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Abstract

The Hilbert space of quantum mechanics has a dual repréiseniia lattice theory, called the
Hilbert lattice. In addition to offering the potential foew insights, the lattice-theoretical ap-
proach may be computationally efficient for certain kindsgantum mechanics problems,
particularly if, in the future, we are able to exploit whatyrze a “natural” fit with quantum
computation. The equations that hold in the Hilbert spattecéarepresentation are not com-
pletely known and are poorly understood, although much nessgyhas been made in the last
several years. This work contributes to the developmertiegd¢ equations, with special atten-
tion to the so-called generalized orthoarguesian equatidiany new results that do not appear
in the literature are given, along with their detailed psodh addition, possible approaches for
work towards answering some remaining open questions scessed.

Keywords

Hilbert space, Hilbert lattice, orthoarguesian propestypng state, quantum logic, quantum
computation, Godowski equations, orthomodular lattice
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ProsSireni sazetak

Pozadina.Stanja u kvantnoj mehanici mogu se modelirati kao vektorilbéftovom prostoru.
Skup zatvorenih podprostora kame ili beskoné&no dimenzionalnog Hilbertova prostaikan

je klaseCestica koje se zovu Hilbertove reSetke (Hilbert lattick).HReSetka je djelonéno
ureten skup u kojemu svaka dédana imaju najmanju gornju i najéa donju granicu. Ovaj

i svi drugi ovdje koriSteni termini formalno su definirani isdrtaciji). Obratno, mogie je
izvesti Hilbertov prostor polaté od HL. Zbog ovog dvostrukog odnosa razumijevanje svo-
jstava HL-a moze dovesti do boljeg razumijevanja svojstditbertova prostora. Osim Sto
nudi mogunost novih uvida, teorijski pristup reSetki moZe bitwaski efikasan za neke vrste
kvantno meharikih problema, narto ako, u budanosti, budemo mogli koristiti ono 3to bi
mogao biti “prirodno” odgovarajti dio za kvantno réunanje. Jednadzbe koje u Hilbertovu
prostoru podrZzavaju prikaz reSetke nisu u potpunosti pezn@edovoljno ih se razumije, pre-
mda je tijekom nekoliko posljednjih godin&injen veliki napredak.

Familija svih HL-ova definirna je (aksiomatizirana) skupowjeta prvoga reda koji ukljtu-
ju (egzistencijalne) kvantifikatore. Za odesd broj uvjeta nultog reda odnosno jednadzbi bez
kvantifikatora, moZe se pokazati da vrijede u svakom HL-oBlgledniji od njih su jednadzbe
koje definiraju bilo koju reSetku (te posebno svaku ortetias), koje su dio skupa aksioma.
Godine 1937. Husimi je otkrio ortomodularni zakon (koji jds takodr dio HL definicije),
koji je bio intenzivno obraden u literaturi o klasi ortomodularnih reSetki (OML), kojé HL
podklasa.

Za razliku od uvjeta prvoga reda, jednadzbe nam orbagaju da direktno baratamo ob-
jektima u podprostoru Hilbertova prostora i dobijemo vrettunske “algebre” za rad s tim
objektima. JednadZbe su posebno prikladne za efikasoaske tehnike. Klasa reSetki defini-
rana samo jednadzbama, kao Sto je OML, naziva se jednadizbamijetetom. Klasa HL-a
sama po sebi nije jednadZzbeni varijetet (za Sto je dokazdeawa disertaciji). Usprkos tome,
klasa reSetki koju je generirao (tj. koja zadovoljava) sjegnadzbi koje vrijede u HL-u moze
se pro@avati odvojeno kao superklasa od HL-a i svi rezultati sw@uatski primjenjivi na HL
kao poseban staj.

Jedan vazan nerijeSen problem je pi@reve mogiée jednadZzbene zakone koji vrijede u
HL-u. S j&im jednadZbama moge je proiti viSe karakteristika HL-a koriStenjem samo
jednadzbenih varijeteta.

Ovdje je kratki pregled napretka postignutog do sada. Togkanekoliko desetljea nakon
Husimieva OML zakona da se proreadrugi, a to je bio ortoarguesiev zakon kojega je otkrio
Alan Day 1975.
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1981. g. Godowski je otkrio nezavisnu beskoma familiju HL jednadzbi, baziranu na
kvantnim probabilisttkim stanjima. Te jednadZbe nazivano “Godowski-eve jedbadili n-
Gos. Godine 1986. Mayet je naSao algoritam za generirargjegvekupa jednadzbi (nazvan
MGESs), koji je tako@r utemeljen na stanjimaiji su podskup bile Godowski-eve jednadzbe),
premda se na getku nije znalo da li je ikoja od njih nezavisna pd50 jednadzbi. Od 2006.
do 2009., Megill i Pawic pronasli su nove jednadzbe utemeljene na Mayet-ovu aigorza
koje se pokazalo da se ne daju izvesti iz Godowski-evih.

U 2000. g. Megill i Pawic otkrili su novu familiju jednadZbi koje vrijede u HL-u—geral-
izirane ortoarguesieve jednadzbe, nazva@& zakoni f| > 3). OA zakon Alan-a Day-a je
drugi Clan ove serije, zakon 40A, a Greechie/Godowski-eve jetlmadzvedene iz OA su ek-
vivalentne prvomelanu, zakonu 30A. Dok je otvoren problem da li se ob€)A sastoji od
uzastopno jéih jednadzbi, mi smo dokazali (obimnim kompjuterskim &agm protuprimjera)
da su zakoni 30A, 40A, 50A i 60A uzastopn@ija2011. g. uspjeli smo dokazati da je zakon
70A jaCi od zakona 60A.

Godine 1995. Maria Solér je dokazala da je dodavanjem dvatdadHL aksioma, mode
iz HL-a izvesti Hilbertov prostocije je polje jedno od “klaginih” polja kvantne mehanike
(realno, kompleksno ili kvaternionsko). Soleér-in teorepotpunio je dugo neostvareni cilj
da se Hilbertov prostor kvantne mehanike izvede iz nekogaHiokazuj@i da su oni dualni.
Godine 2006. Mayet je opisao novu obitelj jednadzbi, namvarjednadzbe, utemeljenu na
jednom svojstvu Hilbertova prostora koje se naziva vekieraluiranim stanjem. Vazno je ce
da te jednadzbe ne vrijede za svako migpolje koje se moze dovesti u vezu s Hilbertovim
prostorom vé samo za ona polja s karakteristikom 0, koja ugljju klastna polja kvantne
mehanike. To nam daje jednadzbeni uvjet koji je u stvariawvie (te ih tako djelon@ino i
opisuje) Soler-inim dodatnim uvjetima (prvoga reda) donaHL-u.

Ovdjetemo ukratko sumirati kljtne teme pokrivene u disertaciji koje se odnose na traZzenje
novih HL jednadzbi.

Ortomodularne reSetka/eliki broj uvjeta koji vrijede u OML-u prikupljen je u pogldju 3,
za kasniju uporabu. Oni koji se nisu ranije pojavili u litenapopraeni su detaljnim dokazima.
Odretkeni broj novih rezultata naveden je za takozvanu Sasaki lopekaciju, koja postaje
koristan alat u kasnijim poglavljima.

Ortoarguesieve jednadzb@®oglavlje 4 predstavlja ekstenzivnu studiju generalighaor-
toarguesievih resetki (jednadzbeni varijet®A). Prezentiran je revidirani dokaz tih zakona
i razmotreni su poznati rezultati neovisnosti (sve do 7QMekoliko sustava ozrtavanja, ko-
risnih u razlCitim situacijama, uvedeno je kako bi se kompaktno reprizde te jednadzbe.
Mnoge jednadZbe koje su ekvivalentne i koje su posljedig®rzanOA, koje su gotovo sve

viii



nove, izvedene su uz detaljne dokaze.

Vazan nerijeSen, otvoren problem je “pretpostavka orwesgevog identiteta,” koja pro-
pituje da li je uvjet poznat kao zakon ortoarguesievog itietat ekvivalentan ortoarguesian-
skom zakonu. Ako ova pretpostavka vrijedi, bila bigaa alat za dokazivanje teorema. Jedna
ekstenzivna studija koja je posljedica ove pretpostawdangko kao i drugih pretpostavki koje
je impliciraju, predstavlja sredisnji dio posljednjeg elgia poglavlja 3.

Ostale jednadzbe Hilbertove reSetk&oglavlje 5 razmatra druge gore spomenute jed-
nadzbene varijetete. Posebno je predstavljeno 16 noviheMapdowski-evih jednadzbi
(MGESs), otkrivenih kao dio ove disertacije.

Poglavlje 6 istrazuje svojstva superpozicije prvoga rea@dularnu simetriju, odega niti
jedno do sada nije dovelo do nove jednadzbe. Prezentirgm@teostavljena jednadzba izve-
dena iz modularne simetrije, ali je otvoreni problem da émjzvod (p@evsi od modularne
simetrije) vrijedi u svim OML-ovima.

Jednadzbe reSetke za konacno dimenzionalne Hilbertay&que. Konatno dimenzion-
alni Hilbertovi prostori vazni su za mnoge probleme u kvapmehanici, uklj@ujuci vecinu
eksperimenata koji ukljtuju cesttna stanja i veinu pristupa kvantnom ¢ainanju. Poglavlje 7
razmatra modularni zakon i Arguesiev zakon koji vrijedi tiveaenim podprostorima kogao
dimenzionalnih Hilbertovih prostora. lzvedena je novadjaekrguesievih zakona viSeg reda.
Prodiskutirane su mo@e primjene Pappusova zakona projektivne geometrije.
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Chapter 1

INTRODUCTION AND OVERVIEW

At the very end of his book Quantum Computation and Quantummr@onication, Mladen
Pavitic [99] lays forth a bold vision for a possible future of quantaomputing, one in which
a universal quantum “algebra” is discovered that will fipailirn the search for quantum algo-
rithms—of which less than half a dozen exist today, in spftentense work by hundreds of
researchers—from a mysterious black art into a science gdhkof such an algebra would be
to provide a quantum analog, in some sense that is still umknto the Boolean algebra used
by classical computation. A possible clue, he believes, b@yrovided by uncovering and
understanding the link between the lattice equations dfetilspace and quantum computation.
Today such a link is almost completely unknown, other tharfalot that both are independently
derived starting from Hilbert space. This thesis will inigate and continue with the ideas
envisioned by Patic, building on the foundation that he and this author havesldged over
the last several years in the various papers that we havatborad [102]/[103].[104][76] [73]
[77] [78] [8C] [7<] [109].

The main idea behind representing Hilbert space by an ordoihar lattice is
to add additional strengthening axioms which are still weakugh so as not to
make it modular. These axioms will give us the so-called éfilliattices

Thus we do arrive at a full Hilbert space, but the axioms ferkilbert lattices
that we used for this purpose are too involved to reveal ailplesgansition to
its finite-dimensional representation. This is becauséénpast, the axioms were
simply read off from the Hilbert space structure and werendated as predicative
statements of the first and second order that cannot be inepiexh by a quantum
Turing machine



1.1. BACKGROUND AND HISTORY

—M. Paviic [99, pp. 195-196]

Towards this goal, this work involves, in particular, anemdive study of the equations
that hold in the Hilbert lattice, that is, the lattice of adassubspaces of infinite- or finite-
dimensional Hilbert space. Primary emphasis has beengt@tenaking progress towards the
following subgoals, all of which are currently open probteaiout which very little is known:
(1) extending the known set of equations with new discogeli2) determining the minimum
set of additional first-order logical properties (i.e. taasvolving quantifiers) that are needed
to re-derive Hilbert space from existing and new equatig8y,determining what fragment
of Hilbert space it is possible to describe by the equatidosea(without the additional first-
order properties), and (4) connecting these resultsjragefrom this Hilbert space fragment, to
equations or conditions (such as such as Schrodinger’sieguthat hold in ordinary quantum
mechanics, especially those related to quantum compntatid qubits. Our ultimate goal
is to achieve, to whatever extent possible, a way of “tallabgut” Hilbert space, or at least
some fragment of it, using only (zeroth-order) equationshe hope of eventually arriving at a
practical computational “algebra” for quantum algorithms

1.1 Background and history

In this section, we will review some terminology, then welwilmmarize the history and the
present state of knowledge concerning Hilbert lattice® fbHowing brief definitions are meant
to assist this informal discussion and will be developed arerdetail in Ch[ 2.

A lattice is an algebrdL, \/, A) in which the following equations hol&vb=bVva,anb=
baa, (avb)vec=aVv(bvc), (anb)Ac=aAn(bAc), an(aVvb)=a andaV (anb) =
a. Partial orderinga < b is defined byaVv b = b. An ortholattice (OL) is a lattice with an
orthocomplementoperation’ such thaa < b= b’ < a anda’ = a. An orthomodular lattice
(OML) is an ortholattice in which therthomodularlaw b<a& c<a =aA (bVvc) = (an
b) v (aAc) holds. (The terms OL, OML, etc. refer to the proper classes|déttices obeying
the respective equations.) Amthocomplemented modular lattice(MOL) is an ortholattice
in which themodular law b <a=-aA (bvc) = (aAb)V(aAc) holds [99, p. 192]. These
two laws are weakened, but successively stronger, formisedafistributive law aA (bvc) =
(aAb) Vv (aAc) that holds in aBoolean (classical) lattice(BA). Indeed, the failure of the
distributive law is the key feature that distinguishes #astices from Boolean lattices.

The set of closed subspaces of a finite- or infinite-dimeradibiibert space is called (H)
and is a member of a class of lattices calléitbert lattices (HL). The family of all HLs is

2



1.1. BACKGROUND AND HISTORY

defined by first-order conditions involving quantifiers [D&f3.1 below (p[_19)]. The impor-
tance of a Hilbert lattice is that a Hilbert space can be @erivom it, meaning that it serves
as a dual representation for Hilbert space (and thus quanteahanics). A loose analogy is
the way that the frequency domain serves as a dual représeniar the time domain via the
Fourier transform, although the reconstruction of a Hillsgrace from a Hilbert lattice is far
more complicated.

Certain zeroth-order conditions, i.e. equational laws ineblving first-order quantifiers,
hold in a Hilbert lattice in addition to the basic equatiordding in any ortholattice. The
earliest known equational condition, the OML law discodeby Husimi in 19371[49, p. 7],
is normally part of the Hilbert lattice definition, and othstronger equations can be derived
from the definition. Unlike first-order conditions, equai# laws allow us to manipulate the
subspace objects in Hilbert space directly and provide d &incomputational “algebra” for
working with those objects. An important unsolved problenta find the strongest possible
equational laws for Hilbert lattices [64], shrinking theesiof the OML class towards the class of
all BAs and as a consequence allowing more and more classaaliques to become useable.

In finite-dimensional Hilbert spaces, a condition strontiem the OML law, called the
modular law, also holds. Ordinarily, the modular law is n@sidered part of the Hilbert lattice
definition, since HL is meant to encompass both finite- anditefidimensional Hilbert spaces.
We will study conditions that hold in finite-dimensional birt spaces separately, in Ch. 7
(p.[111).

Before 1975, it was known only that orthomodular latticeaeuns hold in infinite-dimen-
sional Hilbert space and that the modular law holds in fiditeensional Hilbert space. This
fact alone led to a vast body of research, papers, and bookiseosubject of orthomodular
lattices (as well as modular lattices, but to a lesser exj@éj [49] [6] [B6].

In 1975, Alan Day discovered that a stronger equation, thar&bleorthoarguesian law
(OA), holds in infinite-dimensional Hilbert space (c¢f. [Z8l]) Perhaps because the equation
was complicated and there were no tools available to work witonveniently, it remained
more or less a quiet curiosity for many years. However, ivjghed the first clue that the Hilbert
lattice embodied a much richer equational structure thas praviously thought. The first
study of Day’s equation was done in 1984, when Godowski aree@rie derived 3- and 4-
variable consequences of OA, although their relationshijn¢ original OA remained unclear
[27]. (Later, Megill and Paviic showed that these were strictly weaker than the original OA
although stronger than the orthomodular law [76].)

In 1981, Godowski discovered an unrelated infinite seriestr@inger equations, based on
quantum probability states, that also hold in infinite-dmsienal Hilbert space [26]. We call

3



1.1. BACKGROUND AND HISTORY

these “Godowski’s equationsh{Go, Th.[5.1.B (p[(79)]. In 1986, Mayet gave an algorithm
for generating a larger variety of equations, also basedatess of which Godowski's were
a subset [65]. Although Mayet exhibited some sample eqgusti® found with his algorithm,
Megill and Pawtic showed that all of his examples were derivable from GoddsvEkb], so

it was unclear if Mayet had discovered anything new i.e. i anch equations stronger than
Godowski's exist. However, in 2006—2009, Megill and E#viound new equations based on
Mayet's algorithm that were shown not to be derivable frond@mski’'s [81] [105] [82]. We
will show some additional equations in this family that h&aeen discovered [Sdc. 5.2 [p] 81)].

In 1995, a remarkable and very significant breakthrough whesed by Maria Soler [115]
[4Q] [112]. She proved that with a small number of additicirgk-order conditions (atomicity,
irreducibility, completeness, lattice height 4, and annitdéi set of mutually orthogonal atoms
satisfying a “harmonic conjugate” condition), an infindamensional Hilbert space can be re-
covered from from an orthomodular lattice, with the only agoiity being that its field may
be real, complex, or quaternionic. Mayet|[66] extended tegult with additional conditions
that uniquely determine the complex field of the Hilbert spased by quantum mechanics,
although an equivalent condition to add to a Hilbert latiestill unknown. The importance
of Solér's work should not be underestimated, as it providekey missing piece that, before
1995, would have made goal of this thesis impossible.

Although it is defined independently, HL is in effect the ealiion (up to isomorphism)
of all ¥(H)s of all (generalized) finite- and infinite-dimensional Hitbspaces on any (skew)
field. The phrases “in any HL” and “in arfy’(H)” in effect say the same thing, although we
typically use the latter to indicate a result derived frora gnoperties of th&’(H) of a Hilbert
spaceH as opposed to properties derived directly from the axionfigicg HL.

By adding the infinite orthogonal and harmonic conjugateusages [Defl_2.314 (j.._20)]
required by Soler’s theorem, we restrict HL to include oitig tollection (up to isomorphism)
of ¢ (H)s of those Hilbert spaces where the field is real, complexuategnionic.

It should be noted that the Soler/Mayet conditions do notenage of any of the newer
Hilbert lattice equations described above, but insteadfiasidorder (quantified) conditions on
top of the standard orthomodular lattice equations to aehikeir goal. An open problem is
whether these first-order conditions can be replaced by evefakt-order ones together with
zeroth-order equations to make up the difference.

In 2000, Megill and Pavi¢ discovered a new infinite series of equations that we called

1This usage of “field” conflicts with the standard mathematiteinition in which multiplication is commu-
tative (which is not the case for quaternions), and more gnigve should use “division ring” or “skew field.”
However, we adopt the literature usage e.g. Ref. [40, p. @0&}e “field” implicitly means “skew field.”
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nOA, with n > 3, that hold in the Hilbert lattice and are strictly strongiean the OML law
[76]. Alan Day’'s OA law is the second member of this seriesA4@nd Greechie/Godowski’s
OA-derivative equations [27] are equivalent to the first rrem3OA. With a massive computer
search involving a 192-CPU Linux cluster, we proved thatdtfir6] and fourth![105, p. 766,
Th. 11] equations, 50A and 60A, are strictly stronger thag'®40A, and also that 60A is
strictly stronger than 50A. In 2011, we were able to prove #@A is strictly stronger than
60A [84]. We will review these results in ChL. 4. We conjecttivat thenOA series provides an
infinite progression of successively stronger members.

The 2000 paper of Megill and Pait was the first comprehensive study of both OA-related
and GO-related equations, uncovering many new resultsaedelationships [76]. Previously,
very little was known about these equations, in part bectheie size made them extremely
difficult to work with. The development of new computer pragns by Megill, along with
powerful new notation introduced by Péig, enabled a practical study of these equations.

In 2006, Mayet|[67, €8] described an algorithm for generptirseries of equations, called
Ea, that hold in HL and include theOA family. While he provided an example of such an
equation that was apparently different from ti@A series, in 2009, Megill and Pait showed
that this example could in fact be derived from the 30A lawj[82remains an open problem
whether any of th&, is independent from theOA series.

Also in 2006, Mayet|[67, 68] described an algorithm for gaieg so-called “E” equa-
tions that are based on a property of Hilbert space calledttvesalued states.” Importantly,
these equations do not hold for every possible field (divising) that can be associated with
a (general) Hilbert space, but require that the field be whaalled “characteristic 0,” a prop-
erty possessed by, among other fields, the real, complexgaaigrnion “classical” fields of
quantum mechanics. Thus these equations do not hold in élleriput they do hold in every
HL that is supplemented with the infinite orthogonal seqeead harmonic conjugate axioms
[Def.2.3.4 (p[2D)] that imply Solér's theorem.

Beyond the above results, very little is known about Hillbettice equations. While the the-
ory of ortholattices (OLS) is decidable (Brun’s algorith&]), it is unknown even whether the
theory of OMLs is decidable [49]. (Regarding the latter peotn, PavEic and Megill discovered
an equational variety called called WOML or weakly orthomlad lattices, that is smaller than
OL but larger than OML and that is isomorphic to all of OML [10Zhus OML is decidable
iff WOML is decidable.) Much less is known about the set ofegjlations that hold in Hilbert
lattices (which include the OA and GO equations). It is narelknown if these equations are
recursively enumerable [64].

A major focus in this thesis is on orthoarguesian lattin®@s and their equations, to which
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1.2. OVERVIEW OF CHAPTERS

we devote ChlJ4. Normally we do not give proofs for known tle@es but simply make the
appropriate literature references. Unless otherwiseatdd, all theorems with explicit proofs
have not been published to this author’s knowledge.

1.2 Overview of chapters

In this section, we give an overview of the topics coverediinsequent chapters.

Ch.[2 (p.[12)—In this chapter, we review the prerequisites for later ¢bap The review is
brief, and it is best if the reader has some prior acquairetavith the material, but references
are provided should that not be the case.

Ch.[3 (p.[2Z1)}—This chapter begins with a brief review of the orthomodidar as well the
related operations and notation we will use later. A list afgerties of OMLs, most of which
will be used in later chapters, are presented. Wheneverwatieq or other condition is known
to have appeared in the literature, a reference is givereddrdtherwise indicated, all theorems
accompanied by proofs are believed to have not appearempséyin the literature. In Set. 3.2
(p.[32), we focus on one type of conditional, called the Sialsa&k, which frequently occurs
in the study of the orthoarguesian laws and other equatiwaishiold in the lattice of closed
subspace%’(H) for a Hilbert spaceH. To this author’s knowledge, none of the theorems in
Sec[3.P2 have previously been published, and all of themc@napanied by detailed proofs.

Ch.[ (p.[37)—This chapter provides an extensive study of generalizétbarguesian lat-
tices (the equational varieti@®©A). Sec[ 4.1l (p_37) repeats the proof (correcting some mino
typos from an earlier published version) that tit®A laws hold in any#’ (H), which was dis-
covered in 2000 by Megill and Paic [76]. Sec[4.R (d..43) provides three different notations
for compactly expressingOA-related equations, all of which are useful in differeitations.
Sec.[4.B (pl_48) reviews the known independence resulthéon®A laws. Sec[ 4]4 (1._50)
proves many equivalents for the 30A law, almost all of whieléanot been published before.
Finally, in Sec[4.5 (d._62), we define the “orthoarguesiantdy laws” and present work to-
wards the still unsolved conjecture [Conjecture 4.5.28)] that they are equivalent to tim©A
laws.

Ch. B (p.[78)—This chapter reviews what is known about three classes wditamns that
hold in%’ (H): the Godowski equations, the Mayet-Godowski equations Bg)GGand Mayet's
E-equations. The relationships among these and other k@) equations is summarized in
Fig.[1.1 (p[®). In Se¢. 5.2.1 (p.189), we present 18 examfIBE3ES, 16 of which are new and
haven't been published before. These are summarized iegahl (p[90) through 3.5 ([p.194).
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Ch.[@ (p.[100y—In this chapter, we describe two properties that hold (i1 ), M-symmetry
(along with the related O-symmetry) and superposition. sehare first-order properties de-
scribed using quantifiers. An open problem is whether eqonatcan be derived from these
quantified conditions. In the case of M-symmetry, we show lkegwational candidates can in
principle be derived from the M-symmetry law. In particuldre method produces an equa-
tion [Eq. (6.27), p[L107] which, if it could be proved to hold all OMLs, would result in a
(most likely) new equation holding i@ (H). The problem thus reduces to the conjecture that
Eq. (6.2T) holds in all OMLs, which is currently unknown.

In Sec[6.2 (p_108), we describe how the superposition tiondn a Hilbert lattice relates
to the superposition of quantum states in a Hilbert spacealgdeshow, in Fid. 6]4 (jo._110), the
smallest 3-atom-per-block Greechie diagram in which thpeegwosition principle holds.

Ch.[7 (p.[111)—In this chapter, we study four properties that hold (or ia kst case may
hold) in the lattices’(H ) of (closed) subspaces of a finite-dimensional Hilbert speemodu-
lar law, the Arguesian law, the higher-order Arguesian laamsl Pappus’s postulate. A summary
of this chapter is given in Selc. 1.4 [p]10) below.

1.3 Summary of known Hilbert lattice equations

The families of lattices OL, OML, MOL, and BA are completeljaracterized by identities,
I.e. equational conditions. Such families are callgdational varieties Equations, as opposed
to quantified conditions, offer many advantages, such agymnenable to fast algorithms for
testing finite lattice examples as well as tools and techesdtom propositional calculus. At
the very least, the manipulation of identities is much senploth conceptually and practically
than the use of predicate calculus, which requires workirtlg guantified conditions.

As we mentioned in the Introduction, before 1975 it was thudlgat the equations defining
OML were the only ones holding in HL. Then Alan Day discovetle orthoarguesian law,
which is an equation that holds in any Hilbert lattice butinall OMLs [31]. Since then, much
progress has been made in finding many new equations thairhbld and are independent
from the others.

By Birkhoff's HSP theorem [45, p. 2], the family HL is not anweional variety, since a
finite sublattice is not an HL. A goal of studying equatioretthold in HL is to find the smallest
variety that includes HL, so that the fewest number of nonagignal (quantified) conditions
such as those in Déf. 2.3.1 (p.]19) will be needed to compthetspecification of HL.

A summary of the equations known so far is given in Tablé 1He @quations fall into three
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major categories: geometry-related, state-related, antbk-state-related. The last hold in the
%' (H) of all “guantum” Hilbert spaces, i.e. those with real, complor quaternion fields but
not necessarily with other fields.

Table 1.1: Summary of known equations holding in the in#&l) of all (quantum) Hilbert
spaces.

| Equation | Variety | Based on| Definition |
Orthoarguesian 40A geometry| Eq. (4.30) (p[4b
Generalized OA nOA, n> 3 | geometry| Eq. (4.24) (p[44
Mayet's &a En geometry| Ref. [82]
Godowski nGO,n> 3 | states Th.[5.1.3 (p.7B)
Mayet-Godowski | MGO states Def.[5.2.1 (p[8R)
Mayet's E equations E,,n>3 | vector Egs. (5.4B),

states G.44) (p[98)

The relationships among the above lattice classes (equatiarieties) that satisfy them is
shown in Figl L1 (d.]9). In addition, we show the modular |8e¢[ 7.2 (d._113)], the Arguesian
law [Sec[7.B (p._123)], and theArguesian lawsr{ >2) [Sec[7.# (p._140)] that hold for finite-
dimensional Hilbert spaces. We also include M- and O-symmektttices [Sec,_6]1 (p._100)]
for comparison, although currently they are not known todpgagional varieties.

The geometry-related equations are derived using the grepef vectors and subspace
sums that hold in a Hilbert space. They include Day’s origoréhoarguesian equation, the
generalized orthoarguesian equations, and May&tisquations.

In Ch.[4, we explore theOA-related equations in much detail and obtain many new re-
sults. Although it still has not been solved, we show whagpess has been achieved towards
answering therthoarguesian identity conjecture Conjecturé 4.512 (fp._63).

The state-related equations are derived by imposing gattelsability measures) onto Hil-
bert lattices, and include Godowski’s equations and M&tiowski equations. [The justifica-
tion for doing so is that such states can be defined in Hillgats, and we map them back to
HL via the ortho-isomorphism of Th. 2.3.3 (p.120).] Theseatpns are derived by finding fi-
nite OMLs that do not admit the “strong set of states” condifiDef.[2.4.3 (p_212)] that Hilbert
lattices do admit, then analyzing the strong set of staiekgdan a prescribed way in order to
derive an equation holding in HL but failing in the finite OML.

Vector-state-related equations are derived by impositeges” onto HLs that map to Hil-
bert-space vectors instead of real numbers (again, jubtifiethe fact that such “states” can

8
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Boolean classical

finite-dim
T Ninfinite-dim
O-symmetric | MGO
_______ I i | Mayet E|
M-symmetric | nGO

Figure 1.1: Relationship between known equational vasdtolding in the closed subspaces of
finite- and infinite-dimensional Hilbert spaces. (M- andydasetric lattices, Se€. 6.1 (p._100),
are not currently known to determine varieties.) Arrowsnpao smaller classes of lattices.
There may be other relationships between these classéss{onts) that are currently unknown
and thus not shown. See Secl7.4(p.]140) fomtAeguesian laws.
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be defined in Hilbert space). They do not always hold when tiieeH-space field implied
by the representation theorem (Th._213.3) does not havexctesistic 0. (“Characteristic 0”
means, roughly, that the number 1 added to itself repeatgdhys without limit.) This re-
markable property narrows down, from the equation alore pissible fields for the Hilbert
space. The real, complex, and quaternion fields of quantuchamécs have characteristic 0, so
vector-state-related equations do hold in all “quantum’sHihat have the additional properties
demanded by Solér’s theorem in Th. 213.59.(d. 21). The vestte-related equations known to
date are Mayet’s E equations.

1.4 Finite-dimensional Hilbert space

The equations discussed above hold in the closed subspbakdidbert spaces, whether fi-
nite or infinite. (We almost always use the adjective “inBihito mean either finite or infinite.)
Finite-dimensional Hilbert spaces are important for marmpfems in quantum mechanics, in-
cluding most experiments involving particle states andirtipular most approaches to quantum
computatior? In Ch.[7, we discuss several laws that hold in finite-dimemasidlilbert spaces
(but not necessarily in infinite-dimensional ones), stagrtvith the modular law.

In Sec[7.2.2 (1.-118), we study an inference from the moda¥arfound by von Neumann,
which is closely connected to the orthoarguesian idendity, Eq. [4.9D0) pl_682, and therefore
which may shed some light on the orthoarguesian identityeottre. We prove that von Neu-
mann’s inference [TH._7.2.6 (p._1118)] is strictly weakerrtihe modular law in a lattice, but
whether it is strictly weaker than the modular law in an OL a&ms an open problem. In that
section, we also prove that if a condition fails in in a peotagublattice (which is the standard
characterization for whether or not a lattice is moduldrjloes not necessarily imply that the
condition is as strong as the modular law.

Sec[7.B (p._123) collects known equivalents for the Argaregaw. We review a 184-node
lattice that satisfies the modular law but fails the Argue$aav. This lattice, discovered in 1907
by Veblen and MacLagan-Wedderburn [121], seems to have beerooked in subsequent
literature, but apparently it is the only explicit finite iae that has been published with this
property. We also describe a procedure, starting from thkegkn of the standard infinite lattice
(projective space) proof of Arguesian law independencat, ¢buld be used in a search for a
smaller finite lattice counterexample. The technique iateel to so-called MMPL diagrams

2There are also approaches to quantum computation usingaons variables i.e. infinite-dimensional Hilbert
spaces [12] [55] [11][10], although most of this work is ia ibfancy.

10
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proposed by Patic [101, p. 102103-20, Def. 111.2] that extend a finite lattioesatisfy certain
additional conditions.

In Sec[7.4 (1._140), we show that higher-order Arguesiamgojs follow as a special case
of the Hilbert space theorem from which th@®A equations are derived. An open problem is
whether these are equivalent to the higher-order Argudavas mentioned in Ref. [34].

Finally, in Sec[Z.b (p._140), we discuss the law of Pappushhbhls in projective planes
and review work that has been done towards finding an equetairexpresses this law. Such
an equation could be useful because a division ring cortsglucom a Pappian geometry is
necessarily commutative. A related goal would be to find aifrtadion of the equation which
would hold in infinite dimensions. In conjunction with Sdstheorem, such an “orthopappian”
equation would allow us to narrow down the field of the Hiltsgrace constructed from a Hilbert
lattice to either the real numbeRs or the complex number€, eliminating quaternions as a
possibility.

11



Chapter 2

PREREQUISITES

In this chapter, we summarize the necessary backgroundifapt€rs B throughl 7.

2.1 Hilbert spaces

We assume that the reader has some familiarity with the lwasicepts of set theory. See,
for example, Ref..[119]. Here we present a review of the rergsconcepts, followed by the
definitions needed for a complex Hilbert space.

A setis any mathematical object or collection of mathematicgcis. The termelement
member, and set are synonymous. Whais an element ob, denoteda € b, we say that
belongsto b and thatb containsa. We will assume the axioms of ZFC set theory (Zermelo-
Fraenkel set theory with the Axiom of Choice), whereiglassis an arbitrary collection of
elements, and setis a class which belongs to some other clasgrdper classis one which
is not a set. For example, the univelecontaining every set is a proper class. The terms
collection andfamily (such as the family of all algebras) often, but not necelysasfer to
proper classes.

A set (classh is asubset(subclas$ of another set (clas$), denoteda C b, when every
member ofa also belongs t. In this case we say thatincludesa.

A finite set with (not necessarily distinguished) elemeais ..,a, (n > 0) is denoted
{a1,...,an}; the order is not important{a,b} is called anunordered pair, {a} is called a
singleton and{} or @ is theempty set Note that{a,b} = {b,a} and{a,a} = {a}.

An ordered pair (a,b) can be defined a{a}, {a,b}}. Anordered n-tuple (as,...,a,) can
be defined recursively, far > 3, as the ordered paffay,...,a,—1),a,). For our purposes, the
precise definition is unimportant as long as we can talk ungnosly about the first member,

12
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second member, and so on.

A relation is a class of ordered pairs. The classes of first and secondbersiof the ordered
pairs of a relation are called itlomain andrange respectively. Aflunction or mapping f is a
relation such that the first member of each pair occurs exante. If the domain of is A, we
say thatf is a functionon A. If, in addition,B includes the range df as a subclass, we say that
f maps fromA into (or justto) B, which we denote byf : A— B. WhenB equals the range
of f, we say thatf mapsonto B and thatf is surjective. When the second member of each
pair of a function occurs exactly once, we say that the famcis one-to-oneor injective. A
function that is both surjective and injective is caltapbctive. In general, following Ref. [119],
relations and functions may be proper classes as well as sets

A k-Cartesian product A; x ... x A¢ (k> 2) is the class of alk-tuples(ay, ..., ax) where
a1 € A1,...,an € A,. Let Abe a nonempty set anil be thek-Cartesian produch x ... x A
(k factors). Anoperation on A of arity k (k > 2), also called &-ary or k-place operation on
A, is a function (mapping) from\ to A. For the special cade= 1, a 1-place operation is a
mapping fromA to A and is called ainary?! operation. For the special cake= 0, a Gary or
nullary operation is simply a member &f (a constant operation) rather than a function. A
2-place operation is usually callecbaary operation. The arity of an operations is also called
the number obperandsor arguments

An algebrais an ordered paih = (Ag, F) whereAg is a nonempty set (called thmase set
of the algebra) an# is a set of operations ofty, which for us will always be finite in number
[6, pp. 15]. When the (finite) set of operationdHs= { f1,..., fn}, we may express the algebra
alternately as the ordergd + 1)-tuple (Ao, f1,..., fn), which also imposes an order on the set
of operations; which notation is being used should be clesn fcontext. For brevity, we may
refer to the base sé of an algebra by the symbalfor the algebra itself, when it is clear from
context.

The arity of the operands of an algebka= (Ao, f1,..., fy) forms an ordereah-tuple of
non-negative integerks, ..., kn), called thetype of the algebra.

Let So be a subset oAp, and letf be ak-ary operation oi\o. We say that an algebfis
closedunderf if f(ag,...,a) € Soforall ay,...,a € So.

Definition 2.1.1. [6, pp. 18] If S is a nonempty subset oibAthen S= (S, F) is called a
subalgebraof the algebra A= (Ao, F) iff S is closed under all £ F.

Subalgebras have the following property that we will userlfth.[2.5.8 (p[26)].

LCalledsingulary in Ref. [42, p. 39]
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Lemma 2.1.2.1f M is a subalgebra of L, then any equation (identity) thatdsoin L will
continue to hold in M. Equivalently, if an equation fails inBdt holds in L, then M cannot be
a subalgebra of L.

Proof. See Ref..[101, Lemma Il.2]. O

Note that the above lemma does not necessarily apply toifjedrdonditions. A quantified
condition, such as superposition [Dief._213.1(3); Eq. (j,3Bat holds in a lattice may not hold
in a sublattice. As a trivial example, the quantified comaitthas more than two elements”
does not hold in the two-element subalgebra consisting ofd0la

A group is an algebrdG, x) wherex is a binary that is associativéax b) xc = ax (b= c)
for eacha, b,c (in G); has a left identity elemert there is ae such thaexa = afor all a; and
has a left inverse for every element: for eaclhere is & such thabxa=e.

An Abelian group is a group whose operation is commutatige:b = bx a.

