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Graphene is a novel two-dimensional material with fascinating electrody-

namic properties like the ability to support collective electron oscillations (plas-

mons) accompanied by tight confinement of electromagnetic fields. Our goal

is to explore light-matter interaction in graphene in the context of plasmonics

and other technological applications but also to use graphene as a platform for

studying many body physics like the interaction between plasmons, phonons

and other elementary excitations. Plasmons and plasmon-phonon interaction

are analyzed within the self-consistent linear response approximation. We

demonstrate that electron-phonon interaction leads to large plasmon damping

when plasmon energy exceeds that of the optical phonon but also a pecu-

liar mixing of plasmon and optical phonon polarizations. Plasmon-phonon

coupling is strongest when these two excitations have similar energy and mo-

mentum. We also analyze properties of transverse electric plasmons in bilayer

graphene. Finally we show that thermally excited plasmons strongly mediate

and enhance the near field radiation transfer between two closely separated

graphene sheets. We also demonstrate that graphene can be used as a thermal

emitter in the near field thermophotovoltaics leading to large efficiencies and

power densities. Near field heat transfer is analyzed withing the framework of

fluctuational electrodynamics.
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Grafen je tek nedavno otkriveni dvo-dimenzionalan materijal s vrlo zan-

imljivim elektrodinamičkim svojstvima poput mogućnosti podržavanja kolek-

tivnih oscilacija elektronskog plina (plazmona) praćenih s jakom loklizacijom

elektromagnetskog polja. Cilj ovog doktorata je proučiti interakciju svjetlosti

i materije u grafenu u konteksu plazmonike i drugih tehnoloških primjena ali

takoder upotrijebiti grafen kao platformu za istaživanje pojava fizike mnoštva

čestica kao što su interakcija izmedu plazmona, fonona i drugih elementarnih

pobudenja. Plazmone i plazmon-fonon interakciju analiziramo u kontekstu

aproksimacije samo-konzistentnog linearnog odziva. Pokazujemo da elektron-

fonon interakcija vodi k jakom gušenju plazmona kada energija plazmona

prijede energiju optičkog fonona ali takoder neobično miješanje polarizacija

plazmona i optičkog fonona. Plazmon-fonon vezanje je najjače kad ta dva

pobudenja imaju usporedivu energiju i impuls. Takoder analiziramo svojstva

transverzalnog električnog plazmona u dvo-sloju grafena. Konačno pokazu-

jemo da termalno pobudeni plazmoni kanaliziraju i bitno pospješuju radiativni

transfer topline izmdu dvije bliske ravnine grafena. Takoder pokazujemo da se

grafen može koristiti kao termalni emiter u termofotovoltaicima bliskog polja

što vodi k velikim efikasnostima i gustoći snage. Prijenos topline u bliskom

polju analiziramo u kontekstu fluktuacijske elektrodinamike.

Ključne riječi: grafen / plazmonika / gušenja / plazmon / transverzalni elekrični

mod/ plazmon-fonon vezanje / blisko-polje / prijenos topline / termofoto-

voltaici
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Chapter 1

Introduction

Carbon is a basic ingredient of life and all organic chemistry which is con-

sequence of its abundance in nature and his chemical reactivity. With four

valence electrons distributed to one 2s and three 2p orbitals, which can hy-

bridize in many different ways, carbon is characterized by a large flexibility

of chemical bonding. One particularly interesting case is sp2 hybridization

which creates three strong σ-bonds in plane, while the remaining p orbital is

weakly bound with neighboring atoms creating π-bond. In this thesis we will

be studying graphene: a two-dimensional (2D) crystal of carbon atoms assem-

bled in a honeycomb structure. While σ-bond is responsible for the most of

the structural integrity of graphene, π-bond determines low-energy electric and

optical properties. Very peculiar property of graphene is that its low-energy

electrons behave as massless Dirac particles [1, 2] (near the corners of the Bril-

louin zone). Since graphene is essentially a 2D material, one can simply tune

its Fermi level through an electrostatic gating which brings about large con-

trol over electrical and optical properties, important for various technological

applications.

1.1 Experimental realization

Scientists were puzzled for long time whether nature allows existence of a two-

dimensional crystal. In 1930’s Peierls [3] and Landau [4] showed that thermal

fluctuations would destroy long range order and essentially melt 2D lattice

at any finite temperature. Therefore it came as a surprise when Geim and

1



Novoselov announced [5, 6, 7] in 2004 a discovery of a first 2D crystal made

of carbon atoms - graphene. Scientist were further astonished by a shear sim-

plicity of the experimental method which essentially used a scotch tape to

exfoliate graphite (graphite can be viewed as a simple stack of weakly bound

graphene planes). The 2010 Nobel prize in physics came as a credit for this

great discovery but it is interesting that even today in 2012 experimentalists

still use this ”scotch tape technique” since it offers exceptionally pure graphene

samples on a small scale, important for fundamental research. Of course it is

impractical on a large scale production which is required by various industrial

applications, and soon after the discovery of graphene several other methods

were developed for graphene production, most notably chemical vapor deposi-

tion (CVD) [8], segregation by heat treatment of carbon-containing substrates

[9] and liquid phase exfoliation [10]. The most promising of these methods, for

large scale graphene growth, is CVD which is also used [11] by the group of

Dr. Marko Kralj from the Institute of Physics in Zagreb, Croatia. They heat

ethylene (C2H4) gas, up to a temperature of 1000◦C, above the metal surface

which serves both as a catalyst for ethylene decomposition and substrate for

graphene growth.

It is interesting to note that various groups claim they have seen graphene in

their experiments prior to 2004 but it wasn’t until Geim and Novoselov ground-

breaking experiments that the true potential and importance of graphene was

recognized.

While graphene’s intriguing mechanical properties are still debated, this the-

sis concerns primarily with electrical and optical properties which are a subject

of intense research and numerous practical applications.

1.2 Plasmonics

Plasmonics studies collective electron surface charge oscillations (surface plas-

mons at surfaces of bulk materials or plasmons in a pure 2D materials like

graphene) accompanied by tight confinement of electromagnetic (EM) fields.

In recent years, an enormous interest has been surrounding the field of plas-

monics, because of the variety of tremendously exciting and novel phenomena

it could enable. On one hand, plasmonics seems to be the only viable path
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toward realization of nanophotonics: control of light at scales substantially

smaller than the wavelength [12, 13, 14, 15]. On the other hand, plasmonics is

a crucial ingredient for implementation of most metamaterials, and thereby all

the exciting phenomena that they support [16, 17, 18, 19], including negative

refraction, superlensing, and cloaking. However, there is one large and so far

insurmountable obstacle towards achieving this great vision: plasmonic mate-

rials (most notably metals) have enormous losses in the frequency regimes of

interest. This greatly motivates us to explore plasmons and their losses in a

newly available material with unique properties: graphene [5, 6, 7].

Plasmons are also very interesting phenomenon from the point of view of

many-body physics. Since losses are in a large manner determined by phonons

we will encounter interactions between various elementary excitations and in-

teresting many-body effects like plasmon-phonon coupling.

1.3 Near field thermo-photo-voltaics

Radiative heat transfer between two bodies can be greatly enhanced in the

near field, i.e. by bringing the surfaces close together to allow tunneling of

evanescent photon modes [20, 21, 22]. This happens because near field radi-

ation transfer involves thermal excitation of various surface modes which can

have much greater wave vectors (and density of states) than the freely propa-

gating modes (limited by the light line). Since each wave vector corresponds

to a heat channel, vacuum becomes better heat conductor in the near field.

However, due to their localization and evanescent nature, it is only at sub-

wavelength separations that these modes become relevant. While measuring

near field transfer has been experimentally difficult [23, 24, 25, 26], the promise

of order-of-magnitude enhancements over the far field Stefan-Boltzman black

body limit has made transfer in the near field the topic of much research.

With the current world energy demand and large environmental impact of

fossil fuels there is a worldwide shift toward renewable energy sources. In

that respect, thermo-photo-voltaics (TPVs) are a promising class of heat to

electricity conversion devices [27, 28] where Sun can heat up an emitter that

selectively re-radiates frequencies matched to the band gap of the photo-voltaic

cell thus minimizing the thermalization losses. TPVs are not limited by the
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Sun source and can use any hot (terrestrial) object like a factory furnace or

various hot car parts as a heat source. From the perspective of future energy

crisis there is a large demand for more efficient energy management where

TPVs can play important role by turning wasted heat into electricity.

Near field TPVs [29, 30, 31] further offer greater power densities since the

near field heat transfer can be orders of magnitude larger than the far field

limit. Finally, due to evanescent nature of EM modes, one does not need to

worry about losing energy through modes with frequencies below the photo-

voltaic band gap, resulting in even larger device efficiencies.

1.4 Objectives and results

The objective of this research is to study electrodynamic properties of graphene

and especially high-frequency collective oscillations of electrons (plasmons).

We will analyze plasmon excitations in the context of plasmonics and other

technological applications, but we will also look at the same problem from

the point of view of many-body physics as an interaction between various

elementary excitations (plasmons, phonons, etc.). Finally we study near field

heat transfer with graphene (mediated by thermally excited plasmons) in the

context of TPVs.

We study plasmon excitations in graphene in the context of the Random

Phase Approximation (RPA) [56] and number-conserving relaxation-time ap-

proximation [34] and we show that plasmons in doped graphene can have both

low losses and large localization for frequencies below optical phonon energy at

0.2 eV. Large plasmon damping occurs in the regime of interband single parti-

cle excitations which can be shifted towards larger energies for stronger doping

values. We demonstrate that for sufficiently large doping there is a frequency

interval from optical phonon frequency to boundary of interband regime, where

the plasmon damping is dominated by emission of optical phonon and electron-

hole pair. To describe impurity scattering we use DC relaxation time since we

don’t expect significant frequency dependance. The phonon contribution is es-

timated from the electron self-energy induced by electron-phonon interaction.

We also explore electron-phonon interaction in graphene as an interesting

problem from the aspect of many-body physics. By measuring Raman shift of
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optical phonon energy it was demonstrated that Born-Oppenheimer approxi-

mation (BOA) is not a valid approximation in graphene [32]. The measured

Raman shift is a consequence of the interaction with single particle excitations,

however the breakdown of BOA means that electrons and phonons move on

comparable energy scales which leads to a possibility of interaction between

phonons and collective electron excitations (plasmons). We show that a pecu-

liar type of hybridization of plasmon and optical phonon modes occurs around

the point where the two modes cross in energy and momentum simultaneously

since then the electron-phonon interaction will be drastically increased due to

collective electron response. We demonstrate that the electron-phonon interac-

tion leads to polarization mixing of the two modes so that longitudinal plasmon

(LP) couples exclusively to the transverse optical phonon (TO) mode, while

the tranverse electric mode, also referred to as the transverse plasmon (TP),

couples exclusively to longitudinal optical phonon (LO) mode; thus there is no

coupling between LPs and LO modes. Formally, we analyze plasmon-phonon

coupling in the self-consistent linear-response formalism which describes inter-

action of phonons with both single particle and collective electronic excitations.

We emphasize that the phonon interaction with collective excitations is much

larger than the phonon interaction with single particle excitations (measured

by Raman) which means that plasmon-phonon interaction can serve as a mag-

nifier for exploring electron-phonon interaction in graphene. Further on, our

calculations give a slight correction to the standard result of Raman shift of

the optical phonon energy since the longwave phonons can interact also with

radiative EM modes so that we predict increasing Raman linewidths for higher

dopings. Finally we note that LO phonon decouples from all (single particle

and collective) electronic excitations when its dispersion crosses the light line.

While longitudinal charge density oscillation can be referred to as longitudi-

nal plasmon, which is also polarized like transverse-magnetic (TM) EM mode,

we also analyze properties of the unusual transverse plasmon in 2D systems

[48], which is polarized like transverse-electric (TE) mode, and accompanied

by transverse current density oscillation. These kind of modes are possible

only if the imaginary part of 2D conductivity is negative which in principle

requires interband transitions. From that perspective bilayer graphene is an

interesting candidate for exploring these modes, because it has a rich band

structure and particularly two perfectly nested bands with a gap of 0.4 eV
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which results in large joint density of states considering the vertical interband

transitions. We show that plasmon properties (localization) of TE modes are

much more pronounced in bilayer than in single layer graphene.

We also show that thermally excited plasmons strongly mediate and enhance

the near field radiation transfer between two closely separated graphene sheets.

Near field heat transfer is analyzed within the framework of fluctuational elec-

trodynamics and we predict several orders of magnitude larger values of heat

transfer between two graphene sheets in the near field than the case of heat

transfer between two black bodies, of the same temperatures, in the far field.

Finally we demonstrate that graphene can be used as a thermal emitter in the

near field thermophotovoltaics leading to large efficiencies and power densities.

The thesis is organized into chapters as follows. In Chapter 2 we present

theoretical methods and tools that will be used throughout the text. We first

calculate electron dispersion and electron-phonon interaction Hamiltonian in

graphene within the tight binding approximation. Next we give the density-

density and current-current response functions in the linear approximation

and use fluctuation-dissipation theorem to calculate current-current correlation

function due to thermal fluctuations in the system. Finally we use this to

calculate the radiative heat transfer between two graphene sheets. In Chapter

3 we calculate plasmon dispersion and damping due to electron-impurity and

electron-phonon scattering. In Chapter 4 we calculate dispersion od TE modes

in single and bilayer graphene. In Chapter 5 we calculate plasmon-phonon

interaction within the self-consistent linear response formalism. In Chapter

6 we calculate near field heat transfer between two graphene sheets and we

analyze near field TPV device with graphene as a thermal emitter. Finally, in

Chapter 7 we summarize.
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Chapter 2

Methods

In this chapter, for the sake of the clarity of the presentation, we derive basic

physical quantities used to describe graphene such as the low energy Dirac

Hamiltonian and the electron-phonon interaction. We will also define standard

response functions, like the conductivity, density-density, and current-current

response functions, that will be used in later chapters. This chapter is intended

to provide an introduction and overview of these concepts so the reader already

familiar with them can skip the corresponding sections. Finally we will derive

an expression for the radiative heat transfer between two graphene sheets at

different temperatures by employing the fluctuation-dissipation theorem.

2.1 Tight binding approximation in graphene

In this section we use the tight-binding approximation to derive the electron

band structure of graphene, Dirac equation valid at low energies and electron-

phonon interaction.

2.1.1 Electron band structure

Graphene crystal structure is determined by a Bravais lattice with two atoms

in a basis (see figure 2.1). We can choose unit cell vectors as a1 = a(1, 0) and

a2 = a(−1/2,
√
3/2), while the vectors connecting first neighbors are given by

τ 1 = a(0, 1/
√
3), τ 2 = a(−1/2,−1/2

√
3), and τ 3 = a(1/2,−1/2

√
3). Here

a = 0.25 nm is a lattice constant while the nearest neighbor carbon-carbon

distance is |τ l| = b = a/
√
3 = 0.14 nm.
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Unit cell vectors of reciprocal lattice are given by c1 = (2π/a)(1, 1/
√
3)

and c2 = (2π/a)(0, 2/
√
3), while we are primarily interested in the vertex

points of the Brillouin zone i.e. vectors K = (2π/a)(1/3, 1/
√
3) and K′ =

(2π/a)(2/3, 0). The remaining four vertex points are equivalent to the points

K i K′ since they are connected to them by a simple translation with the

reciprocal vector n1c1 + n2c2, where n1 and n2 are integers.

Figure 2.1: a) Graphene crystal structure. Unit cell vectors are a1 and a2 while
A and B are atoms of the basis. b) Brillouin zone. We mark high symmetry
points K and K′ where the low-energy electron excitations are described by
massless Dirac equation.

As we already pointed out in the introduction, sp2 hybridization is responsi-

ble for the mechanical stability of graphene by creating three strong σ bonds in

xy plane while the remaining pz orbital weakly interacts with the neighborings

pz orbitals creating the π bond. Since we are particularly interested in π bond,

the entire problem is very well described with the tight binding approximation

[1].

Let us define now an operator c†R that creates a free pz orbital at the lattice

point R, i.e. |pz(R)⟩ = c†R|0⟩. Let us further denote by −γ0 the hopping inte-

gral between nearest neighbor pz orbitals (next-nearest neighbor interaction is

negligible and γ0 ≈ 2.8 eV [1]). Since we are only interested in the behavior of

the electron energies near the pz orbital energy, our system is well described

by a tight binding Hamiltonian

H = −γ0
∑

RA,τ l

c†RA−τ l
cRA

− γ0
∑

RB,τ l

c†RB+τ l
cRB

, (2.1)

where the sum over lattice points is divided into two parts that contain different

basis atoms i.e. RA = n1a1 +n2a2 + τ 1 and RB = n1a1 +n2a2 (n1 and n2 are

integers). In equation (2.1), we have assumed that zero energy corresponds to
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pz orbital energy (i.e. E(pz) = 0) and we have neglected overlapping of the

two neighboring orbitals. We have also omitted the notion of electron spin

since it only plays the role of additional degree of freedom. Eigenstates of the

Hamiltonian (2.1) must take the form of the linear combination of pz orbitals

that satisfy the Bloch condition

c†k =
1√
N

∑
RA

eik·RAc†RA
fA(k) +

1√
N

∑
RB

eik·RBc†RB
fB(k)Z, (2.2)

where we have explicitly separated the phase Z (Z∗Z = 1) which will be

defined later so that analytical expressions would look as simple as possible.

Let us define now Fourier transform of operators c†RA
and c†RB

as

A†
k =

1√
N

∑
RA

eik·RAc†RA
, and (2.3)

B†
k =

Z√
N

∑
RB

eik·RBc†RB
. (2.4)

Then, the Bloch eigenstate (2.2) is c†k = fA(k)A
†
k + fB(k)B

†
k, and we can also

write the inverse Fourier transforms (since Z∗Z = 1) as

c†RA
=

1√
N

∑
k

e−ik·RAA†
k, and (2.5)

c†RB
=

Z∗
√
N

∑
k

e−ik·RBB†
k. (2.6)

Let us look now at the first sum from (2.1) and notice that every vectorRA−τ l

is in fact one of the RB vectors, so we have

∑
RA,τ l

c†RA−τ l
cRA

=
∑

RA,τ l

(
Z∗
√
N

∑
k′

e−ik
′·(RA−τ l)B†

k′

)(
1√
N

∑
k

eik·RAAk

)

=
∑

k,k′,τ l

Z∗eik
′·τ lB†

k′Ak

∑
RA

1

N
ei(k−k′)·RA . (2.7)

However, since ∑
RA

1

N
ei(k−k′)·RA = δk,k′ , (2.8)
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we obtain in the first sum∑
RA,τ l

c†RA−τ l
cRA

=
∑
k,τ l

Z∗eik·τ lB†
kAk. (2.9)

In a similar manner we get the second sum

∑
RB,τ l

c†RB+τ l
cRB

=
∑

RB,τ l

(
1√
N

∑
k′

e−ik
′·(RB+τ l)A†

k′

)(
Z√
N

∑
k

eik·RBBk

)
=
∑
k,τ l

Ze−ik·τ lA†
kBk. (2.10)

Finally, the Hamiltonian (2.1) becomes

H = −γ0
∑
k

(∑
l

Z∗eik·τ l ·B†
kAk +

∑
l

Ze−ik·τ l · A†
kBk

)
. (2.11)

Relation (2.11) contains a specially important function

T (k) = −γ0
∑
l

Ze−ik·τ l , (2.12)

so finally we can write equation (2.11) in a matrix form

H =
∑
k

(
A†

k B†
k

)( 0 T (k)

T ∗(k) 0

)(
Ak

Bk

)
. (2.13)

Now, since the Bloch state c†k = fA(k)A
†
k + fB(k)B

†
k has to diagonalize this

Hamiltonian, we can also write

H =
∑
k

E(k)c†kck =
∑
k

E(k)
(
A†

k B†
k

)( fA(k)

fB(k)

)(
f∗
A(k) f ∗

B(k)
)( Ak

Bk

)
.

