Movre Šapić, Iva

Doctoral thesis / Disertacija

2011

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: **University of Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet**

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:114858

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-26

Repository / Repozitorij:

Repository of the Faculty of Science - University of Zagreb

Sveučilište u Zagrebu

PRIRODOSLOVNO-MATEMATIČKI FAKULTET FIZIČKI ODSJEK

Iva Movre Šapić

VIBRACIJSKA DINAMIKA I STRUKTURA ORGANOSILANA

DOKTORSKI RAD

University of Zagreb

FACULTY OF SCIENCE DEPARTMENT OF PHYSICS

Iva Movre Šapić

VIBRATIONAL DYNAMICS AND STRUCTURE OF ORGANOSILANES

DOCTORAL THESIS

Sveučilište u Zagrebu PRIRODOSLOVNO-MATEMATIČKI FAKULTET FIZIČKI ODSJEK

Iva Movre Šapić

VIBRACIJSKA DINAMIKA I STRUKTURA ORGANOSILANA

DOKTORSKI RAD

Mentor: Prof. dr. sc. Vesna Volovšek

University of Zagreb

FACULTY OF SCIENCE DEPARTMENT OF PHYSICS

Iva Movre Šapić

VIBRATIONAL DYNAMICS AND STRUCTURE OF ORGANOSILANES

DOCTORAL THESIS

Supervisor: Prof. Vesna Volovšek

Sažetak

Obzirom na veliku važnost organosilanskih spojeva u brojnim procesima, cilj ovog rada je za odabrane primjere, aminopropilsilantriol (APST) i 3-glicidoksipropiltrimetoksisilan (GPTMS), napraviti potpunu vibracijsku i konformacijsku analizu molekula pomoću snimljenih Ramanovih i infracrvenih spektara te teorijskih proračuna. Poznavanje vibracijskih spektara molekula APST i GPTMS nužno je za dobro razumijevanje njihovih interakcija i s anorganskim i s organskim spojevima što otvara mogućnosti stvaranja novih materijala sa željenim svojstvima.

Teorijska analiza molekula napravljena je pomoću programskog paketa GAUSSIAN03, na temelju teorije funkcionala gustoće (DFT). Skeniranjem plohe potencijalne energije molekule APST-a nađene su dvije konformacije, *trans* i *gauche*. Također je nađena stabilna struktura dimera načinjenog od dvije *trans* molekule. Usporedbom izračunatih i skaliranih vibracijskih frekvencija, Ramanovih aktivnosti i infracrvenih intenziteta s izmjerenim Ramanovim i infracrvenim spektrima napravljena je asignacija tih spektara. Nađene su vrpce karakteristične za svaki konformer i za dimer. Skeniranjem plohe potencijalne energije molekule GPTMS-a nađeno je sedam konformera. Napravljena je asignacija vibracijskih spektara i nađene su vrpce karakteristične za pojedine skupine konformera. Proučavanje temperaturne ovisnosti integriranih Ramanovih intenziteta omogućilo je precizniju asignaciju pojedinih vrpci.

Također je napravljena numerička i vibracijska analiza mogućih struktura APST polimera, kubične i ljestvaste. Nađene su vrpce karakteristične za siloksanske veze u ljestvastoj strukturi.

Proučavani su vibracijski spektri APST polimera dobivenih u različitim uvjetima te temperaturna ovisnost polariziranih spektara APST polimera u području malih valnih brojeva. Pokazalo se da je struktura s najboljim uređenjem ona dobivena postepenom polimerizacijom, bez utjecaja okoline (temperatura, elektromagnetsko zračenje, podloga), a to je ljestvasta strukutura pri čemu su u spektru opažene samo vrpce karakteristične za *trans* konformer. Analiza bozonske vrpce ukazuje na postojanje srednje uređene strukture.

