wbb̄ + q(q̄). This hard non-collinear

extra parton is treated either inclusively or exclusively, following the definition of inclusive

and exclusive as implemented in the MCFM code [25]. In the inclusive case we include

both two- and three-jet events, while in the exclusive case we require exactly two jets in the

event. Two-jet events consist of a bottom-quark jet pair that may also include a final-state

light parton (gluon or quark) due to the applied recombination procedure. Results in the

massless bottom-quark approximation have been obtained using the MCFM code [25].
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σ
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ta
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cuts: pt > 15 GeV
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         R = 0.7 µ0 = Mw/2 + mb

FIG. 4: Dependence of the LO (black solid band), NLO inclusive (blue dashed band), and NLO

exclusive (red dotted band) total cross-sections on the renormalization/factorization scales, includ-

ing full bottom-quark mass e↵ects. The bands are obtained by varying both µR and µF between

µ0/2 and 4µ0 (with µ0 = mb + MW /2).

In Figs. 4-6 we illustrate the renormalization and factorization scale dependence of the

LO and NLO total cross-sections, both in the inclusive and exclusive case. Fig. 4 shows

the overall scale dependence of both LO, NLO inclusive and NLO exclusive total cross-

7

Figure 2.10: Wbb NLO scale dependence[28]
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New results published in 2007 explored in particular NLO corrections for events with

W boson and two jets where at least one is b-tagged. It was shown that for LHC the

correction factor is ⇡ 1.9. This paper was interesting in particular for its study of soft

and collinear topologies, where two b quarks merge into one. Additionally, b quarks in

the initial state were considered, giving rise to processes like bq ! Wbq0 shown in figure

2.8. The parton distribution function for b quark needed to be determined perturbatively

using DGLAP equations. Another approach is to consider a gluon in the initial state,

which then splits to bb̄.

2.2.2.1 Double parton scattering

Multiple parton interactions happen due to the composite nature of the proton. Usually

it is assumed that only one hard scattering occurs per bunch crossing. The probability

of single parton interaction in hadron collisions is very small thus having two or more

interactions is highly suppressed. However, sometimes it can happen that two such partons

exist which results in two hard scatterings in the same collision. This phenomenon is called

Double Parton Scattering (DPS) and is shown in Figure 2.11. In the framework of this

thesis, two partons are responsible for the creation of a W boson and other two for creation

of a pair of b jets.

Chapter 3: W+b-jets: Theory and Previous Measurements

Figure 3.7: Sketch of a double-parton process in which the active partons are i and
k from one proton and j and l from the second proton. The two hard scattering
subprocesses are (ij ! ab) and (kl ! cd)

general expression, adapted to the W+b-jets case, is:

�DPS(pp ! W + b + X) =
X

i,j,k,l

Z
dx1dx2dx0

1dx0
2db2 �ik(x1, x2, b, µF )�jl(x

0
1, x

0
2, b, µF )

⇥ �ij!W (x1x
0
2s, µ

2
F )�kl!b+X(x2x

0
2s, µ

2
F )

(3.3)

In this equation, the two parton-level cross-sections represent the independent

processes ij ! W and kl ! b + X. They are each calculated using pQCD, as per-

turbation series in ↵s, in the same way as they would be calculated for a single hard

scattering. The �ik(x1, x2, b, µF ) functions represent the double parton distribution

functions (DPDFs), describing the probability to extract partons i and k, with re-

spective momentum fractions x1 and x2, from the same proton. The parameter b, new

with respect to the standard PDFs, represents the separation between i and j, as well

as between k and l, in the transverse plane perpendicular to the proton momentum.

29

Figure 2.11: Double parton scattering
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Double parton scattering cannot be modeled in the framework of preturbative QCD,

but it is approximated using simulations. The phenomenology of DPS starts from the

assumption that factorization between the two hard processes is possible, as well as fac-

torization between hard processes and proton kinematics. Cross sections for hard scatter-

ings are computed separately for each pair of partons. However, instead of using regular

parton distribution functions, a new set of distribution functions has been defined which

are called Double Parton Distribution Functions (dPDFs). Factorized cross section for

two hard processes A and B to happen in proton-proton scattering can be written as:

�DPS
(A,B) ⇠

X

i,j,k,l

Z
dx1dx2dx0

1dx0
2d

2b�ij(x1, x2, b; Q1, Q2)�
A
ik(x1, x

0
1)

�B
jl(x2, x

0
2)�kl(x

0
1, x

0
2, b; Q1, Q2)

(2.3)

Parton level cross sections are denoted with �ik, for hard process between partons i

and k, and �jl for hard process between partons j and l. These are the same as for single

parton scattering and are known for most of the processes of interest today. The quantity

�ij(x1, x2, b; t1, t2) represents the double parton distribution function, which describes the

probability of finding a parton i with momentum fraction x1 at scale Q1 inside a proton

together with a parton j with momentum fraction x2 at scale Q2. Another parameter

in this distribution function is b, which describes the transverse distance between two

partons. The scales Q1 and Q2 and correspond to characteristic scales of hard processes

A and B. For example in the framework of this thesis the W boson production would

correspond to process A and production of two b jets would correspond to process B.

This study is described in detail in [29]. Usually, it is assumed that �ij(x1, x2, b; t1, t2) can

be decomposed into two components, longitudinal and transversal in the following way:

�ij(x1, x2, b; t1, t2) = Dij
h (x1, x2; t1, t2)F

i
j (b) (2.4)

The interpretation of the function Dij
h (x1, x2; t1, t2) within QCD is the probability of find-

ing parton i with scale Q1 and parton j with scale Q2. These functions cannot be determ-

ined using perturbative QCD. To make an accurate cross section predictions it is essential
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to have good modelling and to correctly take into account the correlations between lon-

gitudinal momenta and transverse position.

More details on how to determine dPDFs can be found in [30]. In the simplest case

Dij
h (x1, x2; t1, t2) can be taken as a product of single parton distribution functions taking

into account e↵ects like x1 + x2 < 1. Since F i
j (b) is the only part of �DPS

(A,B) that depends

only on b, integration over b can be performed giving an e↵ective cross section �eff which

is related to the size of the proton and can be seen as an e↵ective area of the interaction.

This approach yields a simplified expression for the double parton scattering cross section:

�DPS
(A,B) ⇠ 1

�eff

�SPS
(A) �

SPS
(B) (2.5)

Here �SPS
(A) and �SPS

(B) are single parton scattering cross section which can be obtained using

equation 2.2.

However, this factorized approach does not take into account some simple correla-

tions, e.g. between the probability to find a quark of some flavor and to find find another

quark with the same flavor. While for some simple cases with low parton momentum

fractions this factorized approach may give accurate results, for more complicated cases

like calculating fiducial cross sections, acceptance cuts can spoil the equation. Thus, a

simulation of the full kinematical e↵ects is necessary.

A first measurement of �eff has been performed by the AFS collaboration at the

ISR (CERN) which obtained �eff ⇠ 5 mb at 63GeV. Both CDF and D0 collaborations at

Tevatron, Fermilab (IL, USA) reported �eff ⇠ 15 mb which is roughly 20% of the total

pp̄ cross section at Tevatron energies. Their data also show no sign of dependence on x

in measured �eff in the accessible x ranges. Later measurements performed by ATLAS

ans CMS collaborations are in reasonable agreement with previous results. All results are

summarized in Figure 2.12.

Double parton scattering measurement at CMS is performed by selecting events with
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4

by the speakers on behalf of their collaboration.
In general these new experimental results, that show a

progress in the comprehension of the relevant systematic
uncertainties in particular for what concerns the back-
ground modeling, confirm the overall picture of signifi-
cant DPS rates at the LHC and lay the groundwork for
further DPS studies at the LHC, also in the light of un-
derstanding unexpected backgrounds in the search for
new physics.

In the future, the proposal of much higher center of
mass energies (HE-LHC) opens up the possibility to
study extreme kinematic regions of QCD that are still
not explored. The dynamics of the high energy limit of
QCD is driven by the increasingly higher gluon densities
at low parton fractional momenta, which should be dom-
inated by multiple parton interactions. With the future
high luminosity phase (HL-LHC) it will be possible to
achieve very clear evidence of DPS production focusing
on the final states with two heavy bosons, in particular on
the production of equal sign W boson pairs decaying lep-
tonically, leading to final states with same-sign isolated
leptons plus missing energy.

B. DPS in W + 2-jet final states with CMS at the
LHC

We present a study of DPS based on W + 2-jet events
in pp collisions at 7 TeV using CMS detector [32]. DPS
with a W + 2-jet final state occurs when one hard in-
teraction produces a W boson and another produces a
dijet in the same pp collision. The W + 2-jet process is
attractive because the muonic decay of the W provides
a clean tag and the large dijet production cross section
increases the probability of observing DPS. Events con-
taining a W + 2-jet final state originating from single
parton scattering (SPS) constitute an irreducible back-
ground. Events with W bosons are selected requiring the
muon and missing transverse energy information. We
also select two additional jets with pT > 20 GeV/c and
|⌘| < 2.0.

We use two uncorrelated observables; the relative pT -
balance between two jets (�relpT ) and azimuthal angle
between the W-boson and dijet system (�S). The dis-
tributions of the DPS-sensitive observables for the se-
lected events are corrected for selection e�ciencies and
detector e↵ects, and compared with distributions from
simulated events. Simulations of W + jets events with
madgraph 5 + pythia 8(or pythia 6) and NLO pre-
dictions of powheg 2 + pythia 6(or herwig 6) describe
the data provided MPI are included, as shown in the top
panel of Fig. 1. pythia 8 standalone fails to describe
data mainly in the DPS-sensitive region due to missing
higher order contributions.

To extract the DPS fraction, signal and background
templates are defined in such a way that signal and back-
ground events cover the full phase space. The fraction of
DPS in W + 2-jet events is extracted with a DPS + SPS

template fit to the distribution of the �S and �relpT ob-
servables. The obtained value of the DPS fraction is 0.055
± 0.002(stat.) ± 0.014(syst.) and the e↵ective cross sec-
tion is calculated to be 20.7 ± 0.8(stat.) ± 6.6(syst.)
mb, which is consistent with the Tevatron and ATLAS
results, as shown in Fig. 1, and model predictions.
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FIG. 1. Top: fully corrected data distributions, normal-
ized to unity, for the DPS-sensitive observable. The second
panel in this plot shows the ratio of data over madgraph 5 +
pythia 8 with and without MPI, whereas in the third panel
the ratio with powheg 2 + pythia 6 is shown. The ratio
of the data and pythia 8 is shown in the fourth panel. The
band represents the total uncertainty of the data.
Bottom: centre-of-mass energy dependence of �e� measured
by di�erent experiments using di�erent processes [25, 26, 28–
30, 32]. These measurements used di�erent approaches for
extraction of the DPS fraction and �e� . The corrected CDF
data point indicates the �e� value corrected for the exclusive
event selection [33].

Figure 2.12: Center of mass energy dependence of �eff as reported from di↵erent
collaborations. All these measurements use di↵erent approaches to estimate �eff . [31]

a W + 2-jet final state where one hard interaction produces a W boson and another pro-

duces a dijet [32]. The W + 2-jet process is attractive because the muonic decay of the

W provides a clean tag and the large dijet production cross section increases the probab-

ility of observing DPS. Events containing a W + 2-jet final state originating from single

parton scattering (SPS) constitute an irreducible background. Results were obtained by

performing a template fit to two uncorrelated variables: the relative pT balance between

two jets (�pT ) and the angle between W boson and a dijet system. Obtained results

again show that the contribution of DPS to the total cross section is ⇠ 20% which is in

good agreement with previous Tevatron results. The DPS contribution in the case od W

+ 2 b jets is estimated to be ⇠ 15%. [33]
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2.3 The previous measurements

Previous measurements of a W boson produced in association with b quarks have been

performed on di↵erent experiments. However, the final states and phase space used in

these measurements were di↵erent, which means that the results cannot be directly com-

pared. They can nevertheless be compared with theoretical predictions. This process was

measured for the first time at Tevatron with D0 and CDF experiments at
p

s = 1.96 TeV.

The CDF collaboration published its result in 2009 and the cross-section measured is that

of jets from b-quarks produced with a W boson [34]. The event selection is based on re-

constructing a leptonically decaying W boson, and one or two jets where at least one has

to be b-tagged. Events with jets from light quarks are vetoed with a cut on the secondary

vertex mass. Contribution of other background events containing a b quark in the final

state (e.g. events with top quark) is estimated using Monte Carlo simulations. The meas-

ured cross section is 2.8 standard deviations higher than the corresponding theoretical

prediction.

The D0 collaboration published their result in 2012. with a somewhat di↵erent phase

space definition [35]. The di↵erence with respect to the CDF measurement consists in the

inclusion of events with 3 jets and reduced pseudorapidity range in which the measurement

was performed. The measurement technique is similar to that of CDF, although b-tagging

algorithms were slightly di↵erent. The measured cross section was in good agreement with

the SM prediction.

First measurements at the LHC were published by the ATLAS collaboration based

on 36 pb�1 of integrated luminosity at
p

s = 7 TeV. One year later they improved their

measurement using 4.6fb�1 [36]. Selected events contain one reconstructed electron or

muon, significant amount of missing transverse energy and one or two jets where exactly

one is b-tagged. The phase space is divided in two regions, depending on the number of

jets. Events with exactly 2 b jets and events with more than 2 jets are vetoed in order

to suppress background events from top quark decay. The results are shown in Figure

2.13. The cross section measurement in the one jet region shows an excess corresponding
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to 1.5 standard deviations. In the two jet region, the measured cross section is in good

agreement with theoretical predictions. A di↵erential cross section measurement as a

function of leading b jet transverse momentum has been performed for the first time. The

results are shown in figure 2.14. The cross section measurement in the one jet region is

again higher than NLO predictions but within theoretical and experimental uncertainties.

The cross section measured for the events with two jets is in good agreement with the

theoretical prediction.
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Figure 2.13: Measured fiducial cross-sections in the electron, muon, and combined
electron and muon channels. The cross-sections are given in the 1-jet, 2-jet, and 1+2-

jet fiducial regions. [36]

The CMS collaboration published so far a result analysing the data collected during

2011 at 7 TeV corresponding to 5 fb�1 of data. Selected events contained a muon and

missing transverse energy in the final state, together with two b-tagged jets. All additional

lepton and jet activity was vetoed to reduce the background contributions. Figure 2.15

shows the leading jet transverse momentum distribution used for signal extraction. The

measured cross section is in excellent agreement with the SM prediction. [33]
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Figure 2.14: Measured di↵erential W+b-jets cross-sections as a function of leading
b-jet pT in the 1-jet (2.14a) and 2-jet (2.14b) fiducial regions, obtained by combining

the muon and electron channel results. [36]
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Figure 1: The distribution of the invariant mass mJ3J4 of the two additional light jets in the
tt background data sample (left). The pT distribution of the highest-pT jet, pT,J1 , in the signal
region (right). Signal and background yields are taken from the maximum-likelihood fit to
CMS data described in the text. The uncertainty band corresponds to the total uncertainty on
the fitted yields. The last bin in both figures includes overflow events. The lower panels show
the ratio of observed data events to the total fitted yield.

Figure 2.15: Leading jet transverse momentum distribution used for signal extraction
in W+bb total cross section measurement with the CMS experiment. [33]
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The Large hadron collider

CERN is the largest particle physics laboratory in the world, located near the city of

Genava, on the French-Swiss border. It was founded in 1953 by 12 countries and today

it has 21 member states. Its main function is to provide particle accelerators and infra-

structure for high energy physics experiments. Major physics results at CERN include

the discovery of neutral currents, discovery of W and Z bosons, creation of antihydrogen

atom and direct observation of CP violation among others.

Current accelerator complex is a chain of smaller accelerators with increasingly higher

energies of which the largest one is Large Hadron Collider (LHC) (Figure 3.1). The

LHC is a proton-proton collider which is also able to deliver lead-lead and proton-lead

collisions. Protons are obtained by taking hydrogen atoms and stripping them of the

orbiting electrons, and are accelerated by a small linear accelerator Linac2 to 50 MeV

and injected to PS Booster. After reaching 1.4 GeV, protons are injected to Proton

Synchrotron and accelerated to 25 GeV. The next accelerators in the are the Super Proton

Synchrotron (SPS) with energy of 450 GeV, and the LHC with designed beam energy of

7 TeV.

In this chapter, we will briefly go through the motivation for the LHC design, building

blocks of the accelerator together with its performance during the past few years.
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Figure 3.1: Schematics of Large Hadron Collider

3.1 Physics goals for the LHC

The SM of elementary particles describes nicely all known particles and interactions,

however there are still some unanswered questions. One of the major open questions was

the existence of Higgs boson which was recently answered with the discovery of a new

boson at 125 GeV. In order to be able to claim such a discovery, all known SM processes

have to be well measured and the behavior of the experimental device has to be well

understood. These requirements lead to many precision measurements which determined

precisely cross sections, couplings, masses and other parameters within the SM. Any

deviation from predicted values can be an evidence for the existence of physics beyond

SM. One of the questions that remain open is the unification of fundamental forces. One
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attempt to achieve this goal is the theory of supersymmetry which predicts that each

particle has its heavier supersymmetric partner and at high energies could unify strong

and electroweak forces. If the theory of supersymmetry is correct, lightest supersymmetic

particles would be stable and could be detected at the LHC. Such particle would also

be a great candidate for the dark matter considering it would interact only weakly and

as such would fit nicely into the present dark matter theories. Another open problem is

to quantify the matter-antimatter asymmetry. That would explain why the universe as

we know is made of matter only. Other theories that involve extra dimensions, bound

states of quarks and leptons and other exotic models can be tested as well. The LHC

comprehends also a very vast heavy ion program: lead-lead and lead-proton collisions are

produced during which a state called gluon plasma is searched, which would resemble the

state of the early universe.

During the past few years, various models for new physics have been extensively

tested, and having found so far no significant deviation from SM only processes, new

exclusion limits have been set. After three years of data taking at 7 and 8 TeV, and a

shutdown period of two years to upgrade the LHC and the detectors to an increase of

energy, LHC is now almost ready to deliver collisions at record energies of 13 TeV which

could hopefully show signs of new physics.

3.2 Design of the LHC

The LHC is located inside a 27 km tunnel, which lies between 45 m and 170 m below the

ground surface and previously housed the LEP accelerator. Beams circulating inside the

LHC, collide at four interaction points. At each of these points, a detector has been built

to record the products of particle collisions. This thesis was done using data collected

with the CMS (Compact Muon Solenoid) detector [37]. Another detector with the same

purpose but di↵erent design is the ATLAS (A Toroidal LHC Apparatus) detector located

at the opposite side of the LHC ring [38]. These two are so called multiple purpose
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particle detectors, which cover a wide range of physics topics, from searches for Higgs

boson and supersymmetry to SM precision measurements. ALICE (A Large Ion Collider

Experiment) is designed to study quark-gluon plasma by measuring mainly lead-lead

collisions and in addition lead-proton and proton-proton collisions [39]. LHCb (LHC

Beauty) is optimized for the detection of B-hadrons and hence study of B physics. [40].