A complex vector spacas a setV, whose members are calledctors together with an
Abelian group operatior- (vector sum) onV and a function (scalar product) from C x V
to V, whereC denotes the set of complex numbers. The scalar producfissitise identity
law 1-a = a, the associative lawx-y)-a = x- (y-a), and the distributive lawg- (a+b) =
(x-a)+ (x-b) and(x+y)-a= (x-a)+ (y-a), wherex andy are complex numbers aradand
b are vectors. The symbal denotes either complex number addition or vector sum depgnd
on context, which is never ambiguous; similarlglenotes either complex number product or
scalar product, either of which we may also denote usingapogition. We use 0 (theero
vector) to denote the group identity element of the vector sum arayuminus,—, to denote a
vector’s inverse. A vecta plus the inverse of a vecttr a+ —b, is denotech — b and is called
vector difference

A normed complex vector spacds a complex vector spadé together with a mag - ||
(norm) from V to the real numberR. The norm is (the real number) 0 only when its vector
argument is 0, it satisfies the multiplicative law-a ||=| x| - || a || (where| x | denotes the
absolute value of complex numbe€r and it satisfies the triangle inequalipa+b || <[ a]| + ||
bl

A metric spaceis an ordered paifM,D) whereM is a set and, adistance function, is
a mapping fromM x M to R (the set of real numbers) with the following properties faclke
X,Y,zin M: D(x,X) = 0; D(x,y) = D(y,X); D(x,2) < D(x,y) +D(y,2); andD(x,y) > O whenever
X# Y.

The induced metric spaceof a normed complex vector space is the metric space whose
base set is the vector spa¢eand whose distance function for vectary is D(x,y) =|| x—y ||.
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A sequencas a functionx; onN (with valuesxy, o, ...). A Cauchy sequencés a sequence
X; on a metric space such that for any R, there is & € N such that for alin,n > k, D (Xm, Xn) <
r. A sequence; convergedo a pointy in a metric space iff for any € R, there is & € N such
that for alln > k, D(y,x,) < r. A completemetric space is one in which all Cauchy sequences
converge to a point in the metric space.

A complex Banach spacés a normed complex vector space whose induced metric space
is complete.

A complex pre-Hilbert space(also called acomplex inner product spac¢ is a normed
complex vector space whose norm satisfieguduallelogram law for vectorsx,y:

Ix+y [+ I x=y 2= 21 x|I7 + [y %) (2.1)

A complex Hilbert spaceis a pre-Hilbert space that is also a Banach space.
We define thénner product? of vectorsa andb as the complex humber
4 ik

[
b) = — lla+iKp |2 2.2
@bj=3 5 latio] 22)

wherei = /—1.

The inner product has the following properties, which (if ereose consider it primitive
rather than defined in terms of the norm) can also be considesalefinition. For vectors
X,Y,zand complex numbew, where+ denotes vector or complex number addition depending

on context, juxtaposition represents scalar product orptexnnumber product depending on
context, and denotes complex conjugate, we have [54, p. 129]:

(X+Y,2) = (%,2) +(¥,2) (2.3)
(ax,y) =a(xy) (2.4)
(%Y) = (%, %)* (2.5)

(x,x) >0 (2.6)
(x,Xx)=0 < x=0 (2.7)

A subspaceof a vector spac¥ is a subseBwhich contains the zero vectoEdx— x (where

2By defining the inner product in terms of the norm, the nornolnees a primitive operation on a Hilbert space.
The advantage of doing this is that Hilbert spaces becombaass of Banach spaces, and both will have the same
operations. The standard inner product properties candmveeed from this definition; see, for example, [111,
p. 361].
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X is any vector) and such that for aryy € Sanda € C, x+ay € S.

Theorthogonal complement(also callecbrthocomplementatior) S- of a subspac&of a
vector spac¥ is the set of all vectors il orthogonal to all vectors ifs.

A subspaceSis aclosed subspacevhen all Cauchy sequences converge to a point in the
subspace. Equivalently, a closed subspace is any s@bsbich equals itsclosure (double
orthogonal complement) i.&= S+,

The subspace sunof two subspaceSandT, denotedS+T, is the set of all vectors+y
wherex € Sandy € T. Thejoin of two subspaceSandT, denotedSV T, is the closure of their
subspace sum i.¢S+T)* .

In quantum mechanics, the complex Hilbert spaces (i.e.ddilbpaces over the field of
complex numbers) described above are the ones of mostqakictiportance. There also exist
more general Hilbert spaces over general division ringsvwskelds), in particular the three
classical fieldsof real numbers, complex numbers, and quaternions, and gemerally over
any division ring (skew field). As a technicality, any suckisiion ring must be accompanied
by an additional unary operatior™ called involution, with the propertiegx+y)* = X* +y*,
(xy)* = x*y*, andx™ = x. Such a division ring is called &field (star field). In the case of
complex numbers, the involution is the complex conjugata. rRore information, the reader

may consult Ref. [40, p. 205].

2.2 Lattice structures

We briefly recall the lattice theory definitions we will needrtor further information, see
Refs. [6], [76], [107], and [105].

Definition 2.2.1. [8] A lattice (Lat) is an algebra L= (Lo, A, V) such that the following condi-
tions are satisfied for any,8,c € Lo:

avb=bva aAb=DbAa (2.8)
(avb)vc=av(bvc) (anb)Ac=aA (bAc) (2.9)
an(avb)=a av(aAnb)=a (2.10)

In the above definition, Lat denotes the equational varigsé of all algebras) determined
by the defining equations. When we sdyi$ a lattice” or ‘L is a Lat,” we mean that it is a
member of the (proper) class Lat. Similarly, in subsequefihdions, OL, etc. will denote the
corresponding equational varieties.
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Theorem 2.2.2.[8] The binary relation< defined orL as

a< b&a=anb (2.11)

is a partial ordering.

Definition 2.2.3. [9] An ortholattice (OL) is an algebra L= (Lo,’,A,V, 0,1) such that the
triple (Lo, A, V) is a lattice and' is a unary operation calledrthocomplementationthat sat-
isfies the following conditions for,b € Lo (2’ is called theorthocomplementof a):

ava =1, ana =0 (2.12)
a<b = b<d (2.13)
a'=a (2.14)

Definition 2.2.4. We define thelassical implication a—gb and thequantum implications
a—ib (i=1,...,5) as follows?

def

a—ob=aVvb (classical) (2.15)
a1 b %y (aAb) (Sasaki) (2.16)
a—2bE by (@ Ab) (Dishkant)  (2.17)
a—3b E (@ Ab)v (@ AD))V (an(d Vb)) (Kalmbach) (2.18)
a—>4bd—6f((a/\b (@Ab) Vv ((@Vvb)Ab) (non-tollens) (2.19)
a—sh & ((a/\ b) Vv (@ Ab))V(a Ab') (relevance) (2.20)

The classical implicationsq is the only one of the six that does not satisfy Bukhoff-von
Neumann requirement[49, p. 238] in all OMLs:

a<b <« a—jb=1, i=1...,5 (2.21)

Th.[3. 1.1 below (d.27) shows that, in any OL, the Birkhoffialdeumann requirement is equiv-
alent to the OML law for quantum implicatioms=1...5. If we seti = 0 in Eq. [2.21), we end
up with a condition equivalent to the distributive law, wiis why we call—¢ “classical”.

3These are the names given|in/[95], except that b was called “Mittelstaedt.” In other literature, it is calle
“quasi-implication” [85, Eq. (3.4) on p. 1361] and the “Skidaook” [37, p. 322]. The relevance implications
has also been called the “Kotas-Kalmbach hook! [37, p. 322].
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The Sasaki implication (also called tBasaki hook[37, pp. 312,322]) is frequently used,
and we will often omit its subscript.

Definition 2.2.5.
def
a—b=a—1b (2.22)

Definition 2.2.6. The following operation is calledquivalence

a=b% (anb)v(@nb) (2.23)

Definition 2.2.7. [97,198] An orthomodular lattice (OML) is an OL in which the following
condition (theorthomodular law, also called theOML law) holds:

a=b=1 = a=h (2.24)

The equivalence of this definition to the other definitionshe literature follows from the
fact that Eq.[(2.24) holds in all OMLs and fails in the non-ONéittice O6, which we show in
the form of a Hasse diagram [Déf. 2.5.1 belowi(g. 22)] in Eidla2. This means that it implies
the OML law by Theorem 2 ot [49, p. 22]. There are many otheinedent formulations of the
OML law, which can proved by showing that they hold in all OMdrsd that they fail in lattice
06. Some of these are given in Theorlem 3.1.1 below.

1 1

YI Ix’ ii E;

X y X y
0 0

Figure 2.1: (a) Lattice O6; (b) Lattice MO2.

Definition 2.2.8. [125] We say that a and bommute in an OML, and write aCb, when the
following equation holds:

an(@Vvb)<b (2.25)

We call C thecommutativity relation .

For later use, we define modular lattices and Boolean algebra
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2.3. HILBERT LATTICES

Definition 2.2.9. An orthocomplemented modular lattice(MOL) is an ortholattice in which
themodular law b <a=-aA (bVvc) = (aAb)V (aAc)holds [99, p. 192]. ABoolean algebra
(BA) is an ortholattice in whicldistributive law aA (bVv c) = (aAb) v (aAc) holds.

The above classes satisfy the proper subclass relations BI®OL € OML c OL C Lat. In
a BA, all six implications of Defl 2.2]4 (p._17) equal eacheath

2.3 Hilbert lattices

Our primary interest is in the subclass of OML called HL (Hitblattices).

Definition 2.3.1. An orthomodular lattice that satisfies the following coratis is aHilbert
lattice (HL).

1. CompletenessThe meet and join of any subset ofldh exist.

2. Atomicity: Every non-zero element in aflL is greater than or equal to an atom. (An
atom a is a non-zero lattice element with< b < a only if b=a.)

3. Superposition principle(The atom c is auperposition of the atoms a and b if ¢ a,
c#b,andc<avb.)

(a) Given two different atoms a and b, there is at least one ott@na, c£ a and c#£ b,
that is a superposition of a and b.

(b) Given atoms a and b and a lattice element c such that & 0, a< bV c implies b<
aVvc. In particular, if ais a superposition of b and (atom) c, tHeis a superposition
ofaand c.

4. Minimum height: The lattice contains at least three elementb,a satisfying:0 < a <
b<c< 1l

These conditions imply an infinite number of atoms in HL, asvem by Ivert and Sjodin
[44].

With suitably defined operations, the set of closed subspata Hilbert spacél, ¢’ (H),
can be shown to be a Hilbert lattice (a member of HL). The mpetationa A b corresponds to
the set intersectioH, N Hp of subspacesl,, Hy of H; the ordering relatioa < b corresponds to
Ha C Hp,; the join operatiora Vv b corresponds to the smallest closed subspact¢ adntaining
the set uniorH, U Hp; and the orthocomplementation operatarcorresponds tiy-, the set
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2.3. HILBERT LATTICES

of vectors orthogonal to all vectors k. Within Hilbert space there is also an operation which
has no parallel in the Hilbert lattice: the sum of two subgsadt, + Hy, which is defined as
the set of sums of vectors frold, andH,. We also haveH, + H,j = H i.e. the subspace
that equals the whole of Hilbert space itself. One can defintha lattice operations on a
Hilbert space itself following the above definitionds(A H, = HaNHy, etc.). Thus we have
HaVHp =Ha+Hp = (Ha+Hp)*+ = (Hy NH")* [423, p. 175], wherdH is the closure oH,
and therefordd; + Hy, C Ha VvV Hy. WhenH is finite-dimensional or when the closed subspaces
Ha andHy, are orthogonal to each other thidg+ Hp = Ha \V Hy [35, pp. 21-29]1[49, pp. 66,67]
[8€, pp. 8-16].

Using these operations, it is straightforward to verifytitiased subspacé&s(H) of a finite-
or infinite-dimensional Hilbert spadé form an OML [49, pp. 66,67] and more specifically an
HL [4, pp. 105-108,166,167]. (In the case of a finite Hilbgase,%'(H) is also an MOL |[4,
p. 107].) Specifically, we have the following theorem.

Theorem 2.3.2.Let H be a finite- or infinite-dimensional Hilbert space ovdiedd K and let

def

F(H)={X CH X=X} (2.26)

be the set of all closed subspaces of H. TA&Hl ) is a Hilbert lattice relative to:
aAb=XaNX, and aVvb= (Xa+Xp) . (2.27)

A more difficult problem is to determine, given an HL, how muaftHilbert space can be
reconstructed from it. Amsomorphism is a bijection between two lattices that preserves the
lattice ordering (or equivalently the meet and join openat). Anortho-isomorphism is an
isomorphism that also preserves the orthocomplement tiper@ne can prove the following
representation theorem |56, 57, 120].

Theorem 2.3.3.For every Hilbert latticHL), there exists a field K and a Hilbert space H over
K such that the set of closed subspaces of the Hilbert sggégd,, is orthoisomorphic tdL.
(Note that multiplication is not necessarily commutatinghis field, which is more properly
called a “division ring” or “skew field.”)

In order to determine the field over which the Hilbert spac€heoreni 2.313 is defined, we
make use of a theorem proved by Maria Pia Soléer|[115, 41]t,Fuesneed a definition.

Definition 2.3.4. Let p and g be orthogonal atoms in a Hilbert lattice and ¢ be tomadifferent
from p and g such that€ pVvg. Let x be any atom such thagxpV . Let y an atom different
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from x and p such that¥ xV p. Defined = (cvy)A(gvx)and & = (pVvdi) A(qVy). Then
(xVd2) A (pV Q) is the (uniqueharmonic conjugate of ¢ with respect to p and g.

Now we can state the following application of Solér’'s theoit® an HL latticel[40, p. 221,
Th. 4.1].

Theorem 2.3.5.The Hilbert space H from Theorem 2.3.3 is an infinite-dimemai Hilbert
space defined over a real, complex, or quaternion (skew) ifighee following conditions are
met:

¢ Infinite orthogonality:TheHL contains a countably infinite sequence of orthogonal atoms
pi,i=12,...

e Harmonic conjugate conditionThe HL contains a corresponding sequence of atoms
¢ < pi V pi+1 such that the harmonic conjugate gfwith respect to p pi+1 equals ¢A

(Pi V Pit1).

In this way we can obtain a full Hilbert space, but as we cartlse@xioms for the Hilbert
lattices that we used for this purpose are rather involveahtified (first-order) statements. In
Chapters ¥ (1._37) through 6 (p._100) below, we will look at sq@eroth-order) equations that
may eventually replace some of the quantified conditiondlowaveakened versions of them.

One feature of a Hilbert lattice is that the distributive ldaes not hold when the dimension
of the Hilbert space is greater than one.

Theorem 2.3.6.The distributive law, & (bV c) = (aAb) Vv (aAc), fails for some closed sub-
spaces &b, ¢ of any HL whose underlying Hilbert space has dimensiontgre¢han one.

Proof. We prove the result fo¥’(H), then use the orthoisomorphism of Th. 213.3[(gd. 20). Let
vp andv; be two non-zero, non-co-linear vectors of the Hilbert spdeet a = sparfvy + Vc),

b = sparfw,), andc = spar{v¢). Sincevy -+ V¢ is not colinear with eithew, or v¢, we have
aAb=0andanc=0, so(anb)V(anc)=0Vv0=0. On the other handyV c spans a
2-dimensional subspace containwgt V.. Thereforean (bvc) =a# (aAb)v(anc). O

2.4 States on lattices

Definition 2.4.1. A state(also calledprobability measurer simplyprobability[51,, 149, 50, 51,
58]) on a lattice L is a function mL — [0,1] such that il) =1and al b = m(aub) =
m(a) + m(b), where al. b means & b'.
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Lemma 2.4.2. The following properties hold for any state m:

m(a)+ m(a) =1 (2.28)

a<b = m(a) <m(b) (2.29)

0<m(a)<1 (2.30)

ma) =---=m(an) =1 < m(ag) +---+man) =n (2.31)
manN---Nap)=1= m(a)=---=m(ay) =1 (2.32)

Definition 2.4.3. A set S of states on a lattice L is callegt&ong set of quantum stateqor
just astrong set of state}yiff

(Va,beL)(Ime §((ma)=1=m(b)=1)=a<b). (2.33)

We assume that L contains more than one element and that &y satpf states is not strong.

2.5 Greechie diagrams

Lattice counterexamples serve as important tools for pigothe independence of various equa-
tions that hold in Hilbert lattices. There is a compact notafor finite OML lattices, called
Greechie diagrams, which we will describe in this section.

Definition 2.5.1. A Hasse diagramis a graphical representation of a lattice where an element
y is drawn above and connected to an element x if and only>ifxyand y is the least such
element (i.e. yoversx).

The Hasse diagram for any OML consists of connected Hassggaahes for its maximal
Boolean subalgebras, callé&dbcks. Such Hasse diagrams have a shorthand notation called
Greechie diagrams.

Definition 2.5.2. Greechie diagrani84, Def. 2.5]. AGreechie diagramis a notation that
represents the atoms within each block of@ML as dots connected by a line or smooth curve.
The following conditions must be satisfied.

1. All blocks share a commdhand 1.

2. If an atom a belongs to an intersection of blocks and tloegeeto both of them, then the
blocks also share’a
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2.5. GREECHIE DIAGRAMS

3. Blocks contain 3 or more atoms.
4. Two blocks may not share more than one atom.

In terms of graph theory, a Greechie diagram is a typeypkergraph, which is a structure
consisting ofedges(the Greechie diagram’s lines) containiveytices (the Greechie diagram’s
atoms) and connected at some of the vertices.

This definition is equivalent to Richard Greechie’s origidafinition in 1971 [30]. Re-
cently, the term Greechie diagram has been used to denaelotids of hypergraphs related
to pastingsl|[24, 23, 89], Kochen-Specker sets|[117], testesp[3], etc. For these hypergraphs,
condition 4 above does not necessarily hold, but for ourcektibn and the generation of our
diagrams it is essential. Since this condition is also presethe original definition, it is the

one that we use.

Definition 2.5.3. Aloop of order n> 2is a set of blocks B. .., B, such that Bshares an atom
with B 1 fori < n and B shares an atom with B

Lemma 2.5.4.[30] A Greechie diagram represents an orthomodular latticand only if the
order of every loop of its blocks is at least 5.

This lemma is known as tHeoop Lemma [49, p. 38].

Definition 2.5.5. The unique orthomodular lattice represented by a Greeclaigrdm satisfying
the Loop Lemma is called@reechie lattice

The Loop lemma does not hold for lattices represented by #séing hypergraphs men-
tioned above but only for the original Greechie diagramslattites as defined by Déf, 2.5.2.

The Hasse diagrams for the Boolean algebras correspora®ig3-, and 4-atom blocks are
shown in Fig[2.R. The Greechie diagram for a given latticg bedrawn in several equivalent
ways: Fig[2.B shows the same Greechie diagram drawn in tii@relit ways, along with the
corresponding Hasse diagram. From the definitions we se#ihardering of the atoms on a
block does not matter, and we may also draw blocks using aresh as straight lines as long
as the blocks remain clearly distinguishable.

We use a special ASCII notation to represent Greechie diagead other hypergraphs for
our computer programs such lagiceg.c , Which tests whether a given equation holds in a
list of Greechie diagrams.

Definition 2.5.6. MMP encodingrepresents the vertices of a hypergraph (and in particuher t
atoms of a Greechie diagram) by means of alphanumeric aret pitntable ASCII characters.
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1
1
X zZ
X X X z
0 0
x X X Yy z w x Y z
o———e oo o oo o o

Figure 2.2: Greechie diagrams for Boolean lattice®3, and 2, labeled with the atoms of their
corresponding Hasse diagrams shown above thehw4g adapted from [6, Fig. 18, p. 84].)

Figure 2.3: Two different ways of drawing the same Greechagrdm, and its corresponding
Hasse diagram.

24



2.5. GREECHIE DIAGRAMS

Each hypergraph vertex (lattice atom) is represented byairibe following charactersi234
56789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz!”"# $%& ' ()*-
/5 <=>7@[\]e"{|}", and then again all these characters prefixed By then prefixed b+,
etc. There is no upper limit on the number of atoms that carepeesented.

Each block (hypergraph edge i.e. continuous line conngdliots in a Greechie diagram)
is represented by a string of characters that represent atddfocks are separated by commas.
The order of the blocks is irrelevant, although sometimesuseful to present them in a canon-
ical form for comparisons and searches, or to have them stdlft blocks forming the biggest
loop to facilitate their possible drawing. A string endshwé full stop (i.e. a period). Skipping
of characters is allowed.

The initialism “MMP” stands for the authors of Ref. [73], wieethe notation was first
introduced.

We will usually provide the MMP encodings for the Greechiagitams that follow. This
way, the reader can, if desired, duplicate the associasedtsaising the programs described in
AppendiXA (p[145).

Greechie diagrams are useful for finding finite counterexasio OML conjectures. How-
ever, it is important to note that they are not, in generddasgebras [Def._2.111 (p.1L3)] of any
Hilbert lattice; in particular, any Greechie diagram witbtain of three or more blocks cannot
be a subalgebra of HL of dimension three or greater. We sh@afah the 3-block chain of
Fig.[7.1 (p[115). For larger lattices, we prove it in the samag by considering an embedded
3-block chain and taking into account the Loop Lemma [49 3}, which states that any loop in
a Greechie diagram must contain 5 or more blocks (meanirighlibatoms on the extremities
of a 3-chain block will not “interfere” with each other).

Theorem 2.5.7.Consider the Greechie diagram whose MMP encodirt@8345,567.  [the
Dilworth lattice, Fig[7.1 below (3._115)] that pastes a seque of 23 Boolean algebra$23. ,
345, , and567. (1 through? label the atoms). This Greechie diagram is not a subalgebea o
Hilbert lattice of dimension 3 or greater.

Proof. Consider the join of atomk and7. In the Greechie diagram, this is the lattice unit (as
can be seen from its Hasse diagram. However, in any Hilbeiteathe join of any two atoms
corresponds to a 2-dimensional subspace, which for a sobsgitice of dimension greater than
2 is not the whole space (lattice unit). Thus the requirenteait a subalgebra have the same
operation values as its parent algebra is not satisfied. O

Perhaps somewhat counterintuitively, the removal of albfomm a Greechie diagram does
not necessarily result in a subalgebra of the original Grieediagram.
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Theorem 2.5.8.A subdiagram of a Greechie diagram does not necessarilyespond to a
subalgebra of the parent diagram.

Proof. [73, p. 2403] The Greechie diagram of Hig.]2.4(is)obviously a subdiagram of the one
of Fig.[Z.4(a)°> However, the 40A law [Eq[{4.30), p. 45 below] passes in[Fig(&) but fails in
its subdiagram Fid._214(b). (This can be verified with, foale, our progrartatticeg.c )
Thus by Lemma 2.112 (p._14), the lattice of Hig.]2.4(b) is nstibalgebra of Fig. 2l4(a). O

(@) (b)

Figure 2.4: (a) Lattice L38; (b) lattice L38, which is a subdiagram but not a subalgelfra o
L38+.

4123,345,567,789,9AB,BCD,DE1,CF4,FGH,HI6. is an MMP encoding for Fig. 214(b).
5123,345,567,789,9AB,BCD,DE1,CF4,FGH,HI6,AHJ,1K8. is an MMP encoding for Fid. 214(a).
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Chapter 3

ORTHOMODULAR LATTICES

3.1 Basic OML properties

The equational theory of OMLs has never been shown to be aeleidexcept for equations
with at most two variables), and proofs can be difficult to fifld this chapter we collect a
number of results that will prove useful later or are of ietrfor their own sake.

Equations with two variables can be proved automaticallgaweral ways. When given
a two-variable term (polynomial), the prograveran.c  will return one of the 96 canonical
expressions it is equivalent to, and when given a two-végiaglquation or inequality, it will
return “1” iff the equation or inequality is true. The progréattice.c will prove both two-
variable equations and two-variable conditions (infeemnwith hypothesis): if a two-variable
equation or condition passes all lattices up to (but not s&sdy including) the non-OML O6
[Fig.2Ja (p[I8)], then it holds in all OMLs. If it also fai36, it is equivalent to the OML law
Eq. (2.24) (p[LIB). (The programberan.c , lattice.c  , and all others that we reference are
described in Appendix]A [1._145])

We usually omit proofs of two-variable conditions becaumsytcan be proved automatically
in this way. Whenever conditions with three or more varialdee known to have appeared in
the literature, we provide their literature references ashlly omit their proofs; otherwise, we
show their explicit proofs.

First, we give several equivalents to the OML law. Most caridamd in the literature, and
the others (with two variables) can be easily proved as destabove.

Theorem 3.1.1.Any anyOL, each of the following conditions is equivalent to DML law,
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Eq. (2.24):
a=b=1 < a=h (3.1)
a<b = av(@Aby=b (3.2)
a<b = ba(va=a (3.3)
av(@A(avb))=avb (3.4)
an(@Vv(anb))=anb (3.5)
a—~ib=1 < a<hb, i=1...,5 (3.6)
asib=a—jb= aCh  i,j=0,...5i#] (3.7)
aCb & aCc = an(bvc)=(anb)Vv(anc) (3.8)
b<a & c<d = an(bvc)=(anb)v(anc) (3.9)
a<b = av(brd)=bv(arb) (3.10)
a<b = 3Jca<c & b=avec). (3.11)

Proof. For Egs.[(3.R) and (3.4), see Ref.[[49, p. 22]. £q./(3.3) feldrom Eq. [3.R) by taking
the orthocomplement of both sides of the conclusion therdyagpDe Morgan’s laws. For
Eqg. (3.6), see Ref. [102, Th. 3.2]. For EQ. (3.8), see Refl[DEfinition 7]. For Eq.[(319), see
Ref. [99, p. 193, Def. 3.8]. For Ed. (3/10), see Ref! [61, @,ZEh. 3(31)].

For Eq. [3.111), see Th. 29.19(of Ref. [59, p. 132]. It is also instructive to see a direct,
explicit proof of this condition as an example of how a an ®nsally quantified condition can
be transformed into an equation and vice versa.

First, we show that the OML law follows from Eq. (3]111), whiale will write asa < d =
de(a<c & d=avc). Assumea<h. Sincea<aVb',we havea< (aVvb') Ab. Substituting
(avb') Abfor d, the hypothesis of we Eq.(3]11) is satisfied, and we obtain

a<b = dca<cd & (avb)Aab=avec). (3.12)
Now in any OL,
(avb)Ab=ave = cva<b (3.13)

Adding a disjunct to the right of the conclusion and remo\ardjsjunct from the left, it follows
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that
(avb)Ab=avec = c<avb. (3.14)
And of course in any OL we have
a<cd = c<d. (3.15)
From Egs.[(3.13) and (3.115),

(avb)Ab=avc & a<cd = (cvajac<aAb
= c<adAb. (3.16)

From Egs.[(3.16) and (3.114),
(avb)ab=avc & a<cd = c<(avb)A(@Vbh).

Since(aVvb') A (a Ab) =0, we have

(avb)ab=avc & a<cd = ¢=0
= (avb)Ab=av0 & a<0
= (avb)Ab=a

Applying the existential quantifier to both sides of this iroation,

Je((avb)Ab=avc & a<c) = Ic((avb)Ab=a)
= (avb)rb=a (3.17)

For the last implication, we can remove the existential ¢fianbecause does not occur in
the quantified expression. Chaining Efs. (8.12) and(3vt& zonclude

a<b = (avb)Ab=a

which is the OML law Eq.[(3]3).
For the converse, assuraec b. Letc=a Ab. Thena<c'inany OL,andb=aVv (& Ab) =
aVcby Eqg. [3.:2). Thus there is@that satisfies Eql{3.11). O
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Next, we list some frequently-used properties of the conaivity relationaCb[Def.[2.2.8
(p.[18)].

Theorem 3.1.2.The following conditions hold in alDMLSs:

aCa (3.18)
aCo (3.19)
aCb & a= (aAb)Vv(anb) (3.20)
aCb & an(@vb)<b (3.21)
aCb < b<a—nb, n=1345 (3.22)
aCb < a <a—nb, n=2345 (3.23)
aCb < bCa (3.24)
aCb & dCb « aCll < aCb (3.25)
a<b = aCb (3.26)
aCb & aCc = aCbAc (3.27)
aCb & aCc = aCbvc (3.28)
aCb & a—jb=a—jb, I,j=0,...,5; 1 #] (3.29)
bCc & aCbAnc = aADbCc (3.30)
bCc & aCbvc = avbCc (3.32)

Egs. [3.3D) and(3.31) are known as Bedder-Schelp-Beran theorem (GSB)

Proof. For Eq. [3.2D), see Theorem 3.7 of Ref. [6, p. 46]. For Eq.1{3.2ee Eq. (2.6) of
Ref. [76]. Eqgs.[(3.22) and (3.23) are easily proved with tbgistance of a program such as
lattice.c  , as described above. For E@. (3.29), see Ref.|[107, p. 25ndteo 13] for the

forward direction; the reverse direction can be proved it lattice.c . For Egs.[(3.30)
and [3.31), see Theorem 4.2 of Ref. [6, p. 263]. The proofshfenthers can also be found in
Ref. [6]. O

Theorem 3.1.3.1f any two terms from the sé€f, b,c} commute, then the following distributive
laws hold in allOMLs:

an(bvc)=(anb)Vv(arc) (3.32)
aVv(bac)=(avb)A(avec) (3.33)
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This is known as thEoulis-Holland theorem (F-H).

Proof. See e.g. Refl [49, p. 25].

O

Theorem 3.1.4.1f aCb, bCc, cCd, and dCa, then the following distributivevgahold in all

OMLs:

This is known as thMarsden-Herman lemma (M-H).

Proof. See e.g. Lemma 7.2 in Ref. |49, p. 91].

The next lemma provides some technical results for use isesjent proofs.

Lemma 3.1.5. The following conditions hold in alDMLSs:

(a—b)Aa=anb
(a—b) A (d—b) = (a—b)Ab= (anb) Vv (a Ab)
(@—h) <d <a—b
(a—b)—b=a—b
(a—b)—b=a—b
(a—ib)V(a—jb) =a—gb,i,j=0,...,4, i #]
(a—ib) A(a—jb) =a—sb, i,j=1,....5 i # ]
ada<b = b<a—b
an((a—»c)vb)<c <« b<a—c
dA(avb)<c & (a—c)A(avb)<c
&

adA(avb)<c b<d—c

Proof. See Lemma 4.6 of [76] for Eq$.(3136)=(3.41) and (B.43)4B.4
For Eq. (3.4R2), we omit the easy proof.

(3.34)
(3.35)

(3.36)
(3.37)
(3.38)
(3.39)
(3.40)
(3.41)
(3.42)
(3.43)
(3.44)
(3.45)
(3.46)

For Eq. [3.4b): Ifa’ A (avb) <cthend A(aVvb) <ad Ve, soavb=av(ad A(avh)) <
av (@ nc)=(ad—c), so(a—c)A(aVvb) < (a—c)A(d—c) = (anc)V(a Ac) < c using
(3.31); conversely, sinc& < a—cwe havea’ A (aVb) < (a—c) A (aVb) < cby hypothesis.
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For Eq. (3.46): Ifd A(aVvb) <cthena Vv (aVvb) <a Ac,sob<avb=aVv(a A(avh)) <
av (a Ac)=d —c; conversely, ib <a—cthenavb<av(a Ac),sod A(avb)<a A(aVv
(@nc))=a Ac<c O

3.2 The Sasaki implication

The most frequent implication that we will use is the Sasakilication of Def[2.2.14 (d.17),
which is also the simplest non-classical (quantum) implca Partly this is convention; any
theorem using a Sasaki implication can be restated for teekant implication since the latter
just reverses and orthocomplements its arguments. Thanmgmgdhree quantum implications
are used much less frequently. The reason for that isn’t;clieia possible that since they are
more complex, they simply haven’t been studied as much. Mexexperience does seem to
show that the Sasaki (or Dishkant) implication is the oné #fe@ws up more “naturally” in
investigations of Hilbert lattice equations.

In this section, we will show some basic properties of theaasnplication. The results
that haven't been published are accompanied by proofs.

The equalitya— ¢ = b—c often arises in conjunction with the 30A identity law debed
later in Sec[ 4)5 (1._62). The following two lemmas provideigglences to this equality, and
Corollary[3.2.5 below shows a way to infer the equality.

Lemma 3.2.1. The following condition holds in alDMLSs:
d—c=b—-c < a-sc=b-c (3.47)

Proof. If a—c = b—c, then(a—c)—c= (b—c)—c. Since(a—c)—c=a—c, and similarly
for b, it follows thata’—c = b/ —c. The converse is proved similarly. O

Lemma 3.2.2. The following condition holds in alDMLSs:

((a=c)A(@—c))V ((b—c)A(b'—c))
= ((a—c)V(b—c) A((@—c)V(b'—c))

& a—~c=b—c (3.48)

Proof. If a—c = b—c, then by Eq.[(3.47% —c = b/—c, and both sides of the left equality
reduce toa—c) A (& —c).
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3.2. THE SASAKI IMPLICATION

Conversely, starting from the left side, we derive ((b—c) vV (a—c)) < c as follows:

bA((b—c)V (a—c))
< ((a—=c)V (b—c))A(b'—c) sinceb <b'—c
< ((a—=c)V(b—c))A((d—c)V(b—c)
= ((a=c)A(@—c))V((b—c)A(b'—c)) by hypothesis
= ((a—»c)Ac)V ((b—c)Ac) since(a—c) A (&@—c) = (a—c)Ac
<cvc
=C

Eq. (3.46) then givea— ¢ < b—c. Swappinga andb, we similarly concludéd—c < a—cand
thusa—c=b—c. O

The next lemma and theorem show a commutativity result ferSasaki implication, fol-
lowed by a corollary showing an example of its use.

Lemma 3.2.3. The following conditions hold in alDMLSs:

a+-cCh—c & b—cCd—c = a-cChb-c (3.49)

awcCh—c & b—scCd—c = ad—cClh—c (3.50)

Proof. For Eq. [3.49): We hava— c C d— c by Egs. [3.3B),[(3.26), and (3]25). From this and
a—c C B—c, it follows by Eq. [3.27) that

a—cC(a@—c)A(b—c). (3.51)
Next, observe that

(a—=c)A(d—c)A(H—c) = (a—=c)AcA (b'—c)

(a—c) A (b—c)A (b —c)

IN

b—c,
o)

(b—c)' C (a—c)A(@—c)A (b —c). (3.52)
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3.2. THE SASAKI IMPLICATION

Applying the Gudder-Schelp-Beran theorem, Eq. (3.30),gs.E3.51) and (3.52), we conclude

a—cC (b—c)A(@—c)A(H—c)
a—cC(b—c) A(@—c) since(b—c)' <b'—c

(a—c)' C (b—c) A(d—c).
By hypothesis(b—c)’ C & — c; applying GSB again, we obtain:

(b—c)' C (a—c) A(d—c)

(b—c)' C (a—c) since(a—c)' <d—c
b—cCa—c
a—cC b—c.

which is the conclusion of Eq. (3.49).
For Eq. [3.5D): Replaca andb in Eq. (3.49) with their orthocomplements and apply
Eq. (3.24) to the antecedents. O

Theorem 3.2.4.Assume the following two conditions hold in@iviL:
awcCH—c & b—cCd—c (3.53)

Then any two terms from the sgt—c, b—c, a8 —c, b'—c} commute.

Proof. The possible cases are one of the following: one of the twathgsis, a conclusion of
Lemmal3.2.B, the cases obtained from these vialEq.l(3.24\h@na is in both terms ob is
in both terms) the cases obtained using Egs.{3.26)[and)(3.25 O

The following corollary shows a somewhat nonintuitive lesthere we obtain an equality
from two inequalities which, from Eql_(3.B8), we might at fiteink are much weaker than
required.

Corollary 3.2.5. The following condition holds in alDMLs.
(@—c)<b—sc & (b—c)<a-wc = a—c=b-c (3.54)

Proof. From the hypotheses and Eq. (3.26);c C d—candb—c C d—c, so Theorerh 3.214
implies that any two terms from the sg—c, b—c, @ —c, b'—c} commute.
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3.2. THE SASAKI IMPLICATION

Again from the hypotheses, we have

(a—c) = (a—c) Vv (b'—c)

(@—c) V(b—c)=(b—c)

Now, two equations of the form=yandz=wimply (x=2Z)" = (y=w)’, where(x=Z)' =
(X vz)A(xVvZ). For the left-hand side we have, using the F-H distributazed [Th.[3.1.B
(p.[30)] freely,

((a—c) = ((d—c)' v (b—c))
= ((a—c) v(@—c)Vv(b=c))A((a—c) Vv ((@—=c)A(b—C)))
= ((a—c) v Vv(b—c))
A(((a—c) Vv (d@—c)) A((a—c) Vv (b—c)))
= ((a=c)' V1) A (LA ((a—c) V (b—c)))

= (a—c)V (b—c).

In the second step above, we uged-c)' v (a—c) = (a—c) v c and in the third stepg’ v

(b—c) =1 and(a—c)V (a—c) = 1. In general, we may use such two-variable equalities

without showing their proofs, since they can be verified matcally, for example with the
programberan.c  or lattice.c
For the right-hand side we have,

((a—=c) Vv (b—c)) = (b—c))

a—c) A (b'—c)) Vv (b—c)) A((a—c) VvV (b'—=c) v (b—c))
a—c)' vV (b—c)) A((—c)V(b—c)))

A((a=c)vc VvV (b—c))

((a=c)' V(b—c) AL A1V (b—c))

a—c)' vV (b—c)).

(((
(((

(
(
Equating the sides we have,

((a=c)V (b—c)") = ((a—c) vV (b—c))
((a=c)V (b—c))A(a—c) = ((a—c) VvV (b—c)) A (a—C)
Vv

a—c= ((a=c)'A(a—c))V((b—c)A(a—c))
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=0V ((b—c)A(a—cC))
= (b—c) A (a—cC)

a—c<b—c.

Swapping the order of the hypotheses, the same argumetugie-> c < a— c and hence the
conclusion. 0

The following lemma can assist us in finding commuting tenmexpressions involving the
Sasaki hook.

Lemma 3.2.6.1. (a—c) A (b—c)Ac C t where t is any term built from-ac, d—c, b—c,
b'—c, and c.

2. A conjunction of three or more terms from the set@ d—c, b—c, —c, and c, that
contains both of the variables a and b, is equalde+c) A (b—c) Ac.