Ključne riječi: aminopropilsilantriol, 3-glicidoksipropiltrimetoksisilan, polimerizacija, DFT, vibracijski spektri, konformacije

Summary

Organosilanes are widely used in many industrial processes. The goal of this thesis is to make a complete vibrational and conformational analysis of aminopropylsilanetriol (APST) and 3-glycidoxypropylmethoxisilane (GPTMS), by using Raman and infrared spectra in combination with theoretical calculations. Reliable assignment enables us to follow and understand changes influenced by different variables like temperature, ultraviolet radiation and substrate.

Chapter one is an introductory chapter, describing the importance of organosilanes through some examples from the literature. It briefly describes what is the experimental part of work and where was it done, and which theory was used for numerical calculations.

Density functional theory is the basic theoretical background for numerical calculations done in this work. Development and new achievements of the theory are described in chapter two, along with the choice of basis functions and functionals best suited for calculations of molecular structure and vibrations. Those basis functions and functionals were used in GAUSSIAN03 program package.

Experimental setup is described in chapter three. Water solutions of the molecules were purchased from a chemical company and we performed polymerization processes under different conditions. Second part of this chapter describes the instrumental setup for collecting the Raman and infrared spectra.

Vibrational dynamics and structure of APST, GPTMS and aminopropylsiloxane (APS) were described in the fourth chapter. First part describes the analysis of aminopropylsilanetriol. Potential energy scanning was done for the H-O-Si-C dihedral angle. Structure with the lowest potential energy was optimized by all geometrical parameters and *trans* conformer was obtained. *Trans* conformer was then taken as the basic structure for the potential energy scanning for the Si-C-C-C dihedral angle and *gauche*, one more stabile conformer, was obtained. Potential energy scanning was also done for the dimer made of two *trans* conformers, for the Si-O-Si-C dihedral angle. Structure with the lowest energy was optimized. For both *trans* and *gauche* conformers and for dimer vibrational frequencies, Raman activities and infrared intensities were calculated. Scaled calculated frequencies were compared with the measured infrared and Raman spectra of aqueous solution in order to make spectral assignation of APST molecule. Characteristic bands were found in the Raman spectra

for *trans* (1050 cm⁻¹ and 453 cm⁻¹) and *gauche* (1070 cm⁻¹ and 490 cm⁻¹) conformers and for dimer (in IR 1025 cm⁻¹ and 534 cm⁻¹).

Second part of the fourth chapter describes analysis the 3of glycidoxypropilmethoxysilane. Potential energy scanning was done for three most sensitive dihedral angles: Si-C-C-C, C-C-O and O-C-C-O. Seven stabile conformers were found (1ttg, 2-gtg, 3-gtg, 4-tgg, 5-tgg, 6-ttg and 7-ttt) named after the orientation of scanned dihedral angles. Conformer with the lowest energy was 6-ttg. Assignation of vibrational spectra of GPTMS molecule was done, revealing several bands characteristic for groups of conformers. Comparison of potential energy distribution for all conformers shows that changes in molecular structure influence normal modes. Monitoring the temperature dependence of the integrated Raman intensities of liquid sample enabled us to assign the Raman bands at 642 cm^{-1} and 1466 cm^{-1} to the lowest energy conformer 6-*ttg*, and the bands at 612 cm^{-1} and 1456 cm^{-1} to the 3-gtg conformer. The population ratio between these two conformers in the liquid phase rises from 3.29 at room temperature to 5.56 at 203 K.

Third part of the chapter four analyses APST polymer, aminopropysiloxane (APS). Raman and infrared spectra of APS polymerized at PVC substrate, at room temperature are studied. Assignation of vibrational spectra was made by comparison with vibrational frequencies calculated using DFT theory. Calculations were performed for two different conformations created from silicon-oxygen ring-like structures: ladder-like structure and cubic structure. Two-ring structure was used for structural and vibrational calculations of APS. Dependence of geometrical parameters and vibrational frequency on the number of subunits in the ladder structure was also investigated. It was found that the width of the vibrational bands is increasing with the number of the subunits. Raman band at 1145 cm⁻¹ was found to be the characteristic band for ladder structure.