Two other experiments TOTEM and LHCf are placed away from the interaction point to

measure the collision products along the beam direction.

The LHC is made out of nearly 9600 di↵erent magnets, including dipoles, quadru-

poles, sextupoles, octupoles, etc. The largest portion of the accelerator is made out of

1232 dipole magnets which which use superconductive niobium-titanium (NbTi) cables

that undergo a phase transition to a supercondutive state at 9.2K. In order to achieve su-

perconductivity and withstand very high currents (11850 A), the cables have to be cooled

with superfluid helium to less than 2K. They create large magnetic fields, which can reach

8.2T which bend the proton beams around the ring. Other higher order magnets are used

to focus and correct the beam.

Two proton beams are counter-circulating inside a single cryogenic structure which

requires opposite magnetic field direction for each of the beams in order to be steared

along the same circumference. One of the LHC dipole magnets is shown schematically in

Figure 3.2 together with the drawing of the magnetic field inside the dipole.

Beams in the LHC are injected in series of bunches separated by a vacuum gaps, with

each bunch having more than 1011 protons. Bunches are arranged in trains of 72 bunches

with 25 ns spacing between them and 12 empty bunches between trains. Acceleration is

provided by the radio frequency superconducting cavities (RF). It takes approximately 20

minutes for the beams to be accelerated from the injection at 450 GeV to the full beam

energy. Moreover, RF chambers provide a small corrections of the order of ⇠ 7 keV per

turn to the beam due to the energy loss from synchrotron radiation. After the acceleration,

beams are tuned at the interaction points to achieve intersection. Peak collision rate of 40

MHz is achieved when collisions happen at every bunch crossing. Beams are squeezed to
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Figure 3.3: Cross-section of cryodipole (lengths in mm).

an important operation for the geometry and the alignment of the magnet, which is critical for the
performance of the magnets in view of the large beam energy and small bore of the beam pipe.
The core of the cryodipole is the “dipole cold mass”, which contains all the components cooled
by superfluid helium. Referring to figure 3.3, the dipole cold mass is the part inside the shrinking
cylinder/He II vessel. The dipole cold mass provides two apertures for the cold bore tubes (i.e. the
tubes where the proton beams will circulate) and is operated at 1.9 K in superfluid helium. It has an
overall length of about 16.5 m (ancillaries included), a diameter of 570 mm (at room temperature),
and a mass of about 27.5 t. The cold mass is curved in the horizontal plane with an apical angle of
5.1 mrad, corresponding to a radius of curvature of about 2’812 m at 293 K, so as to closely match
the trajectory of the particles. The main parameters of the dipole magnets are given in table 3.4.

The successful operation of LHC requires that the main dipole magnets have practically iden-
tical characteristics. The relative variations of the integrated field and the field shape imperfections
must not exceed ⇠10�4, and their reproducibility must be better than 10�4after magnet testing and
during magnet operation. The reproducibility of the integrated field strength requires close control
of coil diameter and length, of the stacking factor of the laminated magnetic yokes, and possibly
fine-tuning of the length ratio between the magnetic and non-magnetic parts of the yoke. The struc-
tural stability of the cold mass assembly is achieved by using very rigid collars, and by opposing
the electromagnetic forces acting at the interfaces between the collared coils and the magnetic yoke
with the forces set up by the shrinking cylinder. A pre-stress between coils and retaining structure
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The superconducting coils 

A twin-aperture dipole consists of two single dipoles, each around a beam channel. Each dipole consists of 
an upper and a lower pole that are identical. Each pole consists of a coil wound in two layers, called inner 
layer and outer layer, wound with two cable types. Fig. 7.5 shows the flux plot as computed for the whole 
structure of the main dipole. 

 
Figure 7.5:  Dipole magnetic flux plot 

The distribution of the cables in the two coil layers is shown in Fig. 7.1. The six sets of adjacent coil turns 
within the limits of the various copper wedges are defined as cable (or conductor) blocks. The precise 
azimuthal and radial position of the cables/blocks is of the utmost importance to achieve the nominal 
magnetic field and its homogeneity in the beam channels. The inner radius of the inner coil layer is 28 mm 
while the outer layer has an inner radius of 43.9 mm. 

In addition to the insulated superconducting cable the following components are necessary in order to 
produce a coil (see Fig. 7.6): 
• Copper wedges made from OF copper according to standard ASTM C102, DIN 1787. These wedge-

shaped copper spacers are inserted between blocks of conductors in order to produce the desired field 
quality.  In addition they approximate a quasi-circular coil geometry, thus compensating for the 
insufficient keystoning of the cables (see Figs. 7.1 left and 7.6 right). Before use they are insulated 
following the same procedure adopted for the superconducting cable. 

• End spacers and end chips. These special saddle-shaped insulating fillers are designed to constrain the 
conductor to a consistent and mechanically stable shape. 

 
For the end spacers satisfactory shapes were determined using a “constant perimeter” approach combined 

with empirical methods and refined during prototyping [35]. Several manufacturing techniques and materials 
are used for these elements. Large and thick pieces (end spacers) are produced by 5-axis machining of epoxy 
impregnated fibreglass thermoset while thin pieces, having a maximum wall thickness below 10 mm (end 
chips) are produced by injection moulding of polyetherimide resin with 30% loading by volume of glass 
fibre. This combination of techniques and materials has been instrumental in reducing the cost and the 
production time whilst maintaining quality. 

Figure 3.2: Schematics of Dipole magnets [41, 42]

a transverse size of ⇠ 17 µm at the interaction point in order to maximize the probability

of collision.

3.3 LHC performance

Since the start of the LHC in 2009, there were three years of machine operation, which

yielded many physics results among which the discovery of a Higgs boson should be

highlighted. The first year of operation, when LHC center of mass energy was 900 GeV,

was devoted to commissioning and understanding the machine characteristics with the

emphasis on safety and tests of the machine protection systems. In 2011 new energy

of 7 TeV, breaking the record of 1.96 TeV previously set by Tevatron. This record was

superseded once again in 2012 with center of mass energy going to 8 TeV.

High bunch intensity with 50 ns bunch spacing was used in order to get a good

instantaneous luminosity performance. This came at a cost of high number of collisions

in one bunch crossing (pile-up) which was around 12 collisions during 2011, and in some

cases this number went as high as 20 interactions. With the increase of instantaneous
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luminosity in 2012, number of pile-up interactions was on the average around 30. Besides

proton-proton collisions, LHC successfully delivered lead-lead ion runs in 2010 and 2011.

primarily for the ALICE experiment, but also for CMS and ATLAS. On top of that, in

the beginning of 2013 there was a successful proton-lead run performed for the first time.

LHC design together with the 2012 operations parameters are shown in Table 3.1.

Table 3.1: LHC performance in 2012 together with design performance[41]

Parameter Design value Value in 2012
Beam energy [TeV] 7 4
Bunch spacing [ns] 25 50
Number of bunches 2808 1374
Protons per bunch 1.15⇥1011 1.6-1.7⇥1011

Peak luminosity [cm�2s�1] 1⇥1034 7.7⇥1033

Max. number of events per bunch crossing 19 ⇡ 40
Stored beam energy [MJ] 362 ⇡ 140

Luminosity (L) indicates the number of collisions per unit of time over the interaction

cross section �:

L =
1

�

dN

dt
(3.1)

Luminosity for collider experiments is connected to beam parameters:

L =
n · N2f

Aeff

(3.2)

where n is a number of bunches with N protons inside, that are colliding at the revolution

frequency f and e↵ective beam area Aeff . The amount of data collected in a certain

period of time is called total integrated luminosity and is defined as:

L =

Z
Ldt (3.3)

During the Run 1 data taking period, the LHC delivered around 24 fb�1 of data (figure

3.3) at the energy of 8 TeV with highest instantaneous luminosity of 8 · 1033 cm�2s�1.

Some of the LHC performance highlights are listed in table 3.2.
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Table 3.2: LHC performance highlights

Max. luminosity delivered in one fill 237 pb�1

Max. luminosity delivered in 7 days 1.35 fb�1

Longest time in stable beams (2012) 22.8 hours
Longest time in stable beams over 7 days 91.8 hours (55%)

Figure 3.3: Luminosity delivered to the CMS experiment

Following a two year shutdown, LHC is anticipating operations at even higher energies

of 13 TeV and later 14 TeV. The long term plan includes even higher peak luminosities,

installation of the new injector complex and later the beginning of HL-LHC era. The

timeline will, of course, be highly a↵ected by the performance and results of the next

run.
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The Compact muon solenoid

The Compact Muon Solenoid (CMS) is a general purpose detector designed to cover a

wide range of physics topics at the LHC with a layered design approach and coverage

of a large portion of the solid angle around the interaction point. The tracking system

and calorimeters are placed inside a large soleonid in order to improve the resolution of

the momentum and energy measurements. The detector outside the solenoid is aimed

primarily to detection of muons. A drawing of the CMS detector is shown in Figure 4.1.

The motivation for the CMS design with respect to its purpose in the LHC program

is a very good muon identification and good momentum resolution over wide range of

phase space and unambiguous determination of muon charge. Very good inner tracking

system allows for detection of charged particles and high e�ciency o✏ine b quark and

⌧ tagging. Other important requirements, specially for Higgs searches, is diphoton mass

resolution, and photon and electron identification and isolation at high energies. CMS

detector with its design meets all these requirements as is shown in following sections of

this chapter.
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Figure 4.1: A drawing of the CMS detector. [37]

4.1 CMS coordinate system

CMS uses a right-handed coordinate system with the origin in the nominal interaction

point. z�axis is pointing along the beam line. x�axis is pointing towards the center

of the LHC ring while y-axis points upwards. Two angles are used to describe position

inside the detector, azimuthal angle � and polar angle ✓. � angle lies in x � y plane with

a range [�⇡, ⇡] and is defined as � =arctan(y/x). The other angle ✓ is usually not used in

high-energy physics because di↵erences in ✓ are not Lorentz invariant. The variable that

is Lorentz invariant is rapidity:

y =
1

2
ln


E + pz

E � pz

�
(4.1)
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In high energy experiments in the relativistic limit where E >> m, a quantity called

pseudorapidity is a good approximation of rapidity:

⌘ = �ln


tan

✓

2

�
(4.2)

The Lorentz invariance of pseudorapidity means that a measurement of �⌘ between

particles is not dependent on specifying a reference frame, such as the rest frame of a

particle or the laboratory frame. The term ”forward” direction refers to regions of the

detector that are close to the beam axis, at high |⌘|. When the distinction between ”for-

ward” and ”backward” is relevant, the former refers to the positive z-direction and the

latter to the negative z-direction.

In proton-proton collisions, colliding objects are partons and gluons. Given the

energy-momentum conservation and the fact that the proton momentum in the plane

perpendicular to the beam axis is negligible, the momenta of the final state particles have

to be balanced in the x � y plane. This is why transverse momentum is often used in

various analyses and is computed as pT =
p

p2
x + p2

y.

4.2 Solenoid magnet

The CMS solenoid magnet has the length of 12.9 m, an inner diameter of 5.9 m and

provides a magnetic field of 3.8 T. The solenoid is large enough to contain inner tracking

system and calorimeters which reduces the material budget before the energy measurement

in the calorimeters. The strong magnetic field increases the curvature of the trajectories

of the highly energetic particles created in the collision thus improving the momentum

resolution.

Solenoid magnet is built of superconducting materials with the operational temper-

ature of 4.6 K. It is composed of four layers of superconducting material inserted in
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aluminum. Muon detectors outside the solenoid operate in 2 T magnetic field enhanced

by the 10 000 t iron yoke.

4.3 Inner tracker system

The role of inner tracking system is to provide a precise measurement of the trajectories

of charged particles with pT > 1 GeV and the pseudorapidity |⌘| < 2.5. Additionally,

it allows for precise secondary vertex positions reconstruction and impact parameter de-

termination which allows for example to b-tag a jet. The size of CMS inner tracker is 5.8

m in length with a diameter of 2.5 m. Large magnetic field of 3.8 T is provided by the

surrounding solenoid and is homogeneous across the entire inner tracking system. With

the design LHC luminosity, expected occupancy of inner tracking system amounts to more

than 1000 particles from 20 primary interactions in each bunch crossing. This requires

high granularity detectors with fast responses and low dead time. In addition the amount

of material in the detector has to be kept at minimum and the radiation hardness must

be taken into account which lead to the solution of building an all-silicon detector with

high granularity. CMS inner tracking system has two separate parts, Pixel detector and

Strip detector, both described below.

4.3.1 Pixel Detector

The pixel detector is the innermost part of the CMS, closest to the interaction point. The

central part, called barrel pixel, consists of three layers located at radii of 4.4 cm, 7.3

cm and 11 cm. On each side of the barrel pixel, there are two discs at z = 34.5 cm and

46.5 cm. The detector covers pseudorapidity range �2.5 < ⌘ < 2.5 which is illustrated

in figure 4.3. Its purpose is to provide precise three dimensional space points for charged

particle tracking and vertex position determination.
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Figure 4.2: A drawing of the CMS pixel detector. [37]
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Figure 3.6: Geometrical layout of the pixel detector and hit coverage as a function of
pseudorapidity.

size of 100⇥150 µm2 emphasis has been put on achieving similar track resolution in both r-� and
z directions. Through this a 3D vertex reconstruction in space is possible, which will be important
for secondary vertices with low track multiplicity. The pixel system has a zero-suppressed read
out scheme with analog pulse height read-out. This improves the position resolution due to charge
sharing and helps to separate signal and noise hits as well as to identify large hit clusters from
overlapping tracks.

The pixel detector covers a pseudorapidity range �2.5< � <2.5, matching the acceptance
of the central tracker. The pixel detector is essential for the reconstruction of secondary vertices
from b and tau decays, and forming seed tracks for the outer track reconstruction and high level
triggering. It consists of three barrel layers (BPix) with two endcap disks (FPix). The 53-cm-long
BPix layers will be located at mean radii of 4.4, 7.3 and 10.2 cm. The FPix disks extending from
⇡6 to 15 cm in radius, will be placed on each side at z=±34.5 and z=±46.5 cm. BPix (FPix)
contain 48 million (18 million) pixels covering a total area of 0.78 (0.28) m2. The arrangement
of the 3 barrel layers and the forward pixel disks on each side gives 3 tracking points over almost
the full �-range. Figure 3.6 shows the geometric arrangement and the hit coverage as a function
of pseudorapidity � . In the high � region the 2 disk points are combined with the lowest possible
radius point from the 4.4 cm barrel layer.

The vicinity to the interaction region also implies a very high track rate and particle fluences
that require a radiation tolerant design. For the sensor this led to an n+ pixel on n-substrate detector
design that allows partial depleted operation even at very high particle fluences. For the barrel
layers the drift of the electrons to the collecting pixel implant is perpendicular to the 4 T magnetic
field of CMS. The resulting Lorentz drift leads to charge spreading of the collected signal charge
over more than one pixel. With the analog pulse height being read out a charge interpolation allows
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size of 100⇥150 µm2 emphasis has been put on achieving similar track resolution in both r-� and
z directions. Through this a 3D vertex reconstruction in space is possible, which will be important
for secondary vertices with low track multiplicity. The pixel system has a zero-suppressed read
out scheme with analog pulse height read-out. This improves the position resolution due to charge
sharing and helps to separate signal and noise hits as well as to identify large hit clusters from
overlapping tracks.

The pixel detector covers a pseudorapidity range �2.5< � <2.5, matching the acceptance
of the central tracker. The pixel detector is essential for the reconstruction of secondary vertices
from b and tau decays, and forming seed tracks for the outer track reconstruction and high level
triggering. It consists of three barrel layers (BPix) with two endcap disks (FPix). The 53-cm-long
BPix layers will be located at mean radii of 4.4, 7.3 and 10.2 cm. The FPix disks extending from
⇡6 to 15 cm in radius, will be placed on each side at z=±34.5 and z=±46.5 cm. BPix (FPix)
contain 48 million (18 million) pixels covering a total area of 0.78 (0.28) m2. The arrangement
of the 3 barrel layers and the forward pixel disks on each side gives 3 tracking points over almost
the full �-range. Figure 3.6 shows the geometric arrangement and the hit coverage as a function
of pseudorapidity � . In the high � region the 2 disk points are combined with the lowest possible
radius point from the 4.4 cm barrel layer.

The vicinity to the interaction region also implies a very high track rate and particle fluences
that require a radiation tolerant design. For the sensor this led to an n+ pixel on n-substrate detector
design that allows partial depleted operation even at very high particle fluences. For the barrel
layers the drift of the electrons to the collecting pixel implant is perpendicular to the 4 T magnetic
field of CMS. The resulting Lorentz drift leads to charge spreading of the collected signal charge
over more than one pixel. With the analog pulse height being read out a charge interpolation allows
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Figure 4.3: A sketch of CMS Pixel Detector psudorapidity range coverage(left) and
hit e�ciency as a function of pseudorapidity(right). [37]

Pixel detector is fully modular, consisting of rectangular modules in barrel part and

quasi-triangular modules in the discs. Modules are arranged in a way to ensure measure-

ments in at least three layers for each of the trajectories passing through the detector.

Pixel size of 100 ⇥ 150 µm2 results in similar resolution in z and r � � directions. In the

barrel part the resolution of 15 � 20 µm is achieved due to charge sharing. Electrons in-

side the silicon shift under Lorentz force which is used in the reconstruction to determine

the correct hit position. Detailed measurement of the Lorentz angle is described in the

Appendix A. Pixel detector consists of 66 million pixels in total with 48 million being
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in the barrel pixel and 18 million in the forward. The closeness to the interaction point

implies high track occupancy and necessity for radiation resistant materials.

The readout of the pixel detector goes through read-out chips (ROC) to which each

pixel is bump bonded and read out individually. There are around 16000 ROCs in the

detector. Each ROC consists of 52⇥80 pixels. Only pixels with signal above certain

threshold are read out which can be tuned manually for each pixel. The average noise

level in the detector is around 170 electrons at T= �10�C. The information for each event

is stored in a temporary bu↵er awaiting the signal from the Level-1 trigger in order to

be read-out. Data is read out serially, with packets containing all hits corresponding to

a single trigger. Each pixel hit uses six values, five to encode pixel position, and sixth

value is the analog signal charge. ROC header is added at the beginning of each ROC

sequence in order to make ROC hit-association possible. Signal is than digitized and sent

to central data acquisition for further processing. Various other systems are installed in

order to monitor and adjust the temperature, humidity, voltages, etc.

With the design LHC luminosity, there are more than 1000 particles hitting the

detector in every bunch-crossing. Very small pixel size results in the occupancy for each

pixel of the order 10�4. The Pixel detector has been operational for several years and

shows very little drop in performance due to irradiation. The plan is to keep the present

detector during the Run 2, until 2017, and than replace it with new, four-layer pixel

detector which is currently being built.