(2.14)

By comparing equations (2.13) and (2.14) we need to have:(
0 T (k)

T ∗(k) 0

)(
fA(k)

fB(k)

)
= E(k)

(
fA(k)

fB(k)

)
. (2.15)

So we have reduced entire problem to the matrix diagonalization, while the
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Figure 2.2: Graphene electron band structure with Dirac cones aroundK point
(magnified). Intrinsic graphene has Fermi level EF = EK = 0.

eigenvalues (i.e. energies) are given by:∣∣∣∣∣ −E(k) T (k)

T ∗(k) −E(k)

∣∣∣∣∣ = 0. (2.16)

Solution of the determinant equation (2.16) determines the electron band struc-

ture in graphene as [1]:

E±(k) = ±
√
T (k)T ∗(k) = ±γ0

√
1 + 4 cos

akx
2

cos
aky

√
3

2
+ 4 cos2

akx
2
.

(2.17)

Figure 2.2 shows the function E(k) and we can notice the peculiar behavior

of the bands at the Brillouin zone vertex points K and K′. Further on, since

each graphene unit cell contains two atoms in basis and each atom donates one

free electron into the band, Fermi energy is defined such that there are enough

electrons to fill precisely one Brillouin zone in the reciprocal space. Relation

(2.17) tells us that electron bands are divided into positive and negative states

that touch precisely at the the vertex point of the Brillouin zone (see also

figure 2.2), such that we have EF = EK = 0. Because of the fact that electron

states around the Fermi energy determines the low-energy properties, we will

focus precisely on the area around the K and the K′ points. Finally we note

that, since valence (negative) and conduction (positive) band touch at only

6 points (K, K′ and the remaining four equivalent vertex points), that are

located precisely at the Fermi level, the intrinsic graphene is an unusual zero

gap semiconductor.
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2.1.2 Dirac electron dispersion in graphene

We can write equation (2.15) as an eigenvalue equation: Hkψk = Ekψk, where

the Hamiltonian and the wave function (eigenfunction) are given by

Hk =

(
0 T (k)

T ∗(k) 0

)
, and (2.18)

ψk =

(
fA(k)

fB(k)

)
. (2.19)

Let us focus now on the area around the K point and change the origin of our

wave vector as k → k+K, so that we have |k| << |K|. Now we can make a

Taylor expansion of the function T (k) as follows:

T (k) = −γ0
∑
l

Ze−i(k+K)·τ l ≈ −γ0
∑
l

Ze−iK·τ l(1− ik · τ l). (2.20)

Next we calculate the following sums:∑
l

e−iK·τ l = 0, and (2.21)

∑
l

τ le
−iK·τ l = e−i2π/3

√
3

2
a(ix̂+ ŷ). (2.22)

Now we will choose the phase Z = e−iπ/3 so that we have

∑
l

τ lZe
−iK·τ l = e−iπ

√
3

2
a(ix̂+ ŷ) =

√
3

2
a(−ix̂− ŷ). (2.23)

Finally we get expressions for the function T (k) and the effective Hamiltonian

Hk in the vicinity of point K:

T (k) = γ0ik ·
∑
l

τ lZe
−iK·τ l =

√
3

2
aγ0(kx − iky), and (2.24)

Hk =

√
3

2
aγ0

(
0 kx − iky

kx + iky 0

)
. (2.25)
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It is now convenient to introduce new variable: ~vF ≡
√
3
2
aγ0, where vF ≈ 106

m/s since γ0 ≈ 2.8 eV [1]. Hamiltonian (2.25) now becomes

Hk = ~vF

[(
0 1

1 0

)
kx +

(
0 −i
i 0

)
ky

]
, (2.26)

that is,

Hk = ~vFσ · k, (2.27)

where σ = σxx̂+σyŷ, while σx =

(
0 1

1 0

)
and σy =

(
0 −i
i 0

)
are the Pauli

spin matrices. Here we note the remarkable property of graphene around K

point where electrons behave precisely like massless Dirac particles of spin 1/2

[33]! We can also find energies (eigenvalues) and wave functions (eigenvectors)

from the equation Hkψk = Ekψk:

En,k = n · ~vF |k| = n · ~vF
√
k2x + k2y, and (2.28)

ψn,k(r) = ⟨r|nk⟩ = 1

L
√
2

(
n

eiθ(k)

)
eik·r. (2.29)

Here L2 is the area of graphene, n = 1 (n = −1) denotes the conduction (va-

lence) band, respectively, and the angle θ(k) = tan−1(ky/kx). Further on, we

note that behavior around K ′ point is easily found if we move the wave vector

origin so that k → k+K′. In that case it is more convenient to choose the

phase Z = 1 and the Hamiltonian (2.18) turns into H ′
k = ~vFσ∗ · k. Hamil-

tonian H ′
k has eigenvalues: E ′

n,k = n · ~vF |k| = En,k that are degenerate with

eigenvalues of Hamiltonian Hk so that K′ point represents only an additional

degree of freedom like electron spin. In other words we can limit ourself to the

behavior around K point if we note that each state is four fold degenerate i.e.

two spin and two valley (K−K′) degenerate.

Finally, let us find the electron density and electron current density operators

for Dirac electrons in graphene. To start, note that the electron momentum is

p = ~k, which can be written as an operator in the coordinate representation

p = −i~∇, so the Dirac Hamiltonian (2.27) can be written as: H = −iσ ·∇.

If we now describe this Dirac electron by a wave function ψα(r) = ⟨r|α⟩, then
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the electron particle density is simply ρα = |ψα(r)|2 so the density operator is

ρop(r) = δ(r− rop). (2.30)

To find the electron current density we can apply the equation of continuity:

−e∂ρ
∂t

+∇ · j = 0 (here we take e > 0 so that −e denotes the electron charge),

with an equation of motion Hψ = i~∂ψ
∂t
. This yields the electron current

density: jα = −evFψα(r)∗σψα(r), i.e. the current density operator:

jop(r) = −evFσδ(r− rop). (2.31)

At last, the Fourier transforms of these quantities are given by

ρop(q) =
1

L2
e−iq·rop , and (2.32)

jop(q) = −evF
L2

σe−iq·rop . (2.33)

2.1.3 Electron-phonon interaction

Since graphene is a 2D crystal with two atoms per basis, there are also two

optical phonon branches (transverse and longitudinal) that are degenerate at

energy ~ω0 = 0.196 eV and mostly independent of wave vector q (for long wave

modes q << 2π/a). Let us denote by u(R) = [uA(R)−uB(R)]/
√
2 motion of

the basis atom A relative to the atom B in the unit cell at the position R (see

figure 2.3). If A and B where oppositely charged ions like in polar crystals,

then their motion would result in the electric dipole moment i.e. electric

field in the direction of the vector u and strong electron-phonon interaction.

However, since A and B are completely equivalent carbon atoms, graphene

belongs to the class of covalent crystals, and electron-phonon interaction is

considerably reduced compared to the case of polar crystals. We will also

see that electron-phonon interaction in graphene acquires unusual form in the

vicinity of the Dirac (K and K′) point and we will demonstrate that optical

phonon oscillation creates effective electric field that is perpendicular to the

vector u. That fact will lead to peculiar mixing of plasmon and optical phonon

polarizations.

The rigorous calculation of electron-phonon interaction in graphene is given
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Figure 2.3: a) Atom motion in graphene during the longitudinal optical phonon
oscillations. b) Motion of basis atoms described by a vector u in the real space
induces vector potential A that moves Dirac points in the reciprocal space.
Dirac point symmetry causes unusual polarization of this vector potential:
A ⊥ u.

in references [52, 53], while we only sketch here the main steps. Let us start

with the tight binding Hamiltonian (2.18)

Hk =

(
0 T (k)

T ∗(k) 0

)
. (2.34)

The effect of phonon on the electron motion can be simply found by consid-

ering the change in the hopping integral (−γ0) with the change in the nearest

neighbor distance. Let us now observe atom A at a position RA and a neigh-

boring atom B at a position RB = RA−τ l whose equilibrium relative distance

is simply |τ l| = b. If we move these two atoms out of equilibrium positions,

new distance is: |τ l + uA(RA)− uB(RA − τ l)|, and the leading order change

in the hopping integral is

−γ = −γ0 −
∂γ0(b)

∂b
[|τ l + uA(RA)− uB(RA − τ l)| − b]

≈ −γ0 −
∂γ0(b)

∂b

1

b
τ l · [uA(RA)− uB(RA − τ l)] . (2.35)

Since we are interested in long wavelength optical phonons (q << 2π/a),

then instead of discrete vector R, we can write a continuous coordinate r in

the expression u(R) = [uA(R)− uB(R)]/
√
2, i.e. we write

uA(RA)− uB(RA − τ l) ≈ uA(r)− uB(r− τ l) ≈ u(r)
√
2. (2.36)

Finally the change in the hopping integral (2.35), in the long wavelength limit,
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is given by:

−γ ≈ −γ0 −
∂γ0(b)

∂b

√
2

b
τ l · u(r). (2.37)

Note here that all three neighboring carbon atoms (l = 1, 2, 3) see the same

phonon amplitude u(r), which will not be true in the case of finite wavevector

q. However this change in amplitude will come with an extra factor q · a, so
unless we are working with phonon wavevectors on the order of Brillouin zone,

the long wavelength limit is a great approximation concerning the interaction

between electrons and optical phonons.

We can write phonon motion u(r) as a sum over normal modes

u(r) =
∑
q,µ

1√
NM

Qqµeqµe
iq·r. (2.38)

Here M is the mass of a carbon atom, µ = L, T denotes longitudinal i.e.

transverse polarization, and if we define an angle φ(q) = tan−1(qy/qx), then

polarization vectors are given by

eqL = i(cosφ(q)x̂+ sinφ(q)ŷ), and (2.39)

eqT = i(− sinφ(q)x̂+ cosφ(q)ŷ). (2.40)

Finally we can write the phonon amplitude Qqµ through the creation (b†qµ) and

annihilation operators (bqµ) as

Qqµ =

√
~
2ω0

(bqµ + b†−qµ). (2.41)

To find how the phonon motion u(r) influences the electrons around the K

point let us change the origin of wave vector as before: k → k+K. Now the
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function T (k) becomes

T (k, r) =
∑
l

(−γ)Ze−i(k+K)·τ l

=
∑
l

(
−γ0 −

∂γ0(b)

∂b

√
2

b
τ l · u(r)

)
Ze−i(k+K)·τ l

≈
∑
l

(
−γ0 −

∂γ0(b)

∂b

√
2

b
τ l · u(r)

)
Ze−iK·τ l(1− ik · τ l). (2.42)

By looking at the leading order expansion in the phonon motion u(r) and

electron wave vector k we have

T (k, r) =

(
γ0ik− ∂γ0(b)

∂b

√
2

b
u(r)

)
·
∑
l

τ lZe
−iK·τ l . (2.43)

We recognize the first part of the expression (2.43) from the equation (2.24)

for bare Dirac electrons

T0(k) = γ0ik ·
∑
l

τ lZe
−iK·τ l =

√
3

2
aγ0(kx − iky), (2.44)

while the other part of the sum (2.43) gives

Te−ph(r) = −∂γ0(b)
∂b

√
2

b
u(r) ·

∑
l

τ lZe
−iK·τ l

= −∂γ0(b)
∂b

√
2

b

√
3

2
a(−iux − uy). (2.45)

With the substitution: ~vF =
√
3
2
aγ0, expressions above transform into a sim-

pler form

T0(k) = ~vF (kx − iky), and (2.46)

Te−ph(r) = ~vF
∂γ0(b)

∂b

√
2

bγ0
(iux + uy). (2.47)

Finally since T (k, r) = T0(k)+Te−ph(r), we can also write for the total Hamil-
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tonian Hk = H0
k +He−ph where

H0
k =

(
0 T0(k)

T ∗
0 (k) 0

)
= ~vF

(
0 kx − iky

kx + iky 0

)
, and (2.48)

He−ph =

(
0 Te−ph

Te−ph 0

)
= ~vF

∂γ0(b)

∂b

√
2

bγ0

(
0 uy + iux

uy − iux 0

)
.

(2.49)

If we introduce here the notation σ × u = σxuy − σyux , then we can write

equation (2.49) in a convenient form [51, 52, 53]:

He−ph = −~vF
∂γ0(b)

∂b

√
2

bγ0
σ × u(r). (2.50)

From this expression we can immediately see the unusual property of the

electron-phonon interaction in the vicinity of Dirac point. Namely the to-

tal Hamiltonian Hk in the presence of the phonons, can be obtained from the

bare Hamiltonian H0
k = ~vFσ · k, by a simple substitution:

kx → kx +Kuy, (2.51)

ky → ky −Kux, (2.52)

where K = ∂γ0(b)
∂b

√
2

bγ0
. But this is precisely equivalent to the action of the vector

potential A:

~k → ~k+ eA. (2.53)

In other words influence of phonons on the electron motion is equivalent to

the presence of vector potential with components: Ax ∝ uy and Ay ∝ −ux.
This will in turn lead to the unusual mixing of plasmon and optical phonon

polarizations. To understand this let us assume that the phonon wave vector

is oriented in the y direction (q = qŷ) and let us look at the longitudinal

optical phonon motion that have ux = 0 and uy ̸= 0 (see figure 2.3). Then

the phonon influence is given by transverse vector potential since Ax ̸= 0 and

Ay = 0. In other words longitudinal phonon oscillation is equivalent to the

transverse vector potential oscillation i.e. transverse electric field. On the other

hand, since plasmons are collective charge density oscillations, accompanied by

a longitudinal electric field, there won’t be any interaction between plasmon

18



and longitudinal optical phonon. We will further show that there is a strong

interaction of plasmon and transverse optical phonon which is a very counter

intuitive result from the perspective of polar crystals.

The simplest way to analyze the electron-phonon interaction in graphene is to

show how the phonon amplitude couples to the electron current density. In that

regards let us take electron-phonon Hamiltonian (2.50) and write expansion

of the phonon motion u(r) over the normal modes from equation (2.38) to

obtain:

He−ph = −~vF
∂γ0(b)

∂b

√
2

bγ0

1√
NM

∑
q,µ

eiq·rσ × eqµQqµ. (2.54)

Here we recognize the current density operator j†q = − evF
L2 σe

iq·r from equation

(2.33), and if we introduce the factor F = ~
e
∂γ0(b)
∂b

√
2

bγ0
1√
NM

, we can finally write

for the electron-phonon interaction Hamiltonian:

He−ph = L2F
∑
q,µ

j†q × eqµQqµ. (2.55)

A more convenient way to write electron-phonon interaction is to show how

the phonon amplitude couples to the electron density. In that respect, let us

define the quantities:

EqL ≡ eqL · ŷ + ieqL · x̂ = i sinφ(q)− cosφ(q) = −e−iφ(q), and (2.56)

EqT ≡ eqT · ŷ + ieqT · x̂ = i cosφ(q) + sinφ(q) = ie−iφ(q). (2.57)

Then by using the normal mode expansion (2.38) we obtain

uy + iux =
∑
q,µ

1√
NM

Qqµ(eqµ · ŷ + ieqµ · x̂)eiq·r =
∑
q,µ

1√
NM

QqµEqµe
iq·r.

(2.58)

Finally the electron-phonon interaction Hamiltonian (2.49) can be written as:

He−ph = ~vF
∂γ0(b)

∂b

√
2

bγ0

∑
q,µ

1√
NM

Qqµ

(
0 Eqµ

E∗
qµ 0

)
eiq·r. (2.59)

If we now define

g ≡ ~vF
∂γ0(b)

∂b

√
2

bγ0

1√
NM

, and (2.60)
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Mqµ ≡

(
0 Eqµ

E∗
qµ 0

)
, (2.61)

then we can write electron-phonon interaction as a coupling between phonon

amplitude Qqµ and electron density operator ρ†q from equation (2.32) as:

He−ph = L2
∑
q,µ

gMqµρ
†
qQqµ. (2.62)

Formula (2.55) and (2.62) are equivalent. However, the response of the sys-

tem to the interaction Hamiltonian (2.55) is most easily described by utilizing

the current-current response function while the response to the interaction

Hamiltonian (2.62) is most easily described by the density-density response

function.

2.2 Response functions

In this section we present response functions which describe response of our

system to an external perturbation. Specifically we calculate graphene’s con-

ductivity, density-density, and current-current response functions in the weak

coupling approximation i.e. linear response theory. These three functions are

all connected by simple relations, however it will be more convenient to use

one or another depending on the specific nature of the problem being studied.

2.2.1 Conductivity

Semiclassical model - Drude conductivity

If we are only interested in the response of the graphene under the influence

of external electromagnetic field, we can simply calculate the conductivity

function σ(ω). The semiclassical model gives a simple relation for the Drude

conductivity [38]

σD(ω) = e2
∫

4
dk

4π2

v(k)v(k)

1/τ − iω

(
− ∂f

∂E

)
E=E(k)

, (2.63)

where τ is the relaxation time, v(k) = 1
~
∂E(k)
∂k

is the electron velocity, f(E) =
1

e(E−µ)/kT+1
is the Fermi-Dirac distribution function, and factor 4 stands for two
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spin and two valley degeneracy. Semiclassical model is simply a generalization

of the Drude model for free electrons to the case of an arbitrary band structure

E(k), however we will see that it can describe lot of interesting phenomena in

a qualitatively correct way. At zero temperature one has −∂f/∂E = δ(E−µ)

and it is straightforward to show that for the case of Dirac electrons in graphene

Hk = ~vFσ · k, the Drude conductivity is given by

σD(ω) = e2
µ

π~2
1

1/τ − iω
. (2.64)

It is a slightly more tedious task to show that at finite temperature T one has

σD(ω) = e2
2kT

π~2
ln
(
2 cosh

µ

2kT

) 1

1/τ − iω
. (2.65)

Fermi’s golden rule - interband conductivity

The semiclassical model has a serious limitation since it cannot describe transi-

tions between different bands [38], which is particularly important in graphene

that has zero band-gap between valence and conduction bands. To take into

account these interband transitions we will calculate the response of graphene

to an external electric field, in the first order perturbation theory (using the

Fermi’s golden rule).