Influence of different conditions on polymerization of APST molecule is described in chapter five. In order to investigate influence of the temperature, polymerization was performed at three different temperatures (8°C, 23°C and 60°C). Influence of electromagnetic radiation was studied at sample polymerized at dark, and two samples exposed to wavelengths of 365 nm and 254 nm. For investigation of substrate influence solidification was performed on teflon, PVC, glass, brass and silica. Raman spectrum was taken for each polymerized sample. Differences in spectra were observed only at characteristic spectral lines of conformers. Best ordered structure was found to be the one polymerized at PVC substrate, at room temperature and in dark. Those samples only have bands characteristic for *trans* conformer, and Si-O-Si band has the highest intensity.

Chapter six describes temperature dependence of polarized low wavenumber Raman spectra of APST polymer. That part of the spectrum contains information of macromolecular structure of amorphous materials. Spectra were recorded at different temperatures, from 300 K to 78 K, and in spectral range from 650 cm⁻¹ to 10 cm⁻¹. In low wavenumbers region (20 cm⁻¹ to 200 cm⁻¹) spectra contain broad, asymmetric continuous band, characteristic boson peak, revealing the persistence of medium range order in disordered APST polymer. On the other hand, optical anisotropy of the sample and polarized vibrational bands at 454 cm⁻¹ and 522 cm⁻¹ would suggest ladder-like layered structure oriented parallel to the plane of growth.

Chapter seven gives conclusions of the work followed by the reference list.

<u>Sadržaj</u>

1. Uvod	1
2. Teorija funkcionala gustoće	4
2.1. Teorijska pozadina	5
2.1.1. Bazne funkcije i funkcionali	
2.2. Primjena teorije funkcionala gustoće	
2.3. Skaliranje	
3. Eksperimentalni dio	14
3.1. Priprema uzoraka	14
3.2. Spektroskopske metode	15
3.2.1. Ramanovi spektri aminopropilsilantriola	15
3.2.2. Ramanovi spektri 3-glicidoksipropiltrimetoksisilana	15
3.2.3. Infracrveni spektri	16
4. Vibracijska dinamika i struktura	17
4.1. Aminopropilsilantriol APST	17
4.1.1. Računski dio	17
4.1.2. Skaliranje	
4.1.3. Vibracijska analiza	24
4.2. 3-Glicidoksipropiltrimetoksisilan GPTMS	
4.2.1. Računski dio	
4.2.2. Vibracijska analiza	
4.2.2.1. Karakteristične vrpce konformera	

Sadržaj

4.3. Aminopropilsiloksan APS	
4.3.1. Računski dio	
4.3.2. Geometrijska struktura	
4.3.3. Vibracijska analiza	
5. Ovisnost strukture APS-a o uvjetima polimerizacije	
5.1. Rezultati i diskusija	
5.1.1. Utjecaj temperature	
5.1.2. Utjecaj elektromagnetskog zračenja	
5.1.3. Utjecaj podloge	71
6. Temperaturna ovisnost Ramanovih spektara APS-a	74
6.1. Teorija i rezultati	
7. Zaključak	
Literatura	

1. Uvod

Organosilani su kemijski spojevi koji za bazu posjeduju silicij i imaju barem jednu ugljik-silicij (CH₃-Si-) vezu. C-Si veza je vrlo stabilna i vrlo nepolarna. Organosilani imaju dvostruku reaktivnost u jednoj molekuli, i anorgansku i organsku [1]. Upravo ta dvostruka reaktivnost čini ih vrlo interesantnima u raznim industrijama: elektronike, ljevaonicama smole, u proizvodnji ljepila i brtvila, staklenih vlakana/tkanina, mineralnih punila, boja i premaza, lijekova, pigmenata, silikona, tekstila, duromernih smola, žica i kablova. Organosilani se mogu prikazati sljedećom formulom: R-(CH₂)_n-Si-X₃. Pri tome X predstavlja grupu koja se može hidrolizirati, obično je to alkoksi grupa. Hidrolizom nastaju silanoli, koji su vrlo reaktivni. Oni se lako vežu s drugim silanolnim skupinama, primjerice na površini silicijskih punila, i tako stvaraju siloksanske veze (Si-O-Si). Stabilni produkti nastaju i prilikom vezanja silanola s oksidima aluminija, cirkonija, kositra, titana i nikla. Manje stabilne veze nastaju s oksidima bora, željeza i ugljika. No oksidi alkalnih metala i karbonati ne daju stabilne produkte reakcije sa silanolima. Na drugom kraju molekule, R predstavlja nehidrolizabilnu organofunkcionalnu grupu, primjerice amino, vinil, epoksi, alkil ili fenil koja reagira s organskim materijalima.