Proof. For part 1, we have the 5 relationships

(a—c)A(b—c)Ac<a—c
(a—c) A (b—c)Ac= ((a—c)Ac)A(b—cC)

= ((a=c)A(@—c))A(b—c)<d—c
(a—c)A(b—c)Ac<b—c
(a—=c)A(b—c)Ac=(a—c)A((b—c)A(b'—c)) <b'—c

(a—c)A(b—c)Ac<c

Thus(a—c) A (b—c) Ac C a—c, etc. by Eq.[(3.26). Using these relationships, we build up
(a—c) A (b—c) Ac C twith Theoreni 3.112.
For part 2, we exhaust all possible cases using the OML itilesiti

(a—c)Ac=(a—c)A(d—c) = (d—C)AcC.
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Chapter 4

GENERALIZED ORTHOARGUESIAN
LATTICES

As we mentioned in the Introduction, before 1975 the orthduhar lattice (OML) equations
were the only ones that were known to hold in a Hilbert lattifaese have been extensively
studied in a vast body of research papers and books, parlicuh the context of the logic of
guantum mechanics, and so “orthomodular lattice” and “tuariogic” have become almost
synonymous.

In 1975, Alan Day discovered an equation that holds in anigéttllattice but does notin all
OMLs [31]. He derived the equation, called thehoarguesian law, by imposing weakening
orthogonality hypotheses on the so-called Arguesian laneguation closely related to the
famous law of projective geometry discovered by Desarguéss 1600'’s as part of an effort to
help artists, stonecutters, and engineers.

In 2000, Megill and Pavic discovered a new infinite class of equations that hold in any
Hilbert lattice (and therefore in the'(H) of any finite- or infinite-dimensional Hilbert space)
calledgeneralized orthoarguesian equationsr nOA laws,n= 3,4, --- < o, a special case of
which is the orthoarguesian law far= 4.

4.1 HS proof of generalized orthoarguesian laws

In this section, we will show how theOA laws Eq. [(4.24) (d._44) are derived from the elemen-
tary properties of a Hilbert space.

We will first derive a condition that holds in all Hilbert spesc(including finite-dimensional
ones), from which th@OA laws for infinite-dimensional Hilbert spaces will folloviWe will
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4.1. HS PROOF OF GENERALIZED ORTHOARGUESIAN LAWS

also use this condition later to derive higher-order Argaretaws for finite-dimensional Hilbert
spaces; see Th. 7.4.1 [p. 140).]

Theorem 4.1.1.(Arguesian property of subspacdst &,...,a, and ky, ...,b,, N> 1, be
any subspaces (not necessarily closed) of a Hilbert spacd,let N denote set-theoretical
intersection and4- subspace sum. We define the subspace tglig.t.,i,) recursively as
follows, whered < ig,...,in < n:

t1(io,i1) = (@, +ai;) N (biy +bi,) (4.1)
tm(io, .. .,im) =tm-1(i0,i1,i3,...,im)
N (tm-1(io,i2,i3,--,im) +tm-1(i1,i2,i3,...,im)),
2<m<n (4.2)

For m= 2, this meansx(io,i1,i2) = ty(ig,i1) N (tx(io,i2) +t1(i1,i2)).> Then the following con-
dition holds in any finite- or infinite-dimensional Hilbegace for n> 1.

(@0 +bo) NN (an+bn)
Cbo+ (apN(ag+tn(0,...,N))). (4.3)

Proof. (This theorem was originally proved in sketch form by Megilld Pawgic [76, p. 2368,
Th. 5.2]; similar proofs have also been given by R. Mayel [68529, Th. 1] and us [101,
p. 102103-11, Th. I1.9]. The proof here includes some mirwrexrtions to theorem statement
and proof in the latter reference.) We will use to denote subspace sum (connecting two
subspaces) and to denote vector sum (connecting two vectors).xle¢ a vector belonging to
the left-hand side of Eq.(4.3). There a +b; fori =0,...,n. From the definition of subspace
sum,x € a + b; implies there exist vectorg andy; such thatx; € a;, y; € bj, andx = x; +V;.
From the last property, we hawe+y; = X = Xj +Yj or

X=X ==Yy, 0<i,j<n. (4.4)
For the case = 1 of Eq. [4.3), we need to prove

(ap+bo) N (ay +by)

1A|SO, for form=3 we haVEI3(i0,il,i2,i3) = tz(io, i1,i3)N (tz(io,iz, i3) +t2(i1, in,i3)) = (tl(io,il)ﬂ (tl(io,ig,) +
t1(i1,i3))) N ((te(io,i2) N(ta(io,iz) +ta(iz,i3))) 4 (te(iz,i2) N (ta(iz,iz) +11(i2,i3)))); for m= 4 we havey(io, i1, i2,
i3,ia) =t3(io,i1,i3,14) N (t3(io,i2,i3,ia) +t3(i1,i2,i3,i4)); and so on.
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4.1. HS PROOF OF GENERALIZED ORTHOARGUESIAN LAWS

Cbo+ (a0 (a1 +((a0+a1) N (bo+Db1)))) (4.5)

Any linear combination of vectors from two subspaces betdngheir subspace sum. Since
Yo € bp andy; € by, we have—yp +Yy; € bg+ b1. Therefore by Eq. (414 — X1 € by + by.
Also, Xg — X1 € ag+ a;. Therefore

Xo—X1 € (ag+ag) N (bg+by). (4.6)

Sincex; € a;, we havexg = X1+ (X0 —X1) € a1+ ((ap+a1) N (bg+ by)). Also, xg € ag,
soxp € apN (a1 + ((ag+a1) N (bp+b1))). Finally, sinceyy € by, we havex = yo+ X €
bo+ (apN (a1 + ((ag+a1) N (bp + b1)))), proving thatx belongs to the right-hand side of
Eq. (4.5) and thus establishing the subset relation. Thisraent is illustrated by the following
diagram:

N

bo +( a N( a1 +((ag+a1)N (bo+b1) )))-
—~ O O N ~—
Yo o X% X xo-x1 —YotYi=X-X
X0 — X1
X1+ (Xo—X1) = Xo
Yo+Xo = X

J/

J

J

Forn > 1, notice that on the right-hand side of the above diagrame¢hm (ap+ a1) N
(bo+b1) =1t1(0,1) from Eq. [4.5) gets replaced by the larger ter®, . .., n), with the rest of
the right-hand side the same. Looking at the vector compo@enx; in this generalization of
above diagram above, it is apparent that if we can prove

Xo— X1 € tp(0,...,N), 4.7)
then Eq.[(4.B) is established. We will actually prove a maeegal result,

from which Eq. [4.7) follows as a special case by settmg nandig=0,...,in=n.
We will prove Eq.[(4.8) by induction om. For the basis step= 1, the same argument that
led to Eq. [(4.6) above shows that
Xio - Xi]_ € tl(i07 Il) - (alo + al]_) N (bio + bi1)~
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for 0 <ip,i1 <n. Form> 1, assume we have proveg — X, € tm_1(io,i1,...,im-1) for all
0<ip,...,im—1 < n. Then, in particular, we have the substitution instances
Xio_xil Gtm—l(io,il,iS,--wim) (49)
Xio_xiz etmfl(i07i27i37"'7im) (410)
Xil_xiz etmfl(i17i27i37"'7im)' (411)

Combining Eqs.[(4.10) and (4.11),

Xig — Xip = (Xio_xiz) - (Xil_xiz)

S tmfl(i07i27i37 .. -,im) ‘|‘tmfl(i17 i27 i37 sy |m)

Combining this with Eq.[(4]19) and using EQ. (4.2),

Xio - Xi]_ S tmfl(i07i17i37 .- ~7im)
N (tm—l(i07 i27 i37 . -,in) +tm—1(i17i27i37 . -Jm))
as required. O

We will use the above theorem to derive a condition that hoidke lattice of closed sub-
spaces of a Hilbert space. We recall the following defingiofwo vectors are orthogonal when
their inner product is zero, and the orthocomplement of @sabea, denoteda™, is the set of
all vectors orthogonal to all vectors @ We will usea L b to denotea C b*, meaning that
subspacea andb are orthogonal. The join of two subspaeesb is defined aga- b))+, their
meetanb is defined as set intersectiam b, and their orderin@ < b is defined as C b. The
following lemma states two well-known facts we will use; st example, Ref. [7] or [35,
p. 28].

Lemma4.1.2.Let a and b be two closed subspaces of a Hilbert space. Then

a+bCavb (4.12)
alb = a+b=avb (4.13)

We can actually prove a stronger version of £q. (4.13). Sinapparently does not occur
in the literature, we give a detailed proof.
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Lemma 4.1.3.Let a and b be two closed subspaces of a Hilbert space H. Then
aCb = a+b=avb (4.14)

where aC b denotes “a commutes with b” (Oef. 212.8).

Proof. We will useaCbin the forman (& vV b) < b and make use of the fact thiat(H) is an
OML. We will also use the following property that can be shawrhold in ¢ (H) by direct
appeal to the definition of subspace sum (recall th& the same as):

r<s = r+4t<s+t (4.15)

wherer, s, t are any (not necessarily closed) subspaces. In any OMLg#sdy verified that
(an (@ VvDb'))vb=aVh. Equating both sides t@A (&' Vb)) + b,

(an(@vb))+b=(an(@Vvb))vb & (an(@Vvb))+b=avb. (4.16)

As a special case of Eq. (4]118)) (&' Vb)) <a=(an (& Vb)) +b<a+b. The antecedent is
true in any OL, so by modus ponefesA (&' Vb)) +b < a+b. Applying an equality law gives
(an(dvb))+b=avb=avb<a+b. Chaining this and Eql(4.16),

(an(@vb))+b=(an(@Vvb))vb=avb<a+b. (4.17)

Assuming the hypothes&C b, we haveaCl by Eq. [3.25). By the definition of commutes,
an(@vb) <bie.an(dVvb) _Lb. Using Eq.[(41IB), this giveaA (& Vb)) +b=(an
(& Vb)) Vvb. By modus ponens and EQ.(4117), we obtainb < a-+b. The other direction
a+b<avbholds by Eq.[(4.T2). Combining the two directions, we codela+b=avb. O

Note that Eq.[(4.13) now becomes a special case of[Eq.|(4slte in any OMLa<b

impliesaCbby Eq. [3.26).
We are now ready to state our main theorem.

Theorem 4.1.4.(Generalized Orthoarguesian Lawst &,...,a, and ky,...,b,, n> 1, be
closed subspaces of a Hilbert space. We define the {éfig t. . ,in) by substitutingy for +
in the term {(ip, .. .,in) from Theoreni 4.1]11. Then following condition holds in aniteinor

41



4.1. HS PROOF OF GENERALIZED ORTHOARGUESIAN LAWS

infinite-dimensional Hilbert space fora 1:

alb& ---&a,lby, =

(apVbo)N---N(anVhbp)
<boV(apN (a1 VtY(0,...,n))). (4.18)

Proof. By the orthogonality hypotheses and Hq. (4.13), the leftehside of Eq.[(4.18) equals
the left-hand side of Eql.(4.3). By E. (4112), the right-thaide of Eq.[(4.3) is a subset of the
right-hand side of Eq[(4.18). Ed. (4]118) follows by Theoiém.1 and the transitivity of the

subset relation. O

We can also put the above theorem in a more general form.

Theorem 4.1.5.Th.[4.1.4 also holds when the hypotheses
aglbp& --- & an L by
are replaced with the weaker hypotheses
aChp & --- & a,Chy

where C is the commutes relation.
Proof. The proof is the same as the one for Th. 4.1.4, except that &qs(4.14) in place of
Eq. (4.13). O

Th.[4.1.4 now becomes a special case of[Th. 4.1.5, since ilOMly, a < b impliesaCb
by Eq. [3.26). We mention that Th. 4.1.5 and Th.4.1.4 canadlgtbe shown to be equivalent
to each other in an OML, so in that sense [Th. 4.1.5 does noidgg@ny new information.
However, Th[4.1)5 may be more convenient in some cases $eodits weaker hypotheses.

Theorem 4.1.6.AnOL in which Eq. [4.1B) holds is a®ML.

Proof. [84, Th. 2.16] It suffices to show this for the lowest-ordeuatipon, which follows from
the higher order ones. Far= 1, we can express Ed. (4]118) as

XLly&zlw= (xUuy)n(zuw)<yu(xnN(zu((xUz)n(yuw)))). (4.19)

Puttingb,0,a,a for x,y,z w respectively, the hypotheses are satisfied and the coanlbis-
comes(bu0)N(aud) <0U(bn(au((bua)n(0ud))))). Simplifying, we getb < bn (au
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(& N (aub). Dropping the conjuncb from the right-hand side, adding the disjurcto the
left-hand side, and noticing that the other direction ofrésulting inequality holds in any OL,
we arrive aUb=auU(a' N (aub)), which is the orthomodular law (Déf. 2.2.7). O

Note that the orthomodular law also follows (in any OL) frohe hOA laws in the form
of Eq. (4.24) below (p_44). However, those equations malkeafishe orthomodular law for
their derivation from Eq.[(4.18). The above theorem givesmslternate way to derive the
orthomodular law directly from Hilbert space that is, in somays, more elementary than the
traditional proof by contradiction (e.g. Ref. [49, p. 65]).

4.2 Definitions

Ref. [76] shows that in any OML (which includes the latticectdsed subspaces of a Hilbert
space), Eq.(4.18) is equivalent to ti®A law (that we will introduce below) Eql(4.24) for
m = n+ 2, thus establishing Theorem 4.2.3 below. First, we wilfddtice the definitions
needed to state those laws.

For the following definition, we recall tha—b efayv (anb) [Def.[2.2.5 (p[I8)].

Definition 4.2.1. We define an operatio@ on n variables @, ...,a, (n > 3) as follows?
(3)_ def
ay=a; = ((a—ag) A (a—ag)) V ((dh—ag) A (a—ag)) (4.20)

(n) (n-1) (n-1) (n-1)
a=a, L@ = a) V(@ = a)A(@ = a)), n>4. (4.21)

For the caser = 4 and 5, the above definition reads:
4 3 (3 3)
ar=a, N (g Zap) V ((ar =au) A (2o =au)) (4.22)

) 4 4 4
a=ay d:ef(alzaz)v((a15a5)/\(a25a5)) (4.23)

-1
2To obtain(_2 we substitute in eacﬁunz) subexpression only the two explicit variables, leaving diieer
4 3 3
variables the same. For examp(ag(_z)ag,) on the right side of[(4.21) fon=5 means(ag(_z)as) V ((a2<_=)a4) A

(a5<_i)a4)) which meang((a;—az) A (as—ag)) V ((a,—az) A(as—ag))) V ((((az—ag) A (aa—ag)) V ((ah—ag) A
(ay—az))) A (((as—az) A (au—ag)) Vv ((ag—ag) A (ay—ag)))). The explicit expansion can also be obtained from
the output of the programegen.c described in Se€._Al8 (p._156).
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Definition 4.2.2. For each n> 3, the equation
(n)
(a—a3) N(ag=ap) < ap—as. (4.24)

is calledOA-n. The equational variety consisting of t@MLs in whichOA-n holds is called
nOA, and thus we also call equatiddA-n the nOA law.

The important property of these equations is the following:

Theorem 4.2.3.[7€] The nOA laws (n > 3) hold in all HLs.

n
The notatioral(z)ag is useful when we do not need to specify assignments to imhpad-

n
ablesas, ..., a,. When constructing the expressiafgz)az using Def[4.2.11 above, the variables
with the namesg, ..., a, must be assigned strictly according to the footnote for diefinition.

) . . ) . ()
In particular, if an expression contains two or more ocawes of the operatioee (for ex-
n n
ample,a(z)b andc(z)d), the implicit variables are assumed to be the same in eaghunless

otherwise specified.

When(;) occurs more than once in a condition, we sometimes need neableanames
that are different from the implicit ones, . .., a,, and this notation becomes inadequate. The
most frequent case is when we need to assign a differenblataag, and for that purpose we
introduce the following alternate notation.

Definition 4.2.4.

n
algnaz def al(z)az (4.25)
Again, the implicit variablesy, ..., a, are assumed to be the same in each occurrence of
expressions of the forraénb unless we specify otherwise.
Finally, and in particular for the frequent special cases3 andn = 4, it is convenient to
have a notation that specifies all variables explicitly.
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Definition 4.2.5. We define ga—:saz d:efalgaz and a 2 a3 zd_ef al@az Explicitly, we have
((a—>c) (b—c)) Vv ((@—c)A(b'—c)) (4.26)
azdb (a2b) v ((ac) A (bc)) 4.27)

= ((a—=d) A (b=d)) v ((@—d) A (B —d))
V(((a—d) A (c—d)) v ((@—d) A (I —d)))
A (((b—d) A (c—d)) V (0= d) A (I —d)))) (4.28)

Thus, a30A is anOML in which the following additional condition is satisfied:

(a—C) A (a=b) < b—c. (4.29)
A 40A is anOML in which the following additional condition is satisfied:

(a—d) A (a2h) < b d. (4.30)

. @83 def _ (N) .
In general, we define;a = a)= a;=ap, where @,...,az may be an explicit list of variables

(no...) if necessary.

Thus we have three notations for th@A operation that are increasingly explicit, depending
on the needs of their application. To summarize these, we hav

3

al(E)az = alggaz = a1a3 ao (4.31)
4

al(z)az = a1§4a2 = ala%a 3a2 (4.32)
5 a4,

al(z)az = alggaz = alas’%asaz (4.33)
n -

al(z)az = algnaz = alan’z agaz. (4.34)

The following lemma shows some general properties ofitbA operation that hold in all
OMLs and will be of use to us later.

Lemma 4.2.6. The following conditions, for & 3, hold in all OMLs. Note that whenever the

() a . " o .
operatlon(z) or =n appears more than once in a condition, the implicit variadee assumed
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to be the same. The expressign.a., a4, a3 means gforn= 3.

(n) (n)

=y =a=a; (4.35)

al(zn)az = a’l(zn)a’z (4.36)

ey =1 (4.37)

a=b< al(zn)az (4.38)

al(zn)az < al(ngl)az (4.39)

a=b = ((a—¢) = (b—c)) Vv ((@—¢) = (W—c)) (4.40)
a>Cc=b—c = aénb =1 (4.42)
(a%c)énb = a’énb (4.42)

(a—>c)§n b—c) = a=nb (4.43)

anh—ag;...,d4—agz,as an,---,84,33

(a1—> ag> (a2—> a3) =z . (4.44)

Proof. The proofs for most of these are obvious from DEfs. 4.2. aRd?2

For Eq. [4.40){(a—c) = (b—c)) vV ((d—c) = (—c)) = ((a—c) A (b—c)) V((a—c)' A
(b—c))v((@—=c)A(b—c)) Vv ((@—c) A(b—c)), and the second and fourth disjuncts are
absorbed by the third and first respectively.

For Eq. (4.41): Fom = 3, by Eq. [3.1),a—c = b—c implies 1= (a—c) = (b—c) =
((a—c) A (b—c)) V ((a—c) A (b—c)). Since (a—c) <a—c and (b—c) <b—c by
Eq. (3.38), 1< ((a—c) A (b—c)) vV ((@—c)A(b'—c)) = a=b. Then > 3 case follows from
then = 3 case by Eq[(4.39).

For Egs.[(4.4R)[(4.43) (4.44): Use—b)—~b=a—b, (& —~b)—b=a—b, and induction
onn. U

To make certain equations slightly shorter when fully exgeh(which can be faster to run
with computer programs such alice.c ), we also define the following modified version of
thenOA operation. The remark in the footnote to Def. 4.2.1 coniceyimplicit variable names
also applies to this definition.
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Definition 4.2.7.

©)
ap=ay def (a1Nap)V ((ag—ag) A (ag—ag)) (4.45)
4 get, ©) 3
a=a = (y=ay)V ((aa=ay) A (ag=2as)) (4.46)
®) et @ (4) (4)
q=ay = (a=a)V((aa=as) A (a2=as)) (4.47)
M et (M1 (n-1) (n-1)
ay=a= (g = a)V((a = a))A(az = an)), n>4. (4.48)
We also define analogous notations for making variable naxgit:
Definition 4.2.8.
a a (3
almzaz gef alzigaz gef ar=ay (4.49)
as,a; a (4)
a1 13a2 gef alzi4a2 gef a=ay (4.50)
as,an, & a (5)
a = 332 d:ef 31235&2 d:ef a;=—ap (4.51)
an,.. & a (n)
a = 3a2 gef alzinaz gef a=ay. (4.52)
For the frequent cases bf= 3,4, we have explicitly
C
a=b= (anb)V ((a—c)A(b—c)) (4.53)
cd d d d
a=Db = (a=b) Vv ((a=c) A (b=c)) (4.54)
= (anb) Vv ((a—d) A (b—d))
V(((anc) Vv ((a—d)A(c—d)))
A((bAC)V ((b—d)A(c—d)))) (4.55)

The modifiednOA operation does not satisfy all of the properties of thendsad nOA

operation listed in Lemma 4.2.6. Some of its properties af@kows.

Lemma 4.2.9.The following conditions hold in alDMLs. Note that whenever the operations
(n) a3
(;), %n, =, and=p appear more than once in a condition, the implicit varialdes assumed to
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be the same. The expressigp.a.,as, a3 means gforn= 3.

(n) (n)

dr=—ady = adyx=ad; (4.56)
(n) (n)
= <agzzau<ag=a (4.57)
an—C,...,a4—C,a3 oo,
a;—ag = dp—agz = alan’ Ea4 a3a2 (4.58)
C
(a—C)=(b—C) = a=b (4.59)

Proof. The proofs follow directly from Def$. 4.2.7 ahd 4.2.8. Intieular, we use the relation-
shipsa<a'—b,d <a—b, (a—~b)—b=a—b, and(a’—b)—b=a—b, applying induction
onn as needed. 0

4.3 Independence results

It is conjectured that the equational variéty+ 1) OA is strictly smaller thamOA for all n. In
this section, we review what is known about this conjecture.

Corollary 4.3.1. In anyOML, Day'’s orthoarguesian lay81] is equivalent to thd OA law and
the equations found by Godowski and Greechie in 1284 are equivalent to each other and
to 30A.

Proof. As given in Ref.|[76]. O

Theorem 4.3.2.Any ortholattice(OL) [107, Def. 1]to which an rOA law is added is ortho-
modular. No ©A law holds in allOMLs.

Proof. All nOA laws fail in ortholattice O6l{enzene ring, hexagop[107, Sec. 2].

We prove the second statement of the theorem by finding anradtular lattice in which
the 30A law fails. One such OML is shown in Figs.]4.1(a) bel®&ince the(n+ 1)OA law
implies thenOA law (see Theoremn 4.3.3 below), the result follows. O

We conjecture that the second statement of the followingréra holds for any. To prove
it for n> 7 is an open problem.

Theorem 4.3.3.In anOL, the nOA law implies thgln— 1 OA law for any n> 3. In anOL, the
nOA law does not imply thén+ 1) OA law for 3<n < 6.
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Proof. The first statement easily follows from the definition of ti@A laws.

The proof for eachn of the second statement consists of exhibiting an OML thiasfges
nOA and violatesn+ 1) OA. Forn = 3,4, see Ref.|[716]. Fon =5, see Ref..[105, p. 766,
Th. 11]. Forn= 6, see Ref.[[84]. We also show these counterexamples in [Eifand 4.2
below. O

These counterexamples were found by the following methock sWErted with the pro-
gramnauty written by Brendan McKay [73], which exhaustively genesdiaite OML lattices.
These inturn were fed into the progréatiiceg.c (orits faster variantattice2g.c ), which
tests thenOA laws against those lattices [see SeclA.1 below (pl 146)dso Ref.|[84]]. The
nOA laws are very long equations whose lengths grow expoalntiith n (with 4-3"2 43
variable occurrences when expanded to elementary opesatidsn increases, the difficulty of
finding these counterexamples increases exponentialiygirig the counterexamples for 40A
vs. 50A and 50A vs. 60A required over 10 years of CPU time onGhester Isabella (224
CPUs) and Civil Engineering Cluster (60 CPUSs) of the Uniitgrsf Zagreb. Some additional
lattices in which 50A holds and 60A can be found in Ref. [1057/@7]. The search that re-
sulted in the 60A vs. 70A counterexample is described in [8df. To pursue the search for
highern’s is currently too costly with the available algorithms asmmputers.

In Figs.[4.1 and 412, we show the Greechie diagrams of thetemexample lattices used for
the above proot. For Figs[Z4.2(d)and (b)? we drew? them with outer loops of orders 9 and 10,
continuing a possible pattern in the outer loops of orde® &nd 8 of Figd_4]1(d),(b) 2 and
(c).2 In Refs. [105, p. 767, Fig. 6] and 33-21-0a6p7f [84], theidat of Figs[4.2(a) and (b) are
shown using maximal outer loops of orders 11 and 14. As we siedow in Fig[5.8 (pL81), a
Greechie diagram drawn with a maximal outer loop may disgaipattern to be sought. While
our redrawn diagrams in Fids. 4.2(a) and (b) also do not tergaapparent pattern, they show
an example of the different approaches that may be neededaalra pattern, if there is one.

3The notation “17-10-0a3p4f” means “17 atoms, 10 edges, iithvthe 30A law passes and the 40A law
fails.”

4HIO,FHM,FGN,EGJ,CIL,ADQ,9BP,8IK,7BF,678,5CD,34A,26E ,23H,159,14G,JRS,IPS.
is an MMP encoding for Fig. 412(a).

5123,345,567,789,9AB,BCD,DEF,FGH,HIJ,JKL,LMN,NOP,PQR ,RS1,4EK,4AP,AVH,BXL,
DUQ,FWN,JTQ. is an MMP encoding for Fig.412(b).

6Assisted by the prograioop.c  [Sec[A.T (p[I5K)]. For Fig.4l2(a), from the possibilitigith an outer loop
of 9, we chose the unique one that had no completely intedgd<i.e. in which every internal edge connects to
the outer loop. Fig$. 4.1(c) ahd#.2(c) do have such coniplietiernal edges.

7123,345,567,789,9AB,BC1,BD5. is an MMP encoding for Fig. 4l1(a).

8123,345,567,789,9AB,BCD,DE1,3FA,1G8,6HD. is an MMP encoding for Fig.411(b).

9123,345,567,789,9AB,BCD,DEF,FG1,118,4HE,6LK,CJK,HMK . is an MMP encoding for Fid.211(c).
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(@) (b) (€)

Figure 4.1: Lattices (a) 13-7-OMLp3f, which is an OML but reoBOA, (b) 17-10-o0a3p4f,
which is a 30A but not a 40A, (c) 22-13-0a4p5f-a, which is a 4@Anot a 50AI[105, p. 766,

Fig. 5].
(@) (b)

Figure 4.2: Lattices (a) 28-18-0a5p6fib [105, p. 767, Figwhich is a 50OA but not a 60A,
and (b) 33-21-0a6p7f [84], which is a 610A but not a 70A.

4.4 Equivalents for the 30A law

We will focus on 30A in this section. In many cases the resalie hold fomOA with straight-
forward generalizations. In particular, the tera=b” can often be replaced witr‘a“énb” with-
out further modification.

For easier reference, we collect below the 30A equivalergaal in this section.

(a—c) A (a=b) = (b—c) A (a=b) [see Eq.[(4.60), p. 51]
(a—c) A (a%b) = (a—c) A (b—c) [see Eq.[(4.61), p. 51]
(a—C) A (afzb) <b—c [see Eq.[(4.62), h. 51]
(a—C) A (azczb) = (a—c) A (b—c) [see Eq.[(4.63), p. 51]
(a—c) A (afzb) = (b—c)A (azczb) [see Eq.[(4.64), p. 51]
(a—C) A (ab) = (b—c) A (a=b) [see Eq.[485), i51]
(a—C) A (aéb) < azczb [see EQq.[(4.66), p. 51]

aA (a=b) < b—c [see Eq.[AB7), (1.52]
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bA (afzb) <d-—c [see Eq.[(4.68), 1. 52]

an (a%b) <b'—=c [see Eq.[(4.69), 1. 52]

an (aéb) <b—c [see Eq.[(4.70), p.52]
(H—0)A((b=0) v ((a—c)A(a=h))) < c [see Eq.[4.72), 5.53]
(a—>c) (av (bA (a=b))) <c [see Eq.[4.73), 1.54]
A(av (bA (aib) <c [see Eq.[(4.74), p. 55]
aAav(ba (azczb) <c [see Eq.[(4.75), p. 55]

alb & cld=
(avb)A(cvd) <bv(an(c
V((ave)A(bvd)))) [see Eq.[(4.76), p. 56]
dA(ev(dATf))=(dAe)V(dAT)
whered = a—c,

e=(@—c)A(b'—c),

andf = (a—c) A (b—c) [see Eq.[(4.77), p.56]
(a—cC) A (aéb) Cb—c [see Eq.[(4.78), p.57]
((a—c) A (a=b))—c = ((b—C) A (a=b))—c [see Eq.[4.82), 1.59]

Theorem 4.4.1.An OML in which any of the following equations

(a—C) A (a=h) = (b—c) A (a=b) (4.60)
(a—¢) A (a=b) = (a—¢) A (b—c) (4.61)
(a—c) A (afzb) <b—c (4.62)
(@) A (a=b) = (a=¢) A (b—C) (4.63)
(a=¢) A (a=b) = (b—c) A (a=b) (4.64)
(a=C) A (a2b) = (b—c) A (a=b) (4.65)
(a—C) A (aZb) < a=b (4.66)

holds is a30A and vice versa.

Proof. To obtain Eq.[(4.60), apply Ed. (4]29) twice, once wathndb swapped. The converse
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is trivial.

For Eq. (4.611), we note thaa—c) A (b—c) < a=h.

Eq. (4.62) follows from Eq[{4.29) sin@< a —c andb < b'— c; conversely, substituting
a—cforaandb/—cfor binto Eq. [4.62), we obtain Ed. (4.29).

Eqg. (4.63) follows from Eq[(4.62) sinda—c) A (b—c) < azczb.

To obtain Eq.[(4.64), apply Ed. (4.62) twice.

Eq. (4.65) follows from Eqs[(4.61) and E@._(4.63). To obti&ie 30A law in the form of
Eq. (4.61), substitute’— c for a andb/— c for b into Eq. [4.65)

Eq. (4.66) follows immediately from Eq. (465). For the cerse, substitutéa—c)’ for a
and(b—c)’ for binto Eq. [4.66). Usinda—c)'—c = a—c and similarly ford, b, andb’, we
have:

(a—0)'S(b—0)) < (a—¢)'=(b— )’
< ((a—=c)A(b—c))V((a—c) A(b—c))

(a=b)
(a=b) < (((a—c) A (b—c)) vV ((a—c) A (b—c))) A(a—c)
(a=b)
using F-H (Th[3.1.13)
(a—c) A (a=h) < b—c

which is the 30A law, Eq[(4.29). O

Theorem 4.4.2.An OML in which any of the equations

an (azczb) <b—c (4.67)
b (a=b) < d—c (4.68)
aA(a=b) <b—c (4.69)
ad A(a=b) < b—c (4.70)

holds is a30A and vice versa.

Proof. For Eq. (4.67): To obtain the 30A law, Eq[(4.29), from E@. (4167), we subistin— c
for aandb—c for b, then we use the OML identitiga—c)—c =& —c, (b—c)—c=b'—c,
and(b’—c)—c=b—c.
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For the converse, since< X' — vy,

an((anb) Vv ((a—c)A(b—c)))
<(@—=c)A(((@—=c)A(b'—c))V((a—c)A(b—c)))

(a—c) A (a=D)

IN

b—c,

where the last step is an instance of [Eq. (41.29).

A proof of Eq. [4.67) can also be found in Ref.[84, Th. 5.1].

For Eq. (4.68): This is a trivial variant of Eq.[(4.67) obtained by swapp@ma@ndb and
applying Eq.[(4.56). We mention it because it is used forgheoutput of the prograrnagen.c
[Sec[A.8 (p[156)].

For Eq. (4.69): Sinceazczb < a=b by Eq. [4.57), Eq.[(4.69) implies the 30A law in the
form of Eq. [4.67). Conversely, sin@< a—c, then puttinga’ for a and b’ for b in the
30A law Eq. [4.29), we havan (aéb) < (@—c)A (a’éb’) <b'—c. Eq. [4.69) follows since
a=b = a=b by Eq. [4.36).

For Eq. (4.70): This is shown equivalent to Eq. (4169) usia{éb’ — a=b. O

An open problem is whether the following analogue of Eq.@,.7
Cc
a A (a=b) < b—c, (4.71)

is equivalent to the 30A law. It follows from Eq._(4170) usikg. (4.57). By substituting'—c
for aandb’— c for b, it implies Eq. [4.94) below, meaning that it implies the 3@&ntity law
of Sec[4.b.

Theorem 4.4.3.An OML in which
('—¢) A ((b—c)V ((a—Cc) A(a=b))) < ¢ (4.72)
holds is a30A and vice versa.

Proof. To obtain the 30A law Eq[{4.29),

(—=c)A((b—c)V ((a—c)A(a=h))) <c

bA(b'—c)A((b—c)V((a—c)A(a=b))) <bAc

E,O mo
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bA((b—C) Vv ((a—c)A(a=b))) <bAc  sincebA(b—c)=b
bV (bA BV (bAC)V ((a—c) A(aZh)))) < bV (bAC)
bV (bAc)V((a=c)A(a=b)) <b—c  using Eq.[(34)
(a—C) A (a=b) < b—c
For the converse, starting with the 30A law,
(a—C) A (a=h) < b—c
(b—¢) V ((a—C) A (a=b)) < b—c
(0'=¢) A ((b=c) V ((a—C) A (a2h))) < (b'—¢) A (b—c) = (b—C) AC
('—¢) A ((b—c)V ((a—c) A(a=b))) < ¢

Theorem 4.4.4.An OML in which
(a>c)A(aVv (bA(a=b))) <c

holds is a30A and vice versa.

Proof. This equation can be derived from the 30A law as follows:

(a—c)A(aV (bA (a=h)))
< (a—C) A ((@—0) Vv ((H—C) A (aZh)))
= (@' =) A((@—=c)V ((0—c) A (D=d)))
using Eqgs.[(4.35)[ (4.36)
<c using Eq.[(4.7R)

To obtain the 30A law, we substitube- ¢ for a anda— c for b in Eq. (4.73):

<

((b—c)—c)A((b—c) Vv ((a—c)A((b—c)=(a—c)))) <c.
Using Eqs.[(3.39)[(4.43), and (4]135) we obtain

('—¢) A ((b—c)V ((a—C) A(a=h))) < ¢,

(4.73)
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which is the 30A law in the form of Eq._(4.772). O

Theorem 4.4.5.An OML in which
'A(av (bA(a=b) < c (4.74)
holds is a30A and vice versa.

Proof. Using @ < a—c, Eq. (4.74) follows immediately from the OA3 law in the fornh o
Eq. (4.73):

a A(av (bA(a=b) < (a—c) A (aVv (bA (a=h)))

C

IA

To obtain the OA3 law, we substitubéfor a and(a—c) for b in Eq. (4.74), obtaining
b A (D V ((a—c) A (W'Z(a—c)))) < C
We havey=(a—c) = a=b by Lemmd 4.2, so

bA (b vV ((a—c) A (a=b)
bA (b V ((a—c) A (a=h)
b’V (bA (b’\/ ((a—cC) A (a=h))

?Jo ?)o
IAN A

VAN
UO'UUO

V(bAC)

)
)
)
) using Eq.[(3.4)

V((a=c) A (a=b

IN

VAN

)
)
)
)
(a—C) A (a=b)
which is Eq. [4.2D). O
Theorem 4.4.6.An OML in which
C

'A(aVv (bA(a=b)<c (4.75)

holds is a30A and vice versa.

C
Proof. Sincea=b < a=b (Lemmd4.2.), Eq[{4.75) follows immediately from the O&8/lin
the form of Eq.[(4.74).
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To obtain the OA3 law from EqL(4.75), we substitite> ¢ for a anda—c for b. From
c
LemmaZ.ZB(b—c)=(a—c) = a=b. Thus

(b—c) A((b—c)V ((a—c)A((b—c)=(a—cC)))) <cC
(b—c) A((b—c)V ((a—C) A(a=hb))) < ¢
(b—c) A ((b—c)V ((a—C) A (a=h))) < (b—c) Ac
( ( )

(b—¢) V ((b—c)' A ((b—C) V ((a—C) A (a=b)

b
(b—c)V ((a—c)A(a=b)) <b—c using Eq.[(3.4)
b

which is Eq. [4.2D). O

The following theorem shows a version of the 30A law with gewgicularity hypotheses
and four variables instead of three.

Theorem 4.4.7.An OML in which

alb & cld
= (avb)A(cvd)<bv(an(cv((avc)A(bvd)))) (4.76)

holds is a30A and vice versa.
Proof. See Theorem 4.9 of Ref. [76]. O

The 30A law is a consequence of the modular aw (bV (anc)) = (aAb)V(aAc)
(Th.[Z.2.2).

Theorem 4.4.8.Letd=a—c, e= (& —c)A(b'—c),and f=(a—c) A (b—c). Then anOML
in which

dA(ev(dAf))=(dAe) V(dAT) (4.77)

holds is a30OA and vice versa. In other words, tiB®A law holds in any modular ortholattice.
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Proof.
dA(eV (dA f))

(a=c) A (((@—=c)A(B—c)) VvV ((a—=c)A((a—c)A(b—C))))
(a=c)A(((a—=c)A(b—c)) Vv ((d—c)A(K—=0)))

= (a—C) A (b—c) by the 30A law Eq.[(4.61)

= ((a=»c)A(b—c)Ac)V(a—c)A((a—c)A(b—c)))

= ((a=c)A((@—=c)A(b'—c))) VvV ((a=c)A((a—c) A(b—c)))

by Lemmd3.2)6
= (dAre)V(dAf).

O

Theoreni4.4]9 is interesting because it appears to “weaken30A law’s inequality to a
commutes relationship where ordering can’t be inferredatly, but in fact the result is equiva-
lent.

Theorem 4.4.9.An OML in which
(a—C) A (a=b) C b—c (4.78)

holds is a30A and vice versa.

Proof. The law(a—c) A (a%b) C b—cfollows trivially from 30A in the form(a—c) A (aéb)
< b—c, using Eq.[(3.26).