Let us imagine that an electromagnetic plane wave of frequency ω is incident

under the normal angle onto the graphene sheet. We can choose the gauge so

that the scalar potential φ = 0, while the vector potential A = A0e
−iωt,

so that the electric field is given by E = −∂A
∂t

= iωA = E0e
−iωt , and

E0 = iωA0. Electrons in graphene are described by a Dirac Hamiltonian

(2.27) H0 = ~vFσ ·k = vFσ ·p, where p is the graphene’s electron momentum

so that the interaction with the vector potential is simply described by a sub-

stitution p → p + eA. In other words, the total Hamiltonian in the presence

of electromagnetic field can be written as H = vFσ · (p + eA) = H0 + Hint,

where the interaction part of the Hamiltonian is given by

Hint = evFσ ·A =
evF
iω

σ · E0e
−iωt. (2.66)

Here we have kept only the time dependent part (e−iωt) responsible for the

absorption process. Then the Fermi’s golden rule [68] gives the probability for
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a transition from an initial state i to the final state f , with an absorption of a

photon:
dwi→f

dt
=

2π

~
|⟨i|Hint|f⟩|2δ(~ωif − ~ω)fi(1− ff ). (2.67)

The total power absorbed from the incident wave can be written in two ways.

First, one can write

Pa =
∑
i,f

~ω
dwi→f

dt
. (2.68)

On the other hand, since j(ω) = σ(ω)E(ω), one can write (for harmonic fields)

[67]

Pa = 2ℜ
∫

j(ω) · E∗(ω)dr = 2ℜσ(ω)|E0|2L2, (2.69)

where L2 is the area of graphene sheet, and we used the fact that E(ω) = E0 is

uniform along the graphene plane for the case of normal incident wave. Finally

we have

ℜσ(ω) = ~ω
2|E0|2L2

∑
i,f

2π

~
|⟨i|Hint|f⟩|2δ(~ωif − ~ω)fi(1− ff ). (2.70)

Now, let us denote the initial (final) state of the electron by a band index n

(n′) and a wave vector k (k′) i.e. |i⟩ = |nk⟩ (|f⟩ = |n′k′⟩). Without loss

of generality we can assume that the electric field is polarized along the x

direction: E0 = E0x̂. Then we can write for the matrix element:

⟨i|Hint|f⟩ =
evF
iω

E0⟨n′k′|σx|nk⟩. (2.71)

Further on, by using explicit form (2.29) for the Dirac electron wave function

ψn,k, it is simple to show that

⟨n′k′|σx|nk⟩ =
∫
ψ∗
n′,k′(r)σxψn,k(r)dr =

1

2
δk,k′(ne−iθk + n′eiθk), (2.72)

so we obtain expressions for the matrix element

|⟨i|Hint|f⟩|2 =
e2v2F
ω2

|E0|2δk,k′
1

2
(1 + nn′ cos 2θk), (2.73)
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and conductivity

ℜσ(ω) = ~ω
2
4
∑
n,n′

1

4π2

∫
kdk

∫
dθk

2π

~
e2v2F
ω2

1

2
(1 + nn′ cos 2θk)×

δ(n′~vFk − n~vFk − ~ω)fnk(1− fn′k), (2.74)

where we also took into account 2 spin and 2 valley degeneracy. We now

take into account only (interband) transitions between conduction and valence

bands, because the intraband transitions are already taken into account by the

Drude conductivity. After lengthy but straightforward calculation, one obtains

simple expression for the real part of the conductivity

ℜσ(ω) = e2

4~
f(−~ω/2)[1− f(~ω/2)]. (2.75)

It is instructive to look at this result at zero temperature

ℜσ(ω) = e2

4~
θ(~ω − 2µ). (2.76)

Here θ(x) is a simple step function [θ(x < 0) = 0 and θ(x > 0) = 1]. The real

part of the conductivity provides us with absorption of the electromagnetic field

incident on a graphene sheet. We see that there is no absorption for ~ω < 2µ

which is result of the Pauli exclusion principle. On the other hand above this

threshold, when ~ω > 2µ one will have uniform absorption. Since the incident

energy flux is given by Wi = 2|E0|2/µ0c (see reference [67]), and the absorbed

energy per unit time per unit area is given byWa = Pa/L
2 = 2ℜσ(ω)|E0|2 (see

equation (2.69)), the absorption coefficient can be written as

|a|2 = Wa

Wi

=
µ0ce

2

4~
= 2.3%. (2.77)

This result has been confirmed by experiment [37]. Further on, note that if we

include the emission process, then we obtain the following expression for the
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conductivity:

ℜσ(ω) = e2

4~
[f(−~ω/2)[1− f(~ω/2)]− [1− f(−~ω/2)]f(~ω/2)]

=
e2

4~
[f(−~ω/2)− f(~ω/2)]. (2.78)

Finally we can obtain the imaginary part of the conductivity by using the

Kramers-Kronig relations [56]:

ℑσ(ω) = −2ω

π
P
∫ ∞

0

ℜσ(ω′)

ω′2 − ω2
dω′

= − e2

4~
4~ω
π

P
∫ ∞

0

f(−ϵ)− f(ϵ)

(2ϵ)2 − (~ω)2
dϵ. (2.79)

It is convenient to introduce the following function:

G(ϵ) ≡ f(−ϵ)− f(ϵ) =
sinh ϵ

kT

cosh µ
kT

+ cosh ϵ
kT

. (2.80)

Then, we can simply write for the total interband conductivity (see also [61]):

σI(ω) =
e2

4~

(
G(ω/2) + i

4~ω
π

∫ ∞

0

G(ϵ)−G(~ω/2)
(2ϵ)2 − (~ω)2

dϵ

)
. (2.81)

In the last expression, we took into account that principal value of the integral

with G(~ω/2) equals to zero, which removes singularities from the integral in

the imaginary part of the conductivity.

2.2.2 Density-density response function

We now proceed to a more formal, but powerful, aspect of linear response

theory by looking into the density-density response function. In the last section

we assumed that there is no spatial dependence of external perturbation and

calculated only frequency dependence of the conductivity. Let us assume that

graphene is placed in an external scalar potential of arbitrary spatial and time

dependence

φext(r, t) =

∫
e−iωtdω

∑
q

eiq·rφext(q, ω). (2.82)
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Now, scalar potential simply couples to the electron charge density so one can

write the interaction Hamiltonian [56]

Hint =

∫
e−iωtdωL2

∑
q

(−eφext(q, ω))ρ†q. (2.83)

We now assume the weak coupling between the system (electron density) and

a probe (external potential) so that we can focus on a single (q, ω) component.

The induced electron particle density is then given by

⟨ρind(q, ω)⟩ = χ(q, ω)(−eφext(q, ω)), (2.84)

where the density-density response function is given by [56]

χ(q, ω) = L2
∑
a,b

e−βEb

Z
|⟨a|ρ†q|b⟩|2

(
1

~ω − ~ωab + iη
− 1

~ω + ~ωab + iη

)
.

(2.85)

Here Z =
∑

b e
−βEb is the partition function, and ~ωab = Ea −Eb. Further on

|a⟩, and Ea are exact many body state, and energy of the system in the presence

of the perturbation. In other words we can write H|a⟩ = Ea|a⟩ where H =

H0+Hint is the total system Hamiltonian given by the sum of the Hamiltonian

in the absence of perturbation (H0) and the interaction term (Hint). Equation

(2.85) is exact in the limit of weak coupling (i.e. linear response), however one

first needs to find the exact eigenstates of the total Hamiltonian H which is

not an easy task. We shall deal with this issue by working in the self-consistent

approximation i.e. by introducing simple, yet powerful, concept of screening.

In that regard let us note that the induced charge density ⟨ρind(q, ω)⟩ will

be accompanied by an scalar potential φind(q, ω) which can act back on the

electrons through the interaction Hamiltonian (2.83). In other words, instead

of equation (2.84) we should write the self-consistent equation for the total

induced particle density

⟨ρind(q, ω)⟩ = χ(q, ω)(−eφext(q, ω)− eφind(q, ω)). (2.86)

However, χ(q, ω) is now the screened density-density response function which

is again given by the equation (2.85), only |a, b⟩ are now simply the eigenstates

of the noninteracting Hamiltonian H0. This is the lowest order approximation
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which can also be traced down to the random phase approximation. For a

system of Dirac electrons, described by a wave functions ψn,k given by equation

(2.29), one then obtains for the screened response function [56]:

χ(q, ω) =
1

L2
4
∑
nn′k

|⟨n′k+ q|eiq·r|nk⟩|2 fnk − fn′k+q

~ω − En′k+q + Enk + iη

=
1

L2
4
∑
nn′k

1

2
[1 + nn′ cos(θk+q − θk)]

fnk − fn′k+q

~ω − En′k+q + Enk + iη
. (2.87)

We will be particularly interested in the dielectric function of this system so

we need to find the relation between the scalar potential φind and the induced

surface charge density −e⟨ρind(r, t)⟩ = −e⟨ρind(q, ω)⟩eiq·re−iωt. Let us define

here the vector r = xx̂ + yŷ which lies in the graphene plane (located at

z = 0) while z axis is perpendicular to graphene plane. Further on we assume

graphene is sitting in between two dielectrics of permittivities ϵr1 (z < 0) and

ϵr2 (z > 0). If we work in the electrostatic approximation (q >> ω/c) then

the scalar potential induced by the surface charge density located at the plane

z = 0 is simply given by

φind(r, z, t) = φind(q, ω)e
iq·r−q|z|e−iωt. (2.88)

The electric field is given by E = −∇φ. We can now separate the electric field

E = Er +Ezẑ into component along the graphene plane Er = −∇rφ which is

given by expression

Eind
r (r, z, t) = −φind(q, ω)iqeiq·r−q|z|e−iωt, (2.89)

and component perpendicular to the graphene plane Ez = −∂φ/∂z which is

given by expressions

Eind
z (r, z > 0, t) = φind(q, ω)iqe

iq·r−qze−iωt, (2.90)

Eind
z (r, z < 0, t) = −φind(q, ω)iqeiq·r+qze−iωt. (2.91)

Further on, the Gauss law can be written as a boundary condition across the
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graphene plane as [67]

−e⟨ρind(r, t)⟩ = [Dind(r, z = 0+, t)−Dind(r, z = 0−, t)] · ẑ

= ϵ0ϵr1E
ind
z (r, z = 0+, t)− ϵ0ϵr2E

ind
z (r, z = 0−, t). (2.92)

Then by using the decomposition into Fourier components and equations (2.90)

and (2.91) we obtain desired relation between the induced charge density and

corresponding induced scalar potential:

−e⟨ρind(q, ω)⟩ = qφind(q, ω)2ϵ̄rϵ0. (2.93)

Here ϵ̄r = (ϵr1 + ϵr1)/2, and we can introduce the external charge density

corresponding to the external potential by the same relation

−eρext(q, ω) = qφext(q, ω)2ϵ̄rϵ0. (2.94)

Let us now define the graphene dielectric function ϵ(q, ω) as [56]:

ϵ(q, ω)

ϵ̄r
=

ρext(q, ω)

ρext(q, ω) + ⟨ρind(q, ω)⟩
. (2.95)

Then from equations (2.86), (2.93) and (2.94) we obtain

ϵ(q, ω)

ϵ̄r
= 1− e2

2ϵ̄rϵ0q
χ(q, ω). (2.96)

Note that the zero of dielectric function (ϵ(q, ω) = 0) defines the collective

electron oscillation (plasmon) which is the core subject of this thesis.

Finally let us find the relation between density-density response function

χ(q, ω) and conductivity σ(q, ω). If we introduce the total scalar poten-

tial φtot = φext + φind, then by using equation (2.86), we can write the in-

duced surface charge density as −e⟨ρind(q, ω)⟩ = χ(q, ω)e2φtot(q, ω). On the

other hand Ohm’s law gives the induced surface current density ⟨jind(q, ω)⟩ =
σ(q, ω)Etot

r (q, ω) , while the electric field can be found from equation (2.89):

Etot
r (q, ω) = −φtot(q, ω)iq. Finally, equation of continuity can be written with

Fourier components as −e⟨ρind(q, ω)⟩ = q · ⟨jind(q, ω)⟩/ω, so we obtain desired
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relation:

σ(q, ω) = i
ωe2

q2
χ(q, ω). (2.97)

Note however that σ(q, ω) refers only to the longitudinal conductivity since

the scalar potential alone is not enough to decribe the transverse fields.

2.2.3 Current-current response function

In the last section we described response to the external scalar potential which

we now supplement by calculating response to the external vector potential.

Let us then start with the Hamiltonian (2.27) describing free Dirac particles:

H0 = vFσ · p, where p is the electron momentum. In the presence of external

vector potential Aext(r, t), one can write for the total Hamiltonian H = vFσ ·
(p + eAext(r, t)) = H0 + Hint, where the interaction part of the Hamiltonian

is given by: Hint = evFσ ·Aext(r, t). We can now decompose vector potential

into Fourier components to obtain:

Hint =
∑
q

eiq·revFσ ·Aext(q, t), (2.98)

then by using the current density operator from equation (2.33) we can write

Hint = −L2
∑
q

j†q ·Aext(q, t). (2.99)

It is now convenient to introduce the longitudinal (VL = V·e∗qL) and transverse

(VT = V · e∗qT ) vector components by using the polarization vectors from

equations (2.39) and (2.40). We can now write the interaction Hamiltonian

Hint = −L2
∑
q,µ

j†q,µ · Aext,µ(q, t)

=

∫
e−iωtdω(−L2)

∑
q,µ

j†q,µ · Aext,µ(q, ω). (2.100)

Finally, by assuming the weak coupling between the external probe and our

system, precisely like in the last section, we obtain the induced current density:

⟨jind,µ(q, ω)⟩ = χµ(q, ω)(−Aext,µ(q, ω)). (2.101)

28



Here the current-current response function is given by [56]

χµ(q, ω) = L2
∑
a,b

e−βEb

Z
|⟨a|j†q,µ|b⟩|2

(
1

~ω − ~ωab + iη
− 1

~ω + ~ωab + iη

)
.

(2.102)

We can now use the free electron states to write the screened function:

χµ(q, ω) = L24
∑
nn′k

|⟨n′k+ q|j†q,µ|nk⟩|2
fnk − fn′k+q

~ω − En′k+q + Enk + iη
. (2.103)

At last, by using the exact form of the electron wave function from equa-

tion (2.29), we obtain different expressions for the longitudinal and transverse

current-current response functions:

χL(q, ω) =
e2v2F
L2

4
∑
nn′k

1

2
[1 + nn′ cos(θk + θk+q)]

fnk − fn′k+q

~ω − En′k+q + Enk + iη
,

(2.104)

χT (q, ω) =
e2v2F
L2

4
∑
nn′k

1

2
[1− nn′ cos(θk + θk+q)]

fnk − fn′k+q

~ω − En′k+q + Enk + iη
.

(2.105)

Note here that expressions (2.104) and (2.104) actually diverge if we use

Dirac states (2.29) instead of actual electron states in graphene limited by

some band cut-off. However, his subtlety can be easily solved by subtracting

from χL(q, ω) [χT (q, ω)] the value χL(q, ω = 0) [χT (q → 0, ω = 0)] to take

into account that there is no current response to the longitudinal [transverse]

time [time and space] independent vector potential, see [54, 55] for details.

Let us also find relation between the conductivity and the current-current

response function. Note that the electric field is given by E = −∂A/∂t so that

E(q, ω) = iωA(q, ω). Then we can write equation (2.101) as ⟨jind,µ(q, ω)⟩ =
χµ(q, ω)

i
ω
Eext,µ(q, ω). In other words desired relation is simply:

σµ(q, ω) =
i

ω
χµ(q, ω). (2.106)

Note here that longitudinal conductivity σL(q, ω) (describing response of a

system to the longitudinal field) is generally different from the transverse con-

ductivity σT (q, ω) (describing response of a system to the transverse field),

unless we are working in the limit of small wave vectors (q → 0).
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2.2.4 Fluctuation-dissipation theorem

In this section we derive relation between current-current correlation function

and the current-current response function at finite temperature, which is given

by the fluctuation-dissipation theorem. We will use this result later to calculate

the radiative heat transfer between two graphene sheets.

We start with the current-current correlation function:

Kµ(r, t, r
′, t′) = ⟨jµ(r, t)j†µ(r′, t′)⟩. (2.107)

Due to translational invariance in space and time we can write Kµ(r, t, r
′, t′) =

Kµ(r − r′, t − t′) = Kµ(d, τ) , where we have denoted by: d = r − r′ and

τ = t− t′. Then the Fourier transforms from the space and time domains are

respectively given by

Kµ(q, τ) =
1

L2

∫
Kµ(d, τ)e

−iq·ddd, (2.108)

Kµ(q, ω) =
1

2π

∫
Kµ(q, τ)e

iωτdτ. (2.109)

It will be more convenient for us to use these relations in a slightly different

form. In that regards let us use relations (2.108) and (2.109) with translational

invariance in space and time, respectively, to show that

⟨jµ(q)j†µ(q′)⟩ = 1

L4

∫ ∫
⟨jµ(r)j†µ(r′)⟩e−iq·reiq

′·r′drdr′

=
1

L2

∫
ei(q

′−q)·r′dr′
1

L2

∫
Kµ(r− r′)e−iq·(r−r′)dr

= δq,q′Kµ(q), (2.110)

⟨jµ(ω)j†µ(ω′)⟩ = 1

4π2

∫ ∫
⟨jµ(t)j†µ(t′)⟩eiωte−iω

′t′dtdt′

=
1

2π

∫
ei(ω−ω

′)t′dt′
1

2π

∫
Kµ(t− t′)e−iω(t−t

′)dt

= δ(ω − ω′)Kµ(ω). (2.111)

Relations (2.110) and (2.111) simply state that there is no correlation between

different q or different ω components. We can join these two relations in a
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single one

⟨jµ(q, ω)j†µ(q′, ω′)⟩ = δq,q′δ(ω − ω′)Kµ(q, ω). (2.112)

To find the Kµ(q, ω) let us note that evolution of current operator, in the

Heisenberg picture, is given by jµ(q, τ) = eiHτ/~j†µ(q, 0)e
−iHτ/~. Now we can

write

Kµ(q, τ) = ⟨jµ(q, τ)j†µ(q, 0)⟩

= ⟨eiHτ/~j†µ(q, 0)e−iHτ/~j†µ(q, 0)⟩

=
∑
a,b

e−βEb

Z
⟨b|eiHτ/~jµ(q)|a⟩⟨a|e−iHτ/~j†µ(q)|b⟩

=
∑
a,b

e−βEb

Z
|⟨a|j†µ(q)|b⟩|2eiωabτ . (2.113)

Finally, the Fourier transform of this expression is given by

Kµ(q, ω) =
∑
a,b

e−βEb

Z
|⟨a|j†µ(q)|b⟩|2δ(ω − ωab). (2.114)

Note however that the imaginary part of the response function, calculated in

equation (2.102), is given by

ℑχµ(q, ω) = L2
∑
a,b

e−βEb

Z
|⟨a|j†µ(q)|b⟩|2

−π
~

[δ(ω − ωab)− δ(ω + ωab)]. (2.115)

We immediately see that correlation function is related to a response function

in a simple manner:

ℑχµ(q, ω) = −π
~
L2 [Kµ(q, ω)−Kµ(q,−ω)] . (2.116)

By applying the detail balancing condition here, we can write

ℑχµ(q, ω) = −π
~
L2
[
1− e−β~ω

]
Kµ(q, ω). (2.117)

Finally we have

Kµ(q, ω) = −~
π

1

1− e−β~ω
1

L2
ℑχµ(q, ω), (2.118)
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or if we use the relation χµ(q, ω) = −iωσµ(q, ω) we can write this in a more

convenient form as

Kµ(q, ω) =
1

π

~ω
1− e−β~ω

1

L2
ℜσµ(q, ω). (2.119)

This is in fact the well know fluctuation-dissipation theorem stating that the

correlation function (Kµ) due to thermal fluctuations is directly related to

the dissipation in the system (ℜσµ or ℑχµ). This result will be of use in the

following section.