4.3.2 Strip detector

The silicon strip tracker is built in layers around Pixel detector where track particle flux

is lower and a lower granularity detector can be used instead. The detector is built of

strips in which a passing charged particle induces current. This resulting current is than

transferred to silicon detectors connected to the wires. The barrel section of the strip

detector consists of four layers in the inner part (TIB) and 6 layer in the outer part
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(TOB). In the forward regions there are three tracker inner discs (TID) on each side of

the barrel and 9 layers in the tracker endcap (TEC).

Some strips are built in double layers tilted against each other by an angle of 100

mrad to precisely measure the position of both r� and rz directions. The pitch size

between strips varies from 80 µm in the TIB to 184 µm in TOB and TEC. With the

increasing distance from the interaction point, both strip pitch and strip length increase

and sensor thickness becomes larger hence a↵ecting the resolution.

Figure 4.4: A drawing of the CMS strip detector. [37]

4.4 The electromagnetic calorimeter

The electromagnetic calorimeter (ECAL) has the role of precisely measuring electrons and

photons. It is built from lead tungstate (PbWO4), a material with very high density (8.28

g/cm3) and a small Moliere radius (0.89 cm) which is a scale characteristic of transverse

dimension of the fully contained electromagnetic showers. The scintillation light emitted

within a single bunch crossing of 25 ns is about 80% of the total light which means

the response time of the detector is very small that represents a large advantage of this

material. The calorimeters is built of 61 200 crystals in the barrel region and 14 670
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crystals in the endcaps. Each crystal has a size of 22⇥22 mm2 in the front, 26⇥26 mm2

at the back side and length on 23 cm in the barrel region. In the endcaps, the size of the

crystals varies from 28.62 ⇥ 28.62 in the front to 30 ⇥ 30 mm2 in the back with a length

of 22 cm. The whole systems covers the range |⌘| < 3.
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Figure 4.5: Layout of the CMS electromagnetic calorimeter showing the arrangement of crystal
modules, supermodules and endcaps, with the preshower in front.

Figure 4.6: The barrel positioned inside the hadron calorimeter.
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Figure 4.5: A drawing of the CMS electromagnetic calorimeter. [37]

Operation temperature of the detector is 18�C at which ⇠4.5 photoelectrons are

collected per MeV of deposited energy. The blue-green scintillation light is measured by

the avalanche photodiodes in the barrel and vacuum phototriodes in the endcaps.

The ECAL energy resolution is a↵ected by three uncorrelated sources and can be

described by the relation 4.3. Parameters a, b and c are determined from the test beam.

The stochastic term a is very low for the lead tungstate crystals (a = 2.83±0.3%), which

means that showers are mostly contained within the crystals. The noise term b is determ-

ined from the electronics and amounts to b = 124 MeV. The last term c is the constant

term which limits the ECAL accuracy at high energies.
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4.5 The hadronic calorimeter

The hadronic calorimeter (HCAL) is used to measure energies of hadron particles such as

pions, kaons, protons, neutrons etc. Barrel and endcap hadronic calorimeters cover the

pseudorapidity rande to |⌘| = 3. Since the absorber in the transverse direction thickness

is only 5.82 interaction lengths, additional layer was placed outside the solenoid and is

called HO. HCAL is a sampling calorimeter which consists of layers of brass and plastic

scintillator layers. Showers are produced mostly in brass and are detected in the scintil-

lator and reemitted in the narrow wavelength range in which photodetectors operate. In

the endcap region, steel and quartz are used because of their higher radiation hardness.

There is an additional part of the detector placed 11.2 meters from the interaction point

on both sides called forward HCAL which extends the coverage to |⌘| = 5.2. Large HCAL

coverage and good energy measurement are very important for jet reconstruction as well

as for missing transverse energy determination.
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Figure 5.1: Longitudinal view of the CMS detector showing the locations of the hadron barrel
(HB), endcap (HE), outer (HO) and forward (HF) calorimeters.

Table 5.1: Physical properties of the HB brass absorber, known as C26000/cartridge brass.

chemical composition 70% Cu, 30% Zn
density 8.53 g/cm3

radiation length 1.49 cm
interaction length 16.42 cm

(�� ,��) = (0.087,0.087). The wedges are themselves bolted together, in such a fashion as to
minimize the crack between the wedges to less than 2 mm.

The absorber (table 5.2) consists of a 40-mm-thick front steel plate, followed by eight 50.5-
mm-thick brass plates, six 56.5-mm-thick brass plates, and a 75-mm-thick steel back plate. The
total absorber thickness at 90� is 5.82 interaction lengths (�I). The HB effective thickness increases
with polar angle (� ) as 1/sin� , resulting in 10.6 �I at |� | = 1.3. The electromagnetic crystal
calorimeter [69] in front of HB adds about 1.1 �I of material.

Scintillator

The active medium uses the well known tile and wavelength shifting fibre concept to bring out the
light. The CMS hadron calorimeter consists of about 70 000 tiles. In order to limit the number of
individual elements to be handled, the tiles of a given � layer are grouped into a single mechanical
scintillator tray unit. Figure 5.5 shows a typical tray. The tray geometry has allowed for construc-
tion and testing of the scintillators remote from the experimental installation area. Furthermore,
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Figure 4.6: A drawing of the CMS Hadronic Calorimeter. [37]
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4.6 The muon chambers

Muons are the only particles that can pass the calorimeters and the solenoid. Their

charge and momentum is measured also in the outer part of the detector by the muon

chambers. There are three di↵erent types of the gaseous detectors used in the muon

system, Drift tubes (DT), Resistive Plate Chambers (RPC) and Cathode Strip Chambers

(CSC). Drift tubes are used in the barrel region where muon rate is relatively low and

covers pseudorapidity range of |⌘| < 1.2. The signal in Drift tubes is generated when a

particle ionizes the gas inside the tube and the charge is collected by wires which are at high

voltages. Cathode Strip Chambers are used in the endcap region where muon rate is much

higher and magnetic field is not uniform. These are multi-wire proportional chambers with

anodes that collect charge from the gas ionization. Resistive Plate Chambers are placed

both in barrel and endcap region. These detectors are designed as two parallel plates

which create a uniform electric field in the gas between them. The electrodes on the

plates are highly resistive so when charged particle passes, it causes an electron avalanche

which passes through the plates and is collected by the external metallic strips. Their time

resolution is of the order ⇠1 ns which makes RPCs a good choice for triggering although

their spatial resolution is not so good.

Large magnetic field enables even for high pT muons to be measured with a reasonable

cell size in the muon chambers. The limiting factor for a good resolution of low pT muons

is multiple scattering, and for high pT muons the chamber resolution. The momentum

resolution as a function of muon pT is shown in Figure 4.8 for both muon chambers and

inner tracking as well as the combined result.

4.7 The trigger

The design rate of the proton collisions at the LHC is 40 MHz, although during Run 1

data taking period, the rate was 20 MHz which corresponds to 50 ns bunch spacing. Data
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Figure 4.7: A drawing of the CMS muon chambers which consist of three di↵erent
types of the detectors: Drift tubes, Cathode Strip Chambers and Resistive Plate cham-

bers. [37]

2.3. The Compact Muon Solenoid Experiment

endcap region, where the muon rate is high and the magnetic field is strong and
non-uniform. They identify muons in the range 0.9 < ⌘ < 2.4. Resistive plate
chambers (RPC) are used in both the barrel and the endcap region. Since they
provide a time resolution of ⇠ 1 ns, they are a reasonable completion of the DT
and CSC. Due to the large bending power of the magnetic field, even muons with
a high pt can be measured with a reasonable cell size of the muon chambers. The
momentum resolution for muons with low pt is limited by multiple scattering and for
muons with high pt by the chamber resolution. The achievable resolutions using the
muon system (in combination with the tracker system) are shown in Figure 2.7. The
purposes of the muon system are muon identification, momentum measurements and
triggering.
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Figure 2.7: Muon momentum resolution in the central detector region (0 < ⌘ < 0.2)
as a function of the momentum using the tracking system only, the muon system
only and the combination of both [14].

2.3.6 The Trigger System

At the design luminosity, CMS will measure about 109 interactions per second.
This huge amount of data has to be reduced since only an amount of 100 events
per second can be written to disc. This reduction of data is done by a sophisticated

13

Figure 4.8: Muon resolution measurements for tracker, muon chambers and combined
[37]
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collected in the same bunch crossing is called an event. Since there are huge amounts

of data coming from the subdetectors, it is necessary to apply some selections which can

reduce the rate to about 100 events per second. This is done by two level triggering

system, the first one called Level 1 (L1) trigger and the second one called High Level

Trigger (HLT). L1 trigger uses a special custom made electronics designed to reduce the

output rate from 40 MHz to 100 kHz. Events which pass some loose criteria are than

passed to the HLT. The L1 trigger uses the information from calorimeters and muon

chambers to take the decision whether the event should be accepted or rejected usually

searching for the presence of muons, jets above certain pT , or looking at the total amount

of ET and Emiss
T . The time needed to send the signals to the electronics, run the L1

selection and send the information back to the subdetectors in 3.2 µs. If the L1 trigger

accepts the event, that is stored in the readout bu↵ers where partial reconstruction takes

place and the event is than processed by the HLT, which is a software farm that reduces

the number of events to about 100 per second. The schematic of the trigger system is

shown in figure 4.9.

CHAPTER 2. THE LHC AND THE CMS EXPERIMENT

trigger system consisting of two trigger levels, namely the Level-1 trigger (L1) and
the High Level Triggers (HLT), as shown in Figure 2.8 [16, 17, 18].

The time needed to send the electronic signals of an event from the detector to
the L1 electronics, take the decision of the L1, and send the information whether an
event should be stored or not back to the detector is about 3.2 µs. The L1 decides
on the basis of the presence of muons, jets above a specific ET or pT threshold or the
global amount of ET or Emiss

T measured with the muon system and the calorimeters.
This reduces the amount of data to 105 events per second, which are buffered in
readout electronic buffers (compare Figure 2.8). Here interesting objects in a couple
of detector regions are partially reconstructed, combined and processed by the HLT,
which is a software farm implemented in about 1000 processors. It reduces the
number of events to about 100 per second. The HLT is a very dynamical system
that can be adjusted according to luminosity and physics goals.

Figure 2.8: The CMS Trigger Strategy, consisting of the L1 electronics, the readout
buffers and the HLT software farm.

2.3.7 Alignment of the Detector
The various detector components which actually measure the hits are independent
objects. Their position inside the detector is not precisely known and may also

14

Figure 4.9: A schematic of CMS Trigger System. [37]
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4.8 Luminosity measurement

Accurate and precise luminosity measurement is essential for physics analyses. CMS

measurement is based either on the activity in the forward hadronic calorimeter (HF) or on

the number of clusters in the pixel detector. The forward calorimeter is placed in the high

pseudorapidity region, covering range 3 < |⌘| < 5. The measurement relies on the fraction

of nonempty calorimeter towers to estimate the number of interactions. The uncertainty

to this measurement comes from the nonlinear response of the HF to luminosity and the

occurrence of the afterglow, the e↵ect when the energy deposits created in a given bunch

crossing produce a signal in subsequent bunch crossings.

Luminosity measurement with the pixel detector is described in detail in [43, 44].

This method relies on the e↵ective cross section measurement for pixel clusters determined

with Van der Meer scan. This scan determines the shape and size of the interaction region

by moving the beams across each other in transverse plane thus measuring the maximum

available collision rate. The value of this cross section is then used to determine integrated

luminosity for each lumi-section (23.3 seconds). This approach is not suitable for online

luminosity measurements as pixel bias voltage is not turned on until the stable beams are

declared and the data is not available if the central data acquisition system is busy. On

the other hand, in the o✏ine analysis this is not a problem as the data recorded without

the pixel detector is discarded anyway. The total luminosity delivered in 2012 was around

24 fb�1 while the luminosity recorded by the CMS was around 22 fb�1. Ideally these two

numbers would be the same, but due to the downtime of data acquisition or some of the

subsystems, some of the delivered luminosity is not recorded.

49





Chapter 5

Physics objects definitions

The CMS detector is designed to e�ciently reconstruct and identify interesting physics

objects. The reconstruction procedure which takes as input the signals from all subdetect-

ors and combines them to get physics objects is called particle flow [45]. This algorithm

classifies all the objects into one of the following categories: charged hadrons, neutral

hadrons, photons, electrons and muons. These are built from reconstructed tracks in

the inner tracking system, energy deposits in the calorimeters and signals in the muon

chambers, which are all combined to create a global event description. Additionally, a

set of requirements is imposed on both input signals and reconstructed object in order to

minimize the misidentification, e.g wrongly identifying electron as a jet.

The following sections show electron and muon reconstruction procedures and iden-

tification criteria. Jet reconstruction procedure is then described together with necessary

jet corrections and b-tagging algorithms. After the reconstruction of all other objects,

missing transverse energy is computed as the imbalance of the vectorial sum of traverse

momentum of all reconstructed particles.
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5.1 Electrons

Electrons in CMS are detected as a tracks in tracking system and an energy deposit in the

electromagnetic calorimeter. Two di↵erent algorithms are used for electron reconstruction,

tracker driven seeding which is more suitable for low pT electrons and electrons inside jets

and ECAL driven seeding optimized for high pT isolated electrons. Both approaches take

electromagnetic crystals with deposited energy and join them into clusters. This process

begins by identifying the cryistal with the highest energy deposit which becomes the seed

for the cluster. An electron passing through the detector bends due to the magnetic

field and interacts with the detector material emitting bremsstrahlung photons. ECAL

energy deposits from these photons are spread in � direction in a very narrow ⌘ range and

combined with the existing cluster forming a supercluster. Trajectories are reconstructed

using modeling of electron energy loss in the detector material and fitted with a Gaussian

Sum Filter (GSF) [46].

The two approaches di↵er in the way they match ECAL superclusters and recon-

structed tracks. Tracker driven algorithms use track from the tracking system and try to

match it with the supercluster in the ECAL, while ECAL driven algorithms start from

the superclusters. Each electron candidate has to pass various quality criteria in order

to maximize the probability of identifying the electron coming from the hard interaction,

and reject electrons from jets or conversions. These selection criteria can be divided into

three categories: identification, isolation and conversion rejection. Details on electron

reconstruction and performance can be found in [47].

Electron identification

The electron identification procedure first focuses on good matching between reconstruc-

ted track and supercluster, by imposing cuts on spatial distance �⌘ and �� between the

two. These variables are computed as absolute ⌘ and � distance between the supercluster

and electron track extrapolated to the ECAL surface. Additionally, a cut is imposed on
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�i⌘i⌘ which is a measure of a shower shape spread in ⌘ direction. This variable discrimin-

ates between energy deposits coming from electrons and photons, which are narrow, and

jets, which are wide. Shower shape is defined as:

�i⌘i⌘ =

sP5⇥5
i wi(⌘i � ⌘seed)2 ⇥ �⌘2

xtalP5⇥5
i

(5.1)

where i runs over all crystals in 5 ⇥ 5 block around the supercluster seed, ⌘i � ⌘seed is the

distance in number of crystals in ⌘ direction between i-th crystal in supercluster and the

seed crystal and �⌘xtal is the average width of a single crystal. Each crystal is given a

weight defined as wi = max(0, 4.7+ ln(Ei/E5⇥5)), where Ei is a single crystal energy, and

E5⇥5 is the sum of energy deposits inside a 5⇥5 crystal block. Additional cut on the ratio

between the energy deposits in the hadronic and electromagnetic calorimeter for electrons

is used to discard the electron candidates with significant hadron activity.

Electrons coming from photon conversions are rejected by requiring a hit in every

layer of the inner tracking system. Additionally, for each electron track a fit is performed

trying to combine it with another electron track under the hypothesis that both electrons

originate from a converted photon. Electron is selected only if this probability is su�-

ciently small. Electron compatibility with the primary vertex is estimated by looking at

the impact parameters in both xy and z planes. Due to the gap in the electromagnetic

calorimeter in 1.4442 < |⌘| < 1.566, all electrons which have a supercluster position re-

constructed in this range are rejected. A full list of identification criteria is summarized

in Table 5.1.

5.2 Muons

Muons in CMS are reconstructed by combining a reconstructed track inside the tracker(tracker

track) and a track in muon chambers (standalone muon track). Individual track segments

in the muon chambers are fitted using a Kalman filter technique [48] in order to obtain
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Table 5.1: Summary of electron identification criteria used in this analysis.

Variable Barrel Endcap
�⌘ < 0.004 0.005
�� < 0.03 0.02
�i⌘i⌘ < 0.01 0.03
H/E < 0.12 0.10
dxy < 0.02 cm 0.02 cm
dz < 0.1 cm 0.1 cm
(1/E � 1/p) < 0.05 0.05
Missing hits 0 1
Vertex Fit Probability 10�6 10�6

a standalone muon track. As for electrons, two approaches are used for combining track

from tracker and standalone track.

The global muon reconstruction approach uses a standalone muon track in the muon

chambers and tries to find a matching tracker track by combining parameters of the two

tracks by projecting it to the common surface. This outside-in approach uses Kalman

fitter technique to combine these two objects in an object called global muon. Muon

momentum is then determined from this global muon track using all available systems

which shows improved precision in comparison to other approaches.

The second approach for muon reconstruction is tracker muon reconstruction which

starts from tracks inside the tracker with pT > 0.5 GeV/c and total momentum p > 2.5

GeV/c as potential muon candidates. Extrapolation is than performed to the muon

chambers taking into account the magnetic field, Coulomb scattering in the material and

other energy losses. Tracker moun is found if at least one muon segment matches the

extrapolated track. The e�ciency of the Tracker muon reconstruction is higher for low

energy muons than the e�ciency for the global muons, because only a single muon segment

in the muon chambers is required. For high energy muons where there are more segments

inside muon chambers, the global muon algorithm is designed to have high e�ciency.

Detailed muon reconstruction procedure is shown in [49].
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Muon identification

In this analysis particle flow muon identification selection is applied to the global muons.

A selection is applied in order to minimize misidentification of charged hadrons as muons,

maximize the e�ciency of muon identification inside jets and ensure good momentum

measurement. Muons used in the analysis have |⌘| < 2.1 and transverse momentum

pT > 30 GeV with more than 5 hits in the inner tracker system and at least one hit in

pixel detector. At least one good muon chamber hit is required and the global muon track

fit is required to have �2/ndof < 10. At least two segments in two di↵erent muon stations

should be matched to a track in order to suppress muons from in-flight decays. Cosmic

muons are rejected by applying cuts on the impact parameter with respect to the primary

vertex, |dxy| <0.2 cm and |dz| < 0.5 cm. Muon identification criteria are summarized in

Table 5.2.

Table 5.2: A summary of muon identification criteria.