Osim te dvostruke funkcionalnosti kojom se povezuju dvije najčešće nespojive faze, organosilani se mogu i međusobno spojiti stvarajući tako siloksanske polimere, s obzirom na to da svaka molekula obično ima po tri hidrolizabilne skupine spojene na atom silicija.

Organosilani se najčešće primjenjuju kao promotori adhezije, odnosno veziva. U funkciji veziva organosilani se koriste kao dodaci smolama, u pripremi površina za punila [2-4], optička vlakna [5], poluvodiče ili metale. Anorganska punila se pomoću organosilana povezuju u polimerne matrice. Tipična punila su kalcij-karbonat, staklena vlakna, magnezij-

hidroksid (talk), kaolin, volastonit (CaSiO₃), silika te aluminijtrihidrat (ATH) [6]. Punila se dodaju kako bi se smanjili troškovi proizvodnje polimera (CaCO₃, talk), kako bi polimeri bili čvršći i krući (staklena vlakna, CaCO₃) ili kao inhibitori vatre (ATH). U većini slučajeva punila nisu kompatibilna s polimerom pa se njihovim dodavanjem u velikim udjelima, smanjuju kvalitete polimera, npr. mogućnost produljenja polimera prilikom pucanja, te fleksibilnost i čvrstoća polimera. Ti problemi će se premostiti dodavanjem veziva, koji osiguravaju dobru povezanost punila s polimernom matricom i tako poboljšavaju svojstva mješavine punila u polimernoj matrici.

Organosilani se također koriste za modifikaciju epoksi smola. W. G. Ji i suradnici pokazali su da zaštitni pokrovi od epoksi smole koji su modificirani organosilanima (posebice s 3-glicidoksipropiltrimetoksisilanom) znatno bolje prianjaju na podlogu i pokazuju bolju zaštitu podloge od korozije [7]. Novija istraživanja pokazala su i kako se organosilani (posebice aminosilani) mogu koristiti i u biologiji, primjerice za *protein patterning* (eng.), izuzetno važnu i obećavajuću tehniku za biološke aplikacije. *Protein patterning* je postupak imobilizacije proteina na krutu podlogu [8]. Pri tome je najstabilniji način povezivanja kovalentnim vezama. Upravo organosilani mogu poslužiti kao dodirna površina između anorganskih krutina i biomaterijala. Amino grupe su pri tome korištene za imobilizaciju proteina.

U ovom radu biti će opisani aminosilani i epoksisilani, odnosno aminopropilsilantriol (APST) i 3-glicidoksipropiltrimetoksisilan (GPTMS) kao njihovi najčešće korišteni predstavnici.

Pomoću teorije funkcionala gustoće izračunate su optimizirane molekulske geometrije, krivulje potencijalne energije u ovisnosti o torzijskim kutovima, valni brojevi koji odgovaraju normalnim modovima vibracija, Kartezijeve harmonijske konstante sila, infracrveni intenziteti, Ramanove aktivnosti te depolarizacijski omjeri za molekule APST, GPTMS i njihove konformere te određene strukture APST polimera. Pri tome je korišten programski paket Gaussian 98 (i 03) [9] u koji je implementirana teorija funkcionala gustoće.