2.3 Radiative heat transfer

In this section we analyze the radiative heat transfer between two graphene

sheets separated by a distance D and held at temperatures T1 and T2 (see

figure 2.4). To calculate the heat transfer we shall start by looking into cor-

relations between electric currents induced by the thermal fluctuations in the

first graphene sheet. Following that we shall use Green function technique to

find the electromagnetic fields in the second graphene sheet, induced by the

fluctuating currents from the first sheet. Finally heat transfer can be found

by calculating Ohmic losses, induced by this electromagnetic field, within the

second graphene sheet.

In the last section we calculated current-current correlation function due to

thermal fluctuations. Fluctuation-dissipation theorem (2.119) and equation

(2.112) give the correlation function of the fluctuating currents in the first

graphene sheet:

⟨j1µ(q, ω)j†1µ(q, ω′)⟩ = δ(ω − ω′)
1

π

~ω
1− e−β1~ω

1

L2
ℜσ1µ(q, ω). (2.120)

To find the electromagnetic fields induced by these fluctuating currents we

can use classical electrodynamics so we shall start with classical quantities and

return to the quantum values only later when necessary. Since the system is

translational invariant we can focus on a single q, ω-component and write the

Fourier transform of the surface current density from the first graphene sheet

as

j1(r, t) =

∫
e−iωtdω

∑
q

eiq·rj1(q, ω). (2.121)
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Further on, let us assume the most simple case where there is only vacuum in

between and around graphene sheets. Then the electric field satisfies a simple

wave equation

(∇2 + ω2/c2)E(r, z) = 0. (2.122)

This equation has a plane wave solution E(r, z) = E(q, ω)eiq·r+iγz, where we

took into consideration that the periodicity in the xy direction is determined

by the wave vector q. In other words we can write for the total wave vector:

w = q+ γẑ, while the equation (2.122) requires: w2 = |w|2 = q2 + γ2 = ω2/c2

i.e. the z component of the wave vector w is given by:

γ =
√
ω2/c2 − q2. (2.123)

Further on, since there is no free charge around graphene sheets, the Gauss

law states that ∇ · E(r, z) = 0. This means that E(q, ω) ·w = 0 i.e. electric

field is transversely polarized so it is convenient to introduce unit vectors ŝ

and p̂ that are perpendicular to wave vector w:

ŝ = q̂× ẑ, and (2.124)

p̂ = w−1(−γq̂+ qẑ). (2.125)

In this way (ŝ, ŵ, p̂) is a set of right-handed orthonormal triad (see figure 2.4)

where

ŵ =
w

w
= w−1(qq̂+ γẑ). (2.126)

We also note that there is a simple connection with the longitudinal and trans-

verse wave vectors introduced before in this chapter: eqL = iq̂, eqT = −iŝ.

To match the boundary conditions given by the surface current density

j1(q, ω) from the first graphene plane (z = −D) in the presence of the second

graphene sheet (z = 0), we use the Green function technique from reference

[60] which is particularly convenient for the layered structures like ours. In

that manner one obtains different electric field component E(q, ω) depending

whether we are located below the first graphene sheet (z < −D), in between

the sheets (−D < z < 0), or above the second sheet (z > 0). Since we are

interested in the field in the second sheet (z = 0), it is easiest to look into the

expression for the field above the second graphene sheet (z > 0) where one
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Figure 2.4: (a) Schematic diagram of the radiation transfer problem: a free
standing sheet of graphene at temperature T1 is radiating to another free stand-
ing graphene sheet at temperature T2 and distance D away. (b) Polarization
vectors defined in the text.

obtains

E(q, ω) = − ω

2ϵ0c2γ
(ŝT s12ŝ+ p̂T p12p̂) · j1(q, ω). (2.127)

Here we have explicitly separated s and p polarizations which have very differ-

ent behavior, and T12 is a transmission coefficient for a system of two parallel

graphene sheets given by [60]

T12 =
t1t2e

iγD

1− r1r2e2iγD
. (2.128)

Note that the same expression is valid for s and p polarization, but reflection

r and transmission t coefficients are different for different polarizations. It is

a simple manner of elementary electrodynamics to demonstrate that these are

rs =
− ωσT

2γϵ0c2

1 + ωσT
2γϵ0c2

, (2.129)

ts =
1

1 + ωσT
2γϵ0c2

, (2.130)

rp =

γσL
2ϵ0ω

1 + γσL
2ϵ0ω

, and (2.131)

tp =
1

1 + γσL
2ϵ0ω

. (2.132)
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Note also that transverse conductivity (σT ) determines the s-polarization, and

longitudinal conductivity (σL) determines the p-polarization. Finally the total

electric field in the space above the second graphene sheet (z > 0) is given by

E(r, z, t) =

∫
e−iωtdω

∑
q

eiq·r+iwzE(q, ω). (2.133)

So the field, precisely at the second sheet (z = 0) is

E(r, t) = E(r, z = 0+, t) =

∫
e−iωtdω

∑
q

eiq·rE(q, ω). (2.134)

At last, the heat transfer from the first graphene sheet to the second graphene

sheet is simply given by Ohmic losses induced by this electric field. The power

dissipated per unit area is given by [67]

H1→2 =
1

L2

dEmech
dt

=
1

L2

∫
j2(r, t) · E(r, t)dr

=

∫ ∫
dωdω′e−i(ω−ω

′)t
∑
q

j2(q, ω) · E∗(q, ω′). (2.135)

Let us now take into account that current densities j1,2(q, ω) have only vector

components along the graphene (xy) plane. Then due to equation (2.125) one

has p̂ · j1(q, ω) = − γ
w
q̂ · j1(q, ω), and we can write equation (2.127) again as

E(q, ω) = − ω

2ϵ0c2γ

(
ŝT s12ŝ+

(
γ2

w2
q̂− qγ

w2
ẑ

)
T p12q̂

)
· j1(q, ω). (2.136)

Further on, the scalar product in the equation (2.135) can be written as j2·E∗ =

j2 ·E∗
r, where Er = E− (E · ẑ)ẑ is the projection of the electric field vector to

the graphene (xy) plane. In that way we can write equation (2.136) as

Er(q, ω) = − ω

2ϵ0c2γ

(
ŝT s12ŝ+

γ2

w2
q̂T p12q̂

)
· j1(q, ω). (2.137)

Let us note here again that q̂ = ie∗qL and ŝ = −ie∗qT while the longitudinal

(µ = L) and transverse (µ = T ) components of the current density are defined
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as: jµ(q, ω) = j(q, ω) · e∗qµ. Then we can write equation (2.137) as

Er(q, ω) = − ω

2ϵ0c2γ

(
−e∗qTT

s
12j1T (q, ω) +− γ2

w2
e∗qLT

p
12j1L(q, ω)

)
. (2.138)

Finally due to Ohm’s law j2µ(q, ω) = σ2µ(q, ω)Er,µ(q, ω) we have

⟨j2(q, ω) ·E∗
r(q, ω

′)⟩ = ω2

4ϵ20c
4|γ|2

σ2T (q, ω)⟨j1T (q, ω)j1T (q, ω′)∗⟩|T s12|2

+
|γ|2

4ϵ20ω
2
σ2L(q, ω)⟨j1L(q, ω)j1L(q, ω′)∗⟩|T p12|2. (2.139)

Here we have explicitly written the ensemble average which requires us to

calculate precise quantum correlations of the current density operator. We

have also used relation (2.112) which states that there is no correlation between

different ω components due to translational invariance in the time domain. In

fact the current-current correlation function (2.120) is given by

⟨j1µ(q, ω)j†1µ(q, ω′)⟩ = δ(ω − ω′)
1

π

~ω
1− e−β1~ω

1

L2
ℜσ1µ(q, ω). (2.140)

Since the final result has to be a real quantity, we can simply look into real

part of the expression (2.139)

ℜ⟨j2(q, ω) · E∗
r(q, ω

′)⟩ =δ(ω − ω′)
1

π

~ω
1− e−β1~ω

1

L2
×

(
ω2

4ϵ20c
4|γ|2

ℜσ2T (q, ω)ℜσ1T (q, ω)|T s12|2+

+
|γ|2

4ϵ20ω
2
ℜσ2L(q, ω)ℜσ1L(q, ω)|T p12|2). (2.141)

This can be written in a more transparent form by using reflection and trans-

mission coefficients (2.129) - (2.132). However, since γ =
√
ω2/c2 − q2 we have

to distinguish between the case of propagating waves in the far field (ω/c > q)

and evanescent waves in the near field (ω/c < q). In the first case (ω/c > q)

one has
ω

2ϵ0c2|γ|
ℜσT =

1− |rs|2 − |ts|2

2|ts|2
, and (2.142)

|γ|
2ϵ0ω

ℜσL =
1− |rp|2 − |tp|2

2|tp|2
. (2.143)
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It is convenient here to define the following quantities

hsff (q, ω) ≡
ω2

4ϵ20c
4|γ|2

ℜσ1T (q, ω)ℜσ2T (q, ω)|T s12|2

=
(1− |rs1|2 − |ts1|2)(1− |rs2|2 − |ts2|2)

4|1− rs1r
s
2e

2iγD|2
, and (2.144)

hpff (q, ω) ≡
|γ|2

4ϵ20ω
2
ℜσ1L(q, ω)ℜσ2L(q, ω)|T p12|2

=
(1− |rp1|2 − |tp1|2)(1− |rp2|2 − |tp2|2)

4|1− rp1r
p
2e

2iγD|2
, (2.145)

where we have used expression (2.128) for the transmission coefficient T12. In

the second case (ω/c < q) one has

ω

2ϵ0c2|γ|
ℜσT =

ℑrs

|ts|2
, (2.146)

|γ|
2ϵ0ω

ℜσL =
ℑrp

|tp|2
, (2.147)

hsnf (q, ω) ≡
ω2

4ϵ20c
4|γ|2

ℜσ1T (q, ω)ℜσ2T (q, ω)|T s12|2 =
ℑrs1ℑrs2e−2|γ|D

|1− rs1r
s
2e

−2|γ|D|2
, and

(2.148)

hpnf (q, ω) ≡
|γ|2

4ϵ20ω
2
ℜσ1L(q, ω)ℜσ2L(q, ω)|T p12|2 =

ℑrp1ℑr
p
2e

−2|γ|D

|1− rp1r
p
2e

−2|γ|D|2
. (2.149)

At last we obtain for the heat transfer (equation (2.135)) from the first graphene

sheet to the second graphene sheet

H1→2 = H1→2,ff +H1→2,nf , (2.150)

where the far field (ω/c > q) and near field (ω/c < q) contributions are

respectively given by

H1→2,ff =
1

π

∫
dω

~ω
1− e−β1~ω

1

L2

∑
q,µ

hµff (q, ω), and (2.151)

H1→2,nf =
1

π

∫
dω

~ω
1− e−β1~ω

1

L2

∑
q,µ

hµnf (q, ω). (2.152)
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In the same manner one can calculate heat transfer from the second graphene

sheet to the first graphene sheet H2→1, so the total heat transfer (H = H1→2−
H2→1) between two graphene sheets can be written as

H = Hff +Hnf , (2.153)

Hff =
2

π

∫ ∞

0

dω[Θ(ω, T1)−Θ(ω, T2)]
1

(2π)2

∫ ω/c

0

2πqdq
∑
µ

hµff (q, ω), (2.154)

Hnf =
2

π

∫ ∞

0

dω[Θ(ω, T2)−Θ(ω, T1)]
1

(2π)2

∫ ∞

ω/c

2πqdq
∑
µ

hµnf (q, ω). (2.155)

Here we have introduced the Boltzman factor: Θ(ω, T ) = ~ω/(eβ~ω−1), which

comes about since the zero point energy cancels when taking the difference

between emission and absorption. We write here again functions hµff and hµnf
for the sake of clearance

hµff (q, ω) ≡
(1− |rµ1 |2 − |tµ1 |2)(1− |rµ2 |2 − |tµ2 |2)

4|1− rµ1 r
µ
2 e

2iγD|2
, (2.156)

hµnf (q, ω) ≡
ℑrµ1ℑr

µ
2 e

−2|γ|D

|1− rµ1 r
µ
2 e

−2|γ|D|2
. (2.157)

Note that for the case of black body which has perfect absorption 1 = |a|2 =
1− |r|2 − |t|2, i.e. zero reflection or transmission (r = t = 0), equation (2.154)

simply gives the Stefan-Boltzman law:

Hff =
π2k4

60c2~3
(T 4

1 − T 4
2 ) (2.158)

To summarize, in this section we have calculated the total heat transfer,

that is, the transfer of heat energy per unit time per unit area between two

graphene sheets at different temperatures. Total heat transfer H = Hff +

Hnf has a contribution from the propagating waves in the far field (Hff )

and evanescent waves in the near field (Hnf ), given by equations (2.154) and

(2.155), respectively.
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Chapter 3

Plasmonics in graphene

In this chapter we investigate plasmons in doped graphene and demonstrate

that they simultaneously enable low-losses and significant wave localization

for frequencies of the light smaller than the optical phonon frequency ~ωOph ≈
0.2 eV. Interband losses via emission of electron-hole pairs (1st order process)

can be blocked by sufficiently increasing the doping level, which pushes the

interband threshold frequency ωinter toward higher values (already experimen-

tally achieved doping levels can push it even up to near infrared frequen-

cies). The plasmon decay channel via emission of an optical phonon together

with an electron-hole pair (2nd order process) is inactive for ω < ωOph (due

to energy conservation), however, for frequencies larger than ωOph this decay

channel is non-negligible. This is particularly important for large enough dop-

ing values when the interband threshold ωinter is above ωOph: in the interval

ωOph < ω < ωinter the 1st order process is suppressed, but the phonon decay

channel is open. In this chapter, the calculation of losses is performed within

the framework of a random-phase approximation (RPA) and number conserv-

ing relaxation-time approximation [34]; the measured DC relaxation-time from

Ref. [5] serves as an input parameter characterizing collisions with impurities,

whereas the optical phonon relaxation times are estimated from the influence

of the electron-phonon coupling [35] on the optical conductivity [36].

In Sec. 3.1, we provide a brief review of conventional surface plasmons and

their relevance for nanophotonics. In Sec. 3.2 we discuss the trade off between

plasmon losses and wave localization in doped graphene, as well as the optical

properties of these plasmons. We conclude and provide an outlook in Sec. 3.3.
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3.1 Surface plasmons

Figure 3.1: (a) Schematic description of a surface plasmon (SP) on metal-
dielectric interface. (b) SP dispersion curve (solid blue line) for Ag-Si inter-
faces; dotted blue is the light line in Si; dashed red line denotes the SP reso-
nance. (c) Wave localization and propagation length for SPs at Ag-Si interface
(experimental Ag losses are taken into account).

Surface plasmons (SPs) are electromagnetic (EM) waves that propagate

along the boundary surface of a metal and a dielectric [see Fig. 3.1(a)]; these

are transverse magnetic (TM) modes accompanied by collective oscillations of

surface charges, which decay exponentially in the transverse directions (see,

e.g., Refs. [12, 13] and Refs. therein). Their dispersion curve is given by:

qsp =
ω

c

√
ϵrϵ(ω)

ϵr + ϵ(ω)
(3.1)

[see Fig. 3.1(b)]; note that close to the SP resonance (ω = ωSP ), the SP wave

vector [solid blue line in Fig. 3.1(b)] is much larger than the wave vector of the

same frequency excitation in the bulk dielectric [dotted blue line in Fig. 3.1(b)].

As a result, a localized SP wave packet can be much smaller than a same

frequency wave packet in a dielectric. Moreover, this shrinkage is accompanied

by a large transverse localization of the plasmonic modes. These features

are considered very promising for enabling nano-photonics [12, 13, 14, 15],

as well as high field localization and enhancement. A necessary condition

for the existence of SPs is ϵ(ω) < −ϵr (i.e., ϵ(ω) is negative), which is why

metals are usually used. However, SPs in metals are known to have small

propagation lengths, which are conveniently quantified (in terms of the SP

wavelength) with the ratio ℜqsp/ℑqsp; this quantity is a measure of how many

SP wavelengths can an SP propagate before it loses most of its energy. The
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wave localization (or wave ”shrinkage”) is quantified as λair/λsp, where λair =

2πc/ω (the wavelength in air). These quantities are plotted in Fig. 3.1(c) for

the case of Ag-Si interface, by using experimental data (see [14] and references

therein) to model silver (metal with the lowest losses for the frequencies of

interest). Near the SP resonance, wave localization reaches its peak; however,

losses are very high there resulting in a small propagation length l ≈ 0.1λsp ≈
5nm. At higher wavelengths one can achieve low losses but at the expense of

poor wave localization.

3.2 Plasmons and their losses in doped graphene

Graphene behaves as an essentially 2D electronic system. In the absence of

doping, conduction and valence bands meet at a point (called Dirac point)

which is also the position of the Fermi energy. The band structure, calculated

in the tight binding approximation is shown in Fig. 2(b); for low energies the

dispersion around the Dirac point can be expressed as En,k = nvF~|k|, where
the Fermi velocity is vF = 106m/s, n = 1 for conduction, and n = −1 for the

valence band. Recent experiments [37] have shown that this linear dispersion

relation is still valid even up to the energies (frequencies) of visible light, which

includes the regime we are interested in.

Here we consider TM modes in geometry depicted in figure 3.2 (a), where

graphene is surrounded with dielectrics of constants ϵr1 and ϵr2. Throughout

the paper, for definiteness we use ϵr1 = 4 corresponding to SiO2 substrate, and

ϵr2 = 1 for air on top of graphene, which corresponds to a typical experimental

setup. TM modes are found by assuming that the electric field has the form

Ez = Aeiqz−Q1x, Ey = 0, Ex = Beiqz−Q1x, for x > 0,

Ez = Ceiqz+Q2x, Ey = 0, Ex = Deiqz+Q2x, for x < 0. (3.2)

After inserting this ansatz into Maxwells equations and matching the boundary

conditions [which include the conductance of the 2D graphene layer, σ(ω, q)],

we obtain the dispersion relation for TM modes:

ϵr1√
q2 − ϵr1ω2

c2

+
ϵr2√

q2 − ϵr2ω2

c2

= −σ(ω, q)i
ωϵ0

(3.3)
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Figure 3.2: (a) Schematic of the graphene system and TM plasmon modes.
Note that the profile of the fields looks the same as the fields of an SP [Fig.
3.1(a)]. (b) Electronic band structure of graphene; to indicate the vertical
scale we show the Fermi energy level for the case EF = 1 eV. (c) Sketch of the
intraband (green arrows) and interband (red arrows) single particle excitations
that can lead to large losses; these losses can be avoided by implementing a suf-
ficiently high doping. (d) Plasmon RPA and semiclassical dispersion curves.
Black solid (RPA) and black dot-dashed (semiclassical) lines correspond to
ϵr1 = ϵr2 = 1; Blue dashed (RPA) and blue dotted (semiclassical) lines corre-
spond to ϵr1 = 4 and ϵr2 = 1. The green (lower) and rose (upper) shaded areas
represent regimes of intraband and interband excitations, respectively.