Variable Requirement
number of pixel hits > 0
number of inner tracker hits > 5
�2/ndof < 10
number of muon hits > 0
chambers with matched segments > 1
dxy < 0.2 cm
dz < 0.5 cm

5.3 Lepton isolation

Leptons from W decays are in general expected to be well isolated from other particles

in the final state. The degree of isolation is calculated using particle flow approach by

summing the transverse momenta contributions of particles around the lepton inside a

specific cone. All charged particles as well as photons and neutral hadrons are considered

if they have pT >0.5 GeV. The cone used for determination of energy deposits is defined
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as �R =
p

��2 + �⌘2 around the lepton axis and isolation measure is defined as:

Irel
PF =

P
pcharged

T + max(0,
P

E�
T +

P
Eneutral

T � 0.5
P

EPU
T )

pl
T

(5.2)

where
P

pcharged
T is the sum of the momenta of charged hadrons and E�

T and Eneutral
T

are the sums of photon and neutral hadron momenta. EPU
T is the sum of the pile-up

transverse energies from charged particles and is calculated as a sum of track transverse

momenta not coming from the primary vertex inside the isolation cone. This is multiplied

by the factor of 0.5, which corresponds approximately to the ratio of neutral to charged

hadron production in the hadronization process of pile-up interactions. Selected muons

are required to pass isolation cut IPF
rel < 0.12. On the other hand, if there is a requirement

that there be no leptons in the event, the isolation cut is Irel
PF < 0.2. Electron isolation is

computed in the very same way with cut of IPF
rel < 0.1 for selected electrons and IPF

rel < 0.15

for vetoed additional electrons.

5.4 Jets

In high energy physics, a jet is a collimated group of hadrons which emerges as a result

of quark or gluon fragmentation and hadronization process. Hadrons reconstructed in a

particle detector need to be combined in order to form a jet and give information about

the initial parton. A set of rules has to be created which define how to group particles and

how to assign momentum to the jet. Usually this is done by summing the four-momentum

of each particle in a jet.

5.4.1 Jet algorithms

Jet algorithms take into account the distance between particles and define rules to de-

termine which particle belongs to what jet. The same jet algorithms should be applicable

to both, experimental data and theoretical calculation. Other important properties of jet
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algorithms are infrared safety and collinear safety which means if an event is modified by

addition of soft emission of collinear splitting, the final number of hard jets will remain un-

changed. These two properties together are called IRC safety. IRC unsafe jet algorithms

may break the cancellation of divergences by yielding one set of jets for tree-level splitting

while loop diagrams lead to another, as shown if figure 5.1, giving infinite cross-sections

in the full calculations. Jet definitions, jet relation to partons and an overview of di↵erent

jet algorithms are summarized in [50].

jet 2
jet 1jet 1jet 1 jet 1

αs x (+ )∞nαs x (− )∞n αs x (+ )∞nαs x (− )∞n

Infinities cancel Infinities do not cancel

a) b) d)c)
Collinear safe jet alg. Collinear unsafe jet alg

Figure 1: Illustration of collinear safety (left) and collinear unsafety in an IC-PR type algorithm
(right) together with its implication for perturbative calculations (taken from the appendix of
[33]). Partons are vertical lines, their height is proportional to their transverse momentum, and
the horizontal axis indicates rapidity.

W

jet

soft divergence

W

jet jet

W

jet jet

(a) (b) (c)

Figure 2: Configurations illustrating IR unsafety of IC-SM algorithms in events with a W and
two hard partons. The addition of a soft gluon converts the event from having two jets to just
one jet. In contrast to fig. 1, here the explicit angular structure is shown (rather than pt as a
function of rapidity).

to find a new stable cone. Once passed through the split–merge step this can lead to the
modification of the final jets, thus making the algorithm infrared unsafe. This is illustrated
in fig. 2: in an event (a) with just two hard partons (and a W , which balances momentum),
both partons act as seeds, there are two stable cones and two jets. The same occurs in the
(negative) infinite loop diagram (b). However, in diagram (c) where an extra soft gluon
has been emitted, the gluon provides a new seed and causes a new stable cone to be found
containing both hard partons (as long as they have similar momenta and are separated
by less than 2R). This stable cone overlaps with the two original ones and the result of
the split–merge procedure is that only one jet is found. So the number of jets depends
on the presence or absence of a soft gluon and after integration over the virtual/real soft-
gluon momentum the two-jet and one-jet cross sections each get non-cancelling infinite
contributions. This is a serious problem, just like collinear unsafety. A good discussion of
it was given in [39].
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Figure 5.1: Configuration showing IC unsafety with W boson and two partons. Adding
a soft gluon causes two jets to be reconstructed as one. [50]

There are two types of jet algorithms which are most commonly used: cone algorithms

and sequential recombination algorithms. In the case of cone algorithms, a jet is defined

as a set of particles inside a stable cone around their center of mass. Most popular

cone algorithm is iterative cones (IC) where a seed particle is chosen and momenta of all

particles around that initial particle inside a cone of radius R are summed. After adding

each new particle to the sum, the direction of the new sum is taken as a seed direction,

and the procedure repeats until the direction of the resulting cone is stable. Particles

inside the cone are than removed from the list of available particles and the procedure

repeats. This approach is not IRC safe given that nearly collinear splitting of the hardest

particle in the event can be reconstructed as two jets. In that case, a less energetic,

particle, pointing in another direction, can become the hardest particle in the event,

yielding di↵erent set of jets. Cone algorithms can be IRC safe using a seedless cone (SC)

algorithm where all stable cone solutions are identified at once. However this approach is

very time consuming even for small number of particles and thus very impractical to use.
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In the sequential recombination algorithms at hadron colliders two longitudinally invariant

distances are introduced: dij which is the distance between each pair of particles and diB

which is the particle-beam distance. These distances are defined as:

dij = min(k2p
T,i, k

2p
T,j)

�R2
ij

R2
(5.3)

diB = k2p
T,i (5.4)

where �Rij denotes the distance in the ⌘ � � plane and is computed as

�R2
ij = (⌘i � ⌘j)

2 + (�i � �j)
2.

kT is transverse momentum of the particle, R is an angular cut-o↵ similar to the one in

cone algorithms, and p defines which particles are clustered first and is described below.

Both R and p are free parameters of the algorithm. The algorithm is applied using the

following approach: distances dij between each pair of particles, and diB for each particle

are computed and minimal value is found. If dij is the smallest value, particles i and j are

combined, and treated as a new particle in the next iteration of the algorithm. In case

of diB being the smallest, i is declared to be the final jet and is removed from the list of

particles. The procedure continues until there are no more particles in the list.

The parameter p defines which particles are clustered first thus defining the type of

algorithm. The kT algorithm uses p = 1, clustering soft particles first. This results in

irregularly shaped jets, as shown in figure 5.2, which are sensitive to radiation in the event

and di�cult to calibrate. The Cambridge-Aachen algorithm (CA) uses p = 0 thus relying

only on angular distribution of the input particles. This approach is particularly useful

for jet substructure analysis and is less sensitive to radiation. The algorithm used in this

analysis is anti-kT algorithm where p = �1 clusterizing the hardest particles first [51].

Anti-kT is an IRC safe algorithm and results with jets that are circular in shape because

they are not a↵ected by the softer components of the jet.
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Figure 7: A sample parton-level event (generated with Herwig [101]), together with many ran-
dom soft “ghosts”, clustered with four di↵erent jet algorithms, illustrating the “active” catchment
areas of the resulting hard jets (cf. section 4.4). For kt and Cam/Aachen the detailed shapes are
in part determined by the specific set of ghosts used, and change when the ghosts are modified.

degree of regularity (or not) of the boundaries of the resulting jets and their extents in the
rapidity-azimuth place.

3 Computational geometry and jet finding

It takes the human eye and brain a fraction of a second to identify the main regions of
energy flow in a calorimetric event such as fig. 7. A good few seconds might be needed to
quantify that energy flow, and to come to a conclusion as to how many jets it contains.
Those are timescales that usefully serve as a reference when considering the speed of jet
finders — if a jet finder takes a few seconds to classify an event it will seem somewhat
tedious, whereas a few milliseconds will seem fast. One can reach similar conclusions by
comparing to the time for a Monte Carlo event generator to produce an event (from tens

29

Figure 5.2: Clustering same set of reconstructed particles into jets using di↵erent jet
algorithms. [50]

5.4.2 Jet corrections

Various measurements during the commissioning phase of the CMS detector showed that

measured jet energy at detector level in general doesn’t correspond to the energy of

the originating particle. A jet calibration procedure is introduced to compensate for

the nonlinear response of the calorimeters. This is done using a factorized approach

where corrections on each level of correction are determined separately as described in

[52]. The final corrected jet momentum is obtained from measured uncorrected transverse

momentum praw according to:

pcorr = Cres(p
00
T , ⌘) ⇥ Cabs(p

0
T ) ⇥ Crel(⌘) ⇥ Coffset(p

raw
T , ⌘) ⇥ praw (5.5)

Correction factors correspond to the following:
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• The o↵set correction Coffset compensates for energy contributions arising from pile-

up events or instrumental noise. The o↵set is determined in dependence of pseu-

dorapidity and jet area pT density which is described in detail in [53].

• The relative correction Crel aims at flattening the jet energy scale in pseudorapidity.

The correction is determined from simulated QCD multijet events, adjusting the jet

scale in all ⌘ regions to one of the jets in |⌘| < 1.3 without changing the absolute

scale.

• Absolute correction Cabs flattens the jet scale in pT . This correction is also determ-

ined from QCD multijet events as the inverse of average response at some fixed

generated jet transverse momentum.

• The residual correction Cres is applied only to data in order to account for possible

residual di↵erences between data and simulation after applying absolute and relative

corrections. These corrections are derived using events with momentum balance in

the transverse plane, like dijet events or Z/� + jet events.

Coffset and calibration factors Crel and Cabs are applied to both data and simulation and

Cres is applied only to data. Corrections are applied sequentially, in a fixed order such

that p0
T = Coffset ⇥ Crel(⌘) ⇥ praw , and p00

T = Cabs(p0
T ) ⇥ Crel(⌘) ⇥ Coffset(praw

T , ⌘) ⇥ praw.

Correction factors used in this analysis can be found in [54].

The total jet correction for a fixed jet pT as a function of pseudorapidity is shown in

figure 5.3. The total jet correction for a fixed jet pseudorapidity as a function of transverse

momentum is shown in figure 5.4. It is shown that jet energy correction factors for PF

jets and JPT jets are relatively stable between 1 and 1.2 across wide pT and ⌘ range. The

total uncertainties to the jet energy corrections as a function of jet transverse momentum

are shown in figure 5.5.
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Figure 26. Total jet-energy-correction factor, as a function of jet � for pT = 50GeV (left) and pT = 200GeV
(right). The bands indicate the corresponding uncertainty.

uncertainty as a function of jet pT . At low jet pT the relative energy scale uncertainty makes
a significant contribution to the total uncertainty while it becomes negligible at high pT . In the
forward region, the relative scale uncertainty remains significant in the entire pT -range. In general
PF jets have the smallest systematic uncertainty while CALO jets have the largest.

7 Jet transverse momentum resolutions

In the following sections, results on jet pT resolutions are presented, extracted from generator-level
MC information, and measured from the collider data. Unless stated otherwise, CALO, PF and
JPT jets are corrected for the jet energy scale, as described in the previous section.

The jet pT resolution is measured from two different samples, in both data and MC samples,
using methods described in section 5:

• The dijet asymmetry method, applied to the dijet sample,

• The photon-plus-jet balance method, applied to the �+jet sample.

The dijet asymmetry method exploits momentum conservation in the transverse plane of the
dijet system and is based (almost) exclusively on the measured kinematics of the dijet events. This
measurement uses two ways of describing the jet resolution distributions in data and simulated
events. The first method makes use of a truncated RMS to characterize the core of the distributions.
The second method employs functional fitting of the full jet resolution function, and is currently
limited to a Gaussian approximation for the jet pT probability density.

The �+jet balance method exploits the balance in the transverse plane between the photon
and the recoiling jet, and it uses the photon as a reference object whose pT is accurately measured
in ECAL. The width of the pT /p�

T distribution provides information on the jet pT resolution in a
given p�

T bin. The resolution is determined independently for both data and simulated events. The

– 30 –

Figure 5.3: Total jet energy correction as a function of pseudorapidity of two di↵erent
jet pT values. Corrections are shown for all three types of jets, calo, JPT and PF jets.

Bands indicate corresponding uncertainty.[52]

5.4.3 Jet identification

This analysis uses the anti-kT algorithm with cone size R = 0.5. Jet algorithm implement-

ation is done in the FASTJET package [55]. Depending on which signals the algorithm is

applied to, there are di↵erent kinds of jets: calo jets (calorimeter deposits used), jet-plus-

track jets (calorimeter deposits complemented with tracker information) and most widely

used particle flow jets (PF). These jets are clustered from particle flow objects identified

with the PF algorithm, thus using the information not only from HCAL, but also from

the tracking system and ECAL, which result in much better resolution. Only the neutral

fraction of jets is measured with HCAL alone which makes about 15% of the total jet

composition. PF jets show excellent performance and are the default jets for most CMS

analyses. Pile-up information is also taken into account by removing charged hadrons

originating from pile-up vertices from the list of particles available for the jet clusteriza-

tion. This procedure is called charged hadron subtraction. Some additional cuts to the jet

composition are applied in order to ensure good jet identification. All jet identification

criteria are summarized in the table 5.3.
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Figure 27. Total jet-energy-correction factor, as a function of jet pT for various � values. The bands indicate
the corresponding uncertainty.

results extracted from �+jet pT balancing provide useful input for validating the CMS detector
simulation, and serve as an independent and complementary cross-check of the results obtained
with the dijet asymmetry method.

In the studies presented in this paper, the resolution broadening from extra radiation activity
is removed by extrapolating to the ideal case of a two-body process, both in data and in MC. In
addition, the data/MC resolution ratio is derived.

7.1 Monte Carlo resolutions

The jet pT resolution derived from generator-level MC information information in the simulation,
serves as a benchmark for the measurements of the jet resolution in collision data samples, using
the methods introduced above and discussed in the following sections.

The measurement of the jet pT resolution in the simulation is performed using PYTHIA QCD
dijet events. The MC particle jets are matched geometrically to the reconstructed jets (CALO, JPT,
or PF) by requiring their distance in � �� space to be �R < �RMax.

– 31 –

Figure 5.4: Total jet energy correction as a function of transverse momentum for four
di↵erent ⌘ values. Corrections are shown for all three types of jets, calo, JPT and PF

jets. Bands indicate corresponding uncertainty.[52]

5.4.4 Jets from b quarks

The unique properties of the bottom quark can be used to identify hadronic jets originating

from b quarks, which are usually referred to as b-jets. The long lifetime of B hadrons is a

consequence of weak force decay which results in the displacement of their decay vertices

by few millimeters at the LHC energies. These hadrons have relatively large masses and

daughter particles with hard momentum spectra. The process of b-jet identification is

called b � tagging. It takes one or more variables and produces a single discriminant
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The CMS Collaboration17/07/138

Jet Energy Uncertainty Sources

Total uncertainty and sources for AK5 PFJets for different regions in , p T

Time stability can be measured precisely, thus independent of relative 
and absolute scale uncertainties

Figure 5.5: Total jet uncertainty and contribution from di↵erent sources in jet pT and
⌘ [54]

Table 5.3: A summary of jet identification criteria.

Variable Requirement
Neutral hadron fraction < 0.99
Neutral EM fraction < 0.99
Number of Constituents > 1
Additional cuts for |⌘| < 2.4
Charged hadron fraction > 0
Charged multiplicity > 0
Charged EM fraction < 0.99

value for each jet. This value shows how much the observed jet looks like a b-jet. There

are several b-tagging algorithms in use at CMS which are described in detail in [56] the

following were used for 2012 data:

• Track counting(TC) - The discriminant uses the impact parameter significance,

which is calculated as the impact parameter value divided by the respective im-

pact parameter uncertainty. Impact parameter significance values are sorted in

increasing order and the second or the third lowest value is used as a discriminant.

Depending on whether the second or third value is chosen, the algorithm is denoted

as high e�ciency or high purity.
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• Jet Probability(JP) - This algorithm combines information from several tracks inside

a jet by computing a likelihood that all tracks originate from the primary vertex.

• Combined secondary vertex (CSV) - This is the most e�cient b-tagging algorithm

currently used in CMS. Secondary vertex and track related informations are com-

bined to build the CSV discriminator. It shows high e�ciency even when no good

secondary vertex can be reconstructed. Some of the variables used in the CSV al-

gorithm are flight distance, vertex mass, impact parameter significance, track mul-

tiplicity at the vertex and track multiplicity in a jet. The distribution of CSV

discriminator is shown in figure 5.6.
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Figure 6: Discriminator values for the (top) TCHP, (middle) JP and (bottom) CSV algorithms.
The inclusive multijet, and tt enriched samples are shown in the left and right panels, respec-
tively. The small discontinuities in the JP distributions are due to the single track probabilities,
which are required to be greater than 0.5%. Symbols are the same as in Fig. 1. Overflows are
added to the last bins.

Figure 5.6: Combined secondary vertex discriminator for multijet QCD sample (left)
and tt enriched sample(right)[57]

For each non-b-jet there is a chance that it would be identified as b-jet. Three working

points are chosen based on the mistagging e�ciency. For an average jet of 80 GeV, these

values correspond to misidentification rates of 10%, 1% and 0.1% for loose, medium and

tight working point respectively [58]. Misidentification probabilities as a function of b-jet

transverse momentum for combines secondary vertex algorithm is shown in figure 5.7.
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Table 1: Misidentification probabilities in data and the data/MC scale factors SFlight for dif-
ferent algorithms and operating points for jet pT in the range 80–120 GeV/c. The statistical
uncertainties are quoted for the misidentification probabilities, while both the statistical and
the systematic uncertainties are given for the scale factors.

b tagger misidentification probability SFlight
JPL 0.0944 ± 0.0004 1.03 ± 0.01 ± 0.07
CSVL 0.0990 ± 0.0004 1.10 ± 0.01 ± 0.05
JPM 0.0105 ± 0.0002 1.10 ± 0.02 ± 0.20
CSVM 0.0142 ± 0.0002 1.17 ± 0.02 ± 0.15
TCHPT 0.0026 ± 0.0001 1.27 ± 0.06 ± 0.27
JPT 0.0013 ± 0.0001 1.11 ± 0.07 ± 0.31
CSVT 0.0016 ± 0.0001 1.26 ± 0.07 ± 0.28

|�| < 2.4 for the medium operating points. For each b-tagging algorithm, the scale factors are
compatible with one within about 10-30%. From the loose to tight operating points, the SFlight
values are measured with a precision of about 5-10 to 30%, respectively. The deviations of SFlight
from unity increase as the cut on the discriminant is tightened, as tails of the distributions are
more difficult to describe in the simulations. Also, we notice that the values of SFlight for JP are
closer to one, as a consequence of the fact that this algorithm uses a calibration mostly based
on tracks from light-parton jets, both in data and simulation.

4.2 b-tagging efficiency

4.2.1 b-tagging efficiency from multijet events

The b-tagging efficiency is measured in data using several methods applied to multijet events [4].
Comparing the measured value with the identification efficiency for b jets in the simulation, a
data/MC scale factor of the b-tagging efficiency is inferred: SFb = �data

b /�MC
b .