For the converse, we assume the lga-C) A (aéb) C b—c as well as its consequence
(b'—=c)A (aéb) C d— c that follows from Lemma4.216. Applying the commutativitypan-
sion

XCy & x<yV(YAX)
to (a—c) A (aéb) C b—c, we have

(a—C) A (a=b) < (b—c) V ((b—C)’ A (a—C) A (a=h)) (4.79)

57



4.4. EQUIVALENTS FOR THE 30A LAW

Similarly, (b'—c) A (aéb) Cd—c, so
(b'—=c) A (aZb) < (8—c) V ((@—c) A (W'—C) A (aZh)) (4.80)
We need to show that the rightmost disjunct in EEq. (4.79) is @rder to obtain the 30A law.

(b—c)' A (a—cC) A (a=h)
= (a—¢) A (b—c)' A (H'—c) A (a=b)
since(b—c)' <b'—c
< (a—C) A (b—=c) A (W' —c) A (a=b)
A((@—C) v ((@—c) A —c) A(a=b)))
using Eq.[(4.80)
= (b—c) A(a—c) A (H'—C) A (a=b)

A((@—c) V ((@—0) A (b'—c) A (a=

b)))

by rearranging terms

Using F-H with(a—c¢) A (b'—c¢) A (aéb) Cd—c[froma—cCd—c, (b—c) A(aéb)Cd—> c]
anda’—cC(a—c)' A (b—=c)A (aéb), we get

(b—c)’ A (a—c) A (a=b)
= (b—c) A(((a—c) A (b'—c) A(
V((a=c) A (0'—C) A (a=b) A ((@—c) A (H—c) A (a=b)))
(
V ((a—C) A (W—c) A (a=D)
= (b—c) A(((a—c)A(b'—c)
V((@—c) A(0—c) A (a=b)))

since(d—c) <a—c

A
A
< (b—=c)A(((a=Cc)A(H—c)A
A
A

= (b—c) A(((a—=c)A(b—c)Ac)V (((a—c) A(—c)A (aéb)))
since(a—c) A (b —c) A (@—c) = ((a—c)A(b—c)Ac
by Part 2 of Lemm&a3.216

Using F-H and Part 1 of Lemma=3.2.6, which impligs—c) A (b—c) Ac C (b—c)’ and
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(a—>C) A (b—c) AcC (d—c) A (—c) A (a=b),

(b—c)’ A (a—C) A (a=b)
= ((b—c)’A(a—c)A(b—c)Ac)
V (=) A(@—c) A (H—c) A (a=Dh))

=0V ((b=c)' A(ad—c) A (b —c) A (a=b))

=0V ((b—c)' A (ad—c) A(a=b))
since(b—c)’ < (b'—c)

—=0V0 (4.81)
since(b—c)’ A (&' —¢)’ commutes with both

terms of(aéb) and zeroes them out.
From Eqs.[(4.79) and (4.B1), we conclude the 30A law,
(a—C) A (a=b) < (b—c)

O

The following theorem expresses the 30A law in the fermc = t— c, which has the same
structure as the conclusion of the 30A identity law [Eq. Qdl)lbelow]. It may be useful for
studying the 30A identity law and in particular the conjeetthat the 30A identity law implies
the 30A law.

Theorem 4.4.10.An OML in which
((a—C) A (a=h))—c = ((b—c) A (a=b))—c (4.82)

holds is a30A and vice versa.

Proof. That Eq.[(4.8P) follows from the 30A law in the forfa—c) A (aéb) = (b—c)A (aéb)
is a trivial consequence of equality.
Conversely, expanding Ed.(4182) we have

((a—C) A (a=h))' V (((a—C) A (a=h)) AC)
= ((b—C) A (a=b))’ V (((b—¢) A (a=b)) Ac)

cA (a—c) A (a=b)
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< ((b—c) A (a=h))' V (CA (b—C) A (a=D)) (4.83)
A substitution instance of Eq_{4182) is
(A=) A (@=D))—c= (=) A (@=b))—c,
from which we obtain similarly
cA(@—C) A (@=D) < (W—c) A (@ZD)) V(A (W —c) A (A=) (4.84)

UsingcA (&—c) =cA(a—c), cA(b'—c) =cA(b—c), and(a’éb’) = (aéb), we can express

Eqg. (4.84) as

CA(a—C) A (a=b) < ((W'—c) A (a=b))’ V (cA (b—c) A (a=b)) (4.85)

Combining Eq.[(4.83) and Eq.(4.85),

CA (a—c) A (a=b)
< (((b=¢) A (a=b))' v (cA (b—¢) A (a=b)))
A(((0/=¢) A (a2h)) v (cA (b—C) A (aZh))) (4.86)

Note the four commutativity relations

((b—¢) A (a=b))’ C cA (b—c) A (a=b),
cA (b—c) A (a=b) C ((b'—c) A (a=h))’
[usingcA (b'—c) =cA (b—c)],
((—¢) A (a=b))’ C cA (b—c) A (a=b), and

cA (b—c) A (a=b) C ((b—c) A (a=h)),
allowing us to apply M-H (Theorein 3.1.4) to EQ.(4.86), yialgl

cA(a—C) A (a=b)
< (((b—c) A (a=h)) A ((b'—c) A (a=b)))
V (((b=C) A (a=h))' A (CA (b—C) A (a=h)))
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o

V ((cA (b—c) A (a=h)) A ((H—C) A (a=h))')
V ((cA (b—c) A (a=b)) A (A (b—C) A (a=b)))
= (((b=c) A (a=b)) A ((H—¢) A (a=b)))
VOVOV (CA (b—c) A (a=b)) (4.87)
where we usea@ A (b—c) = c A (b'—c) to achieve the second cancellation. Siriaesc) A
(b—¢) < (b—c) A (a=b) and(a@—c) A (W—c) < (—C) A (a=b),
((b—c) A (a=b)) A ((0/—c) A (aZh))’
<((a=c)A(b—c))' A((@—c)A(b'—c))
= (a=b)’
so Eq.[(4.8F7) gives
cA(a—C) A (a=b) < (a=h) v (cA (b—C) A (a=b))
Multiplying both sides bya=b,
CA(a—C) A (a=b) < ((aZh)' v (cA (b—c) A (a=h))) A (aZb)

=0V (cA (b—c) A (aZb))

using F-H. By symmetry the other direction also holds, so

CA(a—C) A (a=b) = cA (b—C) A (a=h). (4.88)
Combining Eqs.[(4.82) and (4.188),
(CA ((a—c) A (a=b)) V (((a—C) A (a=b))—c)’
= (cA((b—C) A (a=h))
V (((b—C) A (a=h))—c)’ (4.89)

Using the OML identity(c AX) V (x—c)" = x, Eq. [4.89) becomes

(a—C) A (a=b) = (b—c) A (a=b) < b—c
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which is the 30A law Eq[(4.29). O

4.5 The orthoarguesian identity laws

An interesting law that holds in amOA lattice is thenOA identity law given by the following
Theorem.

Theorem 4.5.1.In any rOA we have:
algnaz =1 = a;—agz=ax—ag (4.90)

. az . . . .
This also means thata&nao being equal to one is a relation of equivalence.

Proof. See Ref.|[76, Th. 4.10] fon = 3,4. The extension to ah by induction is straightfor-
ward. Erratum: This theorem also appears as Theorem 12 of Ref. [105, p. W6§reas
is incorrectly calledn,.) Note that the reverse direction, which we will sometimestavhen
stating this law, holds in all OMLs by Ed. (4.41),[p.] 46. O

An immediate consequence of EQ. (4.90) is the transitive law
d d d
a=ib=1 & b=jc=1 = a=c=1. (4.91)

where above we have used the notation of Def, 4.2.4. (Erratlote that the variabld must be
the same in the hypotheses and conclusion. This requirersnomitted in Eqg. (10) of [105,
p. 768].) While weaker than th&)A law wheren = max(i, j, k) (verified to be strictly weaker
fori=j =k=3,4), Eq. [4.91) cannot be derived from the OML axioms [76]. éibiat except
for the variable corresponding &, the implicit or “internal” variables may be different inca
gi operation and are therefore irrelevant to the conclusitwe. dnly effect they have is to make
the strength of the condition stronger or weaker dependmt@ir assignments, although never
stronger than thaOA law.

ThenOA identity law bears a resemblance to the OML law in the farmb=1<a=Db
(and in fact reduces to it when= 0 in aéib). Thus is it natural to think that they might
be equivalent to theOA laws. This is known as therthoarguesian identity conjecture[7€],
which asks whether th&A laws can be derived, in an OML, from EQ. (4.90). Tests ruaiast
several million finite lattices (fon = 3) have not found a counterexample, but the conjecture
has so far defied attempts to find a proof.
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Conjecture 4.5.2.Any OML in which the ®A identity law Eq.[(4.90) holds is arOA and vice
versa.

A guasi-identity is an inference of the forme, =t3,...,5, =ty = s=t, wheres;, tj,s,t are
terms (polynomials in lattice variables) and> 0. Whenn = 0, a quasi-identity is also an iden-
tity. A quasi-variety is the class of all algebras that satisfy a given set of qusitities. The
nOA identity law is a quasi-identity, and it generates a qasiety when added to the equa-
tional axioms for an OML. Conjectufe 4.5.2 can be subdiviohtd two conjectures, the first
weaker than the second: (1) Is the quasi-variety generatekdenOA identity law a variety?
(2) Is the quasi-variety generated by th@A identity law the same as the varigipA?

An affirmative answer to the second question (i.e. Conjetdfs.2 itself) would provide us
with a powerful tool to prove new equivalents to th@A laws. It turns out that it is often much
easier to derive theOA identity law from a conjecturedOA law equivalent than it is to derive
the nOA law itself. For example, under the assumption that the 3d&htity law implies the
30A law, all of the following conditions would be establishas equivalents to the 30A law
(whereaCbmeansa = (aVvb) A (aVb)i.e.acommutes with):

(a—c) A (a=b) C b—c (4.92)
a—C) A (a=b) C (b—C) A (a=b) (4.93)
(@—c) A(a=h) < b—c (4.94)
(a—c) A(a=b) C b-c (4.95)
(a—¢)' A (a=b) C (b—C) A (a=h) (4.96)
cA(a—C) A (a=b) < (b—c) (4.97)
cA(a—c) A (a=b) C (b—c) (4.98)
cA(a—¢) A (a=b) C (b—c) A (a=b) (4.99)
((a—C) A (a=h))—c = ((b—c) A (a=b))—c (4.100)
((a—C) A (a=h))—c C ((b—c) A (a=h))—c (4.101)

At the present time, only Eqs. (4192) anhd (4.100) from thevals®t of conditions are known to
be equivalent to the 30A law. Denoting the 30A law [Eq. (4.4 = 3] and the 30A identity
law [Eq. (4.90)] by OA-3 and OI-3 respectively, the currgrithown relationships among the
above conditions are shown by the following theorem. (Nbé& t=-" below means “the right-
hand equation can be proved from the axiom system of GMhe left-hand equation added as
an axiom.”)
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Theorem 4.5.3.The following relationships hold in aDMLs.

OA-3 & EQq.(492) = Eq.(493) = OlI-3
OA-3 = Eq.(494) = Eq.(49%) = Eqg.(496) = OI-3
OA-3 = Eq.(497) &« Eq.(498) < Eq.(499) = OI-3
OA-3 < Eg.(4100) = Eq.(4.101) = OI-3.

Proof. (1) For OA-3 < Eq. (4.92) See Theorem 4.4.9.

(2) For Eq. (4.92)= Eq. (4.93) Since(a—c) A (aéb)C(b—m) by Eq. [4.92) anda—c) A
(a=b)C(a=b) by Eq. [3.26), we conclud@—c) A (a=b)C(b—c) A (a=b) by Eq. [327).

(3) For Eq. (4.93)= OI-3 [and Eq. (4.96)= OI-3]: Using the OI-3 hypothesiaéb =1,
we substitute 1 foa=b into Eq. [EB) [Eq.[(4.96)], as well as the version of thatatpn with
a andb negated, using'= =p = a=b by Eq. [4.36). This results in the pair of commutation
relationshipsa—c C b—c anda’—c C d—c[a—c C B—candb—c C d—c]. From Theo-
rem[3.2.4, this also implies—c C H—canda’—cC b—c[a—cC b—candb/—cC d—(].
So together we have the four commutativity relatieasc C b—c, @ —+c C b—c, a—»cC
b'—c, andb—c C d—c. Combined witha—c C d—c andb—c C b—c by Theoreni 3.1]2
(and the fact that any term commutes with itself), we havedhg two terms from the set— c,
a—c, b—c, andb’— c commute. Thus all terms in the hypoth%%b =1 are distributive, so

1= ((a—c)A(b—c))V((@—c)A(b—c))
= ((a=>0)vV([@—=0)A(b'=0)) A((b=0) V(@) A(b'—0)))
= ((a=c)v(d@—c)) A((a=c) Vv (b—c))

((
A((b—c) Vv (d—c))

< (a—c)Vv(d—c)

A((b—c) Vv (b—c))

Therefore,
(a—=c)V(b'—c)=1
((a=c) Vv (b—c))A(a—c) = (a—c)
((a—=c)A(a—c)) v ((b'—=c)A(a—c) = (a—c)
(('—=c)A(a—c) = (a—c)

so(a—c)' <b'—c. Similarly, (b—c)’ <& —c. This satisfies the hypotheses of Corollary 3.2.5,
so by that corollary and Ed. (348~ c = b— ¢, which is the conclusion of OI-3.
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(4) For OA-3 = Eq. (4.94) (&' —c) <a—c, so from OA-3,(@—c)' A (aéb) < (a—C)A
(a=b) < (b—c).

(5) For Eqg. (4.94)= Eq. (4.93) Comparable terms commute by Eg. (3.26).

(6) For Eq. (4.95)= Eqg. (4.96) Same reasoning as for part (2).

(7) For Eq. (4.96)= OI-3: See part (3).

(8) For OA-3 = Eq. (4.97) Same reasoning as for part (4), simce(a—c) < a—c.

(9) For Eq. (4.97)= Eq. (4.98) Same reasoning as for part (5).

(10) For Eq. (4.97)«< Eq. (4.98) Follows from parts (11) and (12) below.

(11) For Eq. (4.98)= Eq. (4.99) Same reasoning as for part (2).

(12) For Eq. (4.97)< Eq. (4.99) Denote(a—c) A (b—c) Ac by U (“universally com-
mutes”). LetS= {a—c,a —c,b—c,b/—c,c}. Recall from Lemma3.2l6 that:

1. U commutes with any polynomial built from the termsSn
2. U is less than or equal to any product of terms fr§nand

3. U is equal to the product of any subset of three or more ternrms 8that contains both
variablesa andb.

From two instances of Ed. (4199) and usow(a—c) =cA (& —¢),

b) C (b—c) A (a=b)
b) C (b—c) A (a=b)

CA(a—C) A(

mo ﬁTO

cA(a—C)A(
Thus

CA(a—C) A (a=b) < (cA (a—C) A (a=b) A (b—C) A (a=D))
V (CA (a—C) A (a=b) A ((b—c) A (a=b))")

= (U A (a=b))
V(cA(a—cC)A(

=UV(cA(a=C)A(
and similarly,

CA(a—C) A (a=b) < UV (cA (a—C) A(a=b) A ((H—c) A (a=b))).
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Combining,

CA(a—C) A (a=b) < (U V (cA (a—C) A (@=b) A ((b—c) A (a=h))))
AUV (CA(a=C) A (aZb) A ((K—c) A (a=b))")).

Since U commutes with all terms, from M-H (Th-3.11.4) we obtain

CA(a—C) A (aZh) < (U AU)
V(UA(CA(a=c)A ( =b) A ((H/—0) A (a=b))")
V((cA (a—c) A (a=h) A ((b—c) A (a=h))) AU)
V((cA(a—0) A(a=b) A ((b—c) A (a=h)))
A(cA(a—c)A(a=b) A ((b—=c) A (azb))’))
)

Cc

<UvVvUVUV(cA(a—c)A(a=b
A((b—¢) A (a=b))' A ((/—¢) A (a=b)))
— UV (cA(a—c) A(a=b) A (((b—c) A (aZb))

V ((b'—c) /\(azb))) ).
Note that(a—c) A (b—c) < (b—c) A (a=b) and(a—c) A (W'—c) < (—¢) A (a=h), so

(a=b) = ((a—c) A (b—C)) v ((&—C) A (B —¢))
((b—¢) A (aZb)) V (('—¢) A (aZb)) (4.102)

IA

(((b=¢) A (a=b)) v ((H—¢) A (a=b)))’ < (a=b)'. (4.103)
Hence

CA(a—C) A (a=b) < UV (CA (a—c) A (a=b) A (a=b)')
—UVvo=U

<b—c.

(13) For Eq. (4.99)= OI-3: We use the OI-3 hypothesi&%b — 1, to substitute 1 foa=b
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in Eq. (4.99), as well as into its equivalent version watndb negated. SinceA (a—c¢) =
cA(d—c) = (a—c) A (a—c), one of these substitutions gives @—c) A (a—c) C i—c.
Sincea’ — ¢ C a—c, the GSB theorem, Ed.(3.30), yiel¢g—c) A (b'—c) C a—c. Thus

(a—=c)Al=(a—c)A(((a—c)A(b—c)) VvV ((@—c)A(b'—c)))
using the OI-3 hypothesis
= ((a=c)A((a=c)A(b—c))) V ((a—c) A ((d—c)A(b'—c)))
since(a—c) C ((a—c) A (b—c))
and(a—c) C (& —c) A (b'—c)
= ((a=c)A(b—c))V(((a—c)A(b—c)) Ac)
using Lemma&_3.2]6 for the second conjunct

< b—c.

Similarly, b—c < a—c.
(14) For OA-3 < Eq. (4.100) See Theorern 4.4.110.

(15) For Eg. (4.100)= Eq. (4.101) Same reasoning as for part (5).
(16) For Eg. (4.101)= OI-3: Using the OI-3 hypothesis, we substitute 1 fEb into

Eq. (4.101) to obtairfa—c)—c C (b—c)—c. Since(a—c)—c = & —c and similarly forb,
we havea’— ¢ C B— c. Doing the same witla andb negated, we also haee+c C b—c. The
rest of the proof is the same as for part (3) above. O

4.5.1 Equivalent forms of the 30A identity law

The following theorem shows that the 30A identity law can wed as taking a@R (join)
condition to a strongexND (meet) condition.

Theorem 4.5.4.I1n anyOML, the30A identity law,
a=b=1 = a—~c=b—c (4.104)
is equivalent to the following condition:

((a—c)= (b—c)) v ((@—=c)=(b—c) =1
= ((a=c)=(b—c))A((@—c)=(b—c)) =1 (4.105)
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Proof. Use Eq.[(4.40) for the hypothesis. Apply Eq. (4.104) twite, $econd time also apply
Eq. (3.47), apply EqL(3l1) to each conclusion, and conjogmt. The recovery of Eq._(4.1104)
should be obvious. O

The next theorem expresses the 30A identity law in formshhae separate variables on
the left- and right-hand sides of the conclusion.

Theorem 4.5.5.In any OML, the 30A identity law Eq. [(4.104) is equivalent to either of the
following conditions:

a=b=1 = (a—b) <c (4.106)
a=b=1 = a <b—c (4.107)

Proof. For Eq. (4.108): Starting with the conclusion of Ed. (4.104), we obtain EqI08) as
follows:

b—c<a—c
(a—c)V (b—c) <a—c
(@—c)A((a—c)V (b—c)) < (d—c)A(a—cC)
=CA(a—cC)
(@—c)A((a—c)V(b—c)) <c
an(@vb)=(a—b) <c

where for the last line we used< a'— ¢, a8 <a—c, b <b—c.
For the converse, we substitute—c)’ for b into Eqg. [4.106). Its hypothesis remains the
same by Lemm@a4.2.6, and we transform its conclusion asiello

an(@v(b—c))<c
<anAc
av(an(@V(b—c)))<dVv(arc)=a—c
aVv(b—c)<a-—c  usingEq.[3H4)

b—c<a—c

Combining this with a similar derivation with andb swapped, we arrive at the conclusion of
the 30A identity law Eq.[(4.104).
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For Eq. (4.107): The conclusion of Eq[{4.107) follows immediately from th@clusion
of Eq. (4.104) usin@ < a—c. For the converse, we substitute—c)’ for ainto Eq. [4.10V).
The hypothesis stays the same by Lenima #.2.6, and the canrciugl be one direction of the
conclusion of Eq.[(4.104). O

The 30A identity can also be expressed with a slightly steoiypothesis.

Theorem 4.5.6.In anyOML, the30A identity law Eq.[(4.104) is equivalent to any one of the
following conditions:

Cc

a=b=1 = a—~Cc=b—c (4.108)
Cc

a=b=1 = (a—b)' <c (4.109)
Cc

a=b=1 = a <b—c (4.110)

Proof. For Eq. (4.108): The hypothesis of Eq._(4.108) follows immediately from tlypbthe-
sis of Eq. [4.104) using < @ —c andb < b’—c. Conversely, to obtain Ed. (4.7104), we substi-
tutea’— c for aandb’— c for binto Eq. [4.108) and use the OML identitie(®—c)—c=a—c
and(b’'—c)—c=b—c.

For Eq. (4.109): The hypothesis of Eq.(4.109) follows immediately from tlypbthesis of
Eq. (4.106) usinga < & —c andb < b'—c. Conversely, by substituting— ¢ for aandb’—c
for binto Eq. [4.109), we obtain the hypothesis of Eq. (4]1104Y,\&a transform the conclusion
as follows:

/

(@—c)—(—c)' <c
(@—=c)A((@—c) Vv (b—c))<c
(@—=c)A((@—c) Vv (b—=c)) < (@—c)Ac
(@—=c)v([@—=c)A((@—c)Vv(—c))) <(@—c)V ((a’—>c)/\c)
=(d—c)—
=a—C
(@—c)v(—c))<a— using Eq.[(3.4)
(b’—>c)’§a —C

By symmetry, swapping andb also yields hypothesis of Ed. (4.104) hypothesis but thelcen
sion (& —c)’ < b—c. Combining the two conclusions, Corolldry 3]2.5 givesausc = b—c,
which is the conclusion of Eq._(4.104).
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For Eg. (4.110): The hypothesis of Eq[(4.1110) follows immediately from thgbthe-
sis of Eq. [4.107) using < a@—c andb < b’—c. Conversely, by substituting — c for a
andb’'—c for b into Eq. [4.110), we obtain the hypothesis of Hq. (41104) dredconclusion
(&—c)’ < (b'—c)—c=b—c. Swappinga andb yields the same hypothesis with the conclu-
sion (b'—c)’ < a—c. Combining the two conclusions, Corolldry 3]2.5 givesausc = b—c,
which is the conclusion of Eq._(4.104). O

It is sometimes useful to work with a dual form of th©A identity law having & — 2
variables. The following theorem shows several equivadeveiriable dual forms for the 30A
identity law. Analogous versions far > 3 can also be stated but involve more complicated
expressions. Note that Eq5. (4.112) through (4.115) makeessively “stronger” assertions
(i.e. have successively weaker hypotheses). The proofstimat the weakest implies the 30A
identity law, which in turn is used to recover the strongdsy. (4.116) is the dual form of

Eq. (4.113).

Theorem 4.5.7.In anyOML, the30OA identity law
a=b=1 =  a-c=boc (4.111)
is equivalent to any of the following conditions:

alb & cld & (avc)A(bvd)=0
& av((avba(evd) =1 = a<c (4.112)
aCb & cCd & (avec)A(bvd)=0

& av((avba(cvd) =1 = a<c (4.113)

alb & cld & (avc)A(bvd)=0
= an(@v((avb)A(cvd)))<c (4.114)

aCb & cCd & (avec)A(bvd)=0
= an(@V((avb)A(cvd))) <c (4.115)

aCb & cCd & (anc)Vv(bad)=1
& aA((arb)v(cad))=0 = c<a (4.116)

Proof. We obtain Eq.[(4.116) from Ed. (4.113) and vice versa by feptacing each variable
with its orthocomplement then using De Morgan'’s laws at@hb' < aCh

We will prove the others, except Eq. (4.114), by showing Egql15)= Eq. (4.118)=

70



4.5. THE ORTHOARGUESIAN IDENTITY LAWS

Eq. (4112)= Eg. (4111)= Eq. (4.115). Finally, Eq[{4.115) obviously implies EQ.1(Z4),
and we can show Ed. (4.114) Eq. (4.112) with essentially the same proof as for Eq. (4115
= Eq. (4.113).

For Eq. (4.11b)= Eq. (411B): The hypothes&V ((aVvb)A(cvd)) =1 of Eq. [41IB),
applied to the conclusion of Ed. (4.115), results in the amion of Eq. [4.1113). The other
hypotheses are identical.

For Eq. (4.11B)= Eq. (4.112): The hypothesesl b andc | d of Eq. (4.112) imply the
hypotheseaCbandcCdof Eq. (4.118) by Eqs[(3.26) and (3125).

For Eq. (4.11RP)x Eq. (4.111): The right-to-left direction of Eq. (4.111) tslin all OMLs.
For the left-to-right direction, assume that the hypoﬂnasiib =1 of Eq. (4.111) holds. Let
p=(a—c),q=(d—c),r=(b—c),ands= (b'—c)’. It follows that

pLlqg (4.117)
rls (4.118)

We also have

(pvr)A(gVvs) = ((a=c)' Vv (b—c))A((@—=c) Vv (b—c))
= (((a=c)A(b—c)) Vv ((@—c)A(H—=c)))
= (a=h) =1’
(pvr)A(gqVvs)=0. (4.119)

In any OML, (a—c)' v (& —c) = (a V) A(avC), so

PV ((pvg) A(rvs)) =(a—c)V(((a—c) Vv (ad—c))
A((b—c)' v (b'—=c)))
=(a—c)V(((@vd)a(avd))
A VYA (bvT)))
> (a—c) v
=aVv(arc)vd =1
P'V((pvg) A(rvs)) =1 (4.120)

The hypotheses of Eq.(4.112) are satisfied by Hgs. (4.1@7}18), (4.119), and (4.1R0),

from which we conclude <r i.e. (a—c)’ < (b—c) i.e.b»c < a—c. Sincea=b = b=a
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by Eq. [4.35), the same argument progesc < b— c; combining, we have the conclusion of
Eq. (4111)a—c=b—c.

For Eq. (4.1111)= Eq. (4.115): Assume that the hypotheses of Eq. (4.115) Hadtlk =
((avb)A(cvd)) = (@ Ab)v(cAd). If aCbthena CH, soa—b' =a”" vb' by Eq. [3.29).
Therefore,

b <avb
=a—b
=aVv(@A(@ADb))
<av@A(@AD)v(dAd))
=aV (a Ak)

=a—k
Similarly, if cCd, thend’ < ¢ — k. The hypothesis of Eq.(4.1111) holds as follows:

k
a=cC

((@a=k) A (c—K)) Vv ((@—k) Vv (d—k))
> (@nd)v'ad)
((ave)A(bvd))=0=1

Therefore, by the conclusion of Eq. (4.11&a)}»k = c—k, soc <c—k=a—k=4a Vv (an
k) =a V(aA((avb)A(cvd))), which is equivalent taA (&' V ((aVvb)A(cvd))) <cas
required. O

The 30A law is equivalent to a substitution instance of vomidann’s lemma for modular
lattices, Eq.[(7.12), which read&aVvb) A (cvd)=0= (avc)A(bvd)=(anb)V(cAd).

Theorem 4.5.8.Let e= (a—c), f = (b—c), g= (& —c)’, and h= (bV/—c)’. Then in any
OML, the30OA identity law is equivalent to the following condition:

(evf)A(gvh)=0 = (evg)A(fvh)=(eAnf)Vv(gAh) (4.121)

Proof. The hypothesigeV f) A (gVv h) = 0 is equivalent to((a—c¢) A (b—c)) V ((&—c¢) A
(b'—c) = a=b=1. The conclusion((a—c) A (a—¢)) V ((b—c) A (F—c)) = ((a—c) V
(b—c)) A ((@—c)V (b—c)) is equivalent toa—c = b—c by Eq. [3.48). Thus Eq[(4.1R1
is equivalent to the 30A identity law in the form of Ef. (4.)04 O
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The 30A identity conjecture can also be viewed as a weakesfirgn Neumann’s lemma
for modular lattices, EqL(7.12).

Theorem 4.5.9.In anyOML, the3OA identity law is equivalent tothe following condition:

alc & bld & (avbya(cvd)=0
= (ave)A(bvd)=(aAnb)Vv(cAd) (4.122)

Proof. We first show that the 30A identity law implies EQ. (4.122). SYert with two instances
of the 30A identity law in the form of Eq_(4.1114).

alc & bld & (avbya(cvd)=0

= an(@Vv((ave)A(bvd)))<b
cla & dLb & (cvd)A(avb)=0

= cA(dV((cva)Aa(dvhb))) <d.

After conjoininga and c to their respective conclusions and commuting some ternthan
second instance, we have

alc & bld & (avbya(cvd)=0

= an(@Vv((ave)a(bvd))) <anb
alc & bld & (avbya(cvd)=0

= cA(dV((ave)A(bvd))) <cAad.

Combining, we have

alc & bld & (avbya(cvd)=0
= (an(@Vv((ave)A(bvd))))A(cAa(dV((ave)A(bvd))))
< (aAnb)Vv(cAad).

The left-hand side of the conclusion can be transformedIsve, using M-H (TH-3.1.4) in the
first step.

(an(@v((ave)A(bvd))))Vica(d Vv ((ave)A(bvd))))
=(ave)A(av(dv((ave)A(bvd))))
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A((@V((ave)A(bvd)))ve)
A(@V((@ave)A(bvd)))v(dVv((ave)A(bvd))))
> ((ave)A((ave)A(bvd)))
=(avc)A(bvd)

which establishes

alc & bld & (avbya(cvd)=0
= (avc)A(bvd) < (anb)v(cAad).

For the other direction of the conclusig@V c) A (bvd) > (aAb) Vv (cAd) holds in any OL.
For the converse, we substityee— c)’ for a, (b—c)’ for b, (& —c)’ for ¢, and(b’—c)’ for

din Eq. (4.122). The two orthogonality hypotheses are satisfiesulting in the 30A law in

the form of Eq.[(4.121). O

4.5.2 Conjectures that imply the 30A identity conjecture

In this section, we will describe several conjectures whiidinue, would imply the 30A identity
conjecture [Conjectufe 4.5.2 (p.163) foe= 3].
Consider the following substitution instance of the 3OAntly law expressed in the form

of Eq. (4.104):
xéy: 1 = X—C=Yy—C (4.123)
where

x=dAf
y=enf
d=a—c
e=b—c

f — a=b,.

Theorem 4.5.10.The conclusion of EqL_(4.1IP3) is tBOA law.
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Proof. After applying Eq.[(3.47) (1.32), the conclusion of Hg. @8] becomes:
((a—C) A (a=h))—c = ((b—c) A (a=b))—c

which is the 30A law by TH.4.4.10 (p.59). O

It is currently unknown whether the hypothesis of Eq. (4)123ds in all OMLs, although
we could not find a finite OML in which it failed.

Conjecture 4.5.11.The hypothesis of Eq. (4.123) holds in@MLSs.

If it holds, this conjecture would provide a positive answethe 30A identity conjecture.
A generalization would answer it for allOA.

Part of the difficulty in searching for an OML proof of the hypesis of Eq.[(4.123) is the
shear size of the equation when fully expanded. The sus@essaps in its expansion read as
follows:

xéy: 1
dAf)=(enf)=1
(AN F)=C) A ((eAF) =)V ((AA F)—C)A((enf)—c))) =1
(((((a—c) A (a=h)) =) A (((b—C) A (a=b)) —C))
V((((a—=C) A (a=h))—¢) A (((b—c) A (a2b)) —¢))) = 1
((((a=c) A (((@=c) A(b—C)) v ((@—c) A(b'—c))))—cC)
A(((b=C) A (((a—€) A (b—C)) V ((@—C) A (B —€))))—C))
V((((a=c)A(((a—=c)A(b—c)) vV ((@—=c)A(b'—c))))—c)
A(((b=C) A (((a—C) A (b—C)) V ((@—C) A (B—¢)))) =) = 1.

Note that the length of the penultimate equation above vpifiraximately double when we
expand the four terms of the form—c into Z vV (zA c), wherez is a large expression. In
particular, it will have 8 instances of the expresséﬁ%b. It will grow an additional 50% or so
when all of the remaining> terms are expanded intoandA.

If we use Eq.[(4.108) with the same substitution instancezbase, its conclusion will be
the same but its hypothesis will be about half as large, ngaksomewhat more manageable to
study. A drawback is that it is stronger in the sense thatrit@diately implies Conjectufe 4.5]11
and thus possibly more difficult to prove. On the other hanhdiili passes in all of the finite
lattices we tested.
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Conjecture 4.5.12.The hypothesis of
Cc
x=y=1 = X—C=Yy—C, (4.124)

where the substitutions for x and y are the same as in[Eq. 8}, hdlds in allOMLs.

If it holds, this conjecture would provide a positive answethe 30A identity conjecture.
The smaller size of the hypothesis of Hq. (4]124) is seen pgrding it as follows, using
the simplificationd A f) A (enf) =dAe

c

X=y=1

(dA >(eAf>

(((dAf)=c)A((enf)—=c))V((dAT)A(enTf))) =

(A T)=c)A((en f)—c)) V(dAe) =1

(((((a—c) A (a=h)) ) A (((b%C)A(a%b)HC))

V((a—c)A(b—c)) =

(((((a=c) A (((a—=c) A (b%))V(<a’%)A(b’%)>))%>

A(((b C)A(((a—w) (b—c)) Vv ((@—=c)A(b'—=c))))—0))
(

b—c)) =

—
a—

V((a—c) A

In particular, the penultimate equation will have 4 insesof the expressioeu%b rather than
8 when— is expanded.

If we replaceaéb by azczb in[4.124, we can achieve a further simplification of the hipsts,
but it also requires an additional conjecture for the casioin. Specifically, we have:

Conjecture 4.5.13.Consider the following substitution instance of 8@A identity law, in the

form of Eq. [4.108):

c
Xx=y=1 = X—C=Yy—C (4.125)

where

Xx=dAf
y=enf

d=a—c
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e=b—c

C
f = a=b.

Two statements are conjectured: (a) The hypothesis of Efg%4 holds in allOMLs. (b) The
conclusion of EqL(4.125) is equivalent to tB@A law.

If both of these conjectures hold, they will prove the 30Antly conjecture. Empirically,
both of them hold for the finite lattices that we tested themuras].

For comparison, the expansion of the hypothesis of Eq. B}.ias follows, using the
simplification(d A f) A (enf) =dAe

x:czyzl

dA )(eAf):

((dAf)=c)A((enf)—=c)) V((AAT)A(enf))) =

((dAf)—c)A((enf)—cC))V(dAe) =1

((((a=c) A (arb)>—>0>A(((b—>C>A(afzb)>—>C>)

V((a—=c)A(b—c)) =

(((((a=c) A (((a—c) A (b%C))V(aAb))HC)
A(((b C)A(((fHC) (b—c)) v (anb)))—c))

(b—c)) =

(dA
(
(
(

V((a—=c)A

Cc
The principle difference is the reduction of the 4 terms efftrma=Db to the shorter forna=b.
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Chapter 5

OTHER %(H) EQUATIONS

5.1 Godowski’s equations

In 1981, Radoslaw Godowski [26] found an infinite series afatpns partly corresponding to
the strong set of states [Déf. 2.14.3[(p] 22)], forming a seviealgebras contained in the class
of all orthomodular lattices and containing the class oHilbert lattices (as shown by the next
theorem). Importantly, there are OMLs that do not admit argjrset of states, so Godowski’s
equations provide us with new equational laws that exteadNIL laws that hold in Hilbert
lattices.

Theorem 5.1.1.Any Hilbert lattice admits a strong set of states.
Proof. See Ref. [105, p. 770, Th. 17]. O

We will now define the family of equations found by Godowshkiroducing a special nota-
tion for them. Then we will prove that they hold in any latt@emitting a strong set of states
and thus, in particular, any Hilbert lattice.

Definition 5.1.2. Let us call the following expression tkBodowski identity:

Y _ def
aj=an=(ay—ap) A (@g—ag) A+ -+ A (an_1—an) A (@n—a1),
n=34,... (5.1)

We definean%al in the same way with variables anda,_j 1 swapped; in genera %aj
will be an expression withj —i| + 1 > 3 variablesa;, .. ., a; first appearing in that order. For
completeness and later use (Theofem 5.1.8) we daﬁagaid:ef(ai%ai) =1 andaéaprl def

(g—a1) A (ar1—a) = a = a1, the last equality holding in any OML.
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Theorem 5.1.3.Godowski’s equationf26]

aléag = agéal (5.2)
y y

Q=4 = ay=aqg (5.3)

aléagg = a5éa1 (5.4)

hold in all ortholattices(OLs) with strong sets of states. ADL to which these equations are
added is a variety smaller tha@ML.

We shall call these equations®e (3-Go, 4-Go, etc). We also denote byGO (3GQ 4GO,
etc) theOL variety determined by o and call it the class of 8O lattices.

Proof. See Ref.|[105, p. 771, Th. 19]. O
Lemma 5.1.4.[105, p. 771, Lemma 20] AnyGOis an(n—1)GO, n=4,5.6,...
Proof. Substitutea; for a; in equatiom-Go. O

The converse of Lemma(5.1.4) does not hold. Indeedwidgon wheeDMLs Gn, n =
3,4,5,..., are related to the-Go equations in the sense that @olatesn-Go but (forn > 4)
not (n— 1)-Go. In Fig[5.1 we show examples &8nd G42 the obvious way (according to the
general scheme described|in/[26]).

A%

Figure 5.1: (a) Greechie diagram for OML G3; (b) Greechigychan for OML G4.

Megill and Pawvtic [76] explored many properties and consequences af-tBe equations.
The theorems below, whose proofs we omit and can be founctioited reference, summarize
some of the results that work.