By explicitly writing the dependence of the conductivity on the wave vector

q we allow for the possibility of nonlocal effects, where the mean free path of

electrons can be smaller than q−1 [38]. Throughout this work we consider the

nonretarded regime (q ≫ ω/c), so equation (3.3) simplifies to

q ≈ Q1 ≈ Q2 ≈ ϵ0
ϵr1 + ϵr2

2

2iω

σ(ω, q)
. (3.4)

Note that a small wavelength (large q) leads to a high transversal localization

of the modes, which are also accompanied by a collective surface charge os-

cillation, similar to SPs in metals; however, it should be understood that, in

contrast to SPs, here we deal with 2D collective excitations, i.e. plasmons. We

note that even though field profiles of plasmons in graphene and SPs in metals

look the same, these two systems are qualitatively different since electrons in

graphene are essentially frozen in the transverse dimension [39]. This fact and

the differences in electronic dispersions (linear Dirac cones vs. usual parabolic)

lead to qualitatively different dispersions of TM modes in these two systems

[see Fig. 3.1(b) and Fig. 3.2(d)]. To find dispersion of plasmons in graphene

we need the conductivity of graphene σ(ω, q), which we now proceed to ana-
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lyze by employing the semiclassical model [38] (in subsection 3.2.1), RPA and

number conserving relaxation-time approximation [34] (in subsection 3.2.2),

and by estimating the relaxation-time due to the influence of electron-phonon

coupling [35] on the optical conductivity [36] (in subsection 3.2.3).

3.2.1 Semiclassical model

For the sake of the clarity of the presentation, we first note that by employing

a simple semi-classical model for the conductivity (see Ref. [38]), one obtains

a Drude-like expression:

σ(ω) =
e2EF
π~2

i

ω + iτ−1
(3.5)

(the semiclassical conductivity does not depend on q). Here τ denotes the

relaxation-time (RT), which in a phenomenological way takes into account

losses due to electron-impurity, electron-defect, and electron-phonon scatter-

ing. Equation (3.5) is obtained by assuming zero temperature T ≈ 0, which

is a good approximation for highly doped graphene considered here, since

EF ≫ kBT . From Eqs. (3.4) and (3.5) it is straightforward to obtain plasmon

dispersion relation:

q(ω) =
π~2ϵ0(ϵr1 + ϵr2)

e2EF
(1 +

i

τω
)ω2, (3.6)

as well as losses,
ℜq
ℑq

= ωτ =
2πcτ

λair
. (3.7)

In order to quantify losses one should estimate the relaxation time τ . If the

frequency ω is below the interband threshold frequency ωinter, and if ω < ωOph,

then both interband damping and plasmon decay via excitation of optical

phonons together with an electron-hole pair are inactive. In this case, the

relaxation time can be estimated from DC measurements [5], i.e., it can be

identified with DC relaxation time which arises mainly from impurities (see

Refs. [5]). It is reasonable to expect that impurity related relaxation time will

not display large frequency dependence. In order to gain insight into the losses

by using this line of reasoning let us assume that the doping level is given by

EF = 0.64 eV (corresponding to electron concentration of n = 3× 1013 cm−2);
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the relaxation time corresponds to DC mobility µ = 10000 cm2/Vs measured in

Ref. [5]: τDC = µ~
√
nπ/evF = 6.4× 10−13s. As an example, for the frequency

~ω = 0.155 eV (λair = 8µm), the semiclassical model yields ℜq/ℑq ≈ 151 for

losses and λair/λp ≈ 42 for wave localization. Note that both of these numbers

are quite favorable compared to conventional SPs [e.g., see Fig. 3.1(c)]. It will

be shown in the sequel that for the doping value EF = 0.64 eV this frequency

is below the interband loss threshold, and it is evidently also smaller than the

optical phonon loss threshold ~ωOph ≈ 0.2 eV, so both of these loss mechanisms

can indeed be neglected.

3.2.2 RPA and relaxation-time approximation

In order to take the interband losses into account, we use the self-consistent

linear response theory, also known as the random-phase approximation (RPA)

[38], together with the relaxation-time (finite τ) approximation introduced by

Mermin [34]. Both of these approaches, that is, the collisionless RPA (τ → ∞)

[40, 41], and the RPA-RT approximation (finite τ) [46], have been applied to

study graphene. In the τ → ∞ case, the RPA 2D polarizability of graphene is

given by [41]:

χ̄(q, ω) =
e2

q2
Π(q, ω), (3.8)

where

Π(q, ω) =
4

Ω

∑
k,n1,n2

f(En2,k+q)− f(En1,k)

~ω + En1,k − En2,k+q + iη

× |⟨n1,k|e−iq·r|n2,k+ q⟩|2. (3.9)

Here f(E) = (e(E−EF )/kBT + 1)−1 is the Fermi distribution function, EF is the

Fermi energy and factor 4 stands for 2 spin and 2 valley degeneracies. Note

that polarizability χ̄(q, ω) is simply related to the density-density response

function χ(q, ω), introduced in chapter 2, since Π(q, ω) = −χ(q, ω).
Now, in Eq. (3.8) ω is given an infinitesimally small imaginary part which

leads to the famous Landau damping; that is, plasmons can decay by exciting

an electron-hole pair (interband and intraband scattering) as illustrated in

Fig. 3.2(c). The effects of other types of scattering (impurities, phonons) can

be accounted for by using the relaxation-time τ as a parameter within the
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RPA-RT approach [34], which takes into account conservation of local electron

number. Within this approximation the 2D polarizability is

χ̄τ (q, ω) =
(1 + i/ωτ)χ̄(q, ω + i/τ)

1 + (i/ωτ)χ̄(q, ω + i/τ)/χ̄(q, 0)
. (3.10)

The 2D dielectric function and conductivity are respectively given by (see [42]):

and

σRPA(q, ω) = −iωχ̄τ (q, ω). (3.11)

We note here that throughout the text only π–bands are taken into consid-

eration; it is known that in graphite, higher σ–bands give rise to a small

background dielectric constant [43] at low energies, which is straightforward

to implement in the formalism. Using Eqs. (3.4) and (3.11) we obtain that

the properties of plasmons (i.e., dispersion, wave localization and losses) can

be calculated by solving

ϵRPA(q, ω) = 0, (3.12)

with complex wave vector q = q1 + iq2. The calculation is simplified by lin-

earizing Eq. (3.12) in terms of small q2/q1, to obtain,

ϵr1 + ϵr2
2

+
e2

2ϵ0q1
ℜ[Π(q1, ω)] = 0, (3.13)

for the plasmon dispersion, and

q2 =
ℑ[Π(q1, ω)] + 1

τ
∂
∂ω
ℜ[Π(q1, ω)] + 1

ωτ
ℜ[Π(q1, ω)(1− Π(q1, ω))/Π(q1, 0)]

1
q1
ℜ[Π(q1, ω)]− ∂

∂q1
ℜ[Π(q1, ω)]

(3.14)

yielding losses. Note that in the lowest order the dispersion relation (and

consequently λair/λp and the group velocity vg) does not depend on τ . This

linearization is valid when q2 ≪ q1; as the plasmon losses increase, e.g., after

entering the interband regime [the rose area in Fig. 3.2(d)], results from Eqs.

(3.13) and (3.14) should be regarded as only qualitative. The characteristic

shape of the plasmon dispersion is shown in Fig. 3.2(d). Note that the semi-

classical model and the RPA model agree well if the system is sufficiently

below the interband threshold [for small q, ω(q) ∼ √
q as in Eq. (3.6)]. By

comparing Figs. 3.2(d) and 3.1(b) we see that the dispersion for SPs on silver-

dielectric surface qualitatively differs from the plasmon dispersion in graphene
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[39]. While SPs’ dispersion relation approaches an asymptote (ω → ωSP )

for large q values [Eq. (3.1)], graphene plasmon relation gives ω(q) which

continuously increases [Fig. 3.2(d)].

Theoretically predicted plasmon losses ℜq/ℑq and wave localization λair/λp

are illustrated in Fig. 3.3 for doping level EF = 0.135 eV and relaxation

time τ = 1.35 × 10−13 s. We observe that for this particular doping level, for

wavelengths smaller than λinter ≈ 7.7µm, the system is in the regime of high

interband losses (rose shaded region). Below the interband threshold, both

losses and wave localization obtained by employing RPA-RT approach are

quite well described by the previously obtained semiclassical formulae. Since

the frequencies below the interband threshold are (for the assumed doping

level) also below the optical phonon frequency, the relaxation time can be

estimated from DC measurements.

Figure 3.3: Properties of plasmons in doped graphene. Solid-lines are obtained
with the number-conserving RPA calculation, and the dashed lines with the
semiclassical approach. Losses (a), field localization (wave ”shrinkage”) (b),
and group velocity (c) for doping EF = 0.135 eV, and relaxation time τ =
1.35×10−13 s, which corresponds to the mobility of 10000 cm2/Vs. The upper
scale in all figures is frequency ν = ω/2π, whereas the rose shaded areas denote
the region of high interband losses.

At this point we also note that in all our calculations we have neglected

the finite temperature effects, i.e., T ≈ 0. To justify this, we note that for

doping values utilized in this paper the Fermi energies are 0.135 eV≈ 5.2kBTr

(n = 1.35 × 1012 cm−2) and 0.64 eV≈ 25kBTr (n = 3 × 1013 cm−2) for room

temperature Tr = 300 K. The effect of finite temperature is to slightly smear

the sharpness of the interband threshold, but only in the vicinity (∼ kBTr) of

the threshold.

By increasing the doping, EF increases, and the region of interband plas-

monic losses moves towards higher frequencies (smaller wavelengths). How-

46



ever, by increasing the doping, the interband threshold frequency will eventu-

ally become larger than graphene’s optical phonon frequency ωOph: there will

exist an interval of frequencies, ωOph < ω < ωinter, where it is kinematically

possible for the photon of frequency ω to excite an electron-hole pair together

with emission of an optical phonon. This second order process can reduce the

relaxation time estimated from DC measurements and should be taken into

account, as we show in the following subsection.

3.2.3 Losses due to optical phonons

In what follows, we estimate and discuss the relaxation time due to the electron-

phonon coupling. This can be done by using the Kubo formula which has

been utilized in Ref. [36] to calculate the real part of the optical conductivity,

ℜσ(ω, q = 0). The calculation of conductivity ℜσ(ω, 0) involves the electron

self-energy Σ(E), whose imaginary part expresses the width of a state with

energy E, whereas the real part corresponds to the energy shift. Let us as-

sume that the electron self-energy stems from the electron-phonon coupling

and impurities,

Σ(E) = Σe−ph(E) + Σimp(E). (3.15)

For Σe−ph we utilize a simple yet fairly accurate model derived in Ref. [35]: If

|E − EF | > ~ωOph, then

ℑΣe−ph(E) = γ|E − sgn(E − EF )~ωOph|, (3.16)

while elsewhere ℑΣe−ph(E) = 0; the dimensionless constant γ = 18.3 × 10−3

[35] is proportional to the square of the electron-phonon matrix element [35],

i.e., the electron-phonon coupling coefficient. In order to mimic impurities,

we will assume that ℑΣimp(E) is a constant (whose value can be estimated

from DC measurements). The real parts of the self-energies are calculated

by employing the Kramers-Krönig relations. In all our calculations the cut-

off energy is taken to be 8.4 eV, which corresponds to the cut-off wavevector

kc = π/a, where a = 2.46 Å. By employing these self-energies we calculate

the conductivity ℜσ(ω, q = 0), from which we estimate the relaxation time by
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using Eq. (3.5), i.e.,

τ(ω) ≈ e2EF
π~2ω2

1

ℜσ(ω, 0)
(3.17)

for the region below the interband threshold; in deriving (3.17) we have as-

sumed τω ≫ 1.

Figure 3.4 plots the real part of the conductivity and the relaxation time

for two values of doping: EF = 0.135 eV (n = 1.35 × 1012 cm−2, solid line)

and EF = 0.64 eV (n = 3 × 1013 cm−2, dashed line). In order to isolate

the influence of the electron-phonon coupling on the conductivity and plas-

mon losses, the contribution from impurities is assumed to be very small:

ℑΣimp(E) = 10−6 eV. The real part of the conductivity has a universal value

σ0 = πe2/2h above the interband threshold value ~ω = 2EF (for q = 0),

e.g., see [37, 44]. We clearly see that the relaxation time is not affected by

the electron-phonon coupling for frequencies below ωOph, that is, we conclude

that scattering from impurities and defects is a dominant decay mechanism for

ω < ωOph (assuming we operate below the interband threshold). However, for

ω > ωOph, the relaxation times in Fig. 3.4 are on the order of 10−14 − 10−13 s,

indicating that optical phonons are an important decay mechanism.

Figure 3.4: (a) The real part of the conductivity in units of σ0 = πe2/2h in
dependence of frequency ~ω/EF , and (b) the corresponding relaxation time as
a function of wavelength. The contribution to ℜσ(ω) from impurities is chosen
to be negligible. The displayed graphs correspond to two different values of
doping which yield EF = 0.135 eV (solid blue line), and EF = 0.640 eV
(dashed red line). The position of the optical phonon frequency ~ωOph ≈ 0.2
eV is depicted by the dotted vertical line in (b); dot-dashed lines depict the
values of wavelengths corresponding to 2EF , that is, the interband threshold
value (for q = 0) for the two doping concentrations.

It should be emphasized that the exact calculated values should be taken

with some reservation for the following reason: strictly speaking, one should
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calculate the relaxation times τ(ω, q) along the plasmon dispersion curve given

by Eq. (3.13); namely the matrix elements which enter the calculation depend

on q, whereas the phase space available for the excitations also differ for q = 0

and q > 0. Moreover, the exact value of the matrix element for electron

phonon coupling is still a matter of debate in the community. Therefore, the

actual values for plasmon losses could be somewhat different for ω > ωOph.

Nevertheless, fairly small values of relaxation times presented in Fig. 3.4 for

ω > ωOph indicate that emission of an optical phonon together with an electron-

hole pair is an important decay mechanism in this regime. Precise calculations

for q > 0 and ω > ωOph are a topic for a future paper.

Figure 3.5: Properties of plasmons in doped graphene. Solid-lines are obtained
with the number-conserving RPA calculation, and the dashed lines with the
semiclassical approach. Losses (a), field localization (wave ”shrinkage”) (b),
and group velocity (c) for doping EF = 0.64 eV; losses are calculated by
using the relaxation time τ−1 = τ−1

DC + τ−1
e−ph, where τDC = 6.4 × 10−13 s,

and τe−ph is the relaxation time from the electron-phonon coupling for the
given parameters. In the white regions (right regions in all panels), losses
are determined by τDC . In the yellow shaded regions (central regions in all
panels), losses are determined by the optical phonon emission, i.e., τe−ph. The
rose shaded areas (left region in all panels) denote the region of high interband
losses. Dotted vertical lines correspond to the optical phonon frequency ωOph ≈
0.2 eV. The upper scale in all figures is frequency ν = ω/2π. See text for
details.

Plasmonic losses and wave localization calculated from the RPA-RT approx-

imation are illustrated in Fig. 3.5 for doping level EF = 0.64 eV and the

relaxation time τ given by τ−1 = τ−1
DC + τ−1

e−ph, where τDC = 6.4 × 10−13 s

(mobility 10000 cm2/Vs), whereas τe−ph is frequency dependent and corre-

sponds to electron-phonon coupling assuming very clean samples [see dashed

line in Fig. 3.4(b)]. Interband losses [left (rose shaded) regions in all panels]

are active for wavelengths smaller than λinter ≈ 1.7µm. In the frequency in-
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terval ωinter > ω > ωOph [central (yellow shaded) regions in all panels], the

decay mechanism via electron phonon coupling determines the loss rate, i.e.,

τ ≈ τe−ph. For ω < ωOph [right (white) regions in all panels], the DC relaxation

time τDC can be used to estimate plasmon losses.

It should be noted that the mobility of 10000 cm2/Vs could be improved,

likely even up to mobility 100000 cm2/Vs [47], thereby further improving plas-

mon propagation lengths for frequencies below the optical phonon frequency.

However, for these larger mobilities the calculation of losses should also include

in more details the frequency dependent contribution to the relaxation time

from acoustic phonons (this decay channel is open at all frequencies); such a

calculation would not affect losses for ω > ωOph where optical phonons are

dominant.

3.3 Conclusion and Outlook

In conclusion, we have used RPA and number-conserving relaxation-time ap-

proximation with experimentally available input parameters, and theoretical

estimates for the relaxation-time utilizing electron-phonon coupling, to study

plasmons and their losses in doped graphene. We have shown that for suf-

ficiently large doping values high wave localization and low losses are simul-

taneously possible for frequencies below that of the optical phonon branch

ω < ωOph (i.e., Eplasmon < 0.2 eV). For sufficiently large doping values, there is

an interval of frequencies above ωOph and below interband threshold, where an

important decay mechanism for plasmons is excitation of an electron-hole pair

together with an optical phonon (for ω < ωOph this decay channel is inactive);

the relaxation times for this channel were estimated and discussed. We point

out that further more precise calculations of plasmon relaxation times should

include coupling to the substrate (e.g., coupling to surface-plasmon polaritons

of the substrate), a more precise shape of the phonon dispersion curves, and

dependence of the relaxation time via electron-phonon coupling on q > 0 (see

subsection 3.2.3).

The main results, shown in Figures 3.3 and 3.5 point out some intriguing

opportunities offered by plasmons in graphene for the field of nano-photonics

and metamaterials in infrared (i.e. for ω < ωOph). For example, we can see in
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those figures that high field localization and enhancement λair/λp ∼ 200 [see

Figure 3.3(b)] are possible (resulting in λp < 50 nm), while plasmons of this

kind could have propagation loss-lengths as long as ∼ 10λp [see Fig. 3.5(a)];

these values (albeit at different frequencies) are substantially more favorable

than the corresponding values for conventional SPs, for example, for SPs at

the Ag/Si interface λair/λp ∼ 20, whereas propagation lengths are only ∼
0.1λsp [see Fig. 3.1(c)]. Another interesting feature of plasmons in graphene is

that, similar to usual SP-systems [15], wave localization is followed by a group

velocity decrease; the group velocities can be of the order vg = 10−3 − 10−2c,

and the group velocity can be low over a wide frequency range, as depicted

in Figs. 3.3(c) and 3.5(c). This is of interest for possible implementation of

novel nonlinear optical devices in graphene, since it is known that small group

velocities can lead to savings in both the device length and the operational

power [45]; the latter would also be reduced because of the large transversal

field localization of the plasmon modes.