The PtRel, IP3D and LT methods are based on a sample of jets enriched in heavy flavour content
by requiring a soft muon within a cone �R < 0.4 around the jet axis (muon-jet). The fraction
of jets from b-quark hadronisation in the selected sample is estimated by fitting the data dis-
tribution of a discriminant variable, providing a good separation between b and light-parton

Figure 5.7: Combined secondary vertex misidentification probability for data and MC
for medium working point.[57]

5.5 Missing transverse energy

The missing transverse momentum is the imbalance in the vectorial sum of transverse

momenta of all measured particles. Missing transverse energy is the magnitude of the

missing transverse momentum and is calculated as:

Emiss
T = | �

X

i

~pi| (5.6)

where i goes over all visible particles. Momentum conservation suggests that the imbalance

could arise from weakly interacting neutral particles such as neutrinos or any other particle

that doesn’t interact with the detector. Measurement of the missing transverse energy

relies on the good measurement of all other particles in the event and as such is very

sensitive to detector resolution, particle missmeasurements, limited acceptance of the

detector, cosmic-ray particles, all of which can cause artificial missing energy. There are

several approaches to determine Emiss
T . In this analysis, the particle flow technique is used,

which tries to identify each particle in the event by combining the information from all

subdetectors and gives the best missing energy resolution.[59, 60] Several corrections are

applied to the Emiss
T which correct for the possible bias in the missing energy measurement:

• Type-I correction: propagates jet energy corrections described in Section 5.4.2 to

missing energy. This correction replaces the uncorrected transverse momenta of
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particles in a jet by the transverse momentum of a jet to which JEC were applied

in the missing energy calculation.

• xy-shift correction: aims at correcting the observed missing energy � modulation.

The true missing energy distribution is expected not to depend on � because of the

rotational symmetry of collisions around the beam axis. The possible causes for

such modulation include unisotropic detector response, detector misalignment or

the displacement of the beam spot. The amplitude of the modulation is observed to

increase with the number of pile-up interactions. This correction can thus be seen

as mitigation for the pile-up e↵ects.

Missing transverse energy, together with the reconstructed muon or electron, is used to

construct W boson candidates. Transverse mass distribution particularly useful in the

case of a decay into two particles, when one particle cannot be detected directly but

is only indicated by missing transverse energy. If the daughter particles are massless,

transverse mass is described with:

MT =
q

2plepton
T Emiss

T (1 � cos��). (5.7)
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Event selection and background

estimation

This chapter describes the event selection criteria used to identify the process pp ! W +

bb + X. The selection is focused on the leptonic decay modes of W boson, thus requiring

the presence of an isolated muon or electron, missing energy, and two b-tagged jets.

The reconstruction and identification of these objects has been described in the previous

chapter. All major backgrounds are identified using simulation and are used to get the

final signal yields for the cross section measurement in chapter 7. This chapter is organized

as follows. The samples used in the analysis together with a short description of simulation

procedures are presented in section 6.1. In order to obtain good agreement between data

and simulation, certain corrections are applied to the simulation to take into account

trigger and reconstruction e�ciencies, pileup reweighing and b-tagging ine�ciencies. The

applied corrections are summarized in section 6.2. Signal selection criteria are described

in section 6.3 while the estimation of the background sources is described in section 6.4.
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6.1 Data and Monte Carlo samples

The data samples used in this analysis are consist of pp collisions at center of mass energy

of 8 TeV collected with the CMS experiment during 2012. After performing necessary

data-quality checks, 19.8fb�1 of data was marked as good quality for physics analysis.

Selected events are required to pass one of the following triggers:

• Isolated muon with pT > 24 GeV and |⌘| < 2.1,

• Electron with pT > 27 GeV and |⌘| < 2.1

Simulated samples for signal and background processes were obtained using Monte

Carlo methods, as a part of the o�cial 2012 CMS production campaign. Simulated

samples include W+jets, Z+jets, tt̄, single top and WZ samples. Diboson samples were

generated with Pythia event generator while W+jets, Z+jets and tt̄ samples were produced

with Madgraph and showered with Pythia.Several event generators were used to produce

samples needed in the analysis:

• Pythia [61, 62] is a multi-purpose generator which can also simulate parton shower.

Pythia is able to calculate only tree-level 1!2 and 2!2 processes while higher orders

are approximated with parton shower algorithm. Parton showering in all samples

uses the so called Z2 tune for modeling the underlying event [63, 64].

• Madgraph [65] calculates matrix elements at tree level for decays and 2! n scat-

terings (with n going up to 10). Radiation of hard gluons in initial and final state is

taken into account at the matrix element calculation level. A minimum pT threshold

is defined in order to avoid soft gluon emissions which cause the total cross section

to be strongly scale dependent. Cross section is normalized to predictions (N)NLO

from other programs, such as MCFM [66] for standard model processes.

• aMC@NLO [67] automates and unifies the tree-level and next-to-leading order

computation tools within the MadGraph family.
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• Powheg [68] is a package optimized for heavy quark production in hadronic col-

lisions. The hard process is calculated at the NLO order. For fragmentation and

hadronization other software is used (e.g. Pythia). Single top events were produced

using this generator and showered with Pythia.

• Tauola [69] is a package for simulation of ⌧ decays.

The detector response is simulated using the GEANT4 simulation package [70]. Data

was analyzed using ROOT framework [71]. The list of the used samples together with the

corresponding cross sections is shown in the Table 6.1.

Table 6.1: Samples, generators and cross sections used for normalizations for signal
and background simulation considered in this analysis. All samples are normalized to
the NLO cross-section calculation except the W+jets which is NNLO and tt̄ which
is normalized to the latest combined cross section measurement of ATLAS and CMS

collaborations [72].

Sample Generator �(pb)(NLO)
W(! l⌫)+jets Madgraph + Pythia 37509 (NNLO)
W + 1 jet Madgraph + Pythia �
W + 2 jets Madgraph + Pythia �
W + 3 jets Madgraph + Pythia �
W + 4 jets Madgraph + Pythia �
W + bb Madgraph + Pythia 377.4
Z + jets Madgraph + Pythia 3531.9
tt̄ semi-leptonic Madgraph + Pythia 107.7
tt̄ full-leptonic Madgraph + Pythia 25.8
single t - t�channel Powheg + Pythia 56.4
single t - s�channel Powheg + Pythia 3.97
single t - tW�channel Powheg + Pythia 11.1
single t̄ - t�channel Powheg + Pythia 30.7
single t̄ - s�channel Powheg + Pythia 1.76
single t̄ - tW�channel Powheg + Pythia 11.1
WZ Pythia 33.6
WW Pythia 56.0

Signal events are simulated in exclusive W+1,2,3,4 jets samples using the Madgraph

event generator and showered with Pythia. These samples are generated using the five-

flavour scheme with massless b-quark in the initial state. Samples are than divided into

69



Chapter 6. Event selection and background estimation

three subsamples labeled as W+b(b), W+c(c) and W+light. W+b(b) subsample is se-

lected by the requirement that there be a generated particle starting with pdgId=±5 in

one of the jets. W+c(c) samples is selected if c quark is generated in one of the jets

(pdgId= ±4). Events are classified sequentially with W+b(b) events selected first. All

other events are labeled as W+light jets (W+udcsg). Additionally, the analysis has been

preformed using the shape from the four-flavour sample listed in the Table 6.1, which has

much larger number of generated signal events. It was normalized to the five-flavour cross

section .

6.2 Monte-Carlo corrections

6.2.1 Pileup

In proton-proton collisions at high beam intensities, there is a high probability that mul-

tiple interactions will happen in a single bunch crossing. These additional interactions

are usually referred to as pileup interactions and contain low�pT QCD processes. The

identification of such jets as well as their removal is described in detail in [73]. The total

inelastic cross section at
p

s =8 TeV, in the 2012 is 69 mb, so the luminosity per bunch

crossing of 69 mb�1 results in one interaction per bunch crossing. As the instantaneous

luminosity per bunch crossing was higher than the total inelastic cross section, this resul-

ted in 21 primary interactions on average during 2012, with some bunch crossings going

up to 70. Under these conditions it is important to recognize the signature from such

interactions.

Simulated events have a di↵erent distribution for the number of pileup interaction

with respect to data. This occurs because it was di�cult to predict the exact pileup

distribution in data during the generation of the simulated events. Therefore, simulated

events were reweighed to match the distribution in data. For each simulated event, a

weight wPU is derived based on the number of pileup events provided by the generator.
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Figure 6.1 shows the number of reconstructed vertices before and after the reweighing

procedure for the events passing full selection described in section 6.3 in the muon channel.

The agreement between data and simulation has improved after the reweighing procedure

which is also visible in the ratio plot.
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Figure 6.1: Number of primary vertices before (left) and after (right) the pileup
reweighing procedure.

6.2.2 Lepton e�ciency measurement

Events used for the cross section measurement are required to pass certain triggers in

order to be selected. However, the trigger selection is not 100% e�cient and the selection

e�ciency has to be determined. The additional steps in the analysis, like reconstruction

and isolation, which introduce some ine�ciencies as well. The e�ciency estimation from

simulation shows large systematic uncertainties due to inaccuracy in signal modeling and

detector response. This was the main motivation for the development of the fully data-

driven lepton e�ciency estimation called Tag and probe. In this method well-known mass

resonances, such as the Z boson, are used and the following selection criteria is applied

to the decay products. Very tight selection criteria are applied on one Z boson daughter

lepton (tag) while the looser cuts, used in the analysis, are applied on the other (probe)
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lepton. The e�ciency (✏) for a given cut is than determined by counting the number of

probe leptons that pass the cut (Npass) divided by the number of all probe leptons. This

number includes the probe leptons that passed and failed the cut (Nfail):

✏ =
Npass

Npass + Nfail

(6.1)

As it is not possible to uniquely identify Z bosons, while performing tag and probe method,

invariant mass distributions of the two leptons are used to determine Npass and Nfail.

Signal and background are parameterized and their contributions are estimated using

a maximum likelihood fit. For signal events, a convolution of Z generator shape with a

Gaussian is used to take into account the detector e↵ects, while for background paramet-

rization, a combination of exponential function and polynomial was used.

The e�ciency was measured as a function of pseudorapidity and transverse mo-

mentum of the probe. Trigger, identification and isolation criteria were used in electron

and muon channels separately. Both data and Monte Carlo e�ciencies were measured and

their ratio was used as a scale factor applied to each event in order to match simulated

lepton e�ciencies to measured e�ciencies in data. The muon identification and isolation

e�ciency for data and MC for the barrel part (|⌘| < 0.9) of the detector is shown in figure

6.2 while the trigger e�ciency measurement is shown in figure 6.3. Similar values for the

e�ciencies are obtained for the other parts of the detector.

6.2.3 b-tagging scale factors

CMS simulations describe very well the detector performance. However, it is di�cult

to accurately model all parameters used in b-tagging algorithms. The procedure used

to identify b-jets is described in 5.4.4 and it depends on track reconstruction e�ciency,

tracking resolution and other tracking related parameters. E�ciency and misidentification

probabilities are functions of transverse momentum and pseudorapidity of a jet. There-

fore, it is very important to determine the b-tagging e�ciency from data. The obtained
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Figure 6.2: Muon identification (left) and isolation (right) e�ciencies determined
using tag and probe method as a function of probe pT , for the barrel part of the

detector(|⌘| < 0.9) [74].

 

HLT_IsoMu24: Efficiency VS pT (|η| < 0.9) 

!  HLT_IsoMu24 efficiency vs muon pT 

"  data  (2012 D) 

"  MC 

"  data/MC scale factors 
 

!  Probe:   

"  tight muon 

"  combined relative PF isolation 

"  pT > 25 GeV/c 

"  |η| < 0.9  (muon barrel, DT only) 

Figure 6.3: E�ciency for HLT muon trigger for barrel part of the detector (|⌘| < 0.9)
determined using tag and probe method .
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18 4 Performance measurements in multijet and tt events
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Figure 17: Same as Fig. 16 for the CSVM tagging criterion. Results from tt into dilepton events
(“LTtop”) are also included.

Table 3: b-tagging efficiency scale factors derived from tt events. The overall uncertainties are
given.

Method bSample FTC LTtop FTM Combined
JPL 0.992 ± 0.018 0.965 ± 0.012 0.967 ± 0.013 0.966 ± 0.015
CSVL 1.007 ± 0.015 1.014 ± 0.014 0.98 ± 0.03 0.977 ± 0.009 0.987 ± 0.018
JPM 0.974 ± 0.026 0.966 ± 0.015 0.960 ± 0.012 0.961 ± 0.012
CSVM 0.967 ± 0.017 0.973 ± 0.013 0.95 ± 0.04 0.952 ± 0.009 0.953 ± 0.012
TCHPT 0.930 ± 0.024 0.922 ± 0.017 0.92 ± 0.06 0.921 ± 0.009 0.921 ± 0.010
JPT 0.926 ± 0.032 0.923 ± 0.017 0.927 ± 0.022 0.922 ± 0.017
CSVT 0.977 ± 0.021 0.976 ± 0.015 0.93 ± 0.05 0.928 ± 0.010 0.926 ± 0.036

Table 4: Scale factors SFb obtained in muon-jet data, J/� events and tt data for b jets in the pT
range of tt events. The overall uncertainties are given.

b tagger SFb in muon jets SFb in LTJ/� events SFb in tt events
JPL 0.982 ± 0.020 1.003 ± 0.056 0.966 ± 0.015
CSVL 0.983 ± 0.017 0.985 ± 0.070 0.987 ± 0.018
JPM 0.947 ± 0.034 0.977 ± 0.066 0.961 ± 0.012
CSVM 0.951 ± 0.024 0.964 ± 0.071 0.953 ± 0.012
TCHPT 0.896 ± 0.035 0.926 ± 0.084 0.921 ± 0.010
JPT 0.866 ± 0.036 0.901 ± 0.080 0.922 ± 0.017
CSVT 0.916 ± 0.032 0.920 ± 0.104 0.926 ± 0.036

30 5 b tagging in boosted topologies
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Figure 28: (top panel) b-tagging efficiency and (bottom panel) data/MC scale factors for muon-
tagged subjets of CA8 fat jets, with and without the CSVL tag applied to the companion sub-
jet, compared to the standard measurements for AK5 jets. In both cases the measurement is
performed using the LT method. The error bars indicate the statistical uncertainties only. The
yellow band shows the combined pT-dependent data/MC scale factors for AK5 jets, along with
corresponding combined statistical and systematic uncertainties.
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Figure 29: (top panel) Misidentification probability in data and MC and (bottom panel) corre-
sponding scale factors for subjets of CA8 fat jets compared with the standard measurements for
AK5 jets. In both cases the measurement is performed for the CSVL tagger using the negative
tags. A fit to the scale factors for AK5 jets (solid curve) and the corresponding overall statistical
and systematic uncertainties (represented by the dashed curves) are also shown.

Figure 6.4: B-tagging (up) and misstag (bottom) scale factors. [57]

corrections are applied to simulated events as scale factors which are defined as the ratio

between e�ciency measured in collisions ✏data
b and e�ciency from simulated events ✏MC

b :

SFb =
✏data
b

✏MC
b

(6.2)

The scale factor determination has to be performed using a b-jet enriched sample such as

tt̄ or multijets events with jet containing a muon within a �R < 0.4 cone from the jet

axis. The choice of the jet which contains a muon relies on the fact that the B hadron

semileptonic branching ratio is much higher than that for other hadrons (⇠ 20% when

including b!c! decays) and such jets are much more likely to arise from B hadron de-

cay. With very high muon detection e�ciency at CMS, it is relatively easy to obtain a

clean sample with jets containing nonisolated muons. Another e�ciency measurement is

performed using a tt̄ enriched sample [57]. By combining the results from both measure-

ments, scale factors were obtained as a function of jet pT together with statistical and

systematic uncertainty for each pT bin. The same strategy is used to obtain misidentific-

ation rates by using the inverted cut on b-tag discriminator. The estimated scale factors

as a function of jet transverse momentum are shown in figure 6.4. The usage of the scale
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factors depends on the number of b-tagged jets in the event. In this analysis two b-tagged

jets are required and the weight for each event is derived as:

w(2|2) = SFb||light(1st jet) ⇥ SFb||light(second jet) (6.3)

where w(2|2) is the event weight for an event with 2 jets where both jets are b-tagged.

The choice between SFb and SFlight depends on the flavor of the jet in the simulation. A

jet is considered a b jet if there is a B hadron present among the jet constituents within

a cone of 0.4 from the jet axis.

6.3 Event selection

Signal events are characterized by the presence of a W boson and two jets which have

been tagged as coming from b quarks. Candidates for a W boson are identified as isol-

ated muons or electron and significant missing energy. Jets are identified as particle flow

objects clustered with anti-kT algorithm with a cone size of 0.5. The combined second-

ary vertex (CSV) algorithm is then used to identify jets arising from fragmentation and

hadronization of b-quarks as is explained in 5.4.4. Signal events are selected using the

following requirements:

• One muon or electron with pT > 30 GeV, within |⌘| < 2.1, which passes the trigger

requirement (pT > 24(27) GeV for muons(electrons) and tight ID criteria described

in 5.2, and has IPF
rel < 0.12 (0.10) in case of muons (electrons).

• Exactly two jets with jet pT > 25 GeV, within |⌘| < 2.4 passing loose ID criteria

from 5.4.3 with distance between lepton and jet �R > 0.5.

• Events containing jets with pT > 25 in high pseudorapidity range 2.4 < |⌘| < 5 are

rejected.
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• Events containing additional lepton with pT > 10 GeV, within |⌘| < 2.1, tight ID

and loose isolation are rejected.

• Both selected jets are required to pass tight CSV discriminator cut of 0.898.

• Transverse mass higher than 45 GeV.

Several detector level distributions are shown in figure 6.5 for the muon channel and

in figure 6.6 for the electron channel obtained after applying all the correction factors

described in section 6.2. It is visible that the final sample contains only around 20%

of Wbb events. Therefore it is essential to understand the contributions from all major

backgrounds. The estimation of the various background contributions to the signal sample

is described in the following section.

6.4 Background estimation

After applying all selection cuts described in the previous section, the major backgrounds

that remain are top quarks, Z+jets, W+jets, diboson and QCD multijet processes. All

samples describing the signal and background processes are normalized to their corres-

ponding cross sections as described in the section 6.1. The obtained distributions are then

used as an input the fitting procedure described in the chapter 7 aimed to determining the

final yields used in the cross section calculation. Each of the background contributions is

described in detail below.

6.4.1 Top quark background

Production of tt̄ pairs and single top represent a challenging background at the LHC

because of their relatively large production cross sections. tt̄ events are largely suppressed

by requiring a veto to the existence of additional jets in the event. Single top background is

more di�cult to reduce using only topological cuts. However, its production cross-section
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Figure 6.5: Various signal region distributions for the electron channel: missing energy,
lepton transverse momentum, W transverse momentum, invariant mass and transverse

momentum of two b jets and highest jet transverse momentum.
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Figure 6.6: Various signal region distributions for the electron channel: missing energy,
lepton transverse momentum, W transverse momentum, invariant mass and transverse

momentum of two b jets and highest jet transverse momentum.
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Figure 6.7: Feynmann diagrams for major backgrounds: tt̄, single top, WZ, WH,
W+jets and Z+jets.

is smaller resulting in a smaller contribution in the final distributions. Nevertheless, the

contribution from top quark backgrounds in the final sample is around 60%.