Eksperimentalni dio ovog rada napravljen je u najvećem dijelu u suradnji s dva laboratorija Instituta Ruđer Bošković: Laboratorij za molekulsku fiziku i Laboratorij za molekulsku spektroskopiju. Ramanovi spektri snimani su na Dilor Model Z24 spektrometru s trostrukim monokromatorom povezanim s IBM AT računalom. Korišten je argonov ionski laser Coherent INNOVA-100 Model s valnom duljinom pobude 514,5 nm. FT infracrveni spektri svih uzoraka snimani su koristeći KBr pastile na Bruker Equinox 55 FT infracrvenom spektrometru s germanijevom diodom kao detektorom i volframovom halogenom svjetiljkom kao izvorom.

Istraživanja iz ovog rada objavljena su u većem dijelu u znanstvenim radovima:

L. Bistričić, V. Volovšek, V. Dananić, I. Movre Šapić, Spectrochim. Acta A 64 (2006) 327-337.

V. Volovšek, L. Bistričić, V. Dananić, I. Movre Šapić, J. Mol. Struct. 834-836 (2007) 414-418.

V. Volovšek, L. Bistričić, K. Furić, V. Dananić, I. Movre Šapić, J. Phys.: Conference Series 28 (2006) 135-138.

I. Movre Šapić, L. Bistričić, V. Volovšek, V. Dananić, K. Furić, Spectrochim. Acta A 72 (2009) 833-840.

2. Teorija funkcionala gustoće

Proračuni iz ove disertacije rađeni su pomoću programskog paketa Gaussian 98 (03) [9]. Teorijska metoda koja je implementirana u taj programski paket i koju smo koristili je teorija funkcionala gustoće (eng. *Density Functional Theory*, DFT) [10-12]. U kojoj mjeri je DFT metoda doprinijela razvoju znanosti dovoljno govori činjenica da je 1998. godine Nobelova nagrada iz kemije dodijeljena Walteru Kohnu [13], idejnom osnivaču DFT metode i Johnu Popleu [14] za implementaciju DFT metode u proračunske programe. J. Pople je sa svojim timom razvio programski paket Gaussian.

DFT je jedan od najpopularnijih i najuspješnijih pristupa rješavanju kvantnomehaničkih problema. Danas se već rutinski primjenjuje u izračunima primjerice struktura krutih tijela u fizici te energija vezanja molekula u kemiji. Prve primjene se javljaju i u područjima koja nisu tako usko povezana s kvantnom mehanikom, primjerice mineralogija [15,16] i biologija [17-19]. Pomoću DFT metode već su proučavana i magnetska svojstva slitina [20-22], supravodljivost [23,24], relativistički efekti u teškim elementima [25,26], vodene otopine [27,28].

Ta raznolikost u primjeni moguća je zbog općenitosti temeljnih koncepata i fleksibilnosti u implementiranju istih. Unatoč toj fleksibilnosti i općenitosti, DFT ima čvrstu teorijsku podlogu.

2.1. Teorijska pozadina

Osnovnu ideju DFT metode iznijeli su Hohenberg i Kohn u svom radu "Inhomogeneous electron gas" [29]: svojstva višeelektronskog sustava u osnovnom stanju mogu se opisati pomoću elektronske gustoće umjesto pomoću valnih funkcija. Nerelativistička Schrödingerova jednadžba za sustav mnoštva čestica, odnosno sustav s N elektrona, glasi

$$\left[\sum_{i}^{N} \left(-\frac{\hbar^{2} \nabla_{i}^{2}}{2m} + \mathbf{v}(\mathbf{r}_{i})\right) + \sum_{i < j} U(\mathbf{r}_{i}, \mathbf{r}_{j})\right] \psi(\mathbf{r}_{1}, \mathbf{r}_{2}, ..., \mathbf{r}_{N}) = E \psi(\mathbf{r}_{1}, \mathbf{r}_{2}, ..., \mathbf{r}_{N}).$$
(1)