51



52



Chapter 4

Transverse-electric plasmons

In Chapter 3 we were studying longitudinal charge density oscillations i.e.

longitudinal plasmons or TM modes. However, due to unusual electron dis-

persion, graphene can also support transverse plasmons or TE modes [48].

These excitation are possible only if the imaginary part of the conductivity of

a thin sheet of material is negative [48]. On the other hand, such a conduc-

tivity requires some complexity of the band structure of the material involved.

For example, TE plasmons cannot occur if the 2D material possesses a single

parabolic electron band. From this perspective, bilayer graphene, with its rich

band structure and optical conductivity (e.g., see [49] and references therein),

seems as a promising material for exploring the possibility of existence of TE

plasmons. Here we predict the existence of TE plasmons in bilayer graphene.

We find that their plasmonic properties are much more pronounced in bilayer

than in monolayer graphene, in a sense that the wavelength of TE plasmons

in bilayer can be smaller than in monolayer graphene at the same frequency.

Throughout this work we consider bilayer graphene as an infinitely thin sheet

of material with conductivity σ(q, ω). We assume that air with ϵr = 1 is above

and below bilayer graphene. Given the conductivity, by employing classical

electrodynamics, one finds that self-sustained oscillations of the charge occur

when (see [48] and references therein)

1 +
iσ(q, ω)

√
q2 − ω2/c2

2ϵ0ω
= 0 (4.1)
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for TM modes, and

1− µ0ωiσ(q, ω)

2
√
q2 − ω2/c2

= 0 (4.2)

for TE modes. The TM plasmons can considerably depart from the light line,

that is, their wavelength can be considerably smaller than that of light at the

same frequency. For this reason, when calculating TM plasmons it is desirable

to know the conductivity as a function of both frequency ω and wavevector q.

However, it turns out that the TE plasmons (both in monolayer [48] and bilayer

graphene, as will be shown below) are quite close to the light line q = ω/c,

and therefore it is a good approximation to use σ(ω) = σ(q = 0, ω). Moreover,

these plasmons are expected to show strong polariton character, i.e., creation

of hybrid plasmon-photon excitations. At this point it is worthy to note that if

the relative permittivity of dielectrics above and below graphene are sufficiently

different, so that light lines differ substantially, then TE plasmon will not exist

(perhaps they could exist as leaky modes).

4.1 Optical conductivity of bilayer graphene

The conductivity σ(ω) = ℜσ(ω) + iℑσ(ω) is complex, and plasmon disper-

sion is characterized by the imaginary part ℑσ(ω), whereas ℜσ(ω) determines

plasmon losses, or more generally absorption of the sheet. From Eq. (4.2) it

follows that the TE plasmons exist only if ℑσ(ω) < 0 [48].

−1 0 1

−1

0

1

k/q
0

ε(
k)

/γ

Figure 4.1: The band-structure of bilayer graphene. The two upper bands (as
well as the two lower bands) are perfectly nested and separated by γ ∼ 0.4 eV;
q0 = γ/~vF . Horizontal line depicts one possible value of the Fermi level, and
arrows denote some of the possible interband electronic transitions. See text
for details.
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In order to calculate the imaginary part of the conductivity, we employ

Kramers-Kronig relations and the calculation of absorption by Nicol and Car-

botte [49], where ℜσ(ω) [see Eqs. (19)-(21) in Ref. [49]] was calculated by

using the Kubo formula. The optical conductivity has rich structure due to

the fact that the single-particle spectrum of graphene is organized in four bands

given by [49],

ϵ(k)

γ
= ±

√
1

4
+

(
~vFk
γ

)2

± 1

2
, (4.3)

where vF = 106 m/s, the parameter γ ≈ 0.4 eV is equal to the separation

between the two conduction bands (which is equal to the separation between

the valence bands). The band structure (4.3) is calculated from the tight

binding approach, where vF is connected to the nearest-neighbour hopping

terms for electrons to move in each of the two graphene planes, and the distance

between Carbon atoms in one monolayer (see Ref. [49]), whereas γ is the

hopping parameter corresponding to electrons hoping from one layer to the

other and vice versa [49]. The two graphene layers are stacked one above the

other according to the so-called Bernal-type stacking (e.g., see Ref. [50]). We

emphasize that the perfect nesting of bands gives rise to the stronger plasmon

like features of TE plasmons in bilayer than in monolayer graphene. The four

bands are illustrated in Fig. 4.1 along with some of the electronic transitions

which result in absorption. Absorption depends on γ and the Fermi level µ;

the latter can be changed by applying external bias voltage.

The imaginary part of the conductivity can be calculated from ℜσ(ω) by

using the Kramers-Kronig relations

ℑσ(ω) = −2ω

π
P
∫ ∞

0

ℜσ(ω′)

ω′2 − ω2
dω′, (4.4)

55



which yields

ℑσ(ω)
σ0

= f(Ω, 2µ) + g(Ω, µ, γ)

+ [f(Ω, 2γ) + g(Ω, γ,−γ)]Θ(γ − µ)

+ [f(Ω, 2µ) + g(Ω, µ,−γ)]Θ(µ− γ)

+
γ2

Ω2

[
Ω

π(2µ+ γ)
+ f(Ω, 2µ+ γ)

]
+

γ2

Ω2

[
Ω

πγ
+ f(Ω, γ)

]
Θ(γ − µ)

+
γ2

Ω2

[
Ω

π(2µ− γ)
+ f(Ω, 2µ− γ)

]
Θ(µ− γ)

+
a(µ)

πΩ
+

2Ωb(µ)

π(Ω2 − γ2)
, (4.5)

where

f(x, y) =
1

2π
log

∣∣∣∣x− y

x+ y

∣∣∣∣ ,
g(x, y, z) =

z

2π

(x− z) log |x− 2y|+ (x+ z) log |x+ 2y| − 2x log |2y + z|
x2 − z2

,

a(µ) =
4µ(µ+ γ)

2µ+ γ
+

4µ(µ− γ)

2µ− γ
Θ(µ− γ),

b(µ) =
γ

2

[
log

2µ+ γ

γ
− log

2µ− γ

γ
Θ(µ− γ)

]
, (4.6)

σ0 = e2/2~, Θ(x) = 1 if x ≥ 0 and zero otherwise, and Ω = ~ω. Here we

assume zero temperature T ≈ 0, which is a good approximation for sufficiently

doped bilayer graphene where µ≫ kBT . Formulae (4.5) and (4.6) are used to

describe the properties of TE plasmons.

In Figure 4.2 we show the real and imaginary part of the conductivity for

two different values of the Fermi level: µ = 0.4γ and µ = 0.9γ (we focus on

the electron doped system µ > 0). Because plasmons are strongly damped by

interband transitions, it is instructive at this point to discuss the kinematical

requirements for the excitation of electron-hole pairs. If the doping is such

that µ < γ/2, a quantum of energy ~ω (plasmon or photon) with in-plane

momentum q = 0 can excite an electron-hole pair only if ~ω > 2µ (excitations

from the upper valence to the lower conduction band shown as red dot-dashed
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line in Fig. 4.1). If µ > γ/2, the (q = 0, ω)-quantum can excite an electron-hole

pair only for ~ω ≥ γ (excitations from the lower to the upper conduction band

shown as green solid lines in Fig. 4.1 occur at ~ω = γ). If the plasmon/photon

has in-plane momentum q larger than zero, then interband transitions are

possible for smaller frequencies (see blue dashed lines in Fig. 4.1). There is a

region in the (q, ω)-plane where electron-hole excitations are forbidden due to

the Pauli principle. Because plasmons are strongly damped by these interband

transitions (this is Landau damping), in our search for the TE plasmons, we

focus on their dispersion curve in the regime where electron-hole pair formation

is inadmissible (via first-order transition).

4.2 Transverse-electric plasmon dispersion in

bilayer graphene

0 1 2

−2

0

2

ω/ω
0

σ/
σ 0

(a)

0 1 2

−2

0

2

ω/ω
0

σ/
σ 0

(b)

Figure 4.2: The real (red dotted lines) and imaginary (blue solid lines) part
of the conductivity of bilayer graphene for two values of doping: µ = 0.4γ
(a), and µ = 0.9γ (b). The conductivity is in units of σ0 = e2/2~, and
the frequency is in units of ω0 = γ/~. The δ-functions in ℜσ(ω) at ω = 0
(intraband transitions) and ω = γ/~ (transitions from the lower to the upper
conduction band depicted as green solid arrows in Fig. 4.1) are not shown (see
[49]).

In Figure 4.3 we show the plasmon dispersion curves for µ = 0.4γ and

µ = 0.9γ; in the spirit of Ref. [48], we show ∆q = q − ω/c as a function of

frequency ω. Plasmons are very close to the light line and thus one can to a
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very good approximation write the dispersion curve as

∆q ≈ ω

8ϵ20c
3
ℑσ(ω)2. (4.7)

To the left (right) of the vertical red dotted line in Fig. 4.3, plasmon damping

via excitation of electron-hole pairs is (is not) forbidden.
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Figure 4.3: The plasmon dispersion curve ∆q = q − ω/c vs. ω for µ =
0.4γ (a), and µ = 0.9γ (b) is shown as blue solid line. To the right of the
vertical red dotted lines plasmons can be damped via excitation of electron-
hole pairs, whereas to the left of this line these excitations are forbidden due
to the Pauli principle. Black dashed line in (b) (which closely follows the blue
line) corresponds to Eq. (4.8). The wave vector is in units of q0 = γ/~vF , and
the frequency is in units of ω0 = γ/~.

For µ = 0.4γ, ℑσ(ω) is smaller than zero for ω in an interval of frequencies

just below 2µ. From the leading term in ℑσ(ω) we find that departure of

the dispersion curve from the light line is logarithmically slow: ∆q0<µ<γ/2 ∝
[log |~ω−2µ|]2. The same type of behavior occurs in monolayer graphene [48].

However, for µ = 0.9γ, one can see the advantage of bilayer over monolayer

graphene in the context of TE plasmons. The conductivity ℑσ(ω) is smaller

than zero in an interval of frequencies below γ. In this interval, the most

dominant term to the conductivity is the last one from Eq. (4.5), that is,

∆qγ/2<µ<γ ≈
ωσ2

0

2π2ϵ20c
3

[
~ωb(µ)

γ2 − (~ω)2

]2
. (4.8)

This approximation is illustrated with black dashed line in Fig. 4.3, and it

almost perfectly matches the dispersion curve. Note that the singularity in

ℑσ(ω) at ~ω = γ is of the form 1/(γ−~ω), whereas the singularity at ~ω = 2µ
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is logarithmic (as in monolayer graphene [48]). As a consequence, the departure

of the dispersion curve from the light line in bilayer graphene is much faster for

µ > γ/2 than for µ < γ/2, and it is faster than in monolayer graphene as well

[note the two orders of magnitude difference between the abscissa scales in Figs.

4.3(a) and (b)]. Thus, we conclude that more pronounced plasmonic features

of TE plasmons (shrinking of wave length which is measured as departure of

q from the light line) can be obtained in bilayer graphene. The term in ℑσ(ω)
which is responsible for TE plasmons for µ > γ/2 corresponds (via Kramers-

Kronig relations) to the absorption term b(µ)δ(~ω− γ) [49], which arises from

the transitions from the first to the second valence band (shown as green solid

arrows in Fig. 4.1), which are perfectly nested and separated by γ. Thus,

this unique feature of bilayer graphene gives rise to TE plasmons with more

pronounced plasmon like features than in monolayer graphene.

Before closing this chapter, let us discuss some properties and possible ob-

servation of TE plasmons. First, note that since the electric field oscillations

are both perpendicular to the propagation vector q, and lie in the bilayer

graphene plane, the electric current j = σ(ω)E is also perpendicular to q.

Thus, j ·q = 0, and the equation of continuity yields that the charge density is

zero (i.e., one has self-sustained oscillations of the current). In order to excite

plasmons of frequency ω with light of the same frequency, one has to somehow

account for the conservation of the momentum which is larger for plasmons.

Since the momentum mismatch is relatively small, the standard plasmon ex-

citation schemes such as the prism or grating coupling methods (e.g., see [12]

and references therein) could be used for the excitation of these plasmons.

To conclude this chapter, we have predicted the existence of transverse elec-

tric (TE) plasmons in bilayer graphene. Since they exist very close to the light

line, these plasmons are expected to show strong polariton character, i.e., mix-

ing with photon modes. However, due to the perfectly nested valence bands of

bilayer graphene, their dispersion departs much more from the light line than

in monolayer graphene.
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Chapter 5

Plasmon-phonon coupling

In this chapter we analyze the coupling of plasmons with intrinsic optical

phonons in graphene by using the self-consistent linear response formalism.

We find that longitudinal plasmons (LP) couple only to transverse optical

(TO) phonons, while transverse plasmons (TP) couple only to longitudinal

optical (LO) phonons. The LP-TO coupling is stronger for larger concentration

of carriers, in contrast to the TP-LO coupling (which is fairly weak). The

former could be measured via current experimental techniques. Thus, plasmon-

phonon resonance could serve as a magnifier for exploring the electron-phonon

interaction, and for novel electronic control (by externally applied voltage)

over crystal lattice vibrations in graphene.

To analyze plasmon-phonon coupling let us start with the Hamiltonian for

the Dirac electrons in graphene

He = ~vFσ · k, (5.1)

where vF = 106 m/s, k = (kx, ky) = −i∇ is the wave-vector operator, σ =

(σx, σy), and σx,y are the Pauli spin matrices. We label the eigenstates of

Hamiltonian He by |s,k⟩ and the appropriate eigenvalues by Es,k = s~vF |k|,
where s = 1 for the conduction band and s = −1 for the valence band.

The long-wavelength in-plane optical phonon branch in graphene consists of

two modes (LO and TO) which are effectively dispersionless and degenerate at

energy ~ω0 = 0.196eV . Let u(R) = [uA(R)− uB(R)]/
√
2 denote the relative

displacements of the sub-lattice atoms A and B of a unit cell specified by a

coordinate R [see Fig. 5.1(c)]. Then, in the long-wavelength limit R can be
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replaced by a continuous coordinate r and we have

u(r) =
∑
µq

1√
NM

Qµqeµqe
iqr, (5.2)

where N is the number of unit cells, M is the carbon atom mass, q =

q(cosϕq, sinϕq) is the phonon wave vector, µ = L, T stands for the polar-

ization, and the polarization unit vectors are eLq = i(cosϕq, sinϕq), and

eTq = i(− sinϕq, cosϕq). The displacement vector u(r) is parallel (perpen-

dicular) to the phonon propagation wave vector q for LO (TO, respectively)

phonons [see Fig. 5.1(c)]. The phonon Hamiltonian is given by

Hph =
1

2

∑
µq

(P †
µqPµq + ω2

0Q
†
µqQµq), (5.3)

where Qµq and Pµq denote phonon coordinate and momentum. The electron-

phonon interaction takes a peculiar form in graphene (see chapter 2):

He−ph = −
√
2
β~vF
b2

σ × u(r), (5.4)

where σ×u = σxuy−σyux, b = 0.142 nm is the nearest carbon atoms distance,

and β = 2. We find it convenient to write Eq. (5.4) as

He−ph = L2F
∑
µq

j†q × eµqQµq (5.5)

where jq = −evFL−2σe−iqr is the single-particle current-density operator, L2

is the area of the system, e is charge of the electron, and F =
√
2β~

eb2
√
NM

.

The electromagnetic field in the plane of graphene is completely described by

the vector potential A =
∑

µq eµqAµqe
iqr (scalar potential is gauged to zero,

time dependence is implicitly assumed, and µ = L, T denote polarizations).

The interaction with Dirac electrons is obtained by substitution ~k → ~k+eA
in Eq. (5.1), which leads to

He−em = evFσ ·A = −L2
∑
µq

j†q · eµqAµq. (5.6)

By comparing Eqs. (5.4) and (5.6) it follows that electron-phonon interaction
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Figure 5.1: (a) Schematic illustration of the lattice structure with two sublat-
tices (A and B). (b) The two degenerate Dirac cones are centered at K and K’
points at the edge of the Brillouin zone. (c) A displacement of lattice atoms
u(r) is parallel (perpendicular) to the propagation wave vector q of a LO (TO)
phonon. (d) The displacement u(r) creates an effective vector potential Aeff

perpendicular to u(r) (the sign of Aeff for the K’ point is opposite to that for
the K point).

can be regarded as a presence of an effective vector potential

Aeff = F
∑
q

(eTqQLq − eLqQTq)e
iqr, (5.7)

that is, He−ph = evFσ ·Aeff. It is evident thatAeff ·u(r) = 0 that is the effective

vector potential Aeff is perpendicular to u(r) as illustrated in Figs. 5.1(c) and

(d) (see also Ref. [50]), which is responsible for the mixing of polarizations in

plasmon-phonon coupling.

As a first pass, let us ignore the phonons and focus on the Hamiltonian

H = He+He−em. Without an external perturbation, the electrons in graphene

fill the Fermi sea according to the Fermi distribution function fsk. A field

Aµq(ω) oscillating at frequency ω will induce an average current density (up

to a linear order in the vector potential)

⟨Jµ(q, ω)⟩ = −χµ(q, ω)Aµq(ω), (5.8)

where the current-current response function (including 2-spin and 2-valley de-
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generacy) is given by [56]

χµ(q, ω) = 4L2
∑
s1s2k

fs1k − fs2k+q

~ω + ~ωs1k − ~ωs2k+q + iη

× |⟨s1k|jq · e∗µq|s2k+ q⟩|2. (5.9)

For the response function χµ(q, ω) we utilize the analytical expression from

Ref. [54]. The subtlety involved with the divergence in Eq. (5.9) is solved by

subtracting from χL(q, ω) [χT (q, ω)] the value χL(q, ω = 0) [χT (q → 0, ω = 0)]

to take into account that there is no current response to the longitudinal

[transverse] time [time and space] independent vector potential, see [54, 55]

for details. We would like to note that when working with the current-current

response function, rather than with the density-density response function, the

nature of the plasmon-phonon interaction (especially the mixing of polariza-

tions as shown below) is far more transparent.

Next, it is straightforward to show from the Maxwell equations that an

electric current oscillating in a two-dimensional plane will induce a vector

potential

⟨ALq(ω)⟩ = ⟨JL(q, ω)⟩
√
q2 − ω2/c2

−2ω2ϵ0
, (5.10)

and

⟨ATq(ω)⟩ = ⟨JT (q, ω)⟩
µ0

2
√
q2 − ω2/c2

, (5.11)

where we have assumed that graphene is suspended in air and that there are

no other sources present in space. This induced vector potential in turn acts

on electrons in graphene through the interaction Hamiltonian He−em which

can result in plasmons - self-sustained collective oscillations of electrons. From

Eqs. (5.8) and (5.10) we get the dispersion relation for longitudinal plasmons

[40, 41]

1−
√
q2 − ω2/c2

2ω2ϵ0
χL(q, ω) = 0. (5.12)

From Eqs. (5.8) and (5.11) we get the dispersion relation for transverse plas-

mons [48]

1 +
µ0

2
√
q2 − ω2/c2

χT (q, ω) = 0. (5.13)

Longitudinal plasmons are also referred to as transverse magnetic modes since
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they are accompanied by a longitudinal electric (E) and a transverse magnetic

field (B) in the plane of graphene. Likewise transverse plasmons or transverse

electric modes are accompanied by a transverse electric and a longitudinal

magnetic field [48]. Dispersion relation of LP (TP) modes is shown by the

blue dashed line in Fig. 5.2. (Fig. 5.3, respectively). Finally we note that

we are primarily interested in non-radiative modes (q > ω/c) in which case

fields are localized near the graphene plane (z = 0) and decay exponentially:

E(z), B(z) ∝ e−|z|
√
q2−ω2/c2 .