As the tt̄ background is large, it is mandatory to perform a test of its normalization.

For that purpose, a separate control region is defined requiring additional jet activity

with jet pT >25 GeV and |⌘| <2.4. This results in a tt̄ enriched sample. Various distribu-

tions including missing energy, lepton transverse momentum, W transverse momentum,

invariant mass and transverse momentum of the two b jets and the highest jet transverse

momentum are shown in figure 6.8. It is visible that the shape of the distributions is in

agreement between data and simulation, but the di↵erence in the overall normalization

after applying all scale factors is of the order of 12%. The disagreement is likely coming

from the b-tagging scale factors not being properly determined. This is taken into account

while performing the global fit in order to extract the number of signal events, which will

be described in detail in the next chapter.
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Figure 6.8: Various top quark control region distributions: missing energy, lepton
transverse momentum, W transverse momentum, invariant mass and transverse mo-
mentum of two b jets and highest jet transverse momentum. Good shape agreement
between data and simulation is observed, however simulation normalization is smaller

than expected from data.
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6.4.2 Z+jets

The contribution from the events where a Z boson is produced in association with two b

jets is largely suppressed by requiring only one lepton in the event. However, it can happen

that one of the leptons from the Z decay escapes detection or is missidentified, which may

cause significant missing energy. Such events are then passing all selection criteria and

have to be taken into account in the final cross section measurement. Contribution from

Z+jets background in the final distribution is around 3%.

6.4.3 W+light jets and W+charm

W+jets is the major background before applying the b-tagging criteria is visible in figure

6.9. Both shape and normalization agree well between data and Monte Carlo for several

distributions shown. Very tight b-tag selection, which is applied to the selected jets in

the signal region, reduces both W+light jets and W+charm to almost negligible levels.

6.4.4 QCD multijets

The QCD background arises from QCD multijet events containing a soft lepton that

passes lepton selection criteria. An example of such an event is shown in the left part of

figure 6.10. This is one of the most challenging backgrounds as it is di�cult to simulate

significant amount of such events because of the very high cross section for such processes.

Therefore, the contribution of QCD events in the signal region is determined from data.

Two uncorrelated variables are chosen, in this case the transverse mass and the lepton

isolation. The transverse mass distribution shows a Jacobian peak for the events con-

taining a W boson. Thus it is a natural choice for discrimination from the final states

without W boson. The transverse mass distribution at low values is dominated by QCD

multijet events. Their contribution is estimated using the so called ABCD method. The

method is illustrated on the right hand side of the figure 6.10. The signal region is marked
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Figure 6.9: Distribution obtained using Wbb event selection before applying b-tagging
criteria.

with A. A control sample dominated by QCD events is created by inverting the lepton

isolation cut to IPF
rel > 0.2 (0.15) for muons (electrons) and is marked with C. The rest

of the selection criteria in the control sample is the same as in the signal region. The

obtained sample is relatively clean, however there are still some small contributions from

background processes as it is visible in figure 6.11. The shape of the final distribution is

determined by subtracting these background events from the data distribution.

It is assumed that the QCD distribution has the same shape in regions A and C.
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Normalization of the QCD distribution is determined from the MT region below 30 GeV

(normalizing D region to B region). In these regions, contributions from other processes is

subtracted from the data before the normalization using MC expectations. The number

of QCD events is expressed as:

QCDA =
NB

data � NB
MC

ND
data � ND

MC

⇥ QCDC
data (6.4)

where NB
data and ND

data are the number of data events in data in regions B and D respect-

ively, and NC
MC and ND

MC are the number of MC background events in regions B and D

respectively. The signal region before and after the QCD contribution determination is

shown in figure 6.12. The QCD contribution in the final distribution is approximately

20%.

Figure 6.10: An example of QCD event which looks like signal event (left) and illus-
tration of ABCD method used for QCD background determination (right)

6.4.5 Other backgrounds

Other backgrounds include processes with final states that match the final state of the

signal. One of such signals is WZ where W decays leptonically and Z decays in a pair

of b quarks. Another example is the production of Higgs boson in association with W
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3.5 QCD 7

(a) Muon Channel (b) Electron Channel

Figure 2: The shape for the QCD is found by inverting the lepton isolation and subtracting MC
from the data. Shown above is the data, MC background and extrapolated QCD shape in this
inverted region for both the muon and electron channels.

some discrimination power between b-jets and c-jets. The corrections used in this analysis have188

been applied in accord with the central prescription and recipes provided by the b-Tagging189

POG [40].190

3.5 QCD191

The QCD multijet sample derived using a data-driven method. The shapes of the distributions192

for QCD multijet events are taken as the difference between the data sample and the sum of the193

other simulated backgrounds in a region of phase space enriched in multijets. The shape of the194

QCD used in the signal region comes from the distributions illustrated in Fig. 2. This region195

is found using the same selection requirements as those in the signal region, but requiring196

the muon (electron) to be antiisolated: Irel > 0.20 (0.15). This shape is then scaled by (d20 �197

m20)/q20 where d20 is the yield in data in the range 0 < mT < 20, m20 is the combined yield from198

the simluated samples in this range, and q20 is the corresponding unnormalized yield of QCD199

multijet. This has the effect of normalizing the QCD sample such that the combination of the200

QCD and the simulated backgrounds has the same total yield as data in the range 0 < mT < 20.201

If d20 < m20, the QCD contribution is taken to be negligable. The relative uncertainty in the202

yield of QCD multijet events is estimated to be ±50%, taking into account both the fit result203

and the extrapolation from 0 < mT < 20 to the high-mT range. This relative uncertainty also204

covers shape mismodelings of the multijet contribution in the final sample.205

Figure 6.11: The shape of the QCD is found by inverting the isolation cut on the
lepton and subtracting the remaining MC contributions from the data. This plot shows
data and MC in the inverted lepton isolation region together with the extrapolated QCD

shape for muon (left) and electron (right) channel.
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Figure 6.12: Transverse mass distribution without (left) and with QCD background
(right).
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boson where Higgs decays to a pair of b quarks. Such backgrounds are called irreducible

backgrounds.
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Chapter 7

Cross section measurement

The cross section for the pp!W+bb+X process is determined separately in the electron

and the muon channel using the relation:

� =
Nsig

A ⇥ ✏ · L (7.1)

where Nsig is the overall number of the signal events, which is precisely determined by

performing the fit procedure presented in the next sections. A⇥✏ is the detector acceptance

and e�ciency (section 7.3) and L is the total integrated luminosity.

Fit methodology is shortly presented in the section 7.1, while the systematic uncer-

tainties, which are taken into account during the fit, are described in detail in section 7.2.

The procedure for the calculation of A⇥ ✏ is described in section 7.3 and lastly, in section

7.4 the cross sections results are given and compared to the theoretical prediction.

7.1 Signal extraction method

The Wbb yield is obtained from a fit to the transverse mass distribution recovered after

applying the selection criteria described in section 6.3. The fit was performed in the full
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MT range to better constrain the QCD contribution. The Wbb contribution is modeled

using the four-flavor scheme and five-flavor scheme separately, as described in detail in

6.1. The comparison between the two samples is given in figure 7.1. Small di↵erences in

shapes can be seen.

B.3 Individual Fits 43

(a) muon channel (b) electron channel

Figure 27: Comparison distributions of the simulated W + bb component in the W + bb signal
phase space between the 4- and 5-flavour quark schemes in the muon (27a) and electron (27b)
channels.

Source Uncertainty
b-Tag Scale Factor 1�

Muon Energy Scale 1�
Jet Energy Scale 1�

Unclustered Energy Scale 1�
Luminosity 2.6%
QCD Scale 50%

Drell-Yan+Jets Scale 7.9%
Diboson Scale 8.1%

W+cc Scale 8.1%
W+Light Jets Scale 13.2%

Single AntiTop Scale 5.4%
Single Top Scale 4.2%

TTbar Scale 7.4%

Table 7: Listed in the first column are the systematic uncertainties present in the fit, including
correlated 1 � shape variations for the first four listed, and uncorrelated normalization param-
eters for each of the contributing backgrounds.

B.3 Individual Fits672

For each of the fits, we show in this subsection the fitted mT distributions in both the W + bb673

signal region and the tt control region as well as the yields both before and after fitting for674

all samples in the signal region. Also indicated is a test of the fit bias performed by setting675

the signal to a scale factor of 1.0 ± 0.0 and rerunning the fit. The further the resulting signal676

strength deviates from unity, the greater the bias in the fit, and in all eight fits, the result was677

consistent with unity. In the final row of the tables in Figs. 30-37, the ratio is given as measured678

events on simulated events.679

Figure 7.1: Shape comparison of the two samples used to obtain the number of signal
events. The left figure shows the muon channel while the right figure shows the electron

channel.

Signal yields and background yields are extracted using a binned maximum likeli-

hood fit. The details of the fitting procedure are described in [75]. Due to the observed

di↵erence in the overall normalization of the tt̄ sample, a simultaneous fit was performed

in the Wbb region and in the tt̄ multijet control region. The predictions for both, signal

and background yields, depend on various uncertainties, which are included in the fit as

nuisance parameters. The likelihood function is constructed as:

L(data|µ, ✓) = Poisson(data|µ · s(✓) + b(✓)) · p(e✓|✓). (7.2)

In this expression ”data” represents the actual measurements, ✓ is a set of nuisance para-

meters describing the uncertainties while s(✓) and b(✓) describe signal and background

yields respectively, which depend on the nuisance parameters. µ is the signal strength,
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which is the ratio between the cross section under test and the theoretical cross sec-

tion. Poisson in the context of the binned maximum likelihood represents the product

of Poisson probabilities to find ni events in bin i where the expected number of events is

µsi + bi:
Y

i

(µsi + bi)ni

ni!
e�(µsi+bi) (7.3)

Probability density functions p(✓), with some e✓ as the best estimate of the parameter

set describing each of the nuisances, are used to characterize the nuisances. Di↵erent

options for pdf include flat distribution, Gaussian, log-normal and gamma distribution.

In this analysis, systematic uncertainties are treated in two di↵erent ways. In cases where

the systematic uncertainty does not change the shape of the fitted distribution, a log-

normal pdf is used because it is suitable for the description of the positively defined

variables like cross-section, luminosity or cut e�ciency. Here the value of e✓ in the case

of the normalizations of di↵erent background shapes corresponds to the normalization of

the distribution used in the fit. The width of the log-normal distribution ⇢(✓) is defined

by the parameter :

⇢(✓) =
1p

2⇡ln()
exp

 
(ln(✓/e✓))2

2(ln)2

!
1

✓
. (7.4)

The value of  implies by how much an observable can be larger or smaller, both deviations

having a chance of 16%. Another way of treating systematic uncertainties is by producing

two additional input shapes for each process a↵ected by some uncertainty, by shifting

up and down that parameter by one standard deviation. When building the likelihood,

each shape uncertainty is associated to a nuisance parameter taken from a unit Gaussian

distribution, which is used to interpolate or extrapolate using the specified histograms.

After the construction of the likelihood function, parameters ✓ and µ are extracted by

minimizing the likelihood function. The next section lists the major sources of system-

atic uncertainties together with the strategy used for determination of the corresponding

nuisance pdf .
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7.2 Systematic uncertainties

Systematic uncertainties on the expected signal and background yields and shapes a↵ect

the final results. For several systematic variations, a new set of signal and background

shapes was created, which may di↵er both in shape and normalization from the original

shape. In cases where systematic uncertainty does not change the shape of the distribution

used in the fit, only the systematic e↵ect on the normalization was taken into account

as described in the previous section. Several sources of systematic variations have been

considered:

Jet energy scale uncertainty

The source of jet energy scale uncertainty arises from the uncertainty on di↵erent jet

energy corrections applied to unify the detector response in energy and pseudorapidity

as described in section 5.4.2. The uncertainty for each level of corrections is estimated

separately and added in quadrature to get the final uncertainty [52]. The jet energy scale

for each jet is varied within one standard deviation of the applied jet energy corrections

and the e�ciency of the analysis selection is recomputed to assess the systematic variation

on the normalization and shape of the signal and all background components.

Jet energy resolution

The jet energy resolution in simulation is smeared in order to take into account di↵erences

between data and Monte Carlo. The uncertainty on the applied smearing factors is used

to produce modified signal and background shapes. These modified shapes are then used

in the final fit.
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Jet b-tagging e�ciencies

Jet b-tagging e�ciencies are determined for the jets selected in the analysis as described

in section 6.2.3. These e�ciencies are applied as weight factors for each event and depend

on pT , ⌘ and flavour of the selected jets. To estimate the e↵ect of the uncertainties on the

e�ciency determination, each scale factor is shifted up and down by the corresponding

uncertainty, and event weights are recalculated. The procedure is done separately for b

jet e�ciencies and for light flavour mistag rate. The uncertainty for jets from c quark is

taken to be twice as large as the one from b jets since there is no proper measurement for

this uncertainty. The scale factor variation is found to be of the order of a few percent.

Lepton scale factors

Muon and electron trigger, reconstruction, and identification e�ciencies are determined

in data using the standard tag-and-probe technique with Z bosons as described in 6.2.2.

The e↵ects of the corresponding uncertainties were assessed by varying the corresponding

scale factors by one standard deviation and producing the modified signal and background

shapes.

Lepton energy scale

The lepton energy scale measurement uncertainty corresponds to 1% for muons in the

whole detector and electrons in the barrel region. Systematic uncertainty of 2.5% is

associated to the electrons in the endcap region. The e↵ect on the yield is evaluated by

varying the lepton energy scale for each lepton within one standard deviation and creating

corresponding transverse mass distributions used in the final fit.
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Unclustered missing energy

The uncertainty on missing energy measurement from unclustered energy, e.g. jets with

pT <10 GeV and |⌘| <4.7 is estimated. The energy scale of such jets is varied by 10%,

which is propagated into the calculation of missing energy. New transverse mass distri-

butions are created and taken into account in the final fit.

MC samples normalizations

The finite size of the signal and background MC samples are included in the normalization

uncertainties. Normalizations for each of the Monte-Carlo samples are also allowed to

vary within the uncertainties of measured standard model cross-sections. Cross section

uncertainties are summarized in the table 7.1

Luminosity uncertainty

Luminosity measurement is performed using the cluster counting in the Pixel detector

described in section 4.8. An uncertainty of 2.6% for the luminosity measurement during

2012 data taking is reported by the CMS luminosity group [76].

Process Cross section uncertainty
W+c(c) 8.1%

W+udsg 13.2%
Z+jets 7.9%

Single Top 5.4%
tt̄ 7.4%

VV 8.1%

Table 7.1: Standard model cross section uncertainties used in the evaluation of MC
normalization systematic e↵ect.

In figures 7.2 and 7.3 the e↵ect of di↵erent systematic uncertainties on the shape

of the transverse mass distribution is shown for signal and tt̄ control region. The shown
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MT distributions are obtained by summing signal and all background contributions. The

largest systematic variations come from the b-tagging uncertainties. A more detailed

study of the final signal strength dependence on the systematic variations is shown in

section 7.4.1.
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Figure 7.2: Shape of the transverse mass distribution in the muon channel for each
systematic variation in both, signal region (left) and tt̄ control region (right).
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Figure 7.3: Shape of the transverse mass distribution in the electron channel for each
systematic variation in both, signal region (left) and tt̄ control region (right).
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7.3 Acceptance and e�ciency

Due to the limitations of the detector, not all produced signal events will be detected.

Some final state particles will end up outside the functional part of the detector. The

fraction of the phase space covered with a functional detector for signal final state particles

is called acceptance. The fiducial region in which the cross section is computed corresponds

to one lepton with pT >30 GeV and |⌘| <2.1. The four-momentum of the lepton is

corrected for final state radiation by summing all the photons four-momenta inside a cone

of 0.1 from the lepton and cut is applied on the corrected value. Additionally, exactly

two jets with pT > 25 GeV and |⌘| <2.4 are required in the event. Jets are clustered

from the list of generated particles not considering neutrinos, using anti�kT algorithm

with a cone size of 0.5. Jets are required to contain at least one particle originating

from a B hadron decay within a cone of 0.5 from the jet axis in the list of the clustered

particles. Fiducial region requirements are summarized in table 7.2. However, a fraction

Variable Cut
Lepton pT > 30 GeV
Lepton |⌘| < 2.1
Jet pT > 25
Jet |⌘| < 2.4
�R(jet, B hadron) < 0.5

Table 7.2: Fiducial cuts used for cross section measurements.

of the events that fall into the fiducial volume will not be detected due to trigger and

reconstruction ine�ciencies or selection cuts imposed at trigger or analysis level. Usually,

the acceptance and e�ciency are estimated as a single quantity, which is a product of

these two numbers, defined as:

A ⇥ ✏ =
number of selected Wbb events

number of generated Wbb events in the fiducial volume
(7.5)

This ratio is computed using simulated Wbb sample for each of the channels separately.

The number of selected events is obtained by applying the selection cuts described in 6.3.
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The number of generated events is obtained by applying generator-level cuts summarized

in table 7.2. As this ratio is derived from simulation, it is necessary to correct it for

di↵erences between data and Monte-Carlo. These corrections include pile-up wPU , lepton

trigger, reconstruction and identification scale factors wlep, and b-tagging scale factors

wb�tag all described in 6.2. With all the corrections, A ⇥ ✏ for each channel becomes:

A ⇥ ✏ =

Psel wlepwPUwb�tag

N gen
fiducial

(7.6)

where the sum in the numerator runs over selected events. Obtained results are summar-

ized in table 7.3 for each channel.

Channel A⇥✏
Muon channel 9.14 ± 0.18 %

Electron channel 7.66 ± 0.17 %

Table 7.3: Results of the A⇥✏ determination for both, muon and electron channel
together with the statistical uncertainty.

7.4 Results

Transverse mass distributions in the signal region and tt̄ region were fitted simultaneously

in order to obtain the signal strength for Wbb. Yields before and after the fit are shown

in Table 7.4 for the muon channel and 7.5 for the electron channel. The obtained signal

strength values are:

µmuon = 1.37 ± 0.07(stat.) ± 0.20(syst.)

µele = 1.51 ± 0.08(stat.) ± 0.20(syst.)

The total uncertainty was obtained by including both systematic and statistical uncer-

tainties. Another fit was performed without systematic uncertainties in order to obtain
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the statistical error. The total systematic error was computed by subtracting in quadrat-

ure the statistical error from the total error. Figures 7.4 and 7.5 show the most important

detector distribution after performing the fit for the muon and electron channels respect-

ively. The recovered distributions show a good agreement between data and simulation

for all considered distributions.