1123,147,258,369,7CE,8AC,8BD,9DG,EFG. s an MMP encoding for G3 (Fi§.5.1(a)).
2123,345,567,789,9AB,BCD,DEF,FG1,GHL 4IL,8JL,CKL. is an MMP encoding for G4 (Fi§5.1(b)).
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Theorem 5.1.5.AnOL in which any of the following equations holds is g@@and vice versa.

y
a=ap= (a1 =a)A(@=az) A\ A(a-1=an) (5.5)
ayZa, < a1 an, (5.6)
(alzyan)/\(al\/az\/---\/an):alAaz/\---Aan (5.7)

Theorem 5.1.6.In any nGO, n= 3,4,5, .. ., the following relations hold.
alfyanﬁaj—)aka 1<j<n 1<k<n (5.8)

The n-Go equations can be equivalently expressed as infereneelying 2n variables, as
the following theorem shows. In this form they can be usefukkrtain kinds of proofs.

Theorem 5.1.7.AnyOML in which
alLblLaszzL...LaannLal =
(a1Vbi)A(aaVvbo)A---A(anVby) <biVvay (5.9)
holds is an 66O and vice versa.

Finally, the following theorem shows a transitive-like pesty that can be derived from the
Godowski equations.

Theorem 5.1.8.The following equation holds inGO, where i j > 1 and n= max(, j,3).
y y y
(a1=a) A (ai=a)) < a1=a, (5.10)

While the wagon wheel OMLs characterin&O laws in an elegant way, they are not the
smallest OMLs that are noiGOs. Smaller OMLs exist that can be used to disting@ish 1)-
Go from n-Go, which can improve computational efficiency [105, p.[7/7Ror example, the
Peterson OML, G43,Fig.[5.2(a), is the smallest that violates 4-Go but not 3-Bdias 32
nodes vs. 44 nodes in the wagon wheel G4 in Eig. 5.1(b). lea@bs? Fig.[5.2(b), with 42
nodes (vs. 54 nodes in G5), is the smallest that violates B@amot 4-Go. OML G6s2,

3123,345,567,789,9AB,BC1,2E8,4FA,6DC,DEF. is an MMP encoding for OML G4s (Fig.8.2(a)).
4FGL,EHL,BCK,ADJ,9AF,8BE,79K,68J,671,5DH,4CG,35K,24J AIL,123.  isan MMP
encoding for OML G5s (Fid. 512(b)).
SFGI,EHJ,9AF,8BE,7CH,6DG,3BD,357,2AC, 246,189,145, 1KL ,GHL. is an MMP encoding for OML G6s2
(Fig.[5.2(c))
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Fig.[5.2(c) is one of three smallest that violates 6-Go btibrGo, with 44 nodes (vs. 64 nodes)
in G6. Lattice G7s?P,Fig.[5.2(d), is one of several smallest we obtained to véofaGo but not
6-Go. They both have 50 nodes, respectively (vs. 74 node3)n G

Lt

Figure 5.2: (a) OML G4s; (b) OML G5s; (c) OML G6s; (d) OML G7s. 10b, p. 773,
Fig. 8]

Whether there is a pattern in the OMLs G4s through G7s is umkn@Vhile their Greechie
diagrams reveal no obvious pattern, the appearance of Zl@eediagram is highly dependent
on how it is drawn. For example, the “wagon wheel” pattern MIOG3 [Fig. 5.1 (p.[79)] is
apparent only when it is drawn with a loop of order 6. Fig] SoBnpares the three ways of
drawing it, from a loop of order 5 to the maximal loop of ordef 7

EIAGTES

Figure 5.3: Three ways of drawing OML G3, only one of whichealg the “wagon wheel”
pattern.

5.2 Mayet-Godowski equations

In 1985, René Mayet [64] described an equational varietyatiickes, which he calle®@Mg,
that included all Hilbert lattices and were included in titg@O varieties (found by Godowski)
that we described in the previous section. In 1986, Maye} fi€played several examples

6]K0O,GHN,FJL,EIM,BDF,9AE,8CI,5CD,56H,4BK,47G,2AK, 236 ,189,137,HJO. isthe
MMP encoding for OML G7s1 (Fig. 512(d)).

"These drawings were assisted with thap.c program [Sed_AlJ7 (1._154)] applied to the Greechie diagram
with MMP encodingl23,345,567,789,9AB,BC1,2DG,6EG,AFG.
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of equations that held in this new variety. However, MegilladPav€ic [76] showed that all
of Mayet’s equational examples can be derivech@O for somen. Thus for some years it
remained unclear whether Mayet'’s variety was strictly aored in thenGOs. Later, though,
Megill and Pawvtic [81] exhibited an equation that holds in his variety (angstin all Hilbert
lattices) but cannot be derived in ansO, thus showing that Mayet’s variety, which we will
call MGO, is indeed strictly contained in alGOs (Theorerh 5.2,.7).

In this section, we will first review this work, then we willggent some additional equations
that have not yet been published.

We will describe a general family of equations that hold inHalbert lattices and contains
the new equation, and we will define a simplified notation &gresenting these equations. We
call the equations in this family Mayet-Godowski equatiansl, in Theorerh 5.2.4, prove that
they hold in all Hilbert latticeS.

Definition 5.2.1. A Mayet-Godowski equatio(MGE) is an equality with n> 2 conjuncts on
each side:

t1A--Ath=UA--- AU (5.11)

where each conjunct {or uy) is a term consisting of either a variable or a disjunctiontab
or more distinct variables:

ti=a1V---Vap i.e. p disjuncts (5.12)
U=Db1V---Vbig i.e. q disjuncts (5.13)
and where the following conditions are imposed on the seaébles in the equation:
1. All variables in a given term br u; are mutually orthogonal.
2. Each variable occurs the same number of times on each &itie equality.

We will call a lattice in which all MGEs hold an MGO; i.e., MG@ the class (equational
variety) of all lattices in which all MGEs hold.

Lemma 5.2.2.In anyOL, the following orthogonality condition holds:

alb & alc = al(bvc). (5.14)

8A family of equations equivalent to the family MGE, with a feifent presentation, was given by Mayet as
E(Y>) on p. 183 of[65].
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Proof. See Ref.|[105, p. 773, Lemma 26]. 0J

Lemma 5.2.3.1f a;,...a, are mutually orthogonal, then for any state m,
m(ag) +---+m(@a,) =m(@arVv---Van). (5.15)

Proof. See Ref./[105, p. 773, Lemma 27]. O

Theorem 5.2.4.A Mayet-Godowski equation holds in any ortholattice L adimgta strong set
of states and thus, in particular, in any Hilbert lattice.

Proof. See Ref. [105, p. 773, Th. 28]. O

In order to represent MGEs efficiently, we introduce a spem#ation for them. Consider
the following MGE (which will be of interest to us later):

alb&alc&blc&dle&flg&hlj&glb&
elc&jlaghlf&hld&fld =
(avbve)A(dve A(fvg A(hvj) =
(gvb)A(eve)A(jva)A(hv fvd). (5.16)

Following the proof of Theoreim 5.2.4, this equation arisesifthe following equality involving
states:

m(avbvcec)+mdve)+m(fvg)+mhvj)=
m(gVvb)+m(evc)+m(jva)+mchv fvd). (5.17)

A condensed state equatiors an abbreviated representation of this equality, whexgimep-
resent join by juxtaposition and remove all mentions of tteesfunction, leaving only its
arguments. Thus the condensed state equation represeutifg.17), and thus Ed. (5116), is:

abc+de+ fg+hj = gb+ec+ja+hfd (5.18)

Another example of an MGE shows that repeatedegrenerateterms may be needed in the
condensed state equation in order to balance the numberiableaoccurrences on each side,
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in order to satisfy Condition 2 of Def. 5.2.1:

ab+cde+ fg+ fg+hjk+1k+mn+ pe =
gk+gk+db+ fe+ fe+nlc+ pja+mh (5.19)

Theorem 5.2.5.The family of all Mayet-Godowski equations includes, intjgatar, the Go-
dowski equationfEgs. [5.2),[(5.B),. . ;]in other words, the clasBIGO is included in 16O for
all n.

Proof. See Ref.|[105, p. 776, Th. 29] O

While every MGE holds in a Hilbert lattice, many of them areidgble from the equations
n-Go and others trivially hold in all OMLs. We will call an MGEHriteresting” if it does not
hold in allnGOs. To find such MGESs, we seek OMLs that a@&Os for alln but have no strong
set of states. Once we find such an OML, it is possible to dednddGE that it will violate.

The search for such OMLs was done with the assistance ofaesemputer programs
written by Brendan McKay and Norman Megill. These progranesdescribed in Appendix/A
(p.[145). An isomorph-free, exhaustive list of finite OMLsthvicertain characteristics was
generated. The ones admitting no strong set of states wangfidd (by using the simplex linear
programming algorithm, implemented in our prografates.c , to show that the constraints
imposed by a strong set of states resulted in an infeasililgéi@®). Among these, the ones
violating somen-Go were discarded, leaving only the OMLs of interest. (Temitify an OML of
interest, a special dynamic programming algorithm, descrin [81], was used in our program
latticego.c . This algorithm was crucial for the results in this sectiprgviding a proof that
the OML “definitely” violated non-Go for all n less than infinity, rather than just “probably”
as would be obtained by testing up to some largath a standard lattice-checking program.)
Finally, an MGE was “read off” of the OML, using a variation aftechnique described by
Mayet [65] for producing an equation that is violated by ai¢at admitting no strong set of
states.

In Fig.[5.4 (p[8¥), we show examples of such OMLs found bydtmegrams. Eq[(5.16)
was deduced from OML MGin the figure, and it provides the answer (Theofem 5.2.7 below
to the problem posed at the beginning of this section. Inromehow how we constructed
Eq. (5.16), we will show the details of the proof that OML MGdnaits no strong set of states.
That proof will provide us with an algorithm for stating anuadgjon that fails in OML MG1 but
holds in all OMLs admitting a strong set of states.

9ABC,9BI,8CJ,7AH,6DE,5DF 4DG,358,269,147,123. is an MMP encoding for OML MG1 [Fid. 514(a)].
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Theorem 5.2.6. TheOML MG1 does not admit a strong set of states.

Proof. [105, p. 773, Lemma 28] Referring to Fig. 5.4[(pl 87), suppbaémis a state such that
m(v) = 1. Since the state values of the atoms in a block summa(d;) = m(az) = m(ag) = 0.
Thusm(by) +m(c1) = m(bz) +m(c2) = m(bz) + m(c3) = 1. Sincem(by) + m(by) + m(b3) <1,

it follows thatm(cy) +m(cz) + m(cg) > 2. Sincem(d;) +m(d2) +m(d3) = 1, we havgm(cy) +
m(ds)] + [m(c2) + m(d2)] 4+ [m(c3) + m(dz)] > 3. Sincem(cy) +m(d;) <1, m(cz) +m(dp) < 1,
andm(cz) + m(d3) < 1, we must haven(cz) + m(d3) = 1. Hencem(u)=0, sinceu is on the
same block as3z anddz. So,m(u’) = 1. To summarize, we have shown that for amym(v) = 1
impliesm(u’) = 1. If MG1 admitted a strong set of states, we would concludevk U, which
is a contradiction sinceandu’ are incomparable. O

In the above proof, we made use of several specific conditlzatshold for the atoms and
blocks in that OML. That proof was actually carefully constied so as to minimize the need for
these conditions. For example, we usa(b;) + m(bz) + m(b3) < 1 even though the stronger
m(by) + m(by) + m(bg) = 1 holds, because the strength of the latter was not requifée
complete set of such conditions that the proof used are tlmniog facts:

eVv.lg,i=123;
e d Lg,i=12;

e The atoms in each of the tripldsy,bj,ci} (i = 1,2,3), and{d;,d,d3} are mutually
orthogonal and their disjunction is 1 (i.e. the sum of th&atesvalues is 1).

e The atoms in each of the tripld$;, by, bz} and{cs,u,ds} are mutually orthogonal and
the sum of their state values<{s1 (the sum is actually equal to 1, but we used onl§
for the proof).

If the elements of any OMLL satisfy these facts, then we can prove (with a proof esdbntia
identical to that of Theoren 5.2.6, using the above factypstiheses in place of the atom and
block conditions in OML MG1) that for any stateonL, m(v) = 1 impliesm(u’) = 1. Then, if

L admits a strong set of states, we also haveu'.

We can construct an equation that expresses this resull@s$oWe use the orthogonality
conditions from the above list of fact as hypotheses, andneerporate each “disjunction is
1” condition as a conjunct on the left-hand side. We will denthe set of all orthogonality
conditions in the above list of facts §y. We can ignore the conditions “the sum of their state
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values is< 1” from the above list of facts, because that happens autoatigtdue to the mutual
orthogonality of those elements. This procedure then leatle equation,

Q = VA(a1Vvbiver)A(agVvbave) A(agVvbzves) A
(dpvdavds) < u (5.20)

This equation holds in all OMLs with a strong set of statesfails in lattice MG1.

The condensed state equation Eg. (5.18) was obtained uerfgltowing mechanical pro-
cedure. We consider only variables corresponding to theatosed by the proof (i.e. the
labeled atoms in Fid. 5.4) and only the blocks whose orthalilgnconditions were used as
hypotheses for the proof. We ignore all variables whose si@ue is shown to be equal to 1 or
0 by the proof, and we ignore all blocks in which only one valearemains as a result. For the
left-hand side, we consider all the remaining blocks thaeldisjunction is 1” in the assump-
tions listed above. We juxtapose the (non-ignored) vaesinh each block to become a term,
and we connect the terms with. For the right-hand side, we do the same for the remaining
blocks that do not have “disjunction is 1” in the assumptilisted above. Thus we obtain:

bici +bycy +bscs+didods = c¢1dq + codo 4 cads -+ bibobs (5.21)

After renaming variables and rearranging terms, this is(&d.8), which corresponds to the
MGE Eq. [5.16) and which can be verified to fail in lattice MG1.

This mechanical procedure is simple and practical to autemthe simplex algorithm used
to find states lets us determine which blocks must have araispn equal to 1—but it is not
guaranteed to be successful in all cases: in particulaillibet work when the condensed state
equation has degenerate terms, as in[Eq.|5.19) above. l[dogwech cases are easily identified
by counting the variable occurrences on each side, and waddrmuplicate terms to make
the counts balance in the case of a degeneracy. This bajpensures that the corresponding
equation is an MGE and therefore holds in all Hilbert latiice

Having constructed Ed. (5.116), which holds in all Hilbettitzes but fails in lattice MG1 (in
which alln-Go equations hold), we now state the main result of this@ect

Theorem 5.2.7.The classMGO is properly included in all &0Cs, i.e., not allMGE equations
can be deduced from the equation&no-

Proof. See Ref.|[105, p. 773, Th. 31] O

In particular, Eq.[(5.16) therefore provides an an exampkemew Hilbert lattice equation
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that is independent from all Godowski equations.

d d ds

Figure 5.4: OMLs that admit no strong sets of states but whreinGOs for alln. (a) OML
MG1; (b) OML MG5s.

Having 9 variables and 12 hypotheses, Eq. (5.16) can be sbatewkward to work with
directly. It is possible to derive from it a simpler equatitimough the use of substitutions that
Mayet calls generators [65, p. 189]. If, in EQ.(5.16), wediibte (simultaneouslyy for a,
cAbforb, (c—b) forc, (a—b)’ ford, (c—b) A (a—b) for e, bAafor f, b for g, & for h, and
aAcfor j, all of the hypotheses are satisfied (in any OML) and the amneh evaluates to:

((a—b)—(c—b))A(a—c)A(b—a) < c—a (5.22)

where we also dropped all but one conjunct on the right-readd- While such a procedure
can sometimes weaken an MGE, it can be verified that[Eq.](5t2Pfails in OML MG110 of
Fig.[5.4 as desired, thus providing us with a Hilbert laticgiation that is convenient to work
with but is still independent from all Godowski equationsr Example, EqL(5.22) can be used
in place of Eq.[(5.16) to provide a simpler proof of Theoteb.

Eq. (5.19) (p[84) was deduced from the OML M&5m Fig.[5.2, and it provides us with
another new Hilbert lattice equation that is independeanfall n-Gos. A comparison to OML
G5s in Fig[5.2 (p_81) illustrates how the addition of an atwen affect the behaviour of a
lattice.

The OMLs of Ref. |[105, p. 780, Fig. 10], which we will not repdeere, provide further
examples that admit no strong sets of states bun@&®s for alln. The following MGEs

10ABC,9BI,8CJ,7AH,6DE,5DF ,4DG,358,269,147,123. is an MMP encoding for MG1 [Fid. 5l4(a)].
1HKM,FGL,EGJ,DFI,BCH,ABI,9CJ,67D,58E,48K,37K,26J,24A ,151,139.  is an MMP encoding for MG5s
[Fig.5.4(b)].
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(represented with condensed state equations) can be deflaoethem, respectively:

abc+de+ fg+hj+kl =eb+dh+ faj+Ic+kg (5.23)
ab+cd+ef+ghj+kl+kl =kd+bl + jl + fk+ha+gec (5.24)
abc+def+gh+ jk+Imn+ pgr= fn+rc+ dkb+gma+ geh+ plj. (5.25)

Using generators, the following examples of simpler Hitbattice equations can be derived
from these MGEs, again respectively:

(d—(a—b)) A ((a—c)—d) A (b—c)A(c—a) <b—a (5.26)

(d—(cA(a—b)) A ((b—a)—d)A(c—a)A(b—d) <a—cC (5.27)

((d—a)—(b—c)) A ((c—d)—(a—b)") A ((b—a)—(d—c))
A((a—d)'—=(c—b)) < (d—c)—(b—a)’. (5.28)

Each of these simpler equations, while possibly weaker ti@MGESs they were derived from,
still fail in their corresponding OMLSs, thus providing usttviadditional new Hilbert lattice
equations that are independent fromrglOs.

While the complete picture of interdependence of the thattecé families we have pre-
sented GOA, nGO, and MGO) is not fully understood, some results can bebksted. We
have already shown that every MGO is a@O for all n, and moreover that the inclusion is
proper (Theorem 5.2.7 ). We can also prove the following:

Theorem 5.2.8.There areMGOs (and therefore &0s) that are not30OAs and thus not @As
for any n.

Proof. See Ref./[105, p. 780, Th. 32]. O

Theorem 5.2.9.There are ©As for n= 3,4,5, 6 that are not3G0s and thus not@0s for any
n nor MGOs.

Proof. See Ref.|[105, p. 780, Th. 33]; specifically, Ref. [105, p.,/8f. 11] shows an OML
which is a 60A but not a 3GO. O

Whether Theorern 5.2.9 holds for alDAs remains an open problem. However, our obser-
vation is that the smallest OMLs in which th®A law passes but th@ + 1)OA law fails grow
in size with increasing, as indicated by the OMLs used to prove Theorem 4.3.3. Cosdtar
them, the OML of Ref.[[105, p. 781, Fig. 11] is “small,” leadins to conjecture that it is an

88



5.2. MAYET-GODOWSKI EQUATIONS

nOA for all n. If this conjecture is true, it would show that ngGo equation can be derived (in
an OML) from thenOA laws.

5.2.1 Additional MGE equations

In this section, we summarize additional MGE equations fbduring this project. Except for
#1 and #18 in the tables below, whose Greechie diagrams avensh Fig.[5.4 above (b._87)
and which we include for completeness, these do not appéiae iliterature.

We scanned all lattices with 3 atoms per block, up to 15 bloakd found 883 that satisfied
all n-Go equations [Th.5.11.3 (p.J79)], using the progtaititego.c  , while also not admitting
a strong set of states, using the prograates.c . Using technique in the proof of Th. 5.2.6
(p.[85), each of these was used to derive an equation thag hoddl lattices admitting a strong
set of states (and thus in &l(H )s) but fails in the given lattice.

We performed this detailed analysis on a sample of 19 Iatfi@ewhich we could derive a
new%(H) equation. We summarize these results in the following 4etbl

Table[5.1 shows the lattice as a Greechie diagram encodedVi kbrmat [Def.[2.5.6
(p.23)].

Table[5.2 shows the condensed state equation derived fiohattite. As described above,
the state equation is a shorthand to expreg§td) equation, although typically such an equa-
tion has many variables and orthogonality hypotheses anavigeldy to work with. Degener-
ate condensed state equations are markedwfisiee definition of degenerate above Th. 5.2.5
(p.[84)].

Table[5.8 gives an equation derived from the condensedesjatgion, using the “generator”
method described above. While it is not necessarily as gtagrthe equation corresponding to
the condensed state equation, it is still strong enoughittinféhe corresponding lattice (and
thus serves as an “interesting” n&\H ) equation).

Finally, Table[5.b provides a simplified inference from tlygiation of Tablé 53, obtained
by changing the equality to an inequalitgand empirically discarding conjuncts on the right-
hand side so that the equation still failed in the correspanl@ttice. This final equation, even
though it is not necessarily as strong as the one correspgalithe condensed state equation
or even the equation of Talle 5.3 that it was derived fronhésmost convenient to work with
when exploring new#’ (H) equational properties.
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Table 5.1: MMP encodings for the Greechie diagrams used rigedthe MGE equations of
Tabled 5.7 513, arid 5.5

Eq. #| MMP encoding for Greechie diagram
1 | ABC9BI,8CJ,7AH,6DE,5DF,4DG,358,269,147,123.
2 | DEF,ACJ9BI,8EM,7DL,6BH,5CK,468,34G,257,13A,129,CFI
3 | 9Al,8AH,7CE,78F 6BD,69G,5EG,4DF,3Cl,2BH,145,123.
4 | DFG,BCK,AEI9DH,8EJ,6AF,5CF,37B,346,279,148,125,DLM ,BEM.
5 | DGJ,CFH,BEI,89A,7AD,68B,59C,347,2FG,246,1EG,135.
6 | FGL,EHM,DIK,AHJ,913,7CJ,67F,56B,48C,3AB,34D,28G,15E 129.
7 | BCD,9EF,9AD,8BJ,7Al,78L,6GH,6CK,5EK 4FL,3HI,2GJ,134 125,
8 | BEF,BCD,ADL,9CK,8AI,79J,68G,67H,5JL,4IK,3FH,2EG,135 124,
9 | JKLHIJEGK,DFK,ABG,8CF,79B,6AC,45E,37D,341,256,189 J12H.
10 | JKL,HIJ,EFK,DGK,9CG,78B,6AC,5AB,46F 35E,289,23H,17D 141,
11 | JKL,HIJ,EFK,DGK,89B,7AC,6CF 5BG,469,35A,34H,28E,17D 121,
12 | 9FH,9AB,8EG,8CD,7CL,7AI,6DJ,6BK,5FJ],4GK,3HL,2EI,134 125,
13 | FHL,EGM,DIJ,CIK,ABH,8GH,7FI,458,36B,35D,29A,24C,179 ,16E.
14 | FHI,CGL,BDJ,AEK,67C,59E,48D,3BH,379,2AH,268,1FG,145 :
15 | JKL,HIJ,EGK,DFK,9CG,8BF,7AC,6AB,45E,37D,341,256,189 J12H.
16 | JKL,HIJ,EGK,DFK,9AG,8BE,7CF,6BC,45D,358,269,241,17A J13H.
17 | GHJ,FIK,EGI,CEM,BDL,7AC,69B,58F,4AH,489,361,237,1DH 125,
18 | HKM,FGL,EGJ,DFI,BCH,ABI,9CJ,67D,58E,48K,37K,26J,24A 151,139
19 | FHJ,EGK,DIL,9AI,6BE,68A,5CF,579,4BC,38H,27G,14D,123
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Table 5.2: Condensed state equations derived from Gredi@geams of Table 5l 1x(= degen-
erate).

Eqg. #| Condensed state equation
1 abc+de+ fg+hj=gb+ec+ ja+hfd
2 ab+cd+efg+hj+kl=gb+ ja+ fd+le+khe
3 abc+de+ fg+hj+kl=eb+dh+ faj+Ic+kg
4 ab+cd+ef+ghj+kl=kd+bl+ jl + fk+ha+gecx
5 abc+def+gh+ jk+Im= fk+cm+be+ jha+Igd
6 ab+cd+ef+gh+ jk+Imn= fk+nb+hd+me+ga+ljc
7 ab+cd+efg+hj-+kl+mnp=cfb+aj+ el+ pg+nd+ mkh
8 ab+cde+ fgh+ jk+Im+np=ad+gm-+kcl+ jf + phe+nb
9 ab+cd+efg+hjk+Im+np= jgb+kd+ma+lec+ ph+nf
10 | ab+cd+efg+hjk+Im+np=kd+ jg+ phb+ma+If +nec
11 | ab+cd+efg+hjk+Im+np=kb+gd+mf+1j+ peatnhc
12 | abc+def+gh+ jk+Im+np=agl+dnj+em+bp+ fh+ck
13 | ab+cdb+ef+ghj+kl+mn=eb+nd+ jf +If +khc+gmax
14 | abc+def+ghj+kl+mn+ pg=cq+1j +nf+ kbe+ mah+ pgd
15 | ab+cd+efg+hj+kim+npg= qgb+ pd+mf+ jla +hec+ nk
16 | ab+cd+efg+hjk+Im-+npg= gb+kfa+ pgd+mjc+le+nh
17 | ab+cde+ fgh+ jk+Im+ npk= ak+ hb+ ep+ jgd+ mcb+nlf x
18 | ab+cde+ fg+hjk+Ik+mn+ pe= gk+db+ fe+nlc+ pja+ mhx
19 | abc+def+gh+ jk+Imn+ pgr= fn+rc+ dkb+ gma+ geh+ plj
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Table 5.3: MGE equations derived from condensed state ieqsatf Tablé 5.2. (Continued in
Table[5.4.)

Eq. #| MGE equation
1 ((a—b)—(c—b)) A((a—c) A (b—a))
= ((c=b)—(a—h)) A((b—c)A(c—a))
2 ((d—=(c—=Db)) A ((a—b)—d)) A ((b—a) A (a—c))
((d—=(a—=h)) A ((c—=hb)—d)) A((b—c) A (c—a))
(a—b)) A((a—c)—d)) A ((b—c)A(c—a))
((d—(a—c)) A ((a—b)—d )) ((c=b)A(b—a))
4 ((d—=(cA (a—Db))) A((b—a)—d)) A ((c—a) A (b—d))
= (((c=(dA(a—b))) A ((a— b) (dnc)))
A((d—(b—a)) A (d—b))) A (a—c)
5 (b—((a—c)—((b—a)—c))) A((a—b) A (c—a))
= ((((a—c)—=((b—a)—c))—b)
A(((b—a)—c)—(a—c

3 1«

o

—

)) A (c—=(b— ))
6 ((d—e) A ((e=(a—b)) A((a—c)—d))) A((b—c) A (c—a))
= ((e=d)A((d—=(a—c)) A ((a—b)—e)) ((c—>b)/\(b—>a))

7 ((b—((a—c)—=((b—d)—c))) A ((a—d) A(c—a))) A (d—Db)
= ((((a=c)=((b—d)—c))—b
A((d—=a) A (((b—d)—c)—(a—c)))) A (c—(b—d))
8 | ((a=b)—d)— ((a—>0)—>d)) (d—(a—h))) A ((b—c)A(c—a))
= ((((a=c)—d)—=((a—b)—d))
A(d (a% ))) ((b—a)A(c—b))
9 ((((@=b)—d)—(c—a)) A ((a—c)—d)) A ((d—(a—Db)) A (b—c))
= (((c—a)—=((a—b)—d)) A (d—(a—c))) A((c—b) A (b—a))
10 | ((d—((a—=c)—=((b—a)—c))) A(b—d)) A ((a—b) A (c—a))
= ((((a=c)=((b—a)—c))—d) A(d—b))
A((c—=(b—a)) A (((b—a)—c)—(a—cC)))
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Table 5.4: (Continuation of Table5.3.)

Eq. #

MGE equation

11

12

13

14

15

16

17

18

19

((b—=((a—=c)—d)) A (d—=((b—a)—c))) A ((a—b) A(c—a))
= ((((a—c)—=d)—=b) A (((b—a)—c)—d))
A((c—=(b—a)) A (d—(a—c)))
(((a—=b)—(c—b)) A ((c—d)—=(a—d))) A ((b—a) A (d—c))
= (((c=b)—(a—b)) A ((a—d)—(c—d))) A((d—a) A (b—c))
((((a—=b)Ac)—2((a—c) Ad)) A(((a—c) Ad)—2(anb)))
A((c=a)—=((a—b)—c)) A (c—(a—D)))
= ((((a—=c)Ad)—2((a—=b)Ac)) A ((anb)—2((a—c) Ad)))
A(((a—=b)—c)—(c—a)) A ((a—c)—d))
(((c—a)—(b—a)) A ((b—c)—(a—c))) A((a—b)—(c—b))
= (((b—a)—(c—a)) A ((a—c)—(b—c))) A ((c—=b)—(a—h))
((c=b)—((a—c)—((b—a)—(c—a)))) A((a—b) A (b—c))
= (((a—c¢)—=((b—a)—(c—a)))—(c—h))
A(((b—a)—(c—a))—(a—c)) A((c—a)—(b—a)))
((c—=b)—=((b—a)—(c—a))) A (((a—c)—(b—c)) A (a—b))
= (((b—a)—(c—a))—(c—b))
A(((b—c)—=(a—c)) A ((c—a)—(b—a)))
(((b—a)—=(((a—c)—=(b—c))' A (c—b))’)
A((c=b)=((a—c)—(b—c))")) A ((((a—c)—=(b—c))’
—(c—b)) A((c—a)—(b—a))))A(a—b)
= ((((a—c)—(b—c)) A(c—b)) —(b—a))
A((b—a)—(c—a)) A ((b—c)—(a—c)))
(((an(c—=b))—2(bAad)) A (c—(a—(c—b))))
A(((a—b)—(b—c)) A (((c—b)—a) A (b—a)))
= (((bAd)—2(an (c—b))) A ((a—(c—b))—c))
A(((b—c)—(a—b)) A (b—d))
((d—a)—(b—c)) A ((c—d)—(a—b)"))
A((b—a) (d—>c))A((a—>d)’—>(c—>b)))
= (((bo—¢)'—=(d—a)) A ((a—b)'—(c—d)))
A(((d—c)— (baa)’)/\((cab)a(aad) )
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Table 5.5: Simplified MGE equations derived from Tdbl€ 5.3.

m

#| Simplified MGE equation

(d—=(c—=b)) A ((a—=b)—d)) A ((b—a) A
(d—(a—b)) A ((a—c)—d)) A((b—c) A
(d—

—((a—c)—((b—a)—c))) A ((a—b) A
—e)A(((e=(a—h)) A ((fHC) d)) A
(b—((a—c)—=((b—d)—c))) A ((a—d) A
<d—a

b—a
a—

~NOo o WN L

(
(
(
(b
(d
(

<b—a

<c—b

<c—(b—a)

13 | ((((a=b)Ac)—=2((a—C) A

A((c—=a)—=((a— )

14 | (((c—a)—(b—a))A((b—
)

< (b—a)—(c—a)

< (b—c)—(a—c)
17 | ((((a—»c)—(b—c)) A(c—b))—(b—a))

A(((a—=b)—(b—c))
19 | ((d—a)—=(b=c)) A ((c—>d)—(a—b)))
A(((b—a)'—(d—c)) A ((a—d)

< (d—c)—(b—a)

9 ((((a—=b)—d)—(c—a)) A ((a—c)—d)) A

10 | ((d—=((a=c)—=((b—a)—c))) A (b—d)) A
11 | (b—((a—c)—d)) A(d—=((b—a)—c))) A ((a—b)A(c—a))

12 | (((a=b)—(c—b))A((c—d)—(a—d))) A

))A(((a—>C)Ad)—>z(a/\b)))
¢)) A (c—(a—b))) < (a—c)—d
—(a—c))) A ((a—b)—(c—b))

((a—=b)—(c—b))A((a—c)A(b—a)) <c—a

(a—c)) <c—a
(c—a)) <b—a

( (
(cA(a—b)))A((b—a)—d))A((c—a)A(b—d)) <a—c
(

(c—a)) <c—(b—a)
((b—c)A(c—a))) <b—a
(c—a)))A(d—b)

8 ((((@—=b)—d)—((a—c)—d)) A (d—(a—b))) A ((b—c) A(c—a))

((d—(a—b)) A (b—c))

((a—b)A(c—a)) <d—b

((b—a)A(d—c)) <d—a

15 | ((c—=b)—((a—=c)—((b—a)—(c—a)))) A ((a—b) A (b—c))
< ((a—=c)—=((b—a)—(c—a)))—(c—b)
16 | ((c—=b)—((b—a)—(c—a)))A(((a—c)—

(b—c)) A (a—h))

Al((b—a)—(ca)) A (b—¢)—(a—C))) <a—sb
18 | (((an(c—b))—=2(bAd)) A (c—(a—(c—b))))
A(((c~b)—a)A(b—a))) <b—d

—(c=b)))
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5.3 Mayet’s E equations

In the three previous sections we have presented two agpaveny different ways of gener-
ating Hilbert lattice equations. The first one was algebraiitizing an algebraic formulation
of a geometric property possessed by any Hilbert space. dwnd one was based on the the
properties of states (probability measures) one can defirzayp Hilbert space. Theorems 2]3.3
in Sectior 2.P offers us a property of a third kind which anibelit space possesses and which
can generate a class of Hilbert lattice equations and thisaiseach Hilbert space is defined
over a particular field.

The application to quantum theory uses the Hilbert spacisatdkover realR, complex,C,
or quaternion (skew)Q, fields. For these fields, in 2006, René Mayet [67] (see al&]) [Ged
a technique similar to the one used for generating MGEs wsepted in Se¢. 5.2 (p. B1), to
arrive at a new class of E equations we will present in thii@ecThere are other fields over
infinite-dimensional Hilbert spaces, for example a noriemedean Keller field/ [52, 32, 115],
so, to get only the above three fields for an infinite-dimemsidilbert space, we have to
assume that an infinite orthonormal sequence of atoms eridte Hilbert lattice (as well
as a related harmonic conjugate condition) and invoke therdm of Maria Pia Soler [115]
(Th.[23.5, p[21). If, in a Hilbert spadd over a (skew) fieldk, we do not have an infinite
orthonormal sequence of vectors, then, for an arbitraryovecc H, there might not exist a
vectorb € Ka OI:ef{x- a|x € K} that satisfiegb,b) = 1k [where(,) is the inner product it].
If we have an orthonormal series of vectors, we will alwaygehaectors satisfying the condition
(b,b) = 1k, and this enables us to introduce Hilbert-space-valuddsstaas follows.

Definition 5.3.1. A real Hilbert-space-valued state—we call it anZ.7# state—on an ortho-
modular lattice L is a function sL — Z.¢, whereZ ¢ is a Hilbert space defined over a
real field, such that

||s(1L)|| = 1, where $a) is a state vector i.e.(a) € ZH, ||s(a)|| = \/(s(a),s(a)) is the
Hilbert space norm, and & L; in this section we will not use the Dirac notatigs) for
the state vector s, nqs|t) for the inner products,t);

(Va,belL)[aLlb = s(avb)=s(a)+s(b)], where alL. b means a b;

(Va,beL)[aLlb = s(a) Ls(b)], where $a) L s(b) means the inner produc¢s(a),
s(b)) =0.

120ne could also name themector statedecause they map elements of a Hilbert lattice to state r&ofahe
Hilbert space, but we decided to keep to the name introdugddidyet [67]
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Now, we select those Hilbert lattices in which we implemeafibition[5.3.1 by the follow-
ing definition.

Definition 5.3.2. A quantum®2 Hilbert lattice , 2.7.7, is a Hilbert lattice orthoisomorphic
to the set of closed subspaces of the Hilbert space definectibhier a real field, or a complex
field, or a quaternion skew field.

In 1998 René Mayet [66] gave conditions that can be addecetortthomodular form con-
structed from a Hilbert lattice, although equivalent cdiadis that could be added to the Hilbert
lattice definition are still unknown.

As with equations in the previous sections, we shall use salye properties related to
states defined on2.7 .7, in particular pairwise orthogonality of its elements—esponding
to pairwise orthogonality of vectors in the correspondintipétt space—to arrive at new equa-
tions.

We also define a complex and a quaternion Hilbert-spacesdadtate, called & 77 state
and a2.7 state, by mappingto .2 or 2.7, i.e. a Hilbert space defined over a complex or
quaternion field respectively.

This definition differs from Definitiof 2.411 in a crucial paj in that the state does not map
the elements of the lattice to the real inter{@&ll] but instead to the real Hilbert spagé .

In particular, the properta L b = s(a) L s(b) is a a restrictive requirement that allows us
to define a strong set aF.7 states on a2.77.% but not on OMLSs in general—even those
admitting strong sets of real-valued states—nor even adibidéert lattices.

The conditions of Lemm@a 2.4.2 (p.122) hold when we replaceabstate valuen(a) with
the square of the norm of th#.77 state values(a). For example, Eq[{2.28) becomes

Is(@)[[*+s(a)]1 =1, (5.29)

and so on. In addition, we can prove the following speciapprties that hold foeZ.77 states:

BMayet [67] calls this latticeclassical Hilbert latticebut since the real and complex fields as well as the
quaternion skew filed over which the corresponding Hilbpdce is defined are characteristic of its application in
quantum mechanics we prefer to call the lattice quantum.
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Lemma 5.3.3. The following properties hold for any.7# state s:

s(0)=0 (5.30)

s(a) +s(a) = (1) (5.31)

lIs(a)|| =1 & s(a) =s(1) (5.32)

||s(a)|| =0 & s(a) = s(0) (5.33)

s(a) L s(1) & s(a)=0 (5.34)

alb = |[ls@vb)|*=||s@)|[*+]s(b)[[? (5.35)

as<b = [[s(a)]| < ||s(b)[] (5.36)

a<b & [s@)[=1 = |s(b)|[=1 (5.37)
glLlaj(l<i<j<n) & aV---Vap=1 =

s(a1) +---+S(an) = s(1) (5.38)

Proof. See Ref./[105, p. 783, Lemma 36] O

The conditions of LemmBa_5.3.3, as well as the analogues ofm&®.4.2, also hold for
¢ and 27 states.

The following definition of a strong set 6.7 states closely follows Definitidn 2.4.3, with
an essential difference in the range of the states.