In order to find the plasmon-phonon coupled excitations we consider the

complete Hamiltonian H = He +He−em +He−ph +Hph. We assume that the

hybrid plasmon phonon mode oscillates at some frequency ω with wavevec-

tor q (which are to be found). From the equation of motion for the phonon

amplitudes Qµq one finds [56]

(ω2 − ω2
0)⟨QTq⟩ = L2F ⟨JL(q, ω)⟩, (5.14)

and

(ω2 − ω2
0)⟨QLq⟩ = −L2F ⟨JT (q, ω)⟩. (5.15)

The electron phonon interaction (5.5) is included as the effective vector poten-

tial (5.7) in Eq. (5.6), which from Eq. (5.8) immediately yields

⟨JL(q, ω)⟩ = χL(q, ω)(−⟨ALq(ω)⟩+ F ⟨QTq⟩), (5.16)

and

⟨JT (q, ω)⟩ = χT (q, ω)(−⟨ATq(ω)⟩ − F ⟨QLq⟩). (5.17)

From Eqs. (5.14) - (5.17) it is clear that transverse (longitudinal) phonons

couple only to longitudinal (transverse) plasmons. Apparently, this follows

from the fact that LO (TO, respectively) phonons are equivalent to oscillations

of an effective vector potential Aeff [see Eq. (5.7)], and therefore an effective

electric field, perpendicular (parallel, respectively) to q.

Finally using Eqs. (5.10), (5.14), and (5.16) we get the dispersion relation

for the LP-TO coupled mode

ω2 − ω2
0 =

L2F 2χL(q, ω)

1−
√
q2−ω2/c2

2ω2ϵ0
χL(q, ω)

, (5.18)
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Figure 5.2: Dispersion lines of hybrid LP-TO plasmon-phonon modes (solid
lines) and of the uncoupled modes (dashed lines) for two values of doping: (a)
n = 5×1012 cm−2, and (b) n = 5×1013 cm−2. The hybridization is stronger for
larger doping values. Grey areas denote the region of single-particle damping.

and from Eqs. (5.11), (5.15), and (5.17) dispersion relation for the TP-LO

coupled mode

ω2 − ω2
0 =

L2F 2χT (q, ω)

1 + µ0

2
√
q2−ω2/c2

χT (q, ω)
. (5.19)

The plasmon dispersions relations (5.12) and (5.13) appear as poles in the

Eqs. (5.18) and (5.19) for the coupled modes, which means that the coupling

is greatest at the resonance point where plasmon momentum and energy match

that of the appropriate phonon mode. We denote this point (where the uncou-

pled plasmon and phonon dispersion cross) by (qc, ω0). One can quantify the

strength of the coupling effect by calculating the frequency difference between

the hybrid modes at the wavevector qc in units of the uncoupled frequency

value: ∆ω/ω0. Finally by doping one can change plasmon dispersion which in

turn changes qc and the strength of the plasmon-phonon coupling.

The dispersion lines for the hybrid LP-TO modes are shown in Fig. 5.2

for two values of doping, (a) n = 5 × 1012 cm−2, EF = 0.261 eV, kF =

3.96×108 m−1, and (b) n = 5×1013 cm−2, EF = 0.825 eV, kF = 1.25×109 m−1.

The strength of the coupling increases with increasing values of doping, and

one has for the case (a) ∆ω/ω0 = 7.5%, and (b) ∆ω/ω0 = 15.5%. To describe

graphene sitting on a substrate (say SiC, which is a polar material), one only

needs to include the dielectric function of the substrate into our calculation.

In that case plasmons can also couple to surface phonon modes of the polar

substrate [57]. However, since these surface phonons have sufficiently smaller
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Figure 5.3: Dispersion lines of hybrid TP-LO plasmon-phonon modes (solid
lines) and of the uncoupled modes (dashed lines) for two values of doping:
(a) n = 7.5 × 1011 cm−2, and (b) n = 9.5 × 1011 cm−2. The plasmon-like
dispersion is very close to the light line q = ω/c; therefore, the ordinate shows
∆q = q − ω/c.

energies than optical phonons in graphene out results are qualitatively un-

changed in that case. LP-TO hybrid modes could be measured by observing

the change in the phonon dispersion with the Neutron Spectroscopy or In-

elastic X-ray Scattering. Alternatively, one could use grating coupler or Elec-

tron Energy Loss Spectroscopy to measure the shift in the plasmon energy.

Our results imply that plasmon-phonon coupling could serve to explore the

electron-phonon interaction (the frequency shifts at resonance are much larger

then the G peak shift recently measured by Raman Spectroscopy [32]), and

that by externally appling voltage one can influence the properties of lattice

vibrations.

In spite of the fact that the formal derivation of hybrid TP-LO coupled

modes is equivalent to the derivation of the LP-TO modes, their properties

qualitatively differ. First, we note that the dispersion of transverse plasmons

is extremely close to the light line, and we plot ∆q = q − ω/c vs. frequency

ω following Ref. [48]. For this reason, transverse plasmons are expected to

have strong polariton character and they will be hard to distinguish from free

photons (also, even a small plasmon linewidth will obscure the distinction).

Moreover, they do not exist in graphene between two dielectrics with suffi-

ciently different relative permittivity, where the light lines for the dielectrics

are separated. Next, transverse plasmons exist only in the frequency inter-

val 2EF > ~ω > 1.667EF [48], which means that the LO phonon energy
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must be in the same interval for the hybridization to occur. Figure 5.3 shows

the dispersion curves of the hybrid TP-LO modes for two values of doping,

(a) n = 7.5 × 1011 cm−2, EF = 0.101 eV, kF = 1.53 × 108 m−1, and (b)

n = 9.5 × 1011 cm−2, EF = 0.114 eV, kF = 1.73 × 108 m−1. We observe that

the trend here is opposite to that of the LP-TO coupling, as the strength of the

coupling decreases with increasing doping; specifically, one has for the case (a)

∆ω/ω0 = 0.17%, and (b) ∆ω/ω0 = 0.02%. The maximal coupling occurs when

2EF is just above ~ω0, and it is zero when ~ω0 = 1.667EF . We emphasize that

the strength of the coupling for TP-LO modes is in general much weaker than

in LP-TO modes.

Before closing this chapter, we note another interesting result which is cap-

tured by our calculations. Equations (5.18) and (5.19) for shifts in the energies

of TO and LO modes at q = 0 reduce to

ω2 − ω2
0 =

L2F 2χL,T (0, ω)

1 + i
2ωϵ0c

χL,T (0, ω)
, (5.20)

which is identical to the result of Ref. [51], where the coupling of optical

phonons to single-particle excitations was studied, appart from the imaginary

term in the denominator which is zero in [51]. This small but qualitative

difference is consequence of phonon coupling to the radiative electromagnetic

modes, which increases the phonon linewidth. For example, for the doping

values of n = 5 × 1012 cm−2, 5 × 1013 cm−2, and 5 × 1014 cm−2, Eq. (5.20)

yields 0.005%, 0.07%, and 0.7%, respectively, for the linewidths, while there is

no linewidth from single-particle damping at these doping values. This effect

is qualitatively unchanged for graphene sitting on a substrate and could be

measured by Raman spectroscopy. Finally, we note an interesting solution

of Eq. (5.19) (valid for suspended graphene): when the hybrid TP-LO mode

dispersion crosses the light line it has the same energy as the uncoupled phonon

mode, i.e., ω = ω0. In other words, LO phonon at a wavevector q = ω0/c

decouples from all (single particle and collective) electron excitations, while

no such effect exists for the TO phonons.

In conclusion, we have predicted hybridization of plasmons and intrinsic op-

tical phonons in graphene using self-consistent linear response theory. To the

best of our knowledge, this is the first study of such resonance in an isolated 2D
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material. We found that graphene’s unique electron-phonon interaction leads

to unconventional mixing of plasmon and optical phonon polarizations: lon-

gitudinal plasmons couple exclusively to transverse optical phonons, whereas

graphene’s transverse plasmons couple to longitudinal optical phonons; this

contrasts plasmon-phonon coupling in all previously studied systems. The

strength of the hybridization increases with doping in LP-TO coupled modes,

while the trend is opposite for TP-LO modes. The LP-TO coupling is much

stronger than TP-LO coupling, and it could be measured by current experi-

ments, which would act as a magnifier for exploring the electron-phonon in-

teraction in graphene. This coupling is an even more striking example of a

breakdown of Born-Oppenheimer approximation in graphene than the recently

measured stiffening of the Raman G peak [32]. Moreover, plasmon-phonon in-

teraction can serve to electronically control the frequencies of lattice vibrations

in graphene, which could have interesting technological implications.
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Chapter 6

Near field heat transfer

6.1 Near field heat transfer between two graphene

sheets

In this chapter we analyze the near field heat transfer between two graphene

sheets mediated by thermally excited plasmon modes and demonstrate that

there is a large enhancement of heat transfer compared to the far field black

body radiation. The system we analyze, shown in figure 6.1, consists of a

suspended graphene sheet at temperature T1 emitting to another suspended

graphene sheet held at room temperature T2 = 300K, and a distance D away.

In chapter 2 we calculated the expression for the radiative heat exchange

between two graphene sheets. Total heat transfer H = Hff + Hnf can be

conveniently separated into the contribution from the propagating waves in

the far field

Hff =
1

π2

∫ ∞

0

dω[Θ(ω, T1)−Θ(ω, T2)]

∫ ω/c

0

qdq
∑
µ

hµff (q, ω), (6.1)

and evanescent waves in the near field

Hnf =
1

π2

∫ ∞

0

dω[Θ(ω, T2)−Θ(ω, T1)]

∫ ∞

ω/c

qdq
∑
µ

hµnf (q, ω). (6.2)

Here Θ(ω, T ) = ~ω/(eβ~ω − 1) is the Boltzman factor, µ stands for s or p
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polarization and functions hµff and hµnf are given by:

hµff (q, ω) ≡
(1− |rµ1 |2 − |tµ1 |2)(1− |rµ2 |2 − |tµ2 |2)

4|1− rµ1 r
µ
2 e

2iγD|2
, and (6.3)

hµnf (q, ω) ≡
ℑrµ1ℑr

µ
2 e

−2|γ|D

|1− rµ1 r
µ
2 e

−2|γ|D|2
. (6.4)

Figure 6.1: (a) Schematic diagram of the radiation transfer problem: a free
standing sheet of graphene at temperature T1 is radiating to another free stand-
ing graphene sheet at temperature T2 and distance D away. (b) Schematic dia-
gram of the field profile for even mode. (c) Odd mode. (d) Contour plot of the
transfer function hpnf for the case of two graphene sheets at the same chemical
potentials µ1,2 = 0.5eV and same temperatures T1,2 = 300K, separated by a
distance of D = 10 nm. Dashed line denotes the plasmon dispersion relation
for a single isolated graphene sheet, while poles of transfer function hpnf show
dispersion relations of the coupled (even and odd) modes of the two sheets.

Let us first note that graphene is a poor absorber in the far field, since it

is only one atom thick. Indeed, it was experimentally demonstrated [37] that

graphene absorbs only |a|2 ≈ 2% of the incident light (see equation (2.77)).

Since one can also write |a|2 = 1−|r|2−|t|2 we can simply neglect the far field

transfer (see equations (6.1) and (6.3)), at least compared to the black body

case which is characterized by |aBB|2 = 100%. On the other hand, we will see

that near field heat transfer can be significantly greater than the black body

case, if graphene sheets are sufficiently close to allow the tunneling of surface

modes (plasmons).

To analyze the near field heat transfer between two graphene sheets let us

write the p polarization reflection coefficient (2.131) for a single sheet as rp =

(1 − ϵ)/ϵ where ϵ = 1 + γσ/(2ϵ0ω) is the dielectric function of graphene [61].
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We immediately see that poles of rp are located at the plasmon dispersion

ϵ = 0 which was derived in chapter 3 but we write it here again for the sake

of clearance:

q = ϵ0
2iω

σ(ω, T )
. (6.5)

We assumed here γ =
√
ω2/c2 − q2 ≈ iq since we have shown that plasmon

dispersion is mainly located in the non-retarded regime q >> ω/c. We have

already pointed out that strong near field heat transfer requires graphene sheets

to be very close, which in turn allows coupling of two plasmon modes (see figure

6.1). In the case when two graphene sheets have identical parameters (rp1 = rp2)

this coupling results in two new modes: even mode described by an equation

rp = eqD, and an odd mode described by an equation rp = −eqD. Naturally,

when sheets are sufficiently far apart (D >>) or the wave vector is sufficiently

large (q >>) so that the coupling becomes irrelevant, these two modes become

degenerate again, described by a pole in rp. Further on, note that these two

equations can be joined in a single one: 1− (rp)2e−2qD = 0, which is precisely

a denominator in equation (6.4) which determines the poles of the function

hpnf . In other words, these two coupled surface modes, strongly enhance and

dominate the near field heat transfer. Note however from equation (6.4) that

hpnf ∝ e−2qD so that graphene sheets have to be very close to have a significant

near field heat transfer. In other words plasmon surface modes can act as an

excellent heat conductors, only the graphene sheets have to be very close to

allow the coupling of exponentially decaying (E ∝ e−qD) plasmon field.

Finally note that hpnf ∝ ℑrp1ℑr
p
2, while ℑrp has a pole at the bare plasmon

dispersion so there will be a competition between this factor and a pole at a

dispersion of a coupled mode. Therefore the function hpnf will increase with

increasing wave vector since the coupling between the modes will decrease and

even/odd mode dispersion (and a corresponding pole) will join that of a bare

plasmon (and a corresponding pole). However, when these dispersions meet

(q ≈ 1/D) the function hpnf will start to decrease with the wave vector due

to exponentially decaying factor hpnf ∝ e−2qD. At last note that function hpnf
is multiplied with a Boltzman factor Θ(ω, T ) which shifts everything to lower

frequencies so there are several competing effects in action which will be hard

to disentangle in the end when everything gets integrated over all q, ω values.

The same analysis applies to the s polarization however it is easy to see that
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it will have a minor contribution to the total near field heat transfer. The

reason for this is a large difference in the character of the plasmon disper-

sion relations (compare figure 5.2 and figure 5.3). On one hand longitudinal

plasmons, described by a pole in rp, are located in the non-retarded regime

(q >> ω/c) with a large density of states, while transverse plasmons, describe

by a pole in rs, are located in the strongly retarded regime (q ≈ ω/c) with a

tiny density of states. Since each q value can be thought of as a separate heat

channel, and if graphene sheets are close enough so that all relevant q modes

are active, the p polarization will have many more heat channels and dominate

over the s polarization.

To model graphene we shall use q-independent conductivity which simplifies

the mathematical calculations and gives a good order of magnitude on the

heat transfer (see discussion below). In chapter 2 we showed that the total

conductivity σ(ω) = σD(ω) + σI(ω), can be separated into Drude (intraband)

and interband part, expressed respectively as (see also [61]):

σD(ω) =
i

ω + i/τ

e22kbT

π~2
ln

[
2cosh

µ

2kbT

]
(6.6)

σI(ω) =
e2

4~

[
G

(
~ω
2

)
+ i

4~ω
π

∫ ∞

0

G(ϵ)−G(~ω/2)
(~ω)2 − 4ϵ2

dϵ

]
.

where G(ϵ) = sinh(ϵ/kbT )/(cosh(µ/kbT )+cosh(ϵ/kbT )), and µ is the chemical

potential. Various electron scattering processes are taken into account through

the relaxation time τ . From DC mobility measurements in graphene, one ob-

tains an order-of-magnitude value of τ ≈ 10−13s. Now, due to fluctuation-

dissipation theorem hpnf ∝ ℑrp and ℑrp ∝ ℜσ (see equation (2.147)), so we

have to take particular attention to the origin of dissipation (ℜσ) in our system.

At zero temperature the situation is very simple since Drude term (intraband

contribution) and relaxation time τ determines the losses for low frequencies,

while interband contribution is dominant for frequencies above the interband

threshold (~ω = 2µ). However, at finite temperature, interband processes can

play a leading role even below the absorption threshold ω ≈ 2µ, particularly for

small chemical potential where thermal broadening of interband threshold (on

the order of few kbT ) becomes more significant. While the use of q-independent

expression for graphene conductivity (6.6) for intraband processes is a good

approximation, one must take care when applying (6.6) to interband transi-
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tions. Here, the contribution from the finite wave-vector becomes important

since it broadens the interband threshold from 2µ to 2µ− ~qvF . On the other

hand, this is similar to finite temperature effects which also broaden the in-

terband threshold, so we do not expect a qualitatively different result with

q-dependent conductivity.

Figure 6.2: Contour plot of the near field heat transfer between two graphene
sheets Hnf

gg normalized to the far field heat transfer between two black bodies

Hff
BB of the same temperatures, in the log scale. Here T2 = 300K, µ1,2 = 0.1eV

and τ1,2 = 10−13s.

To quantify the heat exchange in the near field we plot in figure 6.2 the total

transfer Hnf (6.2) normalized to the transfer between two black bodies in the

far field. Since the exponentially decaying Boltzman factor shifts all the con-

tributions to the lower frequencies we will focus on the small values of chemical

potential. For µ1,2 = 0.1eV , we observe orders-of-magnitude increase in heat

exchange particularly at small separations (×1000 for D = 20nm, T1 = 800K),

but also at separations as large as 0.1µm. In general, dependence of transfer

on separation D is non-uniform and does not seem to yield a simple functional

dependence on the emitter and absorber temperatures (as is the case for two

black bodies). This efficient heat exchange between two graphene sheets in the

near field, together with recently reported advances in hot carrier extraction

from graphene [62], may offer a potential for a novel, hybrid thermophoto-

voltaic/thermoelectric solid-state heat-to-electricity conversion device.
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6.2 Near field thermo-photo-voltaics using graphene

as a thermal emitter

Here we show that graphene can be used as a thermal emitter in the near field

thermo-photo-voltaic (TPV) system resulting in high efficiencies and power

densities. The near field heat transfer is mediated by thermally excited plas-

mon modes in graphene similarly to the situation in the last section.