Table 7.4: Yields obtained in the muon channel before and after the fitting procedure.

Sample Prefit yields Fitted yields Prefit yields(MT > 45GeV) Fitted yields(MT > 45GeV)
W+bb 1137.4±25.9 1616.4±209.5 877.1±22.9 1243.4±165.7
W+cc 71.3±7.6 85.5±23.7 55.2±7.3 65.9±20.4

W+udsg 38.2±9.1 55.1±36.5 30.3±8.2 43.8±29.0
Z+jets 208.7±22.4 218.1±36.5 121.8±17.2 127.9±31.7

Single Top 913.1±16.7 989.4±87.2 700.2±14.6 750.1±66.5
TT̄ 3093.2±13.0 3491.1±109.9 2499.6±11.3 2716.7±86.3
VV 145.2±3.1 152.2±15.3 108.4±2.7 113.4±11.8

QCD 1110.5±28.2 913.6±72.8 293.9±15.2 241.8±19.3
Sum 6717.6±50.6 7521.3±380.4 4686.4±39.0 5302.9±205.2
Data 7481.0 5372.0

Ndata � Nbkg 1312.5±141.5

Table 7.5: Yields obtained in the electron channel before and after the fitting proced-
ure.

Sample Prefit yields Fitted yields Prefit yields(MT > 45GeV) Fitted yields(MT > 45GeV)
W+bb 964.2±23.9 1452.3±176.5 732.5±22.9 1107.6±140.9
W+cc 70.5±8.5 72.7±13.2 61.7±7.3 62.0±14.8

W+udsg 15.9±5.4 17.0±4.0 13.0±8.2 13.6±3.3
Z+jets 202.3±21.6 190.3±17.2 89.2±17.2 96.8±22.8

Single Top 722.4±14.9 696.6±48.2 547.6±14.6 527.1±41.3
TT̄ 2460.2±11.4 2360.3±82.9 1992.0±11.3 1876.4±68.9
VV 110.3±2.7 110.5±10.5 85.4±2.7 86.6±9.0

QCD 1836.0±26.1 1698.7±121.3 910.5±15.2 840.7±60.0
Sum 6381.9±46.6 6598.3±333.6 4432.0±39.0 4610.7±175.3
Data 6575.0 4639.0

Ndata � Nbkg 1135.9±124.6

7.4.1 E↵ects of the systematic uncertainties

Information about each source of systematic uncertainty together with the information

whether just normalization or shape is included in the final fit is shown in table 7.6 for the

muon channel and 7.7 for the electron channel. The tables also show the uncertainties on
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Figure 7.4: Muon channel distributions after the fit.
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Figure 7.5: Electron channel distributions after the fit.
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Table 7.6: Systematic uncertainty e↵ect on the final yield is shown in the table together
with the uncertainty on the signal and background yields and relative contribution to

the signal strength uncertainty.

Event yield uncertainty Individual contribution E↵ect of removal
Source Type range (%) to µ uncertainty (%) on µ uncertainty (%)

b-tag e�ciency shape 6.80 0.97 3.76
Lepton ID/Iso/Trig shape 0.57 0.27 < 0.01

Jet resolution shape 0.03 < 0.01 0.07
Jet energy scale shape 0.05 3.43 0.63

Unclustered MET shape 0.00 < 0.01 9.35
Muon energy scale shape 1.09 0.13 0.01

Luminosity norm. 2.60 0.67 0.02
Monte Carlo statistics norm. 0.75 3.63 10.10

Table 7.7: Same as table 7.6 for the electron channel.

Event yield uncertainty Individual contribution E↵ect of removal
Source Type range (%) to µ uncertainty (%) on µ uncertainty (%)

b-tag e�ciency shape 6.69 1.75 1.50
Lepton ID/Iso/Trig shape 1.50 0.99 0.04

Jet resolution shape 0.10 0.04 1.61
Jet energy scale shape 0.29 1.67 1.55

Unclustered MET shape 0.00 0.04 < 0.01
Electron scale shape 0.75 0.02 0.03
Luminosity norm. 2.60 1.22 < 0.01

Monte Carlo statistics norm. 0.85 2.88 2.69

signal and background yields and the relative contribution to the signal strength uncer-

tainty. Due to correlations, the total systematic uncertainty is smaller that the quadrature

sum of individual uncertainties. The last column shows the decrease in total systematic

uncertainty when removing a specific source of uncertainty.

7.4.2 Tests of the fit stability

Additional tests were performed in order to verify consistency of the obtained signal

strength. This was done by fitting di↵erent combinations of distributions in both signal

region and tt̄ control region. Additional distributions include missing energy in the signal

region and tt̄ control region shown in figures 6.5 and 6.8 and invariant mass of third and

fourth jet in tt̄ control region. All used distributions show good agreement in shapes

between data and simulations making them suitable for the fit. Fitting procedure is
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performed in the muon channel only, as previously described. Obtained signal strengths

are summarized in Table 7.8 and are found to be consistent with the transverse mass fit.

Fitted distribution (Wbb/tt̄) Signal Strength Yield Ratio
MT /MT 1.34±0.15 1.55

MT /Emiss
T 1.31±0.14 1.52

MT /M(j3j4) 1.35±0.16 1.53
Emiss

T /MT 1.43±0.21 1.64
Emiss

T /Emiss
T 1.33±0.17 1.53

Emiss
T /M(j3j4) 1.38±0.21 1.55

Table 7.8: Signal strengths obtained by fitting di↵erent distributions. Signal strengths
are found to be consistent with each other within the uncertainties.

7.4.3 Cross section measurement

The inclusive cross section measurement was performed in the fiducial region correspond-

ing to one lepton with pT >30 GeV and |⌘| <2.1 and exactly two jets pT > 25 GeV and

|⌘| <2.4. Jets are required to have at least one particle originating from a B hadron within

a cone of 0.5 from the jet axis. Cross section was computed using the relation 7.1, where

the final yields were obtained from the tables 7.4 and 7.5 for muon and electron channel

respectively. The Nsig was obtained by subtracting the sum of MC contributions of all

backgrounds from the number of events obtained in data after applying the selection cuts.

Acceptance and e�ciency are taken from table 7.3 and luminosity corresponds to 19.8

fb�1. The measured cross sections are:

�(pp ! W + bb) ⇥ B(W ! µ⌫) = 0.73 ± 0.03(stat.) ± 0.10(syst.)

�(pp ! W + bb) ⇥ B(W ! e⌫) = 0.75 ± 0.04(stat.) ± 0.10(syst.)

The quoted systematic and statistical uncertainties take into account all previously de-

scribed e↵ects. However, these results are not taking into account the systematic e↵ects

on the acceptance and e�ciency calculation of di↵erent choices for the parton distribution
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functions, or the e↵ect of variation of factorization and renormalization scales. These ef-

fects were assessed in the previous measurements of Wbb process by the CMS experiment

and contribute 10% to the total cross section uncertainty [33]. The obtained cross sections

are in good agreement as predicted by the standard model.

7.4.4 Theoretical predictions and comparison with the measure-

ment

The theoretical prediction for the cross section defined in table 7.2 was estimated using

MCFM 6.8 in the massless five flavour scheme at NLO precision with factorization and

renormalization scales set to the mass of the W boson. A hadronization correction factor

0.92±0.01 to extrapolate from the final-state particle jets to the parton-level cross section

is estimated with MADGRAPH+PYTHIA. The obtained result is the following:

�TH(pp ! W+bb)⇥B(W ! l⌫) = 0.508±0.001(stat.)±0.005(PDF)±0.029(scale)±0.01(hadr.) pb

The statistical uncertainty associated to this result comes from the integration step of

the calculation; the PDF and scale uncertainties have been estimated by repeating the

calculation with di↵erent PDF sets and by varying the renormalization and factorization

scales by a factor two with respect to the reference values (MW ).

The double parton scattering contribution was not taken into account during the

theoretical calculation. However, it has been estimated following the procedure described

in section 2.2.2.1 using the formula:

�DPS =
�W ⇥ �bb

�eff

(7.7)

where �W and �bb are the corresponding single parton scattering cross sections for the

production of the W boson and the production of b quark pair respectively. These cross
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sections were estimated for the same fiducial region as for the analysis and correspond to:

�W = 4361 ± 79 pb

�bb = 0.18 ± 0.09 µb.

The inclusive cross section for the W boson production �W is estimated with FEWZ [77]

at NNLO level. The total cross section for a pair of b quarks is estimated on a sample

of events created with Madgraph and is accurate to LO precision, yielding a much larger

associated uncertainty. The value of the e↵ective cross section �eff measured by the CMS

is:

�eff = 20.7 ± 6.6 mb.

The resulting contribution from double parton scattering to the Wbb cross section is:

�DPS = 0.40 ± 0.02 pb.

yielding the final Wbb cross section of:

�TH(pp ! W + bb) ⇥ B(W ! l⌫) = 0.55 ± 0.03(theor.) ± 0.02(DPS) pb.

The results for the cross section measurement obtained in this thesis are one standard

deviation away from the theoretical predictions for the electron and the muon channel.
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Conclusions

This thesis presents the inclusive cross section measurement for W boson production in

association with two b jets in proton-proton collisions at
p

s =8 TeV. The analyzed data

have been collected with the CMS detector during 2012, corresponding to an integrated

luminosity of 19.8 fb�1. From the theoretical point of view, this process is important as a

probe into the perturbative QCD calculations and can point to the need of improvement

of theoretical calculations. On the other hand, from the experimental point of view,

accurate knowledge of Wbb process leads to more precise measurements of other processes

to which this one is a background, such as the top quark or associated Higgs and W boson

production, with Higgs boson decaying to a pair of b quarks.

The cross section measurement was performed in the fiducial region defined by a

presence of a lepton and exactly two 2 b-tagged jets. The result is quoted separately in

the muon and electron channel:

�(pp ! W + bb) ⇥ B(W ! µ⌫) = 0.73 ± 0.03(stat.) ± 0.10(syst.)

�(pp ! W + bb) ⇥ B(W ! e⌫) = 0.75 ± 0.04(stat.) ± 0.10(syst.)

The measured values in the two channels are compatible, as predicted by the standard

model. The theoretical cross section was derived using MCFM. The measured values
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are around one standard deviation higher than the predicted theoretical values. Several

measurements including a W boson and b jets in the final state were performed in the

past. However the results cannot be directly compared because of di↵erent phase space

and slightly di↵erent final states.

The uncertainty on the measured values is dominated by the systematic e↵ects. The

largest uncertainties are associated with the b tagging procedure, jet energy scale and

jet energy resolution. Reducing these uncertainties in the future, would allow for more

sensitive test of perturbative QCD calculation at next-to-leading order.

After the long shutdown, which started in 2013, the LHC has just restarted its

operations, reaching the highest energy of
p

s = 13 TeV. This marks the start of another

exciting period, which is aimed at precision measurements of Higgs boson as well as various

beyonf standard model searches like supersymmetry which may even answer the question

of dark matter. As for the measurements of W boson produced in association with b

quarks, one of the main goals for the future is to reduce the large systematic uncertainties

as stated previously. Measuring di↵erential cross section as a function of various variables,

like leading jet transverse momentum, would be of great interest to theorists. Another

goal would be to probe di↵erent final states, for example studying events with two B

hadrons in the same jet, or using track based tagging without requiring jets. This would

allow us to study collinear final state in depth.
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Strukturirani sažetak - Mjerenje

udarnog presjeka zajedničke

produkcije W bozona i para b

kvarkova

9.1 Uvod

Standardni model fizike elementarnih čestica je teorija nastala šezdesetih i sedamdese-

tih godina dvadesetog stoljeća, pokušavajući odgovoriti na pitanje od čega je materija

načinjena i kako interagira. Predvidanja Standardnog modela testirana su veliki put puta

različitim eksperimentima, medutim nikada nisu opovrgnuta. Jedina nedostajuća karika

bio je Higgsov bozon, čestica čije je postojanje portvrdeno 2012. godine, a svojstva su

joj izmjerena narednih godina. Time je zaokružena slika Standardnog modela. Medutim,

postoje različiti fenomeni koji ne se ne mogu opisati u okviru Standardnog modela kao

što su postojanje neutrinskih oscilacija, asimetrije izmedu materija i antimaterije, posto-

janje tamne materije i tamne energije. Ovi fenomeni upućuju na postojanje fizike izvan
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Standardnog modela. Osjetljivost pojedinog eksperimenta na opažanje takvih fenomena

izravno je povezano s preciznim mjerenjem već postojećih procesa.

Dogadaji u kojima je W bozon produciran zajedno s b kvarkvima u sredǐstu je

različitih teorijskih i eksperimentalnih istraživanja. Medutim, teorijska predvidanja još

uvijek ne objašnjavaju dovoljno dobro eksperimentalne rezultate zbog pojave divergencija

u slučaju kada izračeni gluoni imaju jako malu energiju ili je par kvarkova kolinearan.

Nadalje, precizno mjerenje W bozona produciranog s parom b kvarkova omogućava bo-

lje razumijevanje i teorijska predvidanja u okviru perturbativne kvantne kromodinamike

(pQCD) i provjere valjanosti različitih teorijskih modela korǐstenih u simulacijama. Ovaj

proces je i pozadina za različita mjerenja u okviru Standardnog modela, uključujući mje-

renja povezana s top kvarkom i Higgsovim bozonom koji se raspada u par b kvarkova.

Tema ove teze je mjerenje udarnog presjeka za proces pp ! W + bb + X koristeći

podatke prikupljene CMS detektorom tijekom 2012 godine na energiji
p

s = 8 TeV. W

bozon se raspada na elektron ili mion i odgovarajući neutrino. Prisutnost W bozona se

očituje kroz postojanje izoliranog leptona visokog impulsa te nedostajuće energije koja

dolazi od slabo interagirajućeg neutrina. Kvarkovi se u detektoru vide kao usmjereni

mlazovi čestica te prolaze kroz posebne algoritme koji identificiraju mlazove nastale od b

kvarkova.

9.2 Teorijski uvod i prethodna mjerenja

Složenost sudara protona proizlazi iz njihove unutarnje strukture. Iako je proton najvećim

dijelom sastavljen od uud valentnih kvarkova, ostali kvakovi koje nazivamo kvarkovima

mora, te gluoni takoder mogu sudjelovati u sudarima. Točna predvidanja konačnih sta-

nja u sudarima protona uvelike ovise o kombinaciji teorijskih izračuna i eksperimentalnih

rezultata. Opis takvih konačnih stanja se dijeli u nekoliko stupnjeva koji se odvijaju na

različitim energijskim skalama. Na najvǐsim energijama se odvija tvrdi proces koji rezul-

tira produkcijom teških ili visoko-energetskih čestica. Teške čestice se potom raspadaju na
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lakše. Ova dva procesa opisuju se matrični elementom. Pljusak partona je idući stupanj u

opisu sudara protona i označava proces u kojem su izračene lagane čestice, fotoni i gluoni,

koji su često kolinearni s originalnom česticom. Zadnji stupanj je hadronizacija tijekom

koje partoni formiraju hadrone čijim se raspadima produciraju stabilne čestice opažene u

detektoru.

Prethodna mjerenja procesa koji u konačnom stanju sadrže W bozon i b kvarkove

izvršena su na Tevatronu, eksperimentima CDF i D0 [34, 35] te na LHC-u, eksperimentima

ATLAS i CMS [33, 36]. Prethodna mjerenja ne mogu se izravno usporedivati, budući da su

proučavana različita konačna stanja u različitim faznim prostorima. Medutim, usporedba

sa teorijskim predvidanjima ukazuje na slaganje.

9.3 LHC

Veliki hadronski sudarivač je ubrzivač protona smješten na švicarsko-francuskoj granici,

u blizini Ženeve [41]. Nalazi se u podzemnom tunelu promjera 27 km, na prosječnoj du-

bini od 100 m. Veliki hadnonski sudarivač je najveći u nizu akceleratora čija je zadaća

postupno ubrzavanje čestica, do maksimalne energije
p

s = 14 TeV. Snopovi čestica, kada

dosegnu ciljanu energiju, sudaraju se na četiri mjesta gdje su izgradeni detektori koji mjere

čestice nastale u sudarima. Na dva mjesta nalaze se detektori široke namjene ATLAS (A

Toroidal LHC Apparatus) [38] i CMS (Compact Muon Solenoid) [37]. Ovi detektori po-

krivaju široki spektar tema iz fizike visokih energija, uključujući potragu za Higgsovim

bozonom, supersimetričnim česticama, te detaljna mjerenja svojstava Standardnog mo-

dela. ALICE (A Large Ion Collider Experiment) detektor proučava kvarkovsko-gluonsku

plazmu u sudarima iona olova [39]. LHCb (LHC Beauty) je usmjeren na pručavanje B

fizike kroz raspade B mezona [40]. LHC je modularni ubrzivač sastavljen od oko 10000

različitih supravodljivih magneta koji fokusiraju i usmjeravaju snop čestica.

Snopovi se ubrizgavaju u LHC u obliku paketa protona te se ubrzavaju pomoću

radiofrekventnih komora (RF). Tijekom 2012. godine, prosječan broj sudara je bio oko
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21 unutar jednog sudara paketa protona. Broj sudara po jedinici vremena se naziva

luminozitet, a ukupan broj sudara se u nekom vremenskom periodu se naziva integrirani

luminozitet. Tijekom 2012. godine ukupno je prikupljeno vǐse od 24 fb�1 inegriranog

luminoziteta.

9.4 CMS detektor

Kompaktni mionski solenoid (CMS) izgraden je oko jedne od četiri točaka interakcije na

velikom hadronskom sudarivaču. Detektor je slojevitog cilindričnog dizajna, hermetički

zatvoren i gotovo potpuno pokriva cijeli prostorni kut oko točke interakcije. CMS detektor

koristi desni koordinatni sustav s ishodǐstem u sredǐstu detektora. z os je postavljena duž

smjera snopa, x os je usmjerena prema sredǐstu prstena, a y os je okomita na njih. Detektor

je podijeljen na centralni dio (barrel) koji se proteže do ⌘ ⇡ ±1.5, te bočne dijelove

(endcaps). Unutar CMS-a nalazi se solenoid koji generira polje od 3.8 T u unutarnjem

volumenu i oko 2 T izvan. Unutar solenoida nalaze se detektor tragova i kalorimetri, a

izvan mionske komore. Jako magnetsko polje zakreće putanje nabijenih čestica nastalih

u sudarima i omogučava mjerenje njihovog impulsa.

U samom sredǐstu detektora, oko točke interakcije, smješten je silicijski piksel detek-

tor. Sastoji se od tri sloja u sredǐsnjem dijelu i dva diska sa svake strane i sadrži oko 66

milijuna piksela. Oko njega nalazi se silicijski strip detektor, koji se sastoji od niza žica.

U žicama se prolaskom nabijene čestice inducira naboj koji se potom dovodi do silicijskih

detektora.