Definition 5.3.4. A nonempty set S o#.¢ states s L — Z.7¢ is called astrong set ofZ .7
statesif

(Va,beL)(3se S((||s(@)]|=1 = ||s(b)||=1) = a<Db). (5.39)

In an analogous manner, we definsteong set of¢’ .7 statesand astrong set of 2.7 states
The following version of Theorem 5.1.1 holds. [67]

Theorem 5.3.5.Any quantum Hilbert lattice admits a strong set®$7 states.

Proof. See Ref.|[105, p. 784, Th. 38] 0J

Now, Mayet [67] showed that the lack 6.7 strong states for particular lattices, for ex-
ample, the ones given in Ref. [105, p. 785, Fig. 13] gives tga&ons in the way similar to
the one used by Megill and P@ig [81]. For certain infinite sequences of equations, Mayet’s
method offers the advantage of providing a related infiretpugnce of finite OMLSs that violate
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the corresponding equation, analogous to the wagon-wleeielssobtained by Godowski and
presented in Sectidn 5.1.

Let us first denote by the following set of orthogonality conditions among thedkdal
atoms in Ref.[[105, p. 785, Fig. 13(a}p = {v L by, b L &, & L a;},i,j=1,...,n. Next, we
define

a=aV---Vay, q=(aaVbl)A---A(anVby), b=bgVv---Vby. (5.40)

Now we are able to generate the following equations, i.graowe the following theorem.

Theorem 5.3.6.InL;,i=1,...,n,n>3givenin Ref.[105, p. 785, Fig. 13(a),(b)] the following
equations fail

En: Q = aAQ=Db (5.41)
E,: Q & rla = qgA(g=r)a(avr)<b (5.42)

respectively and they hold in any OML with a strong se#of” states.
Proof. See Refs/[105, p. 784, Th. 39] and|[67]. 0J

The equations of Theorem 5.8.6, which hold in eve&?y?’.#, do not hold in every HL.
Thus they are independent from all of the equations we hasgsepted in Seck. 42, 5.1, and
(.2. In addition, they are independent of the modular law.

Theorem 5.3.7.For any integer > 3, the equation Edoes not hold in everylL. In particular,
it is not a consequence of anPA law, nGO law, MGE, or combination of them. In addition,
it is not a consequence of these even in the presence of thdantalv.

Proof. See Ref.|[105, p. 786, Th. 40] O

The two smallest equations from the cl&s which areEz andE,, respectively, read:

alb&alc&blc&ald&ble&clf
= ((avb)vec)A(((avd)A(bve))A(cVvT))
<(dve Vv f, (5.43)
alb&alc&ald&blc&bld
&cld&ale&blf&clg&dlLlh
=(((avb)ve)vd)A((((ave) A(bV 1))
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A(cvg))A(dvh)) <((evf)vg)Vh. (5.44)

These equations pass in most OMLs that characterize prepat both quantum (Hilbert)
and classical spaces including all our lattices with equahiper of vertices (atoms) and edges
(blocks) that we primarily consider in this paper. Howeugg, (5.43) fails in the OML (b)
shown in Fig. 2 of Ref. [101, p. 102103-15, Fig. 2], and Eg44) fails in the OML (c) of that
figure. Eq.[(5.4B) also fails in OML L42 of our Fig. 6.3 (p._10®khich is an OML that violates
no other known Hilbert lattice equation (see Ref. [76, p.2360otnote 4]).
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Chapter 6

OTHER % (H) PROPERTIES

There are several classes of lattices, specified by quahtbeditions, that include Hilbert
lattices but which are not currently known to be equatioraieties. An open problem is
whether equational conditions can be derived from themhigdhapter, we look at two such
conditions.

6.1 Modular symmetry

Definition 6.1.1. [59] Two elements a and b of a lattidteare amodular pair, and we write
M(a,b), iff for every c inL,

c<b = (cva)Ab=cV(aAb). (6.1)
Elements a, b are dual modular pair, and we write M(a, b),? iff for every c inL,
b<c = (cAa)Vb=cA(aVDh). (6.2)

There are several equivalents Ma,b). From them we can also obtain théit*(a,b)
analogues by duality, i.e. by interchangiv@ndA as well as< and>.

Theorem 6.1.2.The following conditions hold in any lattice:

M(a,b) < Vc(c<b=-(cva)Ab=cV(aAb)) (6.3)
M(a,b) < Vc(c<b=-(cva)Ab<cV(aAb)) (6.4)

1Other notations foM(a, b) andM*(a, b) are(a,b)M and(a,b)M* [5€], andaMb andaM*b [93] [116].
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M(a,b) < Vc((cAab)va)Ab=(cAb)Vv(arb)) (6.5)
M(a,b) <« Vc((cAab)va)Ab<(cAab)v(arb)) (6.6)
M(a,b) < Vclanb<c=((cAb)va)Ab<c). (6.7)

Proof. For Egs. (6.3) through [6.6): These are easily derived from DEf. 6]1.1 using the mod-
ular law equivalents given in Th.7.2.2 below[([p. 113).

For Eq. (6.7). From Eq.[6.6),
M(a,b) = (cAb)va)Ab< (cAb)Vv(aAb). (6.8)

In any latticeanb < candcAb < cimply (cAb)V (anb) <c. SincecAb < cin any lattice,
we have

anb<c=(cAb)Vv(anb)<c. (6.9)
From Egs.[(6.8) and {6.9) and transitivity ¢f then quantifying wittc,
M(a,b) = Vc(aAb<c=((cAb)va)Ab<c). (6.10)

Conversely, defind as the term(d Ab) vV (aAb). From the specialization rule of predicate
calculus,

Ve(anb<c=((cAb)va)Ab<c)=(aAb<T=((TAb)va)Ab<T).
SinceaAb < T in any lattice,
Ve(anb<c=((cAb)va)Ab<c)=(TAb)va)Ab<T. (6.11)
In any lattice,T < bsincedAb<bandanb<b,soTAb=T. Thus
(TAb)jva=Tva (6.12)

By the lattice absorption lawaAb)va=a, soT va= (dAb)V ((anb)va)=(dAb)Vva
Combining with EqL6.12 and conjoining both sides wittwe have

((TAb)va)Ab=((dAb)va)Ab. (6.13)
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Combining Egs.[(6.11) and (6/13), expanding the t@rmand finally quantifying oved, we
obtain

Ve(anb<c=((cAb)va)Ab<c)
=Vvd((dAb)va)Ab< (dAb)V(anb)
& M(a,b). (6.14)

where the last step is from E@.(6.6). Eq.(6.7) follows frogs H6.10) and(6.14). O

If all elementsa anda’ in an OL satisfy modular pair or dual modular pair condititdren
the OL is an OML. In other worddvi(a, &) andM*(a,&’) are equivalent to the OML law.

Theorem 6.1.3.(a) AnOL in which M(a,&’) is anOML and vice versa. (b) A®L in which
M*(a,a’) is anOML and vice versa.

Proof. See Ref.[[59, p. 132]. O
The modular law itself is simply expressed by the modular pandition.

Theorem 6.1.4.An lattice L is modular iff for all ab in L, M(a,b) or equivalently M(a,b).

Proof. This is obvious from the modular law equivalents EQs.l(7r8) &.7) (p[114). O

The importance of modular pairs is that certain symmetrydans hold in a Hilbert lattice
(and thus in the subspace lattieg¢H ) of an infinite-dimensional Hilbert spat¢), even though
the modular law itself does not.

Theorem 6.1.5.For any elements.®& in anHL, the following conditions, hold:

M(a,b) = M(b,a) (6.15)
M*(a,b) = M*(b,a) (6.16)

Proof. See Ref.|[60, p. 168, Lemma 5]. (Note that Maeda defiiés, b) with the arguments
reversed on p. 165, Def. 1, which he changes to our conveintisnbsequent literature. This
does not affect the statement of this theorem, but the readst be aware of it in order to
follow the proof.) O

These conditions are calledodular symmetry or M-symmetry, anddual modular sym-
metry or M*-symmetry, respectively. These are quantified conditions rather drarations.
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For working with them, it can be convenient to express theamiexpanded form. As a quan-
tified inference, M-symmetry can be expressed as

Ve(c<b=-(cva)Ab=cV(anb))
& vVe(c<a=(cvb)ra=cV(bra)) (6.17)

or in prenex normal form, which is useful for testing with argauter program such as our
lattice.c  ,as

devd((c<a=-(cVv(bAa)=(cVvb)Ara))
=(d<b=(dVv(anb)=(dva)Ab))) (6.18)

The M-symmetry condition is much stronger than any knowrbétil lattice equation. Of
course, it is strictly weaker than the modular law, sincealds in any% (H) whereas the
modular law fails in any (infinite-dimensionaj(H) [4S, p. 67, Prop. 5]. On the other hand, it
fails in all known non-modular lattices tested by this autHo particular, it fails in the lattice
of Fig.[6. and the Greechie diagram of Fig.6.Both of which satisfy all known equations
that hold in HL (i.e. any finite- or infinite-dimension@l(H)).

.
z

0

Figure 6.1: Hasse diagram for a non-modular, orthoargodsitiice (from Ref. |[6, p. 42,
Fig. 12] or Ref.|[49, p. 160, Fig. 11.2]) in which M-symmetnydaM*-symmetry fail.

In a relatively atomic lattice @ < b implies there is a& < b such thatc coversa), M-
symmetry is equivalent to thexchange axiorfi (a coversaA b impliesa\V b coversb) [49,
p. 140, Prop. 1(iii)] which holds in a Hilbert lattice [4, p67, Th. 14.8.10]. Unlike the exchange
axiom, M-symmetry involves no logical negation when expahtb lattice primitives. (The

2Because of the two-atom blogkw,w'}, the MMP encoding of Fig. 611 cannot be used with the program
latticeg.c ~ , which currently handles only 3- and 4-atom blocks. Howgités hard-coded asBeran Fig. 12
(OA, non-modular) " in the programiattice.c [Sec[A.4 (p[I5H)].

3123,345,567.  is an MMP encoding for Fid. 612.

4A lattice satisfying the exchange axiom is also calechimodular [15, p. 23]
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Figure 6.2: Greechie diagram for a non-modular, orthoaigumeattice (from Ref. [49, p. 155,
Fig. 10.2]) in which M-symmetry and Msymmetry fail.

expression & coversb” requires that not be equal td.) In this sense, it is one step closer to
an equation than the exchange axiom, since an equationtcamaltve logical negation.

6.1.1 The search for an equation

M-symmetry is still a quantified condition (in other wordshas an existential quantifier in
prenex normal form) and thus does not necessarily genemaquational variety. An interest-
ing open question is whether an equation—stronger than ke l@w and ideally independent
from any other known equation—can be derived from M-symyne&n important result of
Whitman [124] implies that an equation (identity) cannotdeeived from M-symmetry alone.
However, it does not eliminate the possibility of deriving equation from M-symmetry to-
gether with other properties that hold in a Hilbert lattide. any case, currently there is no
known equation that has been derived exploiting the streofghl-symmetry.

To obtain such an equation, one possible approach (whosstigation is ongoing project
of this author) is to find a quantifier-free expression (a $gtabynomial equations connected
with classical logical ‘and’E(a,b,...) such that

E(a,b,.... = M*(ba) (6.19)
holds in OML (or in some other known HL condition). Then
E(a,b,.... = M*(ab) (6.20)

will also hold in HL and (after removal d¥1*(a, b) quantifier) will be an equational inference
that holds in HL, hopefully stronger than the first condition
The dual modular symmetry conditidvh*(a, b) can be expressed with the dual of Eq.{6.7)
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as follows.
M*(a,b) < Ve(c<avb=c<((cvb)aa)Vh). (6.21)
This form allows us to express E@. (6/19) as
E(a,b,...)=(c<bva=-c<((cva)Ab)Vva). (6.22)
and Eq.[(6.20) as
E(a,b,...)=(c<avb=-c<((cvb)Ara)Vb). (6.23)

Note that because the quantifier was remo¥g@, b, ...) must not contain the variable To
recap, because of the modular symmetry of HL [Th. 6.1.5 (@)1 &q. (6.22) holds in any HL
iff Eq. (6.23) holds in any HL.

Figure 6.3: Greechie diagram for OML L42 (from Ref.[[76, p6B3Fig. 7(b)]).

We will illustrate the procedure by showing an example of ajecture. Empirically, we
found the following candidate for the expressb(a,b,. . .):

E(a,b,...)d@efaCy& yAz<a& b<z& b<(arnz)vy. (6.24)

This results in the inference

[aCy& yAz<a& b<z& b<(arnz)Vy]

5This was found by experimentally adding conditions (hyes#s) tcE(a, b, ...) that were just strong enough
so that Eq.[(6.22) passed in all tested OMLSs, but not so stitvatg=q. [6.2B) also passed.
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=(c<bva=c<((cva)Ab)Vva), (6.25)
which implies, in any HL (via modular symmetry), the infecen

[aCy& yAz<a & b<z& b<(anz)Vvy]
=(c<avb=c<((cvb)ra)Vh,). (6.26)

Eq. (6.25) does not fail in any finite OML (Greechie diagrahgttwe tried. On the other hand,
Eq. (6.26) fails in OML lattice L42 (see Fig[6.3), indicating non-OML behavior.

The interested reader can quickly perform a rough checkisfrésult with the program
lattice.c [Sec[A.4 (p[I51)] as follows. For Ed. (6122), the condition

lattice 'aly’ '(y"z)<a' 'b<z' 'b<((@"z)vy)’ 'c<(bva)’ 'c< (((cva)*b)va)’

passes in all OML lattices tested by the program. But the nawdyymmetric (and thus HL-
equivalent) condition of EqL(6.23),

lattice 'ay’ '(y"z)<a' 'b<z’ 'b<((a"z)vy)’ 'c<(avh)’ ’'c< (((cvb)*a)vby

fails in OML lattice L42.

This result was unexpected and intriguing. It means thatif(8.2%) holds in all OMLs,
then Eq. [(6.26) would give us a rather strong and probablyigusly unknown equational
condition that holds in all HLs.

The problem is that we have been unable to prove (or disptbet)Xq. [6.25) holds in all
OMLs, in spite of considerable effort. So as of this writihggmains a conjecture.

Other similar experiments assigniiga, b, ...) have lead to the observation that the mod-
ular symmetry transformation from Ed._(6122) to Hq. (6.23)ds to “strengthen” almost any
OML or near-OML version of Eq[(6.22). Unfortunately, justia the case above, we were un-
able to prove that any suitable version of Eq. (6.22) heldli@®ILs (or even in all HLs, which
would suffice). Nonetheless, it still seems that this metholdls some promise for obtaining
new HL equations and merits further study.

We mention that an inference resulting from an assignme&t&ob, .. .) can sometimes be
turned into or derived from an equation without hypothebgsnaking appropriate substitution
instances that eliminate hypotheses. For some purposes, ibe easier or more efficient to
study the conjecture as a stand-alone equation. For exathplautomated theorem prover EQP

6123,145,167,189,2AB,4CD,6EF,8GH,ACE,BGI,DGJ,FGK. is an MMP encoding for L42 (Fid8.3).
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[7Q] requires an equation with no hypotheses. Of coursegaivalent equation is possible only
if the inferential condition describes an equational wgraind not just a quasi-variety (p.163).
For example, as we show in the next lemma, Eq. (6.25) can lineeddrom the equation

cA(av(((@anz)V(yA(av(ynd))))Azab))
<((((yrnzpva)vc)Ab)V((yAz)Vva). (6.27)

Therefore if we can prove that Edq. (6127) holds in all OMLswitl follow that the conjec-
tured Eq. [(6.25) also holds in all OMLs, leading to a (likehgw HL condition in the form
of Eqg. (6.26). Thus the conjecture becomes whether [Eq.)(&@ds in all OMLs, and this
problem has similarly eluded a proof or disproof so far.

Lemma 6.1.6.1n anyOML, Eq. [6.25) follows from Eq.{(6.27).

Proof. The hypothesigaCy of Eq. (6.25) impliesy = (yA (aV (yAd))). Thus starting with
Eqg. (6.2T) and making this substitution into it, we have

aCy = cA(av(((anz)Vvy)AzADb))
<((((ynzpva)vc)Ab)V((yrnz)Va). (6.28)

The hypothesig Az < aimpliesa= (yAz) vVa. Substituting into Eq[{6.28),

[aCy& yAnz< @]
= cA(aVv(((anz)Vvy)Azab)) <((avc)Ab)va. (6.29)

The hypotheseb < zandb < (anz) vy imply b < ((aAZz) Vy) Az which in turn implies
b= ((aAz)Vy)AzAb. Substituting this equality into EJ.(6.29),

[aCy& yAz<a & b<z& b<(arnz)Vy]
= cA(avb)<((avc)Ab)va (6.30)

Finally, the hypothesis < aV b impliesc = cA (aV b). The substitution of this equality into
Eq. (6.29) results in Eql(6.25), as required. O
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6.1.2 O-symmetry

The closed subspaces of a Hilbert sp&tealso satisfy a property even stronger than M-
symmetry, called-symmetry.

Definition 6.1.7. A lattice is calledO-symmetric iff for all a, b
M(a,b) & M*(b,d) (6.31)

Unlike the relatively straightforward proof of M-symmetiy Ref. [60], the proof of the
O-symmetry of¢’ (H) is quite difficult, using deep topological facts in an appdiseessential
way [39, p. 1520]. The full development of this proof spangyaificant portion of Maeda and
Maeda’s book [59] (and it references, but does not proveghepological facts), culminating
in the following theorem:

Theorem 6.1.8.[59, p. 155, Th. 34.8] The set of closed subspaces of a Hiipate is O-sym-
metric.

To search for an equation derived from O-symmetry, a passipproach could be similar to
that leading to Eq[(6.20), with a simple substitutiotMi(fa’, b’) for M*(a, b). Just as is the case
for Eq. (6.20), it remains an open problem whether this agghiawill lead to an new equation
holding in HL.

6.2 Superposition

The relationship between the superposition principle ofilaett lattice [Def.[2.3.11 (pl_119)]
and the usual superposition in quantum mechanics can besiodé intuitively as follows.
In Hilbert space, the superposition of two vectarandy (corresponding to pure states) is
the vector sunx+y. In a Hilbert lattice (HL), this concept can be representetth \atoms
[Def.[2.3.1(2) (p[.1B)], which correspond to one-dimensi®ubspaces (also called “rays”), as
follows. Suppose andy are non-zero vectors in the one-dimensional subspacesseged
by atomsa andb, thus determining those subspaces. The superpositionwill be contained
in the joinaV b, which corresponds to a 2-dimensional subspace. Becausgpefposition
property of the Hilbert lattice, there is an atarthat is covered by \ b and which corresponds
to the 1-dimensional subspace containigy.

While the superposition principle tells us that such a thxdimensional subspace (corre-
sponding to atont) exists, it does not tell us which one it is, i@need not be unique. For
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example, the 1-dimensional subspace generated by thepaigternx + %y would correspond
to a different atom than the subspace generate%kbwy.

The superposition principle is a distinctly “quantum meabal” property of a lattice, as
the following theorem shows.

Theorem 6.2.1.[4, p. 165, Th. 14.8.2] ArOML is classical (distributive) iff no pair of pure
states admits (quantum) superpositions.

It is instructive to look at the proof of a special case of thisorem.

Theorem 6.2.2.No atomic distributive lattice with more than one atom dassuperposition
principle 3(a) of Defl 2.3]1 (._19).

Proof. Leta# b be two atoms. Suppose there is a third atosnch that < aVv b. If the lattice
Is distributive, we would have:

A(avb)=(cAna)V(cAb) (6.32)

Sincec < aV b, we havec A (aV b) = ¢ # 0 sincec is an atom. Howeveg A a = 0 (sincec and
a are different atoms) and similarlg b = 0, which contradicts the equation. O

We note that the 2Boolean algebra satisfies this superposition principleieasly, since
there are no two different atomasandb (1 is the only atom) to satisfy the hypothesis. However,
this can be considered an artifact and not the intentione@i#finition, and if this is important
for an application we can narrow the definition to excludgdas with less than two atoms. The
21 BA is already excluded as a Hilbert lattice by condition 4 efI¥.3.1 (p[IP) (the minimum
height requirement).

The superposition principle of Deff. 2.8.1 can be formulaitegrenex normal form (to
make it easier to use in conjunction with certain first-ortibgyic algorithms, including our
latticeg.c program) as follow$

(3c)(Fz)(Yw)
(=(@a=0) & ((~(z=0) & (z<a)) = (z=4a))) & (~(b=0)
& ((~(z=0) & (z<b)) = (z=b)))) & =(a=b))
= ((=(c=0) & ((+(w=0) & (w<c))

In the format required byatticeg.c  , this equation is expressed pslz@w((((~(a
& ( ( ~(z=0)&(z<a))}(z =a)))&(~(b =0)&((~(z=0)& (Z<b))}( =b))))&~(a=b))}(~(c=0)&( (~(w=0)&(
w<c)}(w=c))) & ((~(c=a)&~(c=h))&(c<(avh))))) -

:0)
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= (W=0))) & ((-(c=2a) & ~(c=b)) & (c< (avh))))) (6.33)

where—, &, and=- are classical meta-operations: negation, conjunctiod imuplication, re-
spectively.

Not all OMLs satisfy the superposition principle, even rahstributive ones that admit
states. Eq[(6.33), tested with the progtatiiceg.c [Sec[A.l (p[146)] against an exhaustive
list of all Greechie diagrams with 3 atoms per block (obtdingth Brendan McKay’s program
nauty mentioned in Se¢._Al1), was used to find the smallest one inlwiperposition holds.
It is shown in Fig[6.8 and consists of an inverted pentagram inside of a pentagon.

Figure 6.4: The smallest 3-atom-per-block Greechie dragreat admits superposition.)

Irreducibility (meaning O and 1 are the only lattice elements that commuteadliother
elements) and theovering property (for everya and every atonp such that aA p= 0, the
elementaV p coversa) follow from the superposition principlel[4, pp. 166, 167].

As can be seen from the lattice failures mentioned abovesuperposition principle adds
a strong property to an HL that is not present in the known ggous Thus it is natural to
ask whether an equational property can be derived from ite Juperposition principle is a
quantified condition, not an equation, and moreover [unfitedular symmetry discussed in
Sec.[6.1 (p[L100)] it requires logical negation, as does amglition involving the covering
relation. However, superposition implies the exchangeraxdefined in the Sel. 6.1), which in
turn is equivalent to modular symmetry in HL, which we showeete “closer” to an equational
condition. Open questions yet to be answered are (1) whétkesuperposition principle, or
some reasonably strong condition derived from it, can beedta a negation-free form (i.e.
not requiring mention of atoms or the covering propertyglagous to modular symmetry, and
(2) whether the superposition principle, by itself or in porction with modular symmetry, can
help us to find a new equation that holds in HL.

87BC,78F,6AD,69E,5CD,49B,38A,2EF,134,125. is an MMP encoding for Fid. 614.
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Chapter 7

FINITE-DIMENSIONAL HILBERT
SPACE

Finite-dimensional Hilbert spaces are applicable to maonplems in quantum mechanics, such
as experiments involving particle spin states. In paréicuhost approaches to quantum com-
putation involve finite dimensions.

The subspace latticé(H ) of a finite-dimensional Hilbert space satisfies a number aaeq
tions that are stronger than those holding in all Hilbettides (which include th&’(H)s for
infinite-dimensional Hilbert spaces), in particular thedular law and Arguesian law which we
will discuss in this chapter.

In Sec.[7.11, we show a concrete example of a finite-dimenkldittzert space and briefly
discuss the Hilbert lattice generated by4téH ). The theory of equations holding in th&(H)
of a finite Hilbert space begins with Séc.7.2[(p.]113).

7.1 Example: Hilbert lattice for a 2-qubit system

The definition of a Hilbert lattice [Def._2.3.1 (p.119)] reges that the lattice height be at least
4. This is the smallest height which allows a Hilbert spacbaaeconstructed from a Hilbert
lattice [40, p. 215, Th. 3.5] and corresponds to a 4-dimeraiblilbert space. An example is
a 2-qubit system used in quantum computing, using for exarin@ spin states of two sp%‘n-
particles or the polarizations of two photons.

In such a system, the state of each particle can be repredantevector in a 2-dimensional

: : : 1 0
Hilbert spaceH, with basis vectors$0) def ( 0 ) and|1) def ( 1 ) The compound system
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of two particles belongs to the 4-dimensional Hilbert spdge- H, ® H, where® is the tensor
product [91, p. 71]. The basis vectorstaf are the tensor products of basis vectors fidpn
resulting in theH, basis vectors

def def (1 1)
00) Z'10)[0) ='|0) & |0) = ( 0>®(0>—

|10), |01), and|11). The 1-dimensional subspaces spanned by these 4 basissvaatoms
of the lattice¥’(H4) and provide the basis for the projective subspaces [40,4].@hstructed
from the lattice.

We will let L = %'(Ha), which will be our HL example in what follows. Following the
discussion after Def. 2.3.1 (p.]19), it is easy to seelthiata Hilbert lattice i.eL € HL.

First, let us look at some of the propertied.of

From the HL definition [Def2.3]1 (._19)] alonk,has an infinite number of atoms [44].
This is also obvious from th& (H4) definition, because the sum of any two basis vectors in
any proportion is a new vector (which defines a pure $tathat spans a new 1-dimensional
subspace (atom).

The height oL is 4. This can be seen as follows. The join of two atoms coardg to the
subspace spanned by their corresponding Hilbert spacersedliore generally, the join of any
two lattice elements corresponds to the subspace sidithe subspaces corresponding to the
% (H4) lattice elements. In particular, the subspace spanned #yasis vectors, corresponding
to a lattice element of height 4, is all bf4. There is no shorter chain that generates lattice 1
sinceH4 needs at least 4 vectors to span alHaf

Entangled states (state vectors that cannot be expressaem@sor product of vectors from
Hy), such as the Bell stat%(|00> +|11)) [91, p. 25], of course correspond to atomd.igince
they are pure state vectors. Apparently there is no way tondisish these from non-entangled
states in a Hilbert lattice, since the Hilbert space recongtd fromL is simply a 4-dimensional

o O O Bk

Hilbert space without further structure (such as being adeproduct of two smaller spaces).
Some preliminary work has been done on defining a “tensorymtddor Hilbert lattices [63];
if such an effort is successful, it may be possible to addtamdil structure to a Hilbert lattice

For the general definition of a pure state see Ref. [76, p. 2B47. 3.7]. Pure states are used to justify the
n-Go equations [TH.5.113 (p.179)]; see e.g. the proof of R, p. 2348, Th. 3.8].

2SinceH, is finite-dimensional, the subspace sum of two subspacedstieir join in the latticé&’(Hs). This
is not necessarily true for infinite-dimensional subspaces
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that expresses some aspect of entanglement.

In accordance with the superposition principle [Oef._2.¢119)], the superposition of
two state vectors in Hilbert space corresponds to an atoacttiirunder (covered by) the join
of the two state vectors. For example, the atom correspgndirthe Bell state vector above
is covered by the join of the basis atoms correspondin@@ and|11). The superposition
principle tells us that such an atom exists, but it does netipit uniquely. For example, all
atoms corresponding to vectors in the 2-dimensional sulesfpdane) spanned b0) and|11),
except for those basis atoms themselves, satisfy the comsliof the superposition principle.
Atfirst glance, then, it may seem that the Hilbert lattice‘hast” information needed to specify
particular atoms. But in fact, once the division ring (paiag the numerical vector coefficients
for a superposition) and the vectors themselves are catsti(40], it again becomes possible
to specify specific vectors corresponding to a superpositio

The complete set of elements of Hilbert latticeconsists of the lattice elemeft (cor-
responding to the empty subspace#iH,)), the atoms (corresponding to the 1-dimensional
subspaces), the lattice elements that correspond to 2- -aiéhsional subspaces, and the
lattice elementl, (corresponding to the 4-dimensional full space). Sihae an HL, all of
the equations of SeC. 1.3 (d. 7) hold. In addition, since thaedying Hilbert space is finite-
dimensional, all of the equations described in SecS.[72(¥.[123), and 714 (1._140) hold.
As we mentioned in Se€. 1.8, is not an equational variety, meaning that it cannot be com-
pletely specified by equations, and a long-term goal is deteng to what extent it can be thus
specified.

7.2 Modular lattices

Definition 7.2.1. [99, Def. 3.8, p. 193]. Anodular lattice or ML is a lattice (a member of the
classLat) in which the following equation, called tmeodular law, holds.

b<a = an(bvc)=(anb)Vv(anc) (7.1)

and vice versa. Anodular ortholattice or MOL is an ortholattice (a member of the class
OL) in which Eq.[Z.1 holds and vice versa. MOL is sometimes also called modular
orthocomplemented lattice

The following theorem lists some equivalent forms of the oladlaw.
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Theorem 7.2.2.A lattice in which any of the following conditions hold:

<b = av(bAc)=(avb)A(aVvc) (7.2)
an(bv(anc))=(anb)Vv(anrc) (7.3)
V(bAa(ave))=(avb)A(avce) (7.4)

a<c = aV(bAc)=(avb)Ac (7.5)

a<c = (avb)jac<av(bAc) (7.6)

a<b & avc=bvc & anc=bAc = a=b (7.7)
aVv(ban(avc))=av(ca(aVvb)) (7.8)
an(bvc)=aA((bA(avc))Vve) (7.9)
(an(bve))v(bac)=(av(bAc))A(bve) (7.10)

is anML and vice versa.

Proof. For Eq. [7.8), see Ref. [49, p. 14]. EgE._(7.2) andl(7.4) andonis duals, and the

principle of duality holds for modular lattices [1, p. 14&jor Egs.[(Z.b) and (7].6), see Ref. [1,
Def. 5-2, p. 146]. For Eq[{717), see Ref. [1, Th. 5-6, p. 148} Eq. [Z.8), see Ref. [94, p. 41].
For Eq. (Z.9), see Ref. [29, Th. 1, p. 211]. For Eq. (¥.10),Rek [94, p. 40]. O

Egs. [7.1) and (712) expresses the modular law in the forrheoélistributive law weakened
by a hypothesis, thus showing that the class ML includes ldwsof all distributive lattices.
Eq. (7.9) is useful because it can be directly applied toesgions of the forraA (bV c) (one
side of the distributive law) with no preconditions. Notatlq. [Z.10) is self-dual. Eq$.(¥.9)
and [7.10) are variations of what is called 8teearing identity.

The modular law holds in an HL (Hilbert lattice) iff the dim&an of the Hilbert spackl is
finite [49, Prop. 5, p. 67]. We show one such proof below, whéchery similar to the proof of
the analogou®edekind’s law for projective subspaces [2, p. 9].

Lemma 7.2.3.Let a b,c be any subspaces of a vector space. Then
acc = (a+byncCa+(bnc) (7.11)

whereC, N, and+ are the subset relation, set intersection, and subspaceasspectively.

Proof. We will use+ and — to denote vector sum and difference. Suppbse(a+ b)Nc.
Thenz € ¢, and there exist € a, y € b such thatz = x+y. By the hypothesisa C c, we have
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X€c. Thusy=z—-xec,soyebnc Thusz=x+ (z—Xx) € a+ (bnc), establishing the
conclusion. 0

In any finite-dimensional subspaca;+ b = aVv b, whereV is the join of the lattice of
subspaces of the vector space. Alscandn correspond to lattice meet and ordering. Thus we
have

Theorem 7.2.4.The lattice of subspaces of a finite-dimensional Hilbericgpga modular.

Proof. We make the above operation and relation substitutionshettekind’s law Eq.[(7.11)
to arrive at

a<c = (avb)jac<av(bAc)

which is the modular law in the form of Eq. (7.6). O

Some of the laws holding i@ (H) for an infinite-dimensional Hilbert spa¢¢, such as the
OML law and the 30A law, hold in any MOL. Th.4.4.8 (p.]56) sha¥s derivation of the 30A
law. Whether some others, such ast@A law forn > 3, hold in MOL is, to our knowledge, an
open problem. However, it is known that Mayet’s E equatidris[5.3.6 (p[98)] do not hold in
allMOLs [67, p. 1264, Th. 4.2] even though it holdsdf{H ) for all infinite-dimensional Hilbert
spaces. Importantly, this shows that HL equations, in gdnare not merely consequences of
the modular law that have been “weakened” to hold in infiditeensional Hilbert spaces.

NS ANAW
JRA “

Figure 7.1. Greechie and Hasse diagrams for the non-mo@~N&ér with MMP encoding
123,345,567.
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7.2.1 Characterization of modular lattices

Modular lattices are characterized by the following thewore
Theorem 7.2.5.[49, p. 33] A lattice is modular iff it does not include a pegtanal sublattice.

Proof. A pentagonal sublattice violates the modular law, as idyakbwn, and if a sublattice
violates an equation, so does the parent latticel [101, Lemhd p. 102103-14]. For a proof
of the converse, see Ref. [29, Th. 2, p. 80; Fig. 1.2.3, p. 14]. O

Contrary to what might be naively expected, Th. 7.2.5 doésharacterize the modular
law in the sense that it can show that an equation derived finermodular law is equivalent to
the modular law. We will prove this below in Th. 7.2.8 [p. 122)

The literature (e.g. Ref. [29, p. 211]) sometimes uses tfanmal but slightly ambiguous
phrase “contains a pentagon” in the statement of Th.7.26clBrity, we will show an example
using the lattice of Fig. 711 (called Dilworth’s latti@® [6, p. 143]). This lattice is non-modular
because it includes the pentagonal sublattice consisfitlieanodes{0,a,b’,1, f} along with
the ordering relations from the parent lattice.

b/

0

Figure 7.2: The set of nod€9,a,b’, 1, f} forms a pentagon sublattice in the OML of Hig.]7.1,
proving that the OML is non-modular.

For a subset of a lattice to be a sublattice, it must be closddnthe parent lattice’s opera-
tions A,V (although not necessarily closure under orthocomplem@&atyerify this is the case
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in Fig.[7.2, we can construct the truth-tables for the fivdattibe elements:

XAY XVYy
XAYy|l0 1 a b f X\Yy|l0 1 a b f
O 0 00O 0O |0 1 albf
1 /0 1 alb f 1 |1 1 1 11
a |0 a aao a 1 a b1
b |0 b a b 0 b | 1 b b1
f o f 0O f f|f 1 1 1 f

From this table we see that there is closure and that theingdezlations implied by the pen-
tagonal sublattice in the right-hand side of Figl 7.2 aresGatl.

It is important to note that not every embedded pentagon desas a sublattice. For
example, the pentagon shaf@a, b/, 1,€} is not a sublatticeb’ A€ =c ¢ {0,a,b',1,€}, so
the set of nodes is not closed under theperation (see Fid. 4.3, which shows the six-node
sublattice generated by the five nodes).

VAN AN A ;
IASONRKA

Figure 7.3: The pentagonal arrangement of nogdes, b, 1,e} in the OML of Fig.[7.1 does
not form a sublattice since it is not closed under the origattice operations. On the right we
show the six-node sublattice generated by the five nodes.

Moreover, closure alone does not guarantee a pentagorttseeolad=or example, the pen-
tagon shapg0,c,1,€, f} is closed under the andV operations and thus is a sublattice, but it
isn’t a pentagonal sublattice, becaasef = € # 1 (see Figl_7}4).
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0

Figure 7.4: The pentagonal arrangement of nddes, 1,€, f } in the OML of Fig[7.1 forms a
sublattice but not a pentagonal sublattice.

7.2.2 Consequences of the modular law

The following consequence of the modular law, apparértlye to von Neumann, is of special
interest to us because an instance of it is the 30A identityitethe form shown by TH. 4.5.8
(p.[72). In particular, some of the equations involved impitsof may suggest analogues holding
in OML that could assist towards resolving the 30A identiy@cture (pl_63).

Theorem 7.2.6.The following condition holds in anMOL (and also in anyML):
(avb)a(cvd)=0 = (avc)A(bvd)=(anb)Vv(cad). (7.12)

Proof. Ref. [49, Lemma 9, p. 96] gives a proof sketch, but since scetesld are omitted and the
proof is not necessarily intuitive, we will give the full ppbhere. We will prove, in succession,
the following steps:

(XVy)Vu) Aw=((XVYy)VU) A ((uvw)Aw) (7.13)
(XVYVU)A ((uvw) Aw) = ((XVY)A(uVw))Vu) Aw (7.14)
(XVy)A(uvw) =0

= ((XVY)A(UVW))VU)AW=UAW (7.15)
(XVy)A(uvw) =0

= ((xVy)Vu)Aw=uAw (7.16)
(XVY) VU A ((xVY) VW) = (xVy) v (((xVy) Vu) Aw) (7.17)

3Kalmbach[[49, p. 96] states, above her Lemma 9, that it is dwen Neumann and cites Ref. [122] (with no
page number given). However, this author was unable to fisdhleorem in Ref/[122].
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(avb)A(cvd)=0

= ((avb)vd)A((bvc)vd)=(cAra)Vv(bvd) (7.18)
(avb)A(cvd)=0
= (cAa)V(bvd)=bvd (7.19)
(avb)A(cvd)=0
= ((avb)yvd)A((bvc)vd)=bvd (7.20)
(avb)A(cvd)=0
= ((avb)yvd)A((avb)vc)=(cAd)V(avb) (7.21)
(avb)A(cvd)=0
= ((avb)vec)A((avec)vd)=avce (7.22)
(avb)A(cvd)=0
= ((bvec)vd)A((ave)vd)=(cvd)V(anb) (7.23)
((cnd)v(avhb)A((cvd)V(anb))
= (cAnd)V((avb)A((cvd)V(arb))) (7.24)
(avb)A(cvd)=0
= (cAnd)V((avb)A((cvd)Vv(anb)))=(cAd)V(anb) (7.25)
(avb)A(cvd)=0
= ((cAnd)Vv(avb))A((cvd)Vv(anb))=(cAd)V(anb) (7.26)

(avb)A(cvd)=0
= (avec)A(bvd)
=(((avb)vec)A((ave)vd))A(((avb)vd)A((bve)vd)) (7.27)
(avb)A(cvd)=0
= (((avb)ve)A((ave)vd))A(((avb)vd)A((bvc)vd))

= (anb) v (cAd) (7.28)
(avb)A(cvd)=0
= (avec)A(bvd)=(anb)Vv(cad) (7.29)

In the following derivations, we show all applications oétmodular law explicitly. All other

inferences hold in any lattice. “Rearrange” means applyroomative and associative laws.
For Eq. [Z.1B): ConjoixVVy V uto both sides of the lattice absorption law= (uVvw) Aw.
For Eq. (7.14): An instance of the modular law Hg. [7.4) gives (XVy)) A (uVw) =
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uVv ((xVy)A (uvw)). Rearranging termg,(xVy) Vu) A (UuvVw) = ((XVYy)A(uvw))Vu.
Conjoiningw to both sides and again rearranging terms yields the result.