Smatra se da jezgre miruju zbog njihove puno veće mase od mase elektrona i svi stupnjevi slobode jezgara javljaju se samo u sklopu potencijala¹ v(\mathbf{r}) tako da valna funkcija ovisi samo o koordinatama elektrona (Born-Oppenheimerova aproksimacija). Pri tome je $U(\mathbf{r}_i,\mathbf{r}_j)$ elektron-elektron interakcija koja za Coulombski sustav kakav imamo ovdje, ima oblik:

$$\sum_{i < j} U(\mathbf{r}_i, \mathbf{r}_j) = \sum_{i < j} \frac{q^2}{|\mathbf{r}_i - \mathbf{r}_j|} \equiv \hat{U}.$$
(2)

Operator \hat{U} isti je za bilo koji sustav čestica s Coulombskom interakcijom kao što je i operator kinetičke energije isti za sve nerelativističke sustave:

$$\hat{T} = -\frac{\hbar^2}{2m} \sum_i \nabla_i^2 \,. \tag{3}$$

Za promatrani Coulombski sustav vrijedi

$$\hat{V} = \sum_{i} v(\mathbf{r}_{i}) = \sum_{ik} \frac{Z_{k} eq}{|\mathbf{r}_{i} - \mathbf{R}_{k}|},$$
(4)

pri čemu suma po k predstavlja sumiranje po svim jezgrama u sustavu. Pri tome zapravo samo prostorni raspored jezgara (\mathbf{R}_k) razlikuje molekulu od krutog tijela. Jedina razlika između kvantnomehaničkog sustava s jednom česticom, koji je potpuno rješiv Schrödingerovom jednadžbom, i sustava mnoštva čestica koji je nemoguće riješiti direktnim rješavanjem Schrödingerove jednadžbe, je u operatoru \hat{U} . I to je iskorišteno u DFT metodi.

Postupak rješavanja Schrödingerove jednadžbe je sljedeći: kreće se od odabira potencijala $v(\mathbf{r})$, koji određuje sustav. Taj se potencijal uvrsti u Schrödingerovu jednadžbu (SE), koja se zatim riješi i kao rješenje dobiva se valna funkcija ψ . Pomoću valne funkcije mogu se izračunati observable tako da se izračuna očekivana vrijednost operatora s dobivenom valnom funkcijom. Cijeli postupak može se i shematski prikazati:

¹ Uobičajeno je nazivati to potencijalom iako se zapravo radi o potencijalnoj energiji.

$$v(\mathbf{r}) \xrightarrow{SE} \psi(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N) \xrightarrow{\langle \psi | ... | \psi \rangle} observabla \,.$$
(5)

Na taj način može se izračunati i gustoća čestica

$$n(\mathbf{r}) = N \int d^3 r_2 \int d^3 r_3 \dots \int d^3 r_N \psi^* (\mathbf{r}, \mathbf{r}_2, \dots, \mathbf{r}_N) \psi(\mathbf{r}, \mathbf{r}_2, \dots, \mathbf{r}_N).$$
(6)

S vremenom su razvijene brojne metode za rješavanje Schrödingerove jednadžbe za problem mnoštva čestica. U kvantnoj kemiji vrlo je česta metoda interakcije konfiguracija (CI) [30]. Problem svih metoda je što su za velike sustave potrebni preveliki računski resursi. Velika prednost DFT metode je u tome što smanjuje potrebne računske resurse. Kao teorija, DFT je formalno egzaktna. Uspješnost same metode ovisi o kvaliteti upotrijebljenih funkcionala. Osnova DFT teorije je Hohenberg-Kohnov teorem [29] koji kaže da se za osnovno stanje prethodno navedeni izraz za gustoću (6) može i obrnuti: ako imamo gustoću osnovnog stanja, $n_0(\mathbf{r})$, moguće je izračunati odgovarajuću valnu funkciju osnovnog stanja $\psi_0(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N)$. Time je ψ_0 funkcional gustoće. Odnosno, i sve observable osnovnog stanja su također funkcionali gustoće n_0 . To znači da pošto se ψ_0 može izračunati iz n_0 i obrnuto, obje funkcije su ekvivalentne i sadrže jednaku količinu informacija. Valna funkcija uz to što mora reproducirati gustoću osnovnog stanja, mora i minimizirati energiju:

$$E_{\nu}[n_0] \le E_{\nu}[n'], \tag{7}$$

pri čemu je n_0 gustoća osnovnog stanja u potencijalu \hat{V} , a n' neka druga gustoća. Kod DFT metode to znači da ako je energija E[n] za neki potencijal v_{ext} procijenjena za gustoću koja nije gustoća osnovnog stanja sustava u potencijalu v_{ext} , nikada se ne može dobiti rezultat ispod stvarne energije osnovnog stanja. Ovo je vrlo važno u praktičnoj primjeni DFT metode.