Elektromagnetski kalorimetar (ECAL) izgraden je od olovnog volframata, kristala

velike gustoće i malog Moliereovog radijusa, što rezultira kratkim i uskim pljuskovima

prilikom upada fotona ili elektrona. Hadronski kalorimetar (HCAL) sastoji se od slojeva

mjedenih absorbera i plastičnih scintilatora u sredǐsnjem dijelu, te čeličnih absorbera i
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kvarcnih scintilatora u bočnim dijelovima. Svrha hadronskog kalorimetra je zastavlja-

nje hadronskih snopova, što se dogada u absorberima, a rezultirajući pljusak čestica se

detektira scintilatorima.

Mionske komore sastoje se od nekoliko vrsta detektora punjenih plinom. Driftne

komore smještene su u sredǐsnjem dijelu i napunjene su plinom koji se ionizira prolaskom

čestice. Katodne trakaste komore nalaze se u bočnim dijelovima te funkcioniraju na isti

način kao i driftne komore, ali su dodatno isprepletene velikim brojem žica za prikupljanje

naboja. Komore s otpornim pločama sastoje se od paralelnih ploča velike otpornosti

izmedu kojih je plin. U slučaju prolaska čestice dolazi do ionizacije plina i stvaranja

pljuska elektrona. Ove detektore karakterizira visoka vremenska razlučivost, te su pogodni

za korǐstenje kao dio sustava za okidanje.

Protoni u LHC-u se sudaraju frekvencijom od 40 MHz i generaju veliku količinu po-

dataka koju nije moguće pohraniti. Uzimajući u obzir da su udarni presjeci za zanimljive

fizikalne procese redove veličina manji od udarnog presjeka za sudar protona, potrebno je

konstruirati sustav okidača koji će zapisivati samo zanimljive dogadaje. Ovaj sustav je

dizajniran na dvije razine. Prva razina koristi posebnu elektroniku i pomoću jednostavnih

zahtjeva na svaki dogadaj, uspijeva unutar 3 µs smanjiti broj dogadaja s 40 MHz na oko

100 kHz. Iduća razina se naziva High Level Trigger (HLT), čija je zadaća smanjiti broj

sudara na oko 100 u sekundi.

9.5 Rekonstrukcija fizikalnih objekata

Elektoni u detektoru ostavljaju trag u detektoru tragova i deponiraju energiju u elek-

tromagnetskom kalorimetru. Elektron prolaskom kroz materijal može emitirati i tzv.

zakočno zračenje, odnosno fotone koji takoder deponiraju energiju u elektromagnetskom

kalorimetru. Svi energetski depoziti od jednog elektrona formiraju tzv. supercluster koji

se potom kombinira s tragom u detektoru tragova koristeći GSM (Gaussian Sum Filter)

algoritam [46, 47].
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Mione karakterizira trag u detektoru tragova i signali u mionskim komorama. Re-

konstrukcija kreće od mionskih komora gdje se prilagodbama iz signala rekonstruira trag

(tzv. stanalone muon). Zatim se izgraduje globalni mion kombiniranjem traga iz detek-

tora tragova i traga iz mionskih komora [48, 49].

Mlazovi su usmjerena grupa hadrona koja nastaje kao rezultat fragmentacije i ha-

dronizacije kvarkova. Detektirani hadroni se kombiniraju u mlaz posebnim algoritmima,

čime se pokušavaju saznati informacije o početnom partonu. Najpopularniji takav algo-

ritam je anti�kT algoritam koji na osnovu udaljenosti čestica i njihovih impulsa grupira

čestice unutar unaprijed definiranog konusa oko čestice najvǐseg impulsa [51]. Proces je

iterativan i nastavlja se sve dok svi hadroni ne budu pridruženi nekom mlazu.

Mlazovi iz b kvarkova se identificiraju pomoću posebnih algoritama [56]. Ti algoritmi

koriste karakteristična svojstva b kvarkova kao što su njihova masa i dugo vrijeme života

za formiranje jedinstvene varijable koja definira koliko je neki mlaz nalik na mlaz nastao

iz b kvarka. Algoritam korǐsten u ovoj tezi je CSV (Combined secondary vertex ) koji traga

za sekundarnim točkama interakcije koje su odmaknute od mjesta sudara i gleda tragove

čestica iz tog mjesta sudara.

Nedostajuća transverzalna energija je neravnoteža u transverzalnom impulsu svih

detektiranih čestica i odreduje se kao:

Emiss
T = | �

X

i

~pi|. (9.1)

Budući da je trasverzalni impuls očuvan, nedostajuća energija mjeri impuls kojeg od-

nose nevidljive čestice. Odredivanje nedostajuće energije je ovisno o rezoluciji detektora,

ograničenoj pokrivenosti prostornog kuta, pogrešnom interpretacijom detektiranog signala

ili kozmičkim zrakama. Ove pojave mogu umjetno povećati iznos nedostajuće energije što

treba uzeti u obzir [60].
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9.6 Selekcija dogadaja i navažnije pozadine

U tezi su predstavljeni rezultati mjerenja udarnog presjeka za produkciju W bozona za-

jedno s parom mlazova nastalih iz b kvarka u sudarima protona na energiji
p

s = 8 TeV.

Podaci su prikupljeni 2012. godine CMS detektorom i odgovaraju integriranom lumino-

zitetu od 19.8 fb�1. Za simuliranje signala i pozadine korǐsteni su generatori Madgraph

[65], Powheg [68] i Pythia [61].

Zbog boljeg slaganja podataka i simulacija, na simulacije se primjenjuje niz korekcija:

• Korekcije zbog različitog broja primarnih interakcija. Budući da su simulirani uzorci

često generirani prije nego što su uvjeti tijekom prikupljanja podataka poznati, kao

što je trenutni luminozitet, potrebno je korigirati simulirane dogadaje. Korekcija se

provodi pridavanjem težine svakom simuliranom dogadaju tako da raspodjela broja

primarnih interakcija u dogadaju izgleda jednako u podacima i simulacijama [73].

• Efikasnost identifikacije, izolacije i okidača za leptone. Efikasnosti su odredene iz po-

dataka korǐstenjem tzv. Tag-and-probe metode, ovisne su o transverzalnom impulsu

i pseudorapiditetu te se primjenjuju kao težine za svaki simulirani dogadaj.

• Efikasnost algoritma za odredivanje b mlazova. Budući da je teško točno modelirati

sve parametre koji ulaze u algoritam za odredivanje b mlazova, potrebno je korigirati

simulirane dogadaje za omjer efikasnosti algoritma u podacima i simulacijama [57].

Dogadaji korǐsteni za mjerenje udarnog presjeka moraju sadržavati W bozon koji se

raspada na mion ili elektron, te značajnu količinu nedostajuće energije koja ukazuje na

postojanje neutrina. Rekonstruirani mlazovi čestica trebaju zadovoljavati kriterije za b

mlazove. Svi kriteriji za selekciju dogadaja sabrani su ovdje:

• Jedan mion ili elektron s pT > 30 GeV i |⌘| <2.1 i izolacijskom varijablom IPF
rel <

0.12 (0.10) za mione (elektrone),
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• Točno dva mlaza s pT > 25 GeV i |⌘| <2.4 i konusom izmedu mlaza i leptona većim

od 0.5,

• Dogadaji koji sadrže vǐse od dva mlaza s pT > 25 GeV i |⌘| <2.4 su odbačeni,

• Dogadaji koji sadrže dodatni lepton s pT > 10 GeV i |⌘| <2.1 su odbačeni,

• Oba mlaza moraju imati disktiminantu za odredivanje b-mlazova veću od 0.898,

• Iznos transverzalne mase mora biti veći od 45 GeV.

Najvažnije pozadine uključuju procese s t kvarkovima, Z i W bozone producirane

zajedno s mlazovima, dvobozonske dogadaje te QCD dogadaje. Pozadine s t kvarkovima

su reducirane zahtjevima za točno jednim leptonom i dva mlaza, medutim nakon toga za-

hjeva, doprinos od tih procesa u konačnom uzorku je oko 60%. Zbog toga je konstruirano

posebno kontrolno područje dominirano doprinosom procesa s t kvarkovima u konačnom

stanju s ciljem provjere normalizacije tih procesa. Kontrolno područje je dobiveno zahtje-

vom za vǐse od dva mlaza u konačnom stanju. Uočeno je da je razlika izmedu podataka i

simulacija oko 12% što je uzeto u obzit prilikom odredivanja broja dogadaja signala.

Dogadaji koji sadrže Z bozon i mlazove u konačnom stanju mogu proći selekciju ako

jedan lepton nije dobro rekonstruiran, čime se umjetno stvara nedostajuća energija. Pro-

cesi s W bozonom i mlazovima nastalim od lakih kvarkova u konačnom stanju reducirani

su na zanemarive vrijednosti postavljanjem zahtjeva na diskriminatornu varijablu b tag-

ging algoritma. Dvobozonski procesi u kojima nastaju W i Z bozon koji se potom raspada

na par b kvarkova čine ireducibilnu pozadinu. QCD procesi u konačnom stanju sadrže

lepton koji uspjeva proći konačnu selekciju, ali nije nastao raspadom W bozona. Ova

pozadina se odreduje direktno iz podataka. Oblik raspodjele je odreden invertiranjem

izolacije na lepton i oduzimanjem MC doprinosa od podataka. Normalizacija raspodjele

odreduje se u području niskih vrijednosti transverzne mase MT < 30 GeV.
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9.7 Rezultati

Udarni presjek za proces pp!W+bb+X mjeren je odvojeno u elektronskom i mionskom

kanalu i odreden je izrazom:

� =
Nsig

A ⇥ ✏ · L (9.2)

gdje je Nsig ukupni broj dogadaja signala koji je odreden prilagodbom. A ⇥ ✏ definira

aktivno područje i efikasnost detektora, a L integrirani luminozitet. Aktivno područje i

efikasnost detektora definirano je kao:

A ⇥ ✏ =
broj izabranih Wbb dogadaja

broj generiranih Wbb dogadaja
(9.3)

Ova se vrijednost odreduje iz simulacija za svaki kanal posebno. Rezultat je naveden u

tablici 9.1. Broj dogadaja signala odreden je prilagodbom distribucije transverzne mase

Channel A⇥✏
Mionski kanal 9.14 ± 0.18 %

Elektronski kanal 7.66 ± 0.17 %

Tablica 9.1: Rezultati odredivanja A⇥✏ za mionski i elektronski kanal.

koristeći metodu najveće vjerodostojnosti (maximum likelihood fit). Prilagodba je izve-

dena istovremeno u signalnom području i u prethodno opisanom kontrolnom području

koristeći distribucije prikazane na slici 9.1. Sistematski efekti su takoder uzeti u obzir na

način da su za svaki doprinos i za svaku pozadinu producirane dvije dodatne distribu-

cijem koje odgovaraju pomaku od jedne standardne devijacije gore i dolje u odnosu na

nominalnu vrijednost. Promatrani izvori sistematskih neodredenosti su:

• Mjerenje energije mlazova,

• Rezulucija mlazova,

• Efikasnost odredivanja b mlazova,
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• Mjerenje energije leptona,

• Efikasnost okidača te identifikacije i izolacije leptona,

• Nedostajuća energija od mlazova niskih energija,

• Normalizacije simuliranih uzoraka,

• Mjerenje luminoziteta.
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Slika 9.1: Distribucije transverzne mase za mionski (gore) i elektronski (dolje) za
signalno područje i kontrolno područje dominitanu top kvark pozadinom.
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U konačnoj prilagodbi svi doprinosi variraju unutar neodredenosti osim signala koji

je slobodan. Konačni rezultat, iskazan kao omjer mjerenog udarnog presjeka i teorijskog

predvidanja (signal strength), označava se sa µ i iznosi:

µmu = 1.37 ± 0.07(stat.) ± 0.20(syst.)

µele = 1.67 ± 0.08(stat.) ± 0.27(syst.)

Korǐstenjem relacije 9.2 može se sada odrediti udarni presjek. Broj dogadaja signala

je definiran kao broj dogadaja prije prilagodbe pomnožen s µ. Aktivni dio detektora i

efikasnost se uzimaju iz tablice 9.1, a integrirani luminozitet iznosi 19.8 fb�1. Dobiveni

vrijednost udarnog presjeka je:

�(pp ! W + bb) ⇥ B(W ! µ⌫) = 0.66 ± 0.03(stat.) ± 0.10(syst.)

�(pp ! W + bb) ⇥ B(W ! e⌫) = 0.78 ± 0.04(stat.) ± 0.13(syst.)

Navedeni rezultati uključuju sve prethodno navedene sistematske neodredenosti. Medutim,

u obzir nisu uključene sistematske neodredenosti na odredivanje aktivnog dijela detektora

i efikasnosti prilikom različitog odabira partonske distribucijske funkcije i varijacije renor-

malizacijske i faktorizacijske skale.

Teorijsko predvidanje odredeno je MCFM paketom na NLO preciznost s faktorizacij-

skom i renormalizacijskom skalom postavljenom na masu W bozona. Uzimajući u obzir

i doprinos dogadaja u kojima su se sudarila po dva partona iz svakog protona (Double

parton scattering - DPS ) [32], udarni presjek tada iznosi:

�TH(pp ! W + bb) ⇥ B(W ! l⌫) = 0.55 ± 0.03(theor.) ± 0.02(DPS) pb.
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9.8 Zaključak

Ova teza predstavlje rezultate mjerenja udarnog presjeka za produkciju W bozona za-

jedno s parom mlazova nastalih iz b kvarka u sudarima protona na energiji
p

s = 8 TeV.

Podaci su prikupljeni 2012. godine CMS detektorom i odgovaraju integriranom luminozi-

tetu od 19.8 fb�1. Udarni presjek je mjeren posebno u elektronskom i mionskom kanalu,

a dva su rezultata kompatibilna unutar neodredenosti. Teorijsko predvidanje za ovaj

proces izračunato je pomoću MCFM paketa. Mjerena vrijednost je za jednu standardnu

devijaciju vǐsa od predvidene teorijske vrijednosti. Neodredenost mjerenja udarnog pre-

sjeka je dominirana sistematskim pogreškama, prvenstveno neodredenošću identifikacije

b mlazova. Smanjanje ovih efekata bi omogućilo testiranje predvidanja perturbativne

kromodinamike. Daljnja istraživanja ovog i sličnih procesa uključuju i mjerenje diferen-

cijalnog udarnog predjeka u ovisnosti o npr. transverzalnom impulsu vodećeg b mlaza

što bi dovelo do unapredenja torijskih modela. Nadalje, mogu se proučavati i stanja u

kojim su dva B hadrona u istom mlazu što bi dovelo do boljeg razumijevanja kolinearnih

konačnih stanja.
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Lorentz angle measurement in Pixel

detector

Lorentz angle measurement was performed regularly during 2011 and 2012. This para-

meter is used in reconstruction to estimate charge sharing and improve the overall resol-

ution of the Pixel detector. The results presented here were obtained using 2012 collision

data and early 2015 cosmics data.

A.1 Grazing angle method

Lorentz angle is measured by using the grazing angle method described in detail in [78].

From the individual signals in the detector, using reconstruction algorithms, tracks of

muon candidates are obtained. From these reconstructed track it is possible to extract

the entry point (xreco,yreco) to each layer of the detector. Distance between reconstructed

entry point and the actual hit in the detector is then defined as (�x,�y):

�x = xcenter � xreco (A.1)

�y = ycenter � yreco (A.2)
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where (xcenter,ycenter) is the position of each individual pixel center in the observed

cluster. Drift of the electrons can be determined using three impact angles defined in the

following way:

tan↵ =
pz

px

(A.3)

tan� =
pz

py

(A.4)

tan� =
px

py

(A.5)

where px,py and pz are momentum components in local coordinate system which are

calculated from reconstructed track parameters (Fig. A.1).

Drift of the electrons depends on the depth at which electrons are created. Depth of the

Figure A.1: Angle definitions for grazing angle method.

electron production z and drift due to magnetic field d are defined:

z = �y tan� (A.6)

d = �x � �y tan� (A.7)

This procedure is repeated for each pixel over many tracks in order to obtain charge

drift distance vs depth. The Lorentz angle is the slope of this distribution. Without

118



Appendix A. Lorentz angle measurement in Pixel detector

a magnetic field, the direction of the clusters largest extension is parallel to the track

projection on the (x, y) plane. The average drift distance of an electron created at a

certain depth is obtained from Fig. A.2. A linear fit is performed over the total depth

of the detector excluding the first and last 50 µ where the charge drift is systematically

displaced by the finite size of the pixel cell (Fig:A.3).

Figure A.2: Depth at which electrons in silicon bulk were produced as a function of
Lorentz drift.

In order to obtain a good measurement, it is important to use clean tracks. Therefore,

it required to have a well reconstructed muon tracks with pT > 3GeV and �2/ndof < 2

which are required to have shallow impact angle with respect to local y direction with

cluster size of at least 4 pixels in this direction. Summary of the selection criteria can be

found in table A.1.

Table A.1: Selection criteria for Lorentz angle measurement

Cluster size in y > 3
Track pt > 3GeV/c
�2/ndof < 2
Hit residuals < 50µm
Cluster charge < 120000e
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Figure A.3: The average drift of electrons as a function of the production depth. Slope
of the linear fit result is the tan✓L.

Figure A.4 shows how Lorentz angle changes with integrated luminosity. Results are

shown for 23fb�1 of delivered luminosity in 2012. Increase in Lorentz angle measured with

grazing angle method has been observed in all layers, with largest e↵ect ( 6%) visible in

layer 1 over this period of data taking.

Figure A.4: Lorentz angle as a function of integrated luminosity for 2012.
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A.2 Minimum cluster size method (V-method)

The pixel cluster size in the drift direction depends on the incident angle and is minimal

when incident angle is equal to the Lorentz angle. Thus, measuring the average cluster

size in drift direction as a function of incident angle and obtaining a minimum of that

distribution is an alternative and direct method of measuring the Lorentz angle. The

method is usually referred to as V-method due to a shape of distribution which in the

simple case can be approximated with formula

p1 ⇤ abs(tan(✓) � p0) + p2 (A.8)

where p0, p1 and p2 are parameters obtained from the fit and p0 = tan(✓LA).

The method was successfully applied to cosmic muon tracks during CMS commis-

sioning period in 2008 and again in 2015. The fit result is shown in figure A.5.
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 / ndf 2χ  88.57 / 45

Prob   0.0001144

Offset    0.0144± 0.9504 

RMS Constant  0.0197± 0.3026 

SlopeL    0.022± 2.352 

cot(alpha)_min  0.0027±0.3677 − 

SlopeR    0.014± 2.243 

Figure A.5: An example of V-method fit.

Application to collision data is more challenging. Coordinates of a track passing

through the detector, its incoming angle, and its pT are correlated and therefore incoming

angles from collision tracks have limited range. With standard running conditions the
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value of Lorentz angle is at the edge of that range where tracks with very low pT (<0.5

GeV) dominate. Because of that average cluster size as a function of incoming angle

cannot be described by a simple model like above mentioned for cosmic data. While

results for collision data obtained with V-method are in general agreement with the default

calculation, the uncertainty of the method at present is too big to be used as a viable

alternative.
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