For Eq. (7.15): Disjoiningi to both sides of the hypothes{gxVy) A (uvw))Vu=0vVu=
u. Conjoiningw to both sides yields the result.

For Eq. (Z.16): Chain Eq4. (7.113), (7114), and (¥.15).

For Eq. [Z.1V): Aninstance of the modular law Hg.{7.4) gigesy) vV (WA ((XVy)Vu)) =
((xVy) VW) A ((xVy)Vu). Swap the two sides and rearrange.

For Eq. [7.18): For one directiofi¢Aa) Vvbvd <avbvdand(cAra)vbvd<bvcvd,
so(cAa)V(bvd) < ((avb)vd)A((bvc)vd). For the other direction,(aVv b)vd) A ((bVv
c)vd)=((bvd)va)A((bvd)vc)=(bvd)V(((bvd)va)Ac) (i) by Eq. (Z1T). From the
hypothesis(bva)A(dvc) =0so((bvd)va)Ac=((bva)vd)Ac=dAchby Eqg. [Z17);
dAac<bvd<(cAra)V(bvd), so((bvd)va)Arc< (cAaa)V(bvd) (ii). Also, bvd<
(cna)V (bvd), and combining with (ii) givegbvd) v (((bvd)va)Ac) < (cAa)V(bvd)
(iii). Chaining (i) and (iii) gives((avb)vd) A((bvc)vd) < (cAa)V (bVvd).

For Eq.[(Z.19)cAa< (aVvb)A(cvd) =0 by the hypothesis, sona= 0. Disjoinb Vv d to
both sides.

For Eq. (Z.20): Chain Eqd.(7.118) and (7.19).

For Eq. (Z.211): Rearranging EqQ. (Z117)aVvb)vd)A((avb)vc)= (((avb)vc)Ad)V(aVv
b). DisjoiningaV b to both sides of EqL(7Z.16}((aVvb)Vvc)Ad)V (avb) = (cAd)V(aVvb).
Chaining these yields the result.

For Eq. [7.2R): Rearrange the left-hand side of Eq. (7.20).

For Eqg. [7.2B): Rearrange the sides of Eq. (I7.21).

For Eq. (Z7.24): An instance of the modular law Hqg.{7.4) gilesd) vV ((aVb) A ((cAd) VvV
((cvd)Vv(anb))))=((cand)Vv(avb))A((cAd)V((cvd)V(anb))). Using(cAd)V(cvd) =
cV d, rearranging the right-hand side, and swapping sidess/ible result.

For Eq. [7.25): FromaAnb = (aVb)A(anb) we get(avb)A((cvd)V(anb)) =(avb)A
((cvd)V((avb)A(anb))). Aninstance of the modular law Eq.(¥.3) givesv b) A ((cV
d)Vv((avb)A(anb)))=((avb)A(cvd))V((aVvb)A(anb)). Disjoining the hypothesis with
both sides ofaVv b) A(aAb) =aAb, we get((avb)A(cvd))V((avb)A(arb))=aAb.
Chaining these three givéaVv b) A ((cvd)V (aAb)) =aAb. DisjoiningcAd to both sides
yields the result.

For Eq. (Z.26): Chain Eqd.(7.24) and (4.25).

For Eq. [Z.2V): Conjoin the sides of Eqgs. (7.20) dnd (7.22)et{((aV b) vVc) A((ave) VvV
d)A(((avb)vd)A((bvcec)vd))=(avc)A(bvd),then swap the sides.

For Eq. [Z.28): Conjoin the sides of Eds. (4.21) dnd (7.28) tkearrange the left-hand side
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toget(((avb)vec)A((ave)vd)) A(((avb)vd)A((bve)vd))=((cAad)V(avb))A((cV
d) Vv (aAb)). Rearrange the right-hand side of Eqg. (7.26) to(getnd) vV (aVv b)) A ((cvd) Vv
(aAnb)) = (aAb) Vv (cAd). Chaining these two yields the result.

For Eq. [7.29): Chain Eq4.(7.27) ad (7.28). O
1
a
C
b
0

Figure 7.5: The pentagon lattid,.

0
Figure 7.6: Counterexample for Th. 7.2.7.

However, the converse does not hold i.e. we cannot deriventdular law from the above
condition added to Lat (the class of lattices).

Theorem 7.2.7.The modular law consequence Hg. (7.12), when added to thatieqs for a
lattice, is strictly weaker than the modular law.

Proof. The lattice of Figl_Z6 is non-modular, as can be shown byctgealuation of the mod-
ular law Eq.[[Z.1) or by noticing that that it includes a pguataal sublattice. On the other hand,
it satisfies Eq.[(7.12). O
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It is tempting to think that the pentagon lattisg [Fig.[7.5 (p[121)] characterizes not only
modular lattices but also the modular law, in a manner smaddnow latticeOg characterizes
the orthomodular law. The above result shows that this ighetase. The following theorem
formalizes this.

Theorem 7.2.8.In the presence of a lattice (member of class), it is possible for a condition
(equational inference) strictly weaker than the modulaw I fail in lattice Ns. Therefore,
lattice N5 does not characterize conditions equivalent to the modalarin a lattice.

Proof. Th.[Z.2.T shows that Eq. (7]12) is a condition strictly wedkan the modular law in the
presence of a lattice. However, this condition fails ini¢etiNs. O

It is apparently an open problem whether Th.7.2.8 holdsemtiesence of an ortholattice,
i.e. whether or not the addition of a condition that failsNg will strengthen the OL laws to
become the MOL laws. In particular, it is unknown whether E§12) is equivalent to the
modular law in the presence of an OL.

We can, however, derive the OML law from EQ. (4.12) in the pree of an OL.

Theorem 7.2.9.1n anyOL, Eq. [7.12) implies th©ML law.

Proof. Substitutex' for a, y' for b, x for ¢, and 0 ford in Eq. (Z.12). This results in the inference
XVY)Ax=0=XxXVX)A(YVO0)=(XAY)V (xXA0). Applying DeMorgan’s laws, this is
equivalenttxVv (X Ay =1=y=xVy, sox—y= 1= x<yby Def[2.2.5 (p[IB). This is the
OML law by Eq. [3.6) fori = 1.. O

Th.[45.8 (p[[7R) showed that the 30A identity law is a specie of Eq.[(7.12), so it
is possible that results about EQ. (4.12) could prove udefyproving or disproving the 30A
identity conjecture. However, the 30A identity conjectpresupposes the equations for an
OML. This provides additional motivation to prove or dispeorh.[7.2.8 in the presence of an
OML (or equivalently, by Th. 7.219, an OL).
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7.3. ARGUESIAN LATTICES

7.3 Arguesian lattices

Definition 7.3.1. A lattice in which the following condition holds is &rguesian lattice (AL)
[17]:

(avb)A(cvd)A(ev )
<bv(an(cVv(((avc)A(bvd))
A(((ave)A(bv ) v((cve)A(dVT)))))) (7.30)

The following theorem lists all of the known equivalent farraf the Arguesian law that
have appeared in the literature (to this author’'s knowlgdfjleese are often shown using abbre-
viations for some of the subformulas, but it is also usefidliow them fully expanded, as we
do: their sizes and some aspects of their structures arer¢asiompare, and it can be easier to
encode them for a computer checking program. The reader ugie®sito see the more compact
forms can consult the original references. Recall that thed df an equation hag replaced
with A and vice versa, and replaced with>, but = (logical implication between hypothesis
and conclusion) is unaffected.

Theorem 7.3.2.A lattice in which any of the following condition (or its dydl7]) holds is an
AL:

avbyA(dve))Vv((bvec)A(evT)))A(dvT)) (7.31)

= (ave)A(bvd)<((cve)adVv i) Vv((ave A(bvT)) (7.32)
(avb)A(cvd)A(evT)
<(an(cv(((ave)A(bvd))

A((even(dvi))v((ave A(byi))))))
(

V(bA(dV(((ave)A(bvd))
A((eve)n(dvi))v((ave)n(bvi)))))) (7.33)
(avb)A(cvd)A(eVvT)
<av(bn(dv(((ave)A(bvd))
A((eve)A(dv )V ((ave)a(bv 1)) (7.34)
(avb)A(cvd)A(evT)
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7.3. ARGUESIAN LATTICES

<avdV(((ave)A(bvd))
A(((cve)A(dVT)
aVv((avb)yA(cv

)V ((ave)A(bvi))))
((bA( d)
<(cveyr(dvi))v((ave)
( )
(

evf))))vd)

%
A
A )V (dA(ave))

f)
)
(ave)A((bAa(av((cvd)A(ev f)))
<((cve)A(dVvi))v((ave)n ))V(dA(avce))
(anb)v(cnd))A((enf)v(gah)))v(maj))
<aVv((((kvf)n(mvh))v((evb)A(gvd)))A(cV]))
e)

(@dvi)a(len(fv((avdin(bve))))va
((avb)A(dve)) Vv ((bvc)a(evf))v(an(dvf))

(

(avb)A(cvd)A(ev )= (cvd)A(eVf)
A@an(cv(((ave)A(bvd))

((cve)n(dv ) v((ave) A(bvf)))))
dVv(((avc)A(bvd))

((eve)n(dvi))v((ave)A(bv1)))))))
(kA ((((@anb)v(cad))A((eAf)v(gah)))v(mAj)))
V@@n((((knf)v(mah))A((enb)v(gad)))V(cA])))
< (kv((((avb)A(cvd))v((evf)A(gVvh)))A(mVj)))
A@v (((kvF)an(mvh))v((evb)A(gvd)))A(cV])))

(
(
(bv f
)Vvd)
(bv f
kA(( h)

—~

(7.35)

(7.36)

(7.37)

(7.38)

(7.39)

(7.40)

(7.41)

Proof. For Eq. [[Z.311), see Ref. [33, Eq. (1), p. 167]. For Eq. (7.38%k Ref.|[28] or Ref. [17,
p. 67]. For Eq.[(7.33), see Ref. |22, Eq. (2), p. 303] or Reg, [Th. 2.1(2), p. 337]. For
Eq. (Z.34), see Ref. [22, Eq. (3), p. 303] or Ref.|[19, Th. 2)1p. 337]. For Eq.L(Z.35), see
Ref. [22, Eq. (4), p. 303], Refl [19, Th. 2.1(4), p. 337], orfR&3, Eq. (4), p. 168]. For
Eq. (7.36), see Ref._[19, Th. 2.1(5), p. 337]. For Eq. (V.38 Ref.[[22, Eq. (5), p. 303]. For
Eq. (Z.38), see Ref. [33, Eq. (2), p. 168]. For Hq. (V.39),Ret [33, Eq. (3), p. 168]. For

Eq. (7.40), see Ref. [110, p. 4]. For EQ. (4.41), see Ref..[92]

O

Eq. (Z.31) is the shortest known form of the Arguesian law.. @¢1) shows that the

Arguesian law can be expressed in a form which is self-dual.

To demonstrate the Arguesian law, we will consider thedatformed by the projective
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7.3. ARGUESIAN LATTICES

subspaces of a 2-dimensional projective space (projeglare).

One way to construct a projective plane is using a height Betillattice, whose nodes are
the subspaces of a 3-dimensional Hilbert space. We can definet as the singleton of an
atom? By the axioms of projective geometry (e.g./[40, Sec. 3]; dse below), any two points
(and thus any two atoms of the Hilbert lattice) determine igws collection of atoms called a
line. A projective subspacds a set of atoms such that the line determined by any two aitoms
the setisincluded in the set. In the case of the lattice ofjgates of a projective plane (whether
built from a Hilbert lattice or not), the only kinds of projie subspaces are the empty set (the
lattice zero), points, lines, and the whole space (theckatinit).

In the case of the lattice of closed subspaces of a 3-dimeaisidilbert space, the 1-
dimensional and 2-dimensional subspaces correspond fooihés and lines, respectively, of
the projective lattice constructed from it.

We can also construct a projective plane by extending a &g plane with points at
infinity [15, p. 109]. The points are the singletons of txey) coordinatesy,y € R, together
with new points{ (e, )} and{(cw,r)} for r € R. A non-vertical line consists of the Euclidean
line together with the poinf(c,r)}, wherer is the slope of the line, and a vertical line (parallel
to they-axis) consists of the Euclidean line together with the pie,«)}. It can be verified
that this construction satisfies thgioms of a projective geometry(two points determine one
and only one line; every line contains at least three poantd;if a line intersects two sides of a
triangle at different points, then it intersects the thidk$. In addition, the Arguesian law holds
(as well as the modular law which follows from the Arguesiaw).

One instance of the Arguesian law in this extended Eucligisame is illustrated in Fig. 717,
where we have omitted the points at infinity for simplicityeWill useVv andA to denote the
projective subspace sum (the union of all lines determined point from the first subspace
and a point from the second) and meet (the set intersectitheofwo subspaces). Assume
that the linesag Vv bg, a; v by, anday v by intersect at a common poidt Let ¢y be the point
(a1Vap) A (b Vby), c1 the point(ag VV ap) A (bg Vv by), andc, the point(agV aj) A (bo Vv by).
Then for the Arguesian law to holdy, c;, andc, must fall on the same line, which a detailed
analysis using e.g. analytic geometry will show to be the@cas

To show this with the Arguesian law, in we assign the point&igf [7.7 to Eq.[(7.32) as
follows: a=ag, b =bg, c=a;, d = by, e=ap, andf = b,. The hypothesis of EqL.{7.B2) is

4We define a point as a singleton of an atom, rather than the igeihas usual in the literature. We do this
because we can use inclusion as the sole ordering relatipnojective subspaces, rather that the traditional but
awkward context-dependent mixture of membership and éiaty making a formal development easier.
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7.3. ARGUESIAN LATTICES

Figure 7.7: Example of the Arguesian law in the projectiiespace lattice of a projective plane
built from an extended Euclidean plane. (Note: this is notasd¢ lattice diagram. The lines
represent projective subspaces generated by points;dée te

satisfied:

(ao\/bo)/\(al\/bl) =d
< (az\/bz).

Evaluating the conclusion,

(apVvai)A(bopVvbr)=cy
<CVeVer
=CVC
= ((agVaz) A (b1 Vb))V ((agVaz)A(bpVhby)),

showing that this instance satisfies the Arguesian law. Enefimate equality follows because
Cy is on the same line ag andc;.

We will now modify the above example slightly to constructrajpctive plane in which the
Arguesian law fails, but the modular law still holds. Our straction is a slight modification
of the non-Arguesian projective geometry known as the “NMwouplane” [87]. For convenient
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7.3. ARGUESIAN LATTICES

reference, we name the lines as follows.

lo =agVbg (7.42)
Iy =a1 Vb (7.43)
l2=a;Vb (7.44)
ls3=ayVa (7.45)
l,=agVa (7.46)
ls=a;Va (7.47)
lg = b Vv by (7.48)
l7=Dbg Vb (7.49)
lg =b1 Vb (7.50)
lc=cpVer (7.51)

Refer to Fig[7.B.

Figure 7.8: A modular, non-Arguesian projective subspatick of a projective plane built
from an extended Euclidean plane.

The construction is the same as the one in[Eid. 7.7 but witfolleving modification: any
line with positive slope is bent at theaxis so that it has slopebelow thex-axis and slope/2
above thex-axis. (Its point at infinity is not modified but continues te {gc,r)}.) Even with
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7.3. ARGUESIAN LATTICES

this “defect,” it can be shown that the modified constructontinues to be a projective plane
[15, p. 110] and thus the modular law holds (since it holdsny projective plane.[2, Th. 1V,

p. 259]). However, the Arguesian law fails: the patptdoes not fall on the line determined by
Co andc;. Working out the assignment in the same way as we did for tadaqus example (with
more detail, since we will be interested in what projectiespaces are visited), the hypothesis
of Eq. (7.32) is satisfied exactly as before:

(ao\/bo)/\(al\/bl) =lgAlq

=d
=dAly (i.e. <ly)
=dA(azVvhby) (i.e. <apVvhy). (7.52)

Above we used the equivalenee< b < a = aADb, which holds in any lattice. On the other
hand, the conclusion evaluates as follows:

(agVag) A(boVvby) =I3Alg
=C
#£CAlc=0 (i.e. £1¢)
wherel. = cgV Cp
= (IsAlg) VvV (Ianl7)
= ((a1vaz) A(b1 Vi)V ((a0Vaz) A(bo Vb)), (7.53)

showing that the Arguesian law is violated by the assignroéhtg.[7.8.

Finite projective planes

The previous examples involved infinite projective geomstsince the real number field used
to construct the Euclidean plane has infinite members. Theiattice of their projective sub-
spaces cannot be represented with a finite Hasse diagram.

However, there exist projective planes over finite fieldse mallest is thé&ano plane
with 7 points and 7 lines, was discovered in 1892 by Gino FA28], and is shown in Fig. 7.9.
The points and lines in the figure are labeled in order to seedhrespondence to the Hasse
diagram of its projective subspace lattice. This Hasserdiads shown in Fid. 7.10. The lattice
version of the projective plane is important for us becatiseakes automated verification of
equations straightforward. This Hasse diagram, which agpe Ref.[[116, p. 33, Fig. 1.18]
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7.3. ARGUESIAN LATTICES

Figure 7.9: The Fano plane, which is the smallest non-triungte projective plane, with 7
pointsa—g and 7 lines (including the circlé), j,k, I, m,n, p.

V,*vevsb,/é\/o'v

‘»‘é‘ ‘é

4&\’%‘;?“‘

Figure 7.10: The projective subspace lattice of the Fanoephaith nodes labeled to correspond
to the projective subspaces in Hig.17.9. This lattice is nexdand Arguesian.
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(who calls it the “lattice of flats” for the Fano plane), is radn in our Fig[ 7,10 to reveal an
interesting symmetry: it remains the same when rotated Bydegyrees. The lattice is both
modular and Arguesian and can be useful as a soundness dheal,@onjectured equivalents
for these laws. It is also possible that it could serve as apoorant or starting point towards
finding an Arguesian law counterexample.

Table 7.1: Covering table for the Hasse diagram of[Eig.l7EE&h node in the left-hand column
is followed by the nodes that it covers.
1>I,mnnh, j,kp
| >g,a,d
m>g,c, f
n>g,eb
h>a,cb
j>c,ed
k>aef
p>b,d, f
g>0
a>0
c>0
e>0
b>0
d>0
f>0
0>

In Table[Z1 (p[L130) we show an alternate but equivaleniesaptation of the Hasse di-
agram [Def[2.511 (P _22)], called @overing table in which each lattice node is followed
by a list of the nodes that it covers. Covering tables canigeoa useful way to express
the Hasse diagram in a machine-readable format. For ourgrolgasse.c , table lines are
separated by a semicolon, and the table ends with a periodis Table_ 7.l would be ex-
pressed asl>l,m,n,h,jkp;l>g,a,d;m>g,c,f:n>g,e,b;h>a,c,b;j>c e,d:k>a,ef-
p>b,d,f;g>0;a>0;c>0;e>0;b>0;d>0;>0;0>. ",

The smallest (finite) projective plane which is non-Argaesibut modular, as all projective
planes are |2, Th. IV, p. 259]) has 91 points and 91 lines. K diacovered in 1907 by Veblen
and MacLagan-Wedderburn [121] [123]. Its projective satogdattice thus has 92+ 2 =184
nodes. Its Hasse diagram is too large and complex to be draameaningful way. Instead,
we specify it with the covering table of Takle I7.2.
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Table 7.2: Covering table that specifies the 184-node non-
Arguesian modular lattice corresponding to the projective
subspaces of Velblen and MacLagan-Wedderburn’s 91-point
projective plane.

1>14,12,13,14,15,16,17,18,19, 110,111,112, 113,114,115, 116,117,118, 19, | 20,
121,122,123, 124,125,126, 127, 128, 129, 130, 131, 132,133, 134, 135, | 36,137, I 38,
139,140, 141,142,143, 144, 145,146,147, 148,149,150, 151, |52, 53,154, |55, |56,
I57,1s8, 159,160,161, 162, 163, 164, |65, |66, 167: 168, 169, 170, 171, 172,173, 174,
175,176,177,178,179,180, 181, 182, 183, 184, I85, 186, 187, 188, 1 89, 190, |01

|1 > ag, a1, as, g, bo, Co, do, €0, fo, o

|2 >ag, by, bg, d3,d11, €2, €5,65,97,90

I3>a,C1,Cs, €7, €9, f3, f11,02,05, 06

|4 > ag,b7,bg,d1,ds, 2, fs, f,03, 011

Is > ag, by, bs, b, C3,C11, €1, €8, f7, fo

lg > ag, C7,Cy,d>,ds, dg, €3, €11, f1, fg

|7 > ag, bz, b11,C2, Cs, Cq, d7,dg, 91,08

lg > ay,ap,a4,a10,b1,C1,d1,€1, f1,01

lg >ay, b, b9, ds,d12, €3, €5,€7,08,010

l10>ay,C2,Co, €3, €10, a4, f12,03,06,97

l11> ay,bg, b1, d2, dg, f3, fs, 7,04, 012

l12> @y, b3,be,b7,C4,C12,€2, €9, fg, f10

l13>> @y, Cg, C10,d3,ds, d7, €4, €12, f2, fo

l14> a1, b4, 012, C3,Cs,C7,dg, d10, 92, 9o

l15> @z, a3, 85,811, 02,C2, d2, €2, f2,02

l16> az, b3, b1o,ds, do, €4, €7,€3,J9, 911

l17> @y, C3,C10, €9, €11, f5, f0,04,097,08

l18> @z, bg,b11,d3, d10, f4, 7, fg, 05, 9o

l19> a2, by, b7, bg, Cs, Co, €3, €10, fo, f11

|20 > ap,Cg,C11,d4,d7,ds, €5, €, f3, f10

|21 > @z, bs, bo, C4, C7, Cg, do, 11,93, 910

|22 > a3, a4, 86,812, b3, C3,d3, €3, f3,03

123> a3, b4,011,ds,d1, €5, €8, €9, 810, 912
Continued on next page. ..
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Table 7.2 — Continued

|24 > ag,C4,C11, €10, €12, T, f1,05, 08, Qo
|25 > ag, b10, b12,da, d11, f5, fs, fo,ge, 01
|26 > ag, bs, bg, bg, Cg, C1, €4, €11, 10, f12
|27 > ag, C10, C12,ds, dg, d, €5, €1, f4, f11
|28 > ag, b, b1, Cs, Cg, Cg, d10, d12, 94, 911
|29 > a4, as,a7,a0,04,C4,ds4,€4, 4,04
130> a4, bs, b12,d7, d2, €5, €9, €10, 911, 9o
31> a4, Cs,C12, €11, €0, f7, f2,06, 09,010
|32 > ay, 11, b0,ds, d12, fe, o, f10,97,02
|33 > ay, bg, bg, b10, C7, C2, €5, €12, f11, fo
|34 > a4, C11, Co, g, dg, d10, €7, €2, f5, f12
I35 > ay, b7, b2, Cg, Co, C10, d11, do, 95, 912
|36 > as, 8, g, a1, bs, Cs, ds, €5, 5,95
|37 > as, b, bo, dg, d3, €7, €10, €11, 912, 01
|38 > as, Cs, Co, €12, €1, fs, f3,97,010, 011
|39 > as, b12,b1,ds, do, f7, f10, f11,08,03
l40> as, b7,b10,b11,Cs, C3, €5, €0, f12, f1
l41> as,C12, €1, d7,d10,d11, €8, €3, f6, fo
l42> as, bg, b3, €7, C10, C11, 12, d1, 96, Go
l43> ag,a7,a9, a2, b, Cs, ds, €5, f6,J6
l44> ag,b7,b1,dg, dg, €3, €11, €12, 90,92
45> ag,C7,C1, €0, €2, f9, f4,08,011,012
|46 > ag, Do, b2,d7,d1, fg, f11, f12,09,04
|47 > ag, bg, b11,b12,Cy,C4,€7,€1, fo, f2
l4g > ag,Co, C2,dg, 11,012, €9, €4, f7, f1
|49 > a6, g, by, Cg, C11, C12, do, d2, 97, 01
Iso > a7, ag, a10,a3, b7,C7,d7, €7, f7,07
I51 > a7, bg, b2, d10,ds, €9, €12, €0,01,93
I52> a7, Cg, C2, €1, €3, f10, 5,09, 912, Qo
Is3> a7, b1, b3, dg, d, fo, f12, 0,010,095
I54 > a7, bg, b12, b, C10, Cs, €8, €2, f1, f3
Is5> az,Cy,C3,dg, d12, do, €10, €5, fs, f2
Continued on next page. ..
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Table 7.2 — Continued

I56 > a7, b10,bs, Cg, €12, Co, d1,d3, Ug, O2
|57 > ag,ag, a11, a4, bg, Cg, ds, €s, fs, Js
Isg > ag, bg, b3, d11,dg, €10, €0, €1,92,04
|59 > ag, Cg, C3, €2, €4, f11, f6, 010,90, 01
l60 > ag, b2, b4, dg, d3, f10, fo, f1,011,06
l61> ag, b10, b0, b1, C11,Co, €9, €3, f2, f4
l62> ag, C2,C4,d10,do, d1, €11, €6, o, f3
l3> ag, b11, e, C10, Co, C1, 02,04, o, O3
l64 > ag, @10, 212, as, bg, Cg, do, €9, fo, g
l65 > ag, b10, b4, d12,d7,€11,€1,€2,03,05
l66 > @g, C10, Ca, €3, €5, 12, f7,011,01,02
l67 > ag, b3, bs, d10,ds, f11, f1, 2,012,097
l6g > ag, P11, b1, b2, C12,C7, €10, €4, f3, f5
lgg > ag,C3,Cs,d11,d1,d2, €12,€7, f10, f4
|70 > a9, b12, 07, €11,C1,C2,d3,ds, 010,04
171> a10, 211, @0, 3, P10, C10, d10, €10, f10,910
172> @10, b11, bs, do, ds, €12, €2, €3,04, 96
173> @10, C11, Cs, €4, €, fo, f8, 012,92, 93
174> @10, b4, g, d11,ds, f12, f2, f3,00,0s
|75 > @10, b12, b2, b3, Co, C3, €11, €5, f4, f5
176 > @10, C4, Ce, d12, d2, d3, €0, €3, f11, f5
177 > a0, bo, bg, C12, C2, C3,d4, dg, 911,95
|78 > a11, 12,1, a7,011,C11, 011, €11, f11,011
179> a1, b12, bg, d1,dg, €9, €3, €4,05,97
lg0 > a11,C12, Cs, €5, €7, f1, f9, 9o, 93, 04
lg1 > @11, bs, b7, d12, ds, fo, f3, f4,01, 09
lg2> @11, b0, b3, b4, C1, Cy, €12, 65, fs, 17
lg3>a11,Cs,C7,do, d3, dg, €1, €9, 12, fe
lg4 > aq1,b1, g, Co, C3, C4,ds, d7, 012, U6
lgs > @12, @0, @2, ag, b12,C12,d12, €12, f12,012
lgs > a12, bo, b7, d2, d10, €1, €4, €5, 95,08

lg7 > a12,Co,C7, €5, €8, f2, f10,01,04,95
Continued on next page. ..
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Table 7.2 — Continued

lgg > @12, 6, bg, do, d7, f1, f4, f5,02,010

lgo > a2, b1, 4, bs, C2, C10, €0, €7, f6, fg

loo > @12, Cs, Cg, d1,d4, ds, €2, €10, fo, 7

lo1 > a12, b2, b10, C1,C4,Cs, ds, dg, Go, 97

ap>0; bp>0; cp>0; dp>0; g>0; fg>0; gop>0
a1>0;b;>0;¢,>0;d1>0;€>0; f1>0;0:>0
a>0;b>0;c>0;d2>0; &>0; f2>0;g2>0
az>0; b3>0; c3>0;d3>0; e3>0; f3>0; g3>0
a1>0;b4>0;Cc4>0;ds>0; &4>0; f4>0;94>0
as>0; bs>0;c5>0;d5>0; &5>0; f5>0; g5>0
ag>0; bg>0; cg>0; dg>0; e5>0; fg>0; gg>0
a7>0; b7>0; ¢c;>0;d;>0;e,>0; f,>0;g7>0
ag>0; bg>0; cg>0; dg>0; eg>0; fg>0; gg>0
ag>0; bg>0; cg>0; dg>0; eg>0; fg>0; gg>0
210> 0; byo>0; €103 0; d10>0; €10>0; f10>0; g10>0
a;1>0; by1>0; ¢11>0; d11>0; €11>0; f11>0; g11>0
a12>0; b12>0; c12>0; d12>0; €12>0; f12>0; g12>0
0>

Future work: search for a smaller non-Arguesian modular lattice

There have been many studies on the properties that a mddttlae must have in order to
be non-Arguesian [46] [110] [18] [19] [20] [21] [17] [38] [B}. However, to this author’s
knowledge, no example of a specific finite lattice with thaigarty has been published other
than the 184-node lattice of Talilel7.2, derived from the &eiMacLagan-Wedderburn 91-point
geometry.

Unfortunately, a 184-node lattice is impractical as a cetexample for use with an au-
tomated equation checking tool. Thus it is desirable to firsinaller one. There are several
possibilities for work in that direction. One is to searchdpecific lattices that result from the
work mentioned above. This is not necessarily an easy taste she conditions are often of
a theoretical nature that do not lend themselves immeglisdaed computer algorithm, but it is
probably a worthwhile effort for future work.

134



7.3. ARGUESIAN LATTICES

Here we will present another possible direction, based eivibulton plane counterexample
of Fig.[7.8 (p[12Fr). Of course, this plane is equivalent tatéide with an infinite number of
nodes, since each of the uncountable points on the Euclpleas is the singleton of a lattice
atom. In order to obtain a finite lattice, we can start withséh@oints and lines used in the
counterexample of Fid. 7.8, along with the instances of t¢ire #4nd meet operations that are
used by the counterexample, that will assure us that theeSign law will fail. A lattice can
be obtained by adding the lattice zero and unit then drawiladtiae Hasse diagram with only
those subspaces as the nodes in between. This lattice aulgver, also be non-modular.

The problem is whether we can add a finite number of additinodés so that the modular
law becomes satisfied. A related problem was consideredfifd., p. 102103-20, Def. 111.2],
which defined so-called MMPL lattices in which finite exters of an otherwise non-Hilbert
lattice where added in order to satisfy more Hilbert lattases, so as to achieve an approxima-
tion sufficiently satisfactory for some some experimentappse. Of course in the present case
we want to find an exact result, not an approximation, sinegpoablem is mathematical rather
than experimental. Nonetheless, similar algorithms miaghépplicable to both approaches.

It may not be feasible to find such a finite lattice, if one existithout the help of a
computer-assisted search. Here we will describe the rsggpibint for the problem that future
work can be based on.

In Fig.[7.8, there are 11 points and 10 lines. A finite modutanterexample to the Argue-
sian law must have at least these points and lines. Addintattiee zero (0) and unit (1), the
starting lattice has 11 10+ 2 = 23 nodes. The final finite lattice (if one exists) will have an
unknown number of additional nodes.

Tabled 7.8 and 714 show the join and meet function valuesssacgto ensure that the Ar-
guesian law is violated and that the table (up to that poegjesents a lattice. The unspecified
entries, as well as possible additional rows and columns|dize filled in by a computer search
that attempts to make the lattice modular.

We can also express the problem in terms of a starting mirsealattice. The Hasse di-
agram for this starting sublattice is shown in Hig. 7.11. @dfirse, it is non-modular (as well
as non-Arguesian). The problem is to extend this minimalagtibe with additional nodes and
orderings until a modular lattice is built, if there is oneeWNorderings may be added to existing
nodes (as well as new ones), i.e. more lines may be drawn ddabge diagram as long as a
lattice still results, except that the ordering indicatgdtie dashed line may not be added in
order to guarantee that the Arguesian law violation will beserved.

If we add the dashed line to Fig. 7111, we obtain the minimhblattice for the projective
geometry instance of Fig. 7.7 that demonstrates of the Aigndaw. It is interesting to note
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7.3. ARGUESIAN LATTICES

Table 7.3: Join table for a starting lattice fragment in argedor a finite modular, non-
Arguesian lattice. “..” means possible additional lattice nodes. The entries@bwoy diagonal
are omitted since they are just the reflection of the entredevb The bold entries indicate
the lattice nodes involved in the Arguesian law violationsE{7.52) and (7.53). The remain-
ing explicit entries are necessary for the table to repteséaitice. Entries with ” would be
determined by a future computer search to make the latticutan

v ][0 ao[aa[az|bo]ba[bz|co| 1 |c2|dlo[la[T2]ls]la[ls[l6[I7|slc 1] -|

0|0

CIEYED

alallgal

a2a2I4I5a2

bo||bo|lo| - | - |bo

byjby| - |11 - |le|b1

bo||bz| - | - |12]l7]lg]b2

Co|Co| - |l5|ls| - |l8|lg|Co

c||Ce|la| - |la|l7] - |17]lc|C1
C2l|c2llz|l3] - |le|le| - | - | - |C2

dld ol T2 lTol T T2 - -1~ |d

olTolTol - - ol -1~ 1-1-1-TolTo

LT T - - - el

LI - - ol |- - - -]

BTl Ta] - |- -1 -1-1-[al-1--]- |5

ol Tl - -l - - -
5lTs| - Tslsl - |- |- sl -1~ - |-[-[-|-1ls
Tl - -1 sllel - -1 -Tsl-1-[-[-[-|-1-1Ts
LI T - - - -] |I,
Tl - -1 -1 allaglTgl - |- -1~ -[-[-[-[-|--1Tg
Tl - - - - el - [ e
Tt A 1 I 1 I A R ¢ I A e

136



7.3. ARGUESIAN LATTICES

Table 7.4: Meet table for starting lattice fragment for arskaor a finite modular, non-
Arguesian lattice. See comments in caption for Table 7.3.
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5%
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Figure 7.11: Hasse diagram of the minimal lattice corredpanto the projective geometry
instance in Fig[_7]8 and Tables17.3 7.4. The dashed ltlieaites an order that isot
present. Any extension of this lattice (by adding additlorales and orderings) will continue
to fail the Arguesian law, except that the ordering corresjing to the dashed line musobt
be added. The goal of future work is to extend this latticehsd the modular law passes.
(Note that the modular law fails in this minimal sublattioécourse, since it is not the solution

to independence problem. In particular, it contains thetaggonal sublatticd0,d,l4,1,1:},
making it non-modular by Th. 7.2.5.)
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7.3. ARGUESIAN LATTICES

that the resulting Hasse diagram reveals a symmetry notramipaig.[7.7: if rotated 18Q the
Hasse diagram is unchanged.
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7.4. HIGHER-ORDER ARGUESIAN LATTICES

7.4 Higher-order Arguesian lattices

The Arguesian law also exists in higher-order forms, analsgto higher-order forms of the
orthoarguesian law in the form of EqL_(4118) [pl] 42). Thegghki-order forms hold in all
finite-dimensional Hilbert spaces, as we will prove below.

We are now ready to state our main theorem.

Theorem 7.4.1.(n-Arguesian Laws) et &, ...,an, and ly,...,bp, N> 1, be (closed) subspaces
of a finite-dimensional Hilbert space. We define the teftivt. . .,in) by substitutings for +
in the term §(io, . ..,in) from Theorem 4.111 (p. B8). Then following equation holdsifo 1:

(apVhbo)N---N(anVhbp)
<bgV(agn (a1 Vvty(0,...,n))). (7.54)

Proof. In any finite-dimensional subspaca;+ b = aV b, whereV is the join of the lattice
of subspaces of the vector space. Using this relationsbipgalvith the symbol substitutions
mentioned into Eq[{4.12) (. 40), the result follows. O

We call Eq. [Z.54) then-Arguesian law. The cases oh = 1 andn = 2 correspond to
the modular and Arguesian laws, respectively. It is not kmdfnthese laws continue to be
successively stronger for> 2. An open problem is whether these are equivalent to theshigh
order forms of the Arguesian law mentioned in Ref. [34].

7.5 Pappian lattices

In projective geometryPappus’s postulatestates that if one is given one set of collinear points
a, b, ¢, and another set of collinear poirds e, f, then the intersection poings g, r of line
pairs{a,e} and{b,d}, {a, f} and{c,d}, {b, f} and{c,e} are collinear([62]. This postulate,
attributed to Pappus of Alexandria (c. 290-350), is illatd in Fig[ 7. 12.

Pappus’s postulate, like Desargue’s, does not hold in a@jéptive geometries. An outstand-
ing feature of &appian geometryis contained in the following theorem [2, p. 71]:

Theorem 7.5.1.Pappus’s postulate holds in a projective geometry of ptojealimension 2 or
more iff the division ring constructed from the geometryasmmutative i.e. a field.

Obviously Pappus’s postulate is independent of Desargsieise the above theorem does
not hold in all Desarguesian geometries. In fact, it imptiest the geometry is Desarguesian
[114] [118].
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7.5. PAPPIAN LATTICES

Figure 7.12: lllustration of Pappus’s postulate in a proyecplane.

Additional properties of Pappian geometries are discussBefs. [48] and/[53].

From the above theorem, it follows that if the set of propetsubspaces (see e.g.![40,
Sec. 3]) constructed from a Hilbert lattice [Def._2]3.1[(B)]1(to which an additional but cur-
rently unknown condition has been added) satisfies Pappastsilate, then the multiplication
operation in the division ring of final reconstructed Hilbgpace will be commutative. When
the harmonic conjugate condition [Déf._2.3.4[(p] 20)] is edido the Hilbert lattice to satisfy
the conditions of Soler’'s theorem, the only possible fielthef resulting Hilbert space will be
one ofR or C, since quaternionic multiplication is not commutative.iStWwould bring us one
step closer to the standard figldof quantum mechanics.