The system we analyze consists of a hot graphene emitter at a temperature

T1 and a photo-voltaic (PV) cell held at room temperature T2 = 300K and

distance D away from graphene. It is interesting to note that the expression

for the near field heat transfer between graphene and a PV cell is given by the

same expression (6.2) for the graphene to graphene heat transfer

Hnf =
1

π2

∫ ∞

0

dω

[
~ω

eβ1~ω − 1
− ~ω
eβ2~ω − 1

] ∫ ∞

ω/c

qdqhpnf (q, ω), (6.7)

where

hpnf (q, ω) ≡
ℑrp1ℑr

p
2e

−2qD

|1− rp1r
p
2e

−2qD|2
. (6.8)

Here we have neglected the contribution from s polarization, and assumed γ =√
ω2/c2 − q2 ≈ iq since the near field heat transfer is mediated by graphene

plasmon modes in the non-retarded regime (q >> ω/c). To model graphene

we use q-independent conductivity σ(ω) from equation (6.6) as before, and the

reflection coefficient is given by equation (2.131) which we write again for the

sake of clearance:

rp1(q, ω) =

iqσ(ω)
2ϵ0ω

1 + iqσ(ω)
2ϵ0ω

. (6.9)

Above hot graphene emitter we now have PV cell which we model as a simple

direct band-gap semiconductor with parameters:

ϵ2(ω) =

(
n+ i

α

2k0

)2

where α(ω) =

 0 , ω < ωg

α0

√
ω−ωg

ωg
, ω > ωg

(6.10)

Here n is the refractive index, k0 = 2π/λ = c/ω is the photon wavelength

in vacuum, and ωg is the bandgap frequency. Specifically we will discuss the

case of indium antimonide (InSb) with parameters ωg = 0.17eV and α0 ≈
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0.7× 104cm−1 (at room temperature [64]). Finally the reflection coefficient of

the PV cell, in the non-retarded regime (q >> ω/c), is simply given by [67]

rp2(ω) =
ϵ2(ω)− 1

ϵ2(ω) + 1
. (6.11)

When the PV cell is biased at a voltage 1 Vo, we can express the total radiative

power exchange as [65]

Prad =
1

π2

∫ ∞

0

dω

[
~ω

eβ1~ω − 1
− ~ω
eβ2(~ω−Vo) − 1

] ∫ ∞

ω/c

qdqhpnf (q, ω). (6.12)

On the other hand we can also write the total photon flux into the PV cell as

jph =
1

π2

∫ ∞

0

dω

[
1

eβ1~ω − 1
− 1

eβ2(~ω−Vo) − 1

] ∫ ∞

ω/c

qdqhpnf (q, ω). (6.13)

In the Shockley-Quiesser limit [69] of ideal PV cell, the only recombination

of the charge carriers happens through the radiative processes so the electron

current is simply: je = ejph. Then the electrical power generated in the PV

cell is PPV = jeVo, and efficiency of device is

ηTPV =
PPV
Prad

=
ejphVo
Prad

. (6.14)

Let us now choose the graphene’s chemical potential to be µ = 0.25 eV, and

that the PV cell is held at room temperature T2 = 300K and distance D = 10

nm away from the graphene sheet. Then for the case of graphene’s temperature

T1 = 600 K and biased voltage Vo = 0.08 V, the output power density of our

TPV device is PPV /A = 6 W/cm2 with an efficiency of η = 35%. We note that

these are remarkably high power densities considering that our thermal emitter

is only one atom thick. To get a better sense of the scales involved we can

compare the far field radiative power exchange PBB
rad between two black bodies

held at temperatures T1 and T2 but involving only the photons of energies

above the given PV band gap, and the near field radiative power exchange

P gPV
rad between graphene and a PV cell held at these temperatures. For the

1In general, the optimal voltage Vo depends on other parameters in the system. We avoid
the full optimization procedure, and, motivated by the observed dependence of efficiency on
Vo, choose a voltage slightly below the limit V max

o = ωg(1− T2/T1).
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temperatures T1 = 600 K and T2 = 300 K one obtains P gPV
rad /PBB

rad = 62 times

increase over the black body case.

Further on, note that the near field heat transfer is particularly convenient

since the energy is transfered by the evanescent modes and the photons with

energy below the band gap, that are not absorbed by the PV cell, simply

return to the graphene emitter as heat, unlike the far field case where they

are lost in the form of propagating waves. This results in the high efficiencies

η = 35%, however note that these numbers are still below the Carnot limit

η = 50% for temperatures T1 = 600 K and T2 = 300 K. The reason for this is

the broad band plasmon spectrum contributing to the heat transfer with the

high energy photons (ω > ωg) wasting the energy difference (∆E = ~ω− ~ωg)
on the thermalization losses heating up the system.

To achieve even higher efficiencies one would need to tailor the emitter prop-

erties so that it selectively radiates only in the small interval around the band

gap of the PV cell. One way to do this would be to use surface plasmons at

metal-dielectric surface, since they have very large density of states around the

surface plasmon resonance; see figure 3.1 b, and compare it to broad band spec-

trum of graphene plasmon mode from figure 3.2 d. However, the problem with

metals is that surface plasmon resonance usually falls in the visible/ultraviolet

regime which is impossible to excite thermally. Alternatively one could use

highly doped semiconductors like Indium-Tin-Oxide [70] which has a reso-

nance in the infra-red [71], however due to high doping level there is a lot of

electron-impurity scattering and high losses result in reduced efficiencies. In

that regards graphene TPV system shows large promise for a new temperature

range (600−1200K) solid state energy conversion, where conventional thermo-

electrics can not operate due to high temperatures and far field TPV schemes

suffer from low efficiency and power density.
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Chapter 7

Summary

We have explored light-matter interaction in graphene in the context of plas-

monics and other technological applications but also used graphene as a plat-

form to explore many body physics phenomena like the interaction between

plasmons, phonons and other elementary excitations. Plasmons and plasmon-

phonon interaction were analyzed within self-consistent linear response ap-

proximation. We demonstrated that electron-phonon interaction leads to large

plasmon damping when plasmon energy exceeds that of the optical phonon but

also a peculiar mixing of plasmon and optical phonon polarizations. Plasmon-

phonon coupling is strongest when these two excitations have similar energy

and momentum. We also analyzed properties of transverse electric plasmons

in bilayer graphene. Finally we have showed that thermally excited plasmons

strongly mediate and enhance the near field radiation transfer between two

closely separated graphene sheets. We also demonstrated that graphene can

be used as a thermal emitter in the near field thermophotovoltaics leading to

large efficiencies and power densities. Near field heat transfer was analyzed

withing the framework of fluctuational electrodynamics.

In Chapter 2 we presented analytical methods that were used throughout

the text. We have derived electron band structure and electron-phonon inter-

action using the tight binding approximation. After that we derived the linear

response functions (density-density and current-current) and used the fluc-

tuation dissipation theorem to calculate the current-current correlation func-

tion induced by the thermal fluctuations in the system. Finally we employed

these results to calculate radiative heat transfer between two graphene sheets.
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In Chapter 3 we have investigated plasmons in doped graphene and demon-

strated that they simultaneously enable low-losses and significant wave local-

ization for frequencies of the light smaller than the optical phonon frequency

~ωOph ≈ 0.2 eV. Interband losses via emission of electron-hole pairs (1st order

process) were shown to be blocked by sufficiently increasing the doping level,

which pushes the interband threshold frequency ωinter toward higher values

(already experimentally achieved doping levels can push it even up to near

infrared frequencies). The plasmon decay channel via emission of an optical

phonon together with an electron-hole pair (2nd order process) is inactive for

ω < ωOph (due to energy conservation), however, for frequencies larger than

ωOph this decay channel is non-negligible. This is particularly important for

large enough doping values when the interband threshold ωinter is above ωOph:

in the interval ωOph < ω < ωinter the 1st order process is suppressed, but the

phonon decay channel is open.

In Chapter 4 we showed that graphene can also support unusual transverse

electric plasmons and we predicted the existence of TE plasmons in bilayer

graphene. We found that their plasmonic properties are much more pro-

nounced in bilayer than in monolayer graphene, in a sense that the wavelength

of TE plasmons in bilayer can be smaller than in monolayer graphene at the

same frequency.

In Chapter 5 we analyzed the coupling of plasmons with intrinsic optical

phonons in graphene by using the self-consistent linear response formalism.

We found that longitudinal plasmons (LP) couple only to transverse optical

(TO) phonons, while transverse plasmons (TP) couple only to longitudinal

optical (LO) phonons. The LP-TO coupling is stronger for larger concentration

of carriers, in contrast to the TP-LO coupling (which is fairly weak). The

former could be measured via current experimental techniques. Thus, plasmon-

phonon resonance could serve as a magnifier for exploring the electron-phonon

interaction in graphene.

In Chapter 6 we analyzed the near field heat transfer between two graphene

sheets mediated by thermally excited plasmon modes, and we demonstrated

that there is a large enhancement of heat transfer compared to the far field

black body radiation. Finally we showed that graphene can be used as a

thermal emitter in the thermo-photo-voltaic system resulting in high device

efficiencies and power densities.
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Appendix A

Plasmon-phonon coupling in the

context of Feynman diagrams

In this appendix we give alternative derivation of plasmon-phonon coupling

in the context of Feynman diagrams. In that respect let us start by writing

Coulomb potential

V (r) =
e2

4πϵ0r
, (A.1)

and its Fourier transform in two dimensions

V (q) =
e2

2ϵ0q
. (A.2)

Bare Coulomb interaction V (q) can polarize electron gas by creating electron-

hole pair which in turn screens the bare interaction resulting with an effective

interactionW (q, ω). This process can happen several times in a row (see figure

A.1) so we can write self-consistent equation for the effective interaction [66]

[−iW (q, ω)] = [−iV (q)] + [−iV (q)] [−iΠ(q, ω)] [−iW (q, ω)] . (A.3)

If we now use the Random Phase Approximation which neglects higher order

scattering of the created electron-hole pair, then the polarizability Π(q, ω),
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Figure A.1: (a) Feynman diagram for bare Coulomb interaction V (q). (b)
Polarizability Π(q, ω). (c) and (d) Screened Coulomb interaction W (q, ω) in
the Random Phase Approximation.

depicted with a Feynman diagram in figure A.1 (b), can be written as

−iΠ(q, ω) = −4

∫
dkdν

(2π)3

∑
n,n′

iG0(n
′,k+ q, ω + ν)iG0(n,k, ν)

× ⟨n′k+ q|eiqr|nk⟩⟨nk|e−iqr|n′k+ q⟩. (A.4)

Here |nk⟩, i.e. the wave function ψnk(r) = ⟨r|nk⟩, denotes single particle free
Dirac electron states (see relation (2.29)) and the Green function G0(n,k, ν)

is given by expression [66]

G0(n,k, ν) =
1− fnk

~ν − Enk + iη
+

fnk
~ν − Enk − iη

, (A.5)

where fnk denotes the Fermi-Dirac distribution. After integration over energy

ν we obtain

Π(q, ω) = 4

∫
dk

(2π)2

∑
n,n′

fnk − fn′k+q

~ω + Enk − En′k+q

× ⟨n′k+ q|eiqr|nk⟩⟨nk|e−iqr|n′k+ q⟩, (A.6)
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and then by using the exact wave function for Dirac electrons ψnk(r) = ⟨r|nk⟩,
given in equation (2.29), we obtain the polarizability

Π(q, ω) = 4

∫
dk

(2π)2

∑
n,n′

fnk − fn′k+q

~ω + Enk − En′k+q

× 1

2
(1 + nn′ cos[φ(k+ q)− φ(k)]). (A.7)

Further on, by using relation (A.3) we can write the screened interaction

W (q, ω) =
V (q)

1− Π(q, ω)V (q)
, (A.8)

where we recognize the expression for dielectric function of electron gas

ϵ(q, ω) = 1− Π(q, ω)V (q) = 1− e2

2ϵ0q
Π(q, ω). (A.9)

Finally, we note that plasmons are simply defined as zeros of the dielectric

function: ϵ(q, ω) = 0.

Let us find now the phonon Green function for free phonons at zero tem-

perature. Since longitudinal and transverse optical phonons are degenerate at

energy ~ω0 = 0.196 eV, then the Green function for both branches is given by

D0
µ(q, ω) =

2~ω0

~ω(~ω + iη)− (~ω0)2
. (A.10)

Now, the electron-phonon interaction was given in equation (2.62)

He−ph = L2
∑
q,µ

gMqµρ
+
qQqµ. (A.11)

The phonon motion can in turn polarize the electron gas which is described by

a self-consistent equation for the phonon Green function renormalization (see

figure A.2)

[−iDµ(q, ω)] =
[
−iD0

µ(q, ω)
]
+
[
−iD0

µ(q, ω)
]
[−iΠe−ph(µ,q, ω)] [−iDµ(q, ω)] ,

(A.12)
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so the renormalized Green function is given by an expression:

Dµ(q, ω) =
D0
µ(q, ω)

1−D0
µ(q, ω)Πe−ph(µ,q, ω)

=
2~ω0

(~ω)2 − (~ω0)2 − 2~ω0Πe−ph(µ,q, ω)
. (A.13)

Finally, the renormalized phonon frequency is defined by a pole of the Green

function

ω2 − ω2
0 = 2

ω0

~
Πe−ph(µ,q, ω). (A.14)

Up to the lowest order, the interaction will create virtual electron-hole pair

(see figure A.2) which can be described with a polarization function

−iΠ0
e−ph(µ,q, ω) = −4g2

∫
dkdν

(2π)3

∑
n,n′

iG0(n
′,k+ q, ω + ν)iG0(n,k, ν)

× ⟨n′k+ q|Mqµe
iqr|nk⟩⟨nk|M∗

qµe
−iqr|n′k+ q⟩.

(A.15)

We note here that Mqµ given by equation (2.61) is two by two matrix so that

polarizability Π0
e−ph(µ,q, ω) isn’t simply proportional to the function Π(q, ω)

which was obtained in relation to the screened Coulomb interaction (see re-

lation (A.4)). In the context of Feynman diagrams we can say that diagram

vertices are different for the case of Coulomb (electron-electron) interaction

from the case of electron-phonon interaction. Further on, we obtain

Π0
e−ph(µ,q, ω) = 4g2

∫
dk

(2π)2

∑
n,n′

fnk − fn′k+q

~ω + Enk − En′k+q

× ⟨n′k+ q|Mqµe
iqr|nk⟩⟨nk|M∗

qµe
−iqr|n′k+ q⟩. (A.16)

Let us now take the exact form of the wave function ψnk and the matrix

element Mqµ according to relations (2.29) and (2.61). We can see that the

polarizability depends on the phonon polarization and we obtain

Π0
e−ph(L,q, ω) = 4g2

∫
dk

(2π)2

∑
n,n′

fnk − fn′k+q

~ω + Enk − En′k+q

× 1

2
(1− nn′ cos[2φ(q)− φ(k)− φ(k+ q)]), and (A.17)
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Figure A.2: (a) Feynman diagrams for phonon Green function renormalization.
(b) Feynman diagrams for polarizability function. Note that the electron-
electron interaction vertex is different from the electron-phonon vertex.

Π0
e−ph(T,q, ω) = 4g2

∫
dk

(2π)2

∑
n,n′

fnk − fn′k+q

~ω + Enk − En′k+q

× 1

2
(1 + nn′ cos[2φ(q)− φ(k)− φ(k+ q)]). (A.18)

If we now imagine that phonon energy and momentum matches plasmon

energy and momentum, then the electron-phonon interaction will be amplified

through the collective electron response. In that case it won’t be sufficient to

calculate only the polarization of single electron hole pair and we will have

to take into consideration contribution from the infinite sequence of bubble

diagrams (which are in fact necessary to describe plasmon excitation). The

easiest way to do this is to take the electron-phonon interaction which polarizes

a single electron hole pair and include the possibility that Coulomb interaction

can in turn create another electron hole pair. The infinite sequence of diagrams

can be included if we work from the start with screened Coulomb interaction

instead of bare interaction and one should take special account of the nature of

diagram vertices considering if the electron hole pair was created by Coulomb

or electron-phonon interaction (see figure A.2). In that way we obtain the

screened electron-phonon polarizability in the Random Phase Approximation

Πe−ph(µ,q, ω) = Π0
e−ph(µ,q, ω)+Π1

e−ph(µ,q, ω)W (q, ω)Π2
e−ph(µ,q, ω). (A.19)

Here W (q, ω) = V (q)
1−Π(q,ω)V (q)

so we immediately see that if phonon disper-
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sion crosses the plasmon dispersion then the electron-phonon interaction will

be amplified due the collective electron response where we have ϵ(q, ω) =

1−Π(q, ω)V (q) = 0. That part is in fact responsible for the plasmon phonon

coupling. Finally the polarizability describing the bubble with different ver-

tices is given by

Π1
e−ph(µ,q, ω) = Π2

e−ph(µ,q, ω)
∗ = 4g

∫
dk

(2π)2

∑
n,n′

fnk − fn′k+q

~ω + Enk − En′k+q

× ⟨n′k+ q|Mqµe
iqr|nk⟩⟨nk|e−iqr|n′k+ q⟩.

(A.20)

If we include here the exact wave function ψnk and matrix elements Mqµ, we

obtain different expressions depending on the phonon polarization:

Π1
e−ph(L,q, ω) = 4g

∫
dk

(2π)2

∑
n,n′

fnk − fn′k+q

~ω + Enk − En′k+q

× i

2
(n sin[φ(q)− φ(k)] + n′ sin[φ(q)− φ(k+ q)]), and

(A.21)

Π1
e−ph(T,q, ω) = 4g

∫
dk

(2π)2

∑
n,n′

fnk − fn′k+q

~ω + Enk − En′k+q

× i

2
(n cos[φ(q)− φ(k)] + n′ cos[φ(q)− φ(k+ q)]).

(A.22)

Let us first analyze interaction with the longitudinal optical phonons. In that

respect let us take expression (A.21) and assume, without the loss of generality,

that φ(q) = 0 i.e. vector q is along x̂ direction. We than obtain

Π1
e−ph(L,q, ω) = 4g

∫
dk

(2π)2

∑
n,n′

fnk − fn′k+q

~ω + Enk − En′k+q

× i

2
(−n sin[φ(k)]− n′ sin[φ(k+ q)]). (A.23)

But the function under the integral sign is odd with respect to reflection across

the x axis, meaning that the entire integral vanishes i.e. Π1
e−ph(L,q, ω) = 0.
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In other words we have shown analytically that there is no whatsoever cou-

pling of plasmons and longitudinal optical phonons! Finally, to find the cou-

pling of plasmons with transverse optical phonons one only needs to solve self-

consistent set of equations (A.14) and (A.19) which was done numerically and

demonstrated to agree with the results of chapter 5, where we used different

gauge to obtain the same result.
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depicted as green solid arrows in Fig. 4.1) are not shown (see
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6.1 (a) Schematic diagram of the radiation transfer problem: a free

standing sheet of graphene at temperature T1 is radiating to an-

other free standing graphene sheet at temperature T2 and dis-

tanceD away. (b) Schematic diagram of the field profile for even

mode. (c) Odd mode. (d) Contour plot of the transfer function
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potentials µ1,2 = 0.5eV and same temperatures T1,2 = 300K,

separated by a distance of D = 10 nm. Dashed line denotes the

plasmon dispersion relation for a single isolated graphene sheet,
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