Therefore it is useful to search for a corresponding laitdeatity. A partial result has been
found by Day[16, Def. 4.7], who proposed the following cdruti:

Definition 7.5.2. A modular lattice is calledPappianiff the following condition holds.

an(dve)=bA(dve) & an(dve)=dA(avb)
& an(dve)=eA(aVvb) & c<avb & f<dve
= (ave)A(bvd)A(cvdve A(fvavb)
<((cvd)A(avf))Vv((cve)A(bvVT)) (7.55)

This condition by itself does not imply the modular law, sritholds in the non-modular
lattice of Ref. [6, Fig. 12, p. 42]. Moreover, when appliedhe lattice of projective subspaces
of a projective geometry, it holds only for the subspacédatbf vector spaces with dimension 2,
or dimension 3 if its division ring is commutative [16, Cor3p Thus it is of limited usefulness
for Hilbert spaces generally, even those with commutativision rings.
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7.5. PAPPIAN LATTICES

It may be possible to weaken the condition in a way analogotise weakening of the Ar-
guesian law to obtain the orthoarguesian law, that mighilrés a more generally applicable
“orthopappian law” that would hold in infinite-dimensiortdilbert space (and thus all dimen-
sions). In order to serve as a useful condition to narrow dinveriHilbert space division ring (for
dim > 3), the main property needed is that it not hold in Hilbertcgzawith non-commutative
divisionrings (i.e. quaternions). This may be possibldwaisignificantly weaker version of the
law and is an open problem for future work.
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Chapter 8

CONCLUSION

In Ch.[1 (p[1) and specifically Séc. 11.3[(p. 7), we reviewedtigeurrently known about equa-
tions that hold in everg’(H) (the lattice of closed subspaces of a finite- or infinite-disienal
Hilbert space). Aside from the OML law itself, these equasi@rise from three aspects of
Hilbert space: geometrnnQA laws and Mayet'ssa equations), statesGO laws and MGES),
and Hilbert-space valued states (Mayet's E equations)yasrized in Table 111 (pl 8). The
discovery of these equations has been serendipitous, adpen problem whether other as-
pects of Hilbert space will yield new equations.

The equational theory of OMLSs, even though it has been knameesl937, is not known
to be decidable. It remains a rich source of new results e@ifjtas our work in Chl13 (1._27)
showed.

Our investigation of th@OA laws [Ch.[4 (p[3[7)] resulted in many new consequences and
equivalences for those laws. An important open problemasA identity conjecture [SeC. 4.5
(p.[62)]. If this conjecture holds, it would prove to be a \afle tool for OA derivations, as
Th.[4.5.3 (p[&4) shows. In particular, it would immediatptpve the missing arrow directions
in that theorem. In Set. 4.5.2 (p.174), we studied severaiplesapproaches towards resolving
this conjecture and showed specific equations that, if tledg im all OMLs, would prove the
conjecture. Unexpectedly, the OA identity conjecture wamfl to be an instance of an infer-
ence due to von Neumann, Th. 7]2.6[(p.1118). Although von Neuns inference does not
itself hold in infinite dimensions, a study of its proof ancheequences might eventually shed
some light on the OA identity conjecture.

In Ch.[B (p[Z8), we reviewed in more depth the known equati@sed on states and vector-
valued states. Assisted by several computer programgaamber of finite OMLs (Greechie
diagrams) was searched, resulting in 17 previously unkneMats (Mayet-Godowski equa-
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tions) that are independent from all other kno#tH ) equations [Se€. 5.2.1 (p.189)].

In Ch.[6 (p.L10D), we explored two aspects of Hilbert spacegutay symmetry and su-
perposition, that might lead to new equations. While thestexice of any such equations is
still unknown, in Sec[_6.111 (2._1D4) we outlined a possiklehhique and showed a specific
conjecture which, if it holds in every OML, would lead to a neguation.

Finite-dimensional Hilbert spaces are important in quantemputation. In CH.17 (p_11L1),
we reviewed what is known about equations holding in finiteetisional¢’(H). In Th.[7.2.7
(p.[121), we proved that von Neumann'’s inference (menti@ede) is strictly weaker than the
modular law. In Sec¢. 713 (p._1R3), we reviewed the Arguesaan An open problem is to find
a smaller finite lattice counterexample showing that theu&sgan law is strictly stronger than
the modular law. An apparently new result is that higherordArguesian equations [Sdc. 7.4
(p.[140)] hold in finite dimensions, using a proof analogaue one for th@OA laws. Finally,
in Sec[ 7.5 (pl_140), we speculated on the possibility of thstence of an equation based on
Pappus’ law and presented the known literature attemptsairdirection.
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Appendix A

COMPUTER PROGRAMS

This appendix summarizes the main computer programs thmted with this work. The pro-
grams can be downloaded from the following web ditéa://us.metamath.org/#ql

With the exception ohortdL  [mentioned in Sed._A.10 (._169)pauty [mentioned in
Sec[A.l (p[146)], andhetamath [Sec.[A.12 (p[[160)], each program’s source code is self-
contained in a single, stand-alone file witltaextension. Only this source code file is publicly
distributed and must be compiled to run on the specific platfof interest. Each program
can be compiled with thgcc C-language compiler or equivalent, which is available forix,
Unix, Windows, and Macintosh computers. For example, tlogmamlatticeg.c can be
compiled using the command

gce latticeg.c -0 latticeg

from the computer’s command-line shell (also called thermamd prompt or terminal window).
Advanced users can apply various compiler optimizatioroogtto increase performance; these
are described by the help documentation for the particaarler version and platform.

Each program includes built-in documentation for its opereand options, which can be
displayed with thehelp option. For example, assumitegticeg.c was compiled as above
into the user’s current directory, the documentation camieked (on a Unix-type system)
with

Jlatticeg --help

On some systems, thd “” prefix may not be needed.

In the main text and in the section titles below, we have agedric ” to a program’s name
to indicate its source code file name, but in this appendix Weusually drop that suffix, which
is not used to invoke the compiled version.
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For brevity, we will not always show the detailed operatidralb of these programs, but it
should be straightforward to infer from their respectivep outputs along with studying the
examples that follow. The style is very similar to that of liteceg ~ program that we describe
in some detail below. In particular, the wff syntax for a pra@ requiring an equation as an
argument is identical to that fdatticeg

A.1 Program latticeg.c

The prograntatticeg ~ was our primary tool for testing to see whether or not an eqnéiolds
(passes) or doesn't hold (fails) in each lattice in a listadfites stored in an input file, with one
line per lattice in MMP format, which is described by Def. B $.[23) above. This program is
described in Ref. [73, p. 2395]. Because it is so frequergsdywe will go through it in some
detail along with some examples. The usage of the other anogjfollows a similar style.

Before we discushkitticeg , it is useful to mention that an exhaustive, isomorphiseefr
list of all possible Greechie diagrams of a given size canliiained with Brendan McKay’s
programnauty [71] [[72] [[73] [101]. This was often our starting point for éimg lattices with
desired characteristics. Typically we would passiidngy output through a series of Unix pipe
filters as described below.

The following listing is excerpted from théelp output oflatticeg . For simplicity, we
have shown only the options most frequently used. -halp output will show the complete
set of options for the interested reader.

latticeg.c - Orthomodular Lattice Evaluator for Greechie D iagrams
Usage: latticeg [options] <hyp> <hyp> ... <conclusion>
options:

-a - test all lattices (don't stop after first failure)
-v - show all visits to lattice points in a failure
-n <integer> - test only the <integer>th lattice
-f - show all failures in failing lattice
-1 - print one formatted line per diagram, mainly for piping
-i <file> - use Greechie lattices from <file> instead of the
built-in ones
-i - same as -i but using standard input instead of a file
-0 (--0) <file> - write (append) output to <file> as well
as screen
latticeg -p <integer> - print the program’s <integer>th lat tice
(you may use the -i and -0 [or --0] options with -p)
latticeg --help (or no argument) - print this message
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For expressing equations, the variable names may be anydasesletters other than o,
andv. The built-in unary and binary operations are each expdessih one of the remaining
characters. Wffs are expressed with ordinary notation, hickvunary operations use prefix
notation and binary operations use infix notation surrodrieparentheses. For example, the

wff ana=aVva’ is expressep"a)=(av--a) . The full details of the syntax are given in the
-help output, which we excerpt below:

Each <hyp> and the <conclusion> must be a <wff> defined as fol lows:

<var>

alblcldfelflglh[jlk[lI]m]|n]
plalrlsltiulwlx]|y]z
<opr> ="M |v|#|O|1]2]3|4]5

<const> =0 | 1 <uopr> = -
<term> := <var> | <const> | <uopr> <term> | ( <term> <opr> <ter m> )
<prel> == | < | > | [ <ucon> = ~

<bcon> =& |V |}|:
<wff> = ( <term> <brel> <term> ) | <ucon> <wiff>
| ( <wff> <bcon> <wff> )

where a,b,c,... are variables (no i,0,v); 0,1 are constants ; and
- = negation (orthocomplement)
A = conjunction (cap, meet, infimum)
v = disjunction (cup, join, supremum)
# = biimplication: ((X"y)v(-x"-y))
O = ->0 = classical arrow: (-xvy)
| = ->1 = Sasaki arrow: (-xv(x"y))
2 = ->2 = Dishkant arrow: (-yl-x)
3 = ->3 = Kalmbach arrow: (((-x*y)V(-x"-y))V(X(-xvy)))
4 = ->4 = non-tollens arrow: (-y3-x)
5 = ->5 = relevance arrow: (((X*y)V(-x"y))V(-x"-y))

and = is equality, < is less-than-or-equal, > is g.e., [ is com mutes:
X<y is (xvy)=y; x>y is y<x; X[y is x=((x"y)v(x"-y)).
Metalogical connectives: ~&,V,},; are NOT,AND,OR,IMPLI ES,EQUIVALENT.

The outermost parentheses of a <wff> are optional.

Predicate logic:

The present implementation has the following limitations:

1. No hypotheses may be present if quantifiers are used.
Use & (AND) and } (IMPLIES) in the conclusion instead.

2. The conclusion must be a <qwff> as defined below.
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3. No two quantifiers may be followed by the same variable.

We extend the wff syntax as follows:
<qwff> = <wff> | @ <var> <qwiff> | ] <var> <qwff>
where quantifier @ means "for all' and ] means "exists".

Thus the conclusion must be in prenex normal form, ie. with a Il
quantifiers at the beginning of the expression.

Example: ’latticeg "[x@y(z<(xvy))"
there is an x st for all y, z is le. xvy."

means “for all z (impl icitly),

The connective§, | , 2, 3, 4, and5 correspond to the implications of Def, 2.2.4[(pl 17). The
meaning of the other connectives should be apparent froitrstiteg above. A specific example
of a complex predicate logic equation in this syntax is pied by the superposition condition
given in the footnote to EQ. 6.83,[p. 110.

We will next show a simple example @tticeg  usage, which the reader may wish to re-
produce to verify the program is working as expected. Suppuosfilegodowski.oml contains
the following two lines:

123,345,567,789,9AB,BC1,2DG,6EG,AFG.
123,345,567,789,9AB,BCD,DEF,FG1,GHL,4IL,8JL,CKL.

These are the MMP encodings for the 3- and 4-spoke “wagonliMagtices of Fig[5.1 (p_7b).
We will test them against the 3-Go equation in the form of atance of Eq[(518), p._80:

((a—=b)A(b—c))A(c—a) <b—a (A.1)

In the syntax ofatticeg , this equation is expressed as
(((alb)Mblc))(cla))<(bla).

Thelatticeg ~ program invocation and output are as follows, wheriadicates the shell
input prompt:

$ latticeg -a -i godowski.oml '(((alb)Mblc))(cla))<(bl a)
The input file has 2 lattice(s).

(((alb)y\(blc))(cla))<(bla)

FAILED #1 (16/9/34) at (((AIEYMEIJ)MJIA))<(EIA)

Passed #2 (21/12/44)
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The-a option is important, for otherwise the program will stopeafthe first failing lattice is
found. As expected, the 3-Go equations fails in the 3-spdkeelvand passes in the 4-spoke
wheel. The failure message includes the nodal assignm#m t@riables where the first failure
occurred. To interpret the node names, we can use the command

latticeg -p 1 -i godowski.oml

which will show the correspondence between the node nantés iiailing assignment and the
atom names in the Greechie diagram.

The-v option shows all intermediate results of the failing assignt and lists the nodes,
atoms, and blocks not “visited” during the evaluation of thiing assignment.

latticeg -a -v -n 1 -i godowski.oml '(((alb)(blc))(cla)) <(bla)

In particular, the listing lets us know which blocks can bggied off of the Greechie diagram
without affecting the failure in order to find a smaller coenatxample. [Note that stripping
blocks will not necessarily produce a sublattice of theiogaglattice; see Th. 2.5.8 (p. 26). Thus
such smaller counterexamples must be carefully retestedter properties, such as continuing
to hold for other equations when that is important.] For eglanthe-v option was used to help
find the lattice of Figl_4J2(b) (j..50), which is a subset a miacher lattice of originally found
by Peres to be a Kochen-Specker set, a purpose apparentghatein unrelated to problem of
70A independence [34].

In conjunction with Unix scripts and pipes, tke option oflatticeg  and other programs
here provides a powerful tool for automating massive searoifi lattices with specific charac-
teristics. Thel option outputs each MMP-encoded Greechie diagram prefixdgoaypass/falil
indicator (and some other information such as the atom kblmaed node counts). This option
can be used to filter a list of Greechie diagrams for certaaradteristics (such as passing or
failing the 3-Go equation). For example, in the above casevaidd see

$ latticeg -i Ltmp -1 -a '(((xly)\ylz))NzIx))<(yIX)’
#1 (21/12/44) passed: 123,345,567,789,9AB,BCD,DEF,FG1, GHL,4IL,8JL,CKL.
#2 (16/9/34) failed: 123,345,567,789,9AB,BC1,2DG,6EG,A FG.

A script to filter out failing lattices would search (eggep ) for the string ‘passed: " then
remove the characters ending with that string, for passirthe next filter stage. (Other pro-
grams may have a different pass/fail prefix format with theoption; see thehelp for the
individual program.) Certain older programs, includiajceg , were not initially designed
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with such piping in mind and differ slightly from newer oneshat thei and-o options spec-
ify the input and output files. In newer programs, the inpuigsally taken from the standard
input and the output sent to the standard output, as is theeation for most Unix command-
line utilities. (The-help for each program will indicate the convention used.) Howesech a
“piped” mode can be emulated flatticeg ~ with the-i  option, as follows.

cat godowski.oml | latticeg -a --i -1 '(((xIy)Mylz))\(zIx N<(YIX) \
| grep 'passed: ' | sed -e '/A* | latticeg -a i -1 ...

If the-i or-i option is omitted, the program will test the equation agaswne built-in
internal lattices. This behavior, which is normally neveed, has its roots in early versions of
latticeg  which required hard-coded lattices before MMP encoding deagsed. Although it
is of historical interest only, we mention it so that the reradill not be confused if the or
-ioption is accidentally omitted.

A.2 Program lattice2g.c

The programiattice2g  is identical tolatticeg ~ except that it incorporates an improved al-
gorithm offering up to ten times speedup. From the user'speative, there is no difference
from latticeg , and the two programs can be interchanged in any script withodification
of the script. The reason for havifegtice2g  as a separate program is that the improved algo-
rithm is very complex and thus somewhat “risky” (althoughkmown bugs exist). The simpler
latticeg  provides an independent way to confirm the correctness dlterithm (and also
provides a way to benchmark the speedufattite2g ).

The algorithm used itattice2g  is described in Refl [84, Sec. 5].

A.3 Program beran.c

The programberan is used to simplify a one- or two-variable expression to aooaral form
that is equivalent in any OML. For example, to simplify thgeessiond’ vV (XA (X' V (xAY))),
we can use

$ beran (-xv(x (-xv(x"y))))
(xv(x(-xv(x"y)))) 78 (-xv(x"y)) (xly)
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This means the expression is equivalent'ta (x Ay) (which is the canonical form using prim-
itive connectives/, A, and’) andx—1Yy (which is an abbreviated form using the defined con-
nective—1). The number 78 means that it is the 78th out of 96 poss#slii, pp. 83—85].

In any OML, the validity of an equation with one or two varieblis decidable. We can use
beran to check the validity of such an equation. For example, takhbatx A (X' V (XAY))
equalxAyin an OML, we can use

$ beran '((x"(-xv(x"y))=(x"y))
((Axv(xy))=(x"y)) 96 1 1

If the result evaluates to 1, as above, the equation holds/iOdL; any other result means that
it doesn’t hold. Note that the entire equation must be sunded by parentheses siniogran
internally treatss as an operation rather than a binary relation.

A.4  Program lattice.c

The prograntattice  contains a series of built-in, hard-coded lattices thatatsmterexamples
of successively more general classes of lattices. The &tste that fails provides a rough
indication of the “strength” of an equation given to it. Thi®gram is very useful for providing
a crude, first-pass indication that, for example, a conjectwrthoarguesian law equivalent
passes in a Boolean lattice (eliminating many kinds of typphgical errors) and fails non-
orthoarguesian counterexamples. While it of course doepnowe the equivalence, it provides
a useful filter for promising candidates for which we can slkdor a proof. For example, all
of the 30A equivalents in Selc. 4.4 above[(p. 50) were firstkbaovithlattice  before their
detailed proofs were worked out.

The syntax for equations, as well as many of the options,lEesame as foatticeg
except that it does not have the ability to read lattices fesnexternal file but can only make
use of the built-in ones. For example, if we run it with the OMiv xA (X' V (XAY)) = XAy as
its equation argument, we see

$ lattice -a '(XN-xv(x"y)))=(x"y)
(X (xv(x"y))=(x"y)

Passed 2-valued Boolean
Passed MO2 (modular)

Passed Beran Fig. 15 (modular)
Passed MO3 (modular)

Passed Dishkant (modular)
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Passed Beran Fig. 12 (OA, non-modular)

Passed L42 (OA, non-modular)

Passed Mayet Fig. 5 (OM, OA, non-Go/Mayet)
Passed L38 (OM, non-OA)

Passed L36 (OM, non-OA)

Passed Godowski/Greechie L* (OM, non-OA)
Passed L38M (OM, non-OA)

FAILED 06 (WOM, non-OM) at (b"(-bv(b*a)))=(b"a)

FAILED Beran Fig. 9h (WOM, non-OM) at (b"(-bv(ba)))=(b"a)
FAILED Beran Fig. 9f (WOM, non-OM) at (b”(-bv(b*a)))=(b"a)
FAILED Beran Fig. 7b (WOM, non-OM) at (d"(-dv(d*a)))=(d"a)
FAILED Beran Fig. 11 (WOM, non-OM) at (d”(-dv(d"c)))=(d"c)
FAILED Rose-Wilkinsonl (WOM, non-OM) at (a(-av(a™b)))=( ab)
FAILED Beran Fig. 9g (non-WOM) at (c"(-cv(ca)))=(c"a)

FAILED Beran Fig. 7c (non-WOM) at (A™(-Av(A"d)))=(A"d)

FAILED McCune (non-WOM) at (a”(-av(a"b)))=(a"b)

FAILED McCune2 (non-WOM) at (b"(-bv(b™a)))=(b"a)

FAILED McCune3 (non-WOM) at (e”(-ev(e™a)))=(e"a)

FAILED Rose-Wilkinson2 (non-WOM) at (a’\(-av(a“b)))=(a"b )

The first 6 lattices above are OMLs, which the equation pass&s the rest are non-OMLSs.
Like with latticeg , the-a option means test against all lattices, otherwise it wothg ®n
the first failure, lattice O6 [Fid. 2l1a, [p.118].

The contents of the lattices, including the node names shothe failing assignments, can
be listed with thep option just as iratticeg . OA OM andWOMnean orthoarguesian [CH. 4
above (p[3l7)], orthomodular, and weakly orthomodular [L02e Beran figures are found in
Ref. [6]. For the Rose-Wilkinson lattices, see Refs. [1{DD6], and [113]. For the McCune
lattices, see Ref. [69], [102], [104], and [80]. For the Milatice, see Ref [65, p. 191]. For
L36, see Refl[76, p. 2360, Fig. 6(b)]. For L38m, see Rel. pr&366, Fig. 7(a)]. For L42, see
our Fig.[6.3 (p[C105) or Ref. [76, p. 2366, Fig. 7(b)]. Foy,Isee Ref.[[27, p. 247, Fig. (ll)] or
Ref. [76, p. 2366, Fig. 8(a)]. For L38, see Ref.l[76, p. 2364, &(b)]. For the Dishkant lattice,
see Ref.[[25, p. 16, Fig. 1]. For MO2 and MO3, see Ref. [14, B, Fgs. 1 and 2].

A useful feature ofattice  is that its equation parser incorporates operation prewede
(for example? binds more tightly tham) and the backquote ] may be used as a postfix oper-
ation in place of the prefix operationfor orthocomplementation. Since the other equation-
handling programs such datticeg  (currently) accept only the strict syntax described in
Sed Al attice  can be used to convert typed-in equations for use laftibeg . For exam-
ple,
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$ lattice -n 1 "xvy=xvx“\(xvy)

(Xvy)=(xv(-x"(xvy)))
Passed 2-valued Boolean

Here, lattice  has internally converted the flexible syntawy=xvx(xvy) into the strict
syntax (xvy)=(xv(-x"(xvy))) , Which it prints out before testing. That line can be copied
and pasted for use withtticeg . The operation precedence is documented in the last page of
thelattice -help output (under the headirtgguation preprocessing ), but it can also be
determined empirically just by looking at the convertedaen thatlattice  prints. (The-n

1 option above is used to suppress all lattice tests excefirsihe

A.5 Program hasse.c

The progranhasse is identical in behavior téattice  , but it takes the lattices (actually posets
in general) from an input file instead of using built-in laés. The input file encodes posets
using the covering table notation described by Figl 7.1 §8)1 The-help option provides
instructions for using it. (As of this writinghasse is still undergoing development and is not
yet ready for general use.)

A.6 Program latticego.c

For the general-purpose checking of whether an equatiafshola finite lattice, we primarily
usedatticeg  (Sec[A.1l), which tests an equation provided by the usenagailist of MMP-
encoded Greechie diagrams. While it has proved essent@litavork, a drawback is that
the run time increases quickly with the number of variableand size of the input equation,
making it impractical for huge equations.

But there is another limitation in principle, not just in ptige, for the use of thiatticeg
program. In our work with MGEs [SeC. 5.2 (p.]81)], we were jgaitarly interested in those
lattices having no strong set of states but on which all ofstinecessively strongerGos pass,
for all n less than infinity. This would prove that any MGE failing iratHattice is independent
from all n-Gos and thus represents a new result. [atieeg  program can, of course, check
only a finite number of such equations, and whdsecomes large the program is too slow to be
practical. And in any case, it cannot provide a proof, buy@vidence, that a particular lattice
does not violate-Go for anyn.
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Both of these limitations are overcome by a remarkable @lgorbased on dynamic pro-
gramming, that was suggested by Brendan McKay. This alguorivas incorporated into the
latticego ~ program, that is run against a set of lattices. No equatigivin to the program;
instead, the program tells the user the firédor which n-Go fails or whether it passes for all
The program runs very quickly, depending only on the sizénefibput lattice, with a run time
proportional to the fourth power of the lattice size (numbenodes)m, rather than increasing
exponentially with the equation size (number of variabfea$ with thdatticeg  program that
checks against arbitrary equations.

A detailed description of thiatticego  algorithm can be found in Ret. [82, Sec. 6]. For an
example of its use, assume the fjtelowba.oml contains the two 3- and 4-Go counterexamples
described in Se€._Al1, along with a third line with a simplat8m Boolean algebra:

123,345,567,789,9AB,BC1,2DG,6EG,AFG.
123,345,567,789,9AB,BCD,DEF,FG1,GHL,4IL,8JL,CKL.
123.

This file can be tested witlatticego  as follows:

$ latticego -i godowba.oml 100

The input file has 3 lattice(s).

#1 (16/9/34) FAILED 3-Go

#2 (21/12/44) Passed 3-Go, FAILED 4-Go

#3 (3/1/8) Passed n-Go for all n (converged at 5-Go)

The output ofatticego  correctly identifies the first two lattices as 3- and 4-Go ¢ertexam-
ples and the Boolean algebra as satisfyingo for alln. The parameten = 100 is simply an
upper limit (the highesh-Go) at which to terminate the program if “convergence” haget
occurred. More than= 10 has rarely (if ever) been observed, and 100 provides a very safe
margin.

A.7 Program loop.c

The programoop identifies loops [Defl_2.513 (jp._23)] that may occur in a Gheedaiagram.
The input to the program is a file containing a single Greedilagram in MMP encoding. The
program will list the loops that it finds.

For example, suppose the input fiig3.oml contains the line

123,345,567,789,9AB,BC1,2DG,6EG,AFG.
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This is the Greechie diagram for OML G3 in F[g. 5.3 81). Téwp program is run as
follows.

$ loop -i go3.oml
The input file has 1 lattice(s).
123,345,567,789,9AB,BC1,2DG,6EG,AFG. original
Starting block = 1
6 123,345,567,789,9AB,BC1. 2*D.G. 6*E.G. A*F.G.
7 213,345,567,789,9BA AFG,GD2. B*C.1* 6*E.G*
5 213,345,576,6EG,GD2. 7*8.9. 9.AB. B.C.1* AF.G*
7 123,345,576,6EG,GFA,A9B,BC1. 7*8.9* 2*D.G*
7 231,1CB,BA9,987,756,6EG,GD2.  3*4.5* A*F.G*
5 231,1CB,B9AAFG,GD2. 3*45. 5.6.7. 7.8.9* 6.E.G*
Starting block = 2
Starting block = 3
5 657,789,9BAAFG,GE6. 1.2.3. 3.45* B*C.1. 2.D.G*
Starting block = 4
Starting block
Starting block
Starting block
Starting block
Starting block

5
6
7
8
9

The three ways that this Greechie diagram is drawn in[Eigwa8 determined using the first
three loops shown above. Let us look at the first loop, whighesponds to the center diagram
in Fig.[5.3.

6 123,345,567,789,9AB,BC1. 2*D.G. 6*E.G. A*F.G.

The 6 indicates the loop size is 6. The stritig3,345,567,789,9AB,BC1. is an MMP en-
coding for that loop, a hexagon. The next three stri@¢3,G. , 6*E.G. , andA*F.G. , are the
remaining lines (blocks) that are not part of the loop andram@nally drawn inside of it. A
means that the line is connected to the loop itself. The &@ambviously common to all three
internal lines. The result is that the wagon wheel is esaliythe only way that the Greechie
diagram can be drawn given this outer loop.

Note: loop may occasionally be calleldopbig in some documentation. The program
loopbig was an enhancement to an older versiotogé to handle larger Greechie diagrams,
but it has been renamémbp and supersedes the original one.
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A.8 Program oagen.c

Theoagen program generates tih©A law in the format needed by programs suclatiseg
These equations are very long for largeand this program eliminates the possibility of a typo-
graphical error when typing th&A law by hand.

By default,oagen generates theOA according to the recursive formula of Eg. (4.24), d. 44.
Also by default, the output is a single long line, but time option indents the outer levels of
the equation for easier reading. For example, the 50A lawbegoroduced as follows. Recall
from Sec[A.d (p_147) that, *, -, andl meanv, A,’, and—1 respectively.

$ oagen -n 5 -in
((ale)™
(
(
(((ale)™(ble))v((-ale)(-ble)))v(
(((ale)™(cle)v((-ale)™(-cle)))"
(((ble)™(cle)v((-ble)(-cle)))v(

((ale)™(die))v((-ale)(-dle))v(
((ale)*(cle))v(-ale)*(-cle)))"
((dle)*(cle)v((-dle)*(-cle))))"

((ble)"(die))v((-ble)™(-dle))v(
(((ble)"(cle)v((-ble)(-cle)))*
(((dle)"(cle)v((-die)*(-cle))))<(ble)

For faster computations iatticeg , etc., thesh option generates a shorter equivalent to
thenOA law given by Eq.[(4.68), p. 52.

$ oagen -n 5 -in -sh
("
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(("d)v((ble)"(dle))v(
((b*c)v((ble)*(cle)))
((@*c)v((dle)*(cle)))

N

M))<(-ale)

A discussion comparing the sizes of the long and short vessian be found in Ref. [34,
Sec. 5].

A.9 Program states.c

The states program is primarily used to check whether or not an input Ofifi_Lthe form
of an MMP-encoded Greechie diagram) admits a strong seatés{Def[2.413 (d.22)]. A
description of its algorithm, which makes use of the lingagpamming algorithm, is described
in Ref. [82, Secs. 4].

For example, suppose the fétetest.oml has the following lines:

123.
123,345,567,789,9AB,BC1,2DG,6EG,AFG.

corresponding to the32Boolean algebra and the wagon wheel of Fig] 5.1(a) (p. 79).cve
test to see if these admit a strong set of states as follows:

$ Jstates -i statestestoml -m s -a

The input file has 2 lattice(s).

#1 (3/1/8) has a strong set of states

#2 (16/9/34) There is no state m st. (m(G) =1 =>m@) = 1) => G = < 4

The option-m s means “strong set of states” mode, aad means don't stop on the first
Greechie diagram with admitting no strong set of states. ¥®eted, the Boolean algebra
admits a strong set of states, but the wagon wheel does not.

When an OML that does not admit a strong set of states is faheeljs option can be used
to generate a condensed state equatioh (p. 83). This faatdescribed in Ref. [82, Secs. 5]
and was used to obtain the condensed state equations ixagimpée, Tablé 512 (. 91). As an
example of how this works for the wagon wheel lattice,

$ Jstates -i statestestoml -m s -a -gs

The input file has 2 lattice(s).

#1 (3/1/8) has a strong set of states

#2 (16/9/34) 123,345,567,789,9AB,BC1,2DG,6EG,AFG.

Raw st eq: 13+57+9B=35+79+B1

State eqn: ab+cd+ef=hc+de+fa

#2 (16/9/34) There is no state m st. (m(G) =1 =>m@) = 1) => G = < 4
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The condensed state equatiain+ cd+ ef = bc+ de+ fa corresponds exactly to the 3-Go
equation|[105, p. 776, Eq. (51)].

The states program also implements the detection of other kinds okstaa full set of
statesl|[64, p. 370] [5], a non-dispersive (0/1) set of sjatestates at all, one state, and integer-
valued (i.e. group-valued for grouf) states|[36]/[36].[88]/[90]. These other modes are doc-
umented in thehelp listing. For the special case of non-dispersive stateslétie of which
can indicate a Kochen-Specker set), the specialized progiedes01l runs several orders of
magnitude faster.

A.10 Program subgraph.c

An MMP encoding of a Greechie diagram [see Def. 2.5.6 (p. BI)pt unique. For example,
123,345. andzA9,27A. represent the same Greechie diagram. The proguagnaph checks
to see whether one MMP-encoded Greechie diagram (or moer@snany hypergraph) is a
subgraph of a “reference” diagram. In particular, when lidfgrams have the same size, it
checks to see whether they are isomorphic i.e. correspotiie ttame Greechie diagram.
Thesubgraph program has a number of modes allowing different combinatmf inputs,
to allow for example checking many potential subgraphsrega reference or checking one
potential subgraph against many references. -hhlp option provides the details for the
different modes. Here, we will show how to test the above gtanSuppose the filiest.oml
has the two lines

ZA9,27A.
123,456.

To find out if these are subgraphs (in this case, isomorphit2®)345. , we can rursubgraph
as follows.

$ subgraph -r 123,345. < test.oml
The reference diagram is:
123,345.
#1 zA9,27A.
Isomorphism:  ref block #s, ref blocks, map to input block ato ms:
1 2
123,345.
Z9AA27.
Backtrack count = 0
#2 123,456.
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The above input diagram is not a subgraph of the reference.
Backtrack count = 3
Total diagrams = 2 Total backtrack count = 3 CPU time = 0.03 s

Note that the atoms of the MMP encodin&p,27A. are re-ordered under the reference diagram
so that the one-to-one mapping of the isomorphism can easibeen.

When isomorphic hypergraphs must be filtered from a veryelagilection subgraph may
be too slow, and Brendan McKay’s much faster progswortdL  [83] [108] can be used in-
stead. An additional benefit is that all input hypergraplescamverted to a unique, canonical
MMP encoding that can later be used to compare MMP encodingstly—indeed that is how
shortdL works: after converting all input MMP encodings to a canahform, it sorts them
and filters out duplicates.

A.11 Program mmpstrip.c

The mmpstrip program is conceptually simple, in that produces all pdsssbhbgraphs of a
Greechie diagram (or any hypergraph generally). It hastagat of options such as random
sampling when the output set would otherwise be too largeusAgl,mmpstrip -help  de-
scribes its operation and options. The algorithm and featare described in Ref. [83].

While its primary purpose is to assist in the search for newhém-Specker vector sets, it
can also be useful for other purposes. For example, we darostrblocks one at a time from an
OML to see whether some desired property, such as providiogaterexample to an equation,
continues to hold, in order to potentially reduce the sizthefcounterexample. It was used to
assist the discovery [34] of a simpler counterexample thasps 60A but fails 70A, shown in
Fig.[4.2(b) (p[5D).

A useful feature ofmmpstrip is the-b0 mode, meaning strip no blocks, which simply
reproduces the input file with the side effect of renumbetirggatoms in the MMP encoding,
without any gaps in the numbering. For example, supposeldiedi.oml  has the two lines

ZA9,27A.
123,456.

The first MMP encoding is not acceptable to the current varsiocertain programs such as
loop , which require that atoms be numbered without gaps. (THisidacy is due to an early
definition of MMP encoding that required gap-free atom nunmugg and eventually it will be
removed in future versions.)
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$ mmpstrip -b0 < test.oml
123,452.
123,456.

2 line(s) were output.

Here,zA9,27A. was renumbered to becorh23,452. , which has no gaps in the atom number-
ing and thus is acceptable lmp . It is important to be aware, though, that this is not a unique
canonical form for the MMP encoding. To accomplish that, e ose thehortdL program,
described in Se€. _A.10 (p.159).

The options ommpstrip  follow a slightly different convention from other prograrnmsthat
there is no space between an option and any argument. Fopexamstrip 1 block we would
use the optiorbl and notb 1. The-help option will clarify any such confusion.

A.12 Program metamath

A long-term goal is to formalize the proofs involved in theeastruction of Hilbert space and
verify them rigorously with an automated proof verifier. $kwould provide us with certainty
that the construction is correct. The reconstruction iy wemplex, and errors exist in some
of the literature. In addition, several pieces of the retmesion exist only as informal proof
sketches; while it is hoped that they have no gaps that carfitied in, this can be known with
certainty only by actually filling in those gaps.

The major theorem provers that exist today are outlinederbtbok The Seventeen Provers
of the World [74]. Several can in principle be be used to ydfie reconstruction, among them
Metamath (which was developed by this author), Coq, HOLhéd#la, and Mizar. (This is not
necessarily an exhaustive list of suitable provers butesgrts some that this author has some
knowledge of. Some of the 17 provers such as Otter, while rtapband useful in their own
right, are primarily intended to prove stand-alone theaefffirst-order logic rather than work
with large integrated bodies of mathematical knowledge.)

In any case, it is possible that the reconstruction will befieel with Metamath at some
point in the future. Most of the prerequisites, includingedinition and development of Hilbert
space, already exist in Metamath'’s set theory databadedsat.mm .

There are several programs, developed by this author amusptthat can be used to de-
velop and verify Metamath proofs. The most important onesnatamath andmmj2. The
first is described in depth in Ref. [75]; the second is a gregdhinterface program for devel-
oping Metamath proofs and is available, along with docuie#on, at the Metamath web site,
http://metamath.org
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The metamath program is not normally run as a single command from the dipgrays-
tem’s shell but has an interactive shell of its own with whilee user builds and verifies proofs.
It is invoked from the command line with a single argumentssting of the file name of an
ASCII database of theorems written in the Metamath langu&ge example, the set theory
databaseet.mm is opened as follows:

$ metamath set.mm

Metamath - Ver. 0.07.59 11-Dec-2010 Type HELP for help, EXIT to exit.
MM> read "./mm/set.mm"

Reading source file "set.mm"...

185648 lines (9720724 characters) were read from "1.tmp".

The source has 49102 statements; 908 are $a and 12411 are $p.

No errors were found. However, proofs were not checked. Type

VERIFY PROOF * if you want to check them.

MM>

The user can typkelp for a description of the many commands that are availablee¥ample,
to verify the proofs of all 12411 theorems currentlysgt.mm ,

MM> verify proof *

0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
All proofs in the database were verified in 4.29 s.

MM>

An example of atheorem in tiset. nm database is callaghcom and states that the union of two
classes commutes. To see this theorem and its proof, we egheifollowing two commands.

MM> show statement uncom /comment

"Commutative law for union of classes. Theorem 21 of [Suppes ] p. 27"
8099 uncom $p |- (Au. B)=(Bu A)$= ..3

MM> show proof uncom /lemmon/renumber

1 orcom $p|-((xe AVxeB)<>(xeBVxe A))
2 elun $p|-(xe. (AuB)<>(xe AVxeB))

3 elun $p|-(xe. (BuA)<>(xeBVxe A))
4123 3bitrdi $p |- (xe. (AuB)<>xe (BuA))

5 4 eqriv $pl-(AuB)=(BuA)

MM>

In the above listinge. is set membershig. The tag$p means the statement to the left is a
theorem (as opposed $a, which means axiom or definition). In step 4, steps 1, 2, anck3 a
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assigned to the hypotheses of staten3eittdi  , which chains three logical equivalences. The
proof can be drilled down as far as desired with successio® statement andshow proof
commands applied to the statements in the proof listing.

The above examples give a quick flavor of thetamath program, but it is not our purpose
here to document it in detail. The interested reader cam tefeef. [75].
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