Uz pretpostavku da je dobro definiran promatrani sustav, odnosno da se zna potencijal $v(\mathbf{r})$, i da se također može dobro procijeniti kinetičku energiju T[n] te energiju interakcije U[n], sve što preostaje je minimizirati ukupnu energiju po gustoći. Funkcija kojom se minimizira, $n_0(\mathbf{r})$, je gustoća naboja osnovnog stanja sustava, a $E_v[n_0]$ je energija osnovnog stanja. U teoriji, odavde se dalje mogu izračunati sve observable sustava. Minimizacijom energije po njenim parametrima mogu se izračunati geometrija molekule, geometrijske veličine, konstanta rešetke za kristale, volumen jedinične ćelije, distribucija naboja, ukupna energija itd. Također, derivacijom energije po istom parametru mogu se izračunati primjerice vibracijske frekvencije molekula. U praksi je sama minimizacija energije $E_v[n]$ veliki numerički problem. Rješenje tog problema koje se i danas uvelike koristi ponudili su Kohn i Scham u svom radu "*Self-consistent equations including exchange and* *correlation effects*" [31]. Oni su u svoje jednadžbe za opis sustava uz gustoću (bilo čestica bilo naboja) vratili i jednu vrstu valnih funkcija, a to su jednočestične orbitale pa DFT izgleda formalno kao jednočestična teorija premda su efekti sustava mnoštva čestica i dalje u nju uključeni, ali kroz takozvani funkcional izmjene i korelacije.

U Kohn-Shamovom modelu funkcional kinetičke energije sustava T[n] razdvojen je na dva dijela, dio koji predstavlja kinetičku energiju neinteragirajućih čestica gustoće n, $T_s[n]$, i na dio koji predstavlja ostatak, $T_c[n]$:

$$T[n] = T_s[n] + T_c[n].$$
(8)

Oznaka *s* dolazi od engleskog naziva *"single-particle"*, a *c* od *"correlation"*. $T_s[n]$ se može jednostavno izraziti pomoću jednočestičnih orbitala $\phi_i(\mathbf{r})$ neinteragirajućeg sustava gustoće *n* jer je ukupna kinetička energija za sustav neinteragirajućih čestica naprosto zbroj pojedinih kinetičkih energija:

$$T_{s}[n] = -\frac{\hbar^{2}}{2m} \sum_{i}^{N} \int d^{3}r \phi_{i}^{*}(\mathbf{r}) \nabla^{2} \phi_{i}(\mathbf{r}).$$
(9)

 T_s je i dalje funkcional gustoće, ali samo indirektno jer je to sada funkcional orbitala, no sve orbitale $\phi_i(\mathbf{r})$ su funkcionali gustoće *n*. Stoga vrijedi $T_s[n] = T_s[\{\phi_i[n]\}]$.

I funkcional energije interakcije U[n] razdvojen je na dva dijela, dio koji se može predstaviti pomoću Hartreejeve energije $U_H[n]$, tj. elektrostatske energije interakcije gustoće naboja $n(\mathbf{r})$,

$$U_H[n] = \frac{q^2}{2} \int d^3r \int d^3r' \frac{n(\mathbf{r})n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|},$$
(10)

i ostatka. Pomoću ovako raspisanih energija, izraz za funkcional ukupne energije se može napisati pomoću energije izmjene i korelacije E_{xc} (eng. *exchange-correlation, xc*)

$$E[n] = T[n] + U[n] + V[n] = T_s[\{\phi_i[n]\}] + U_H[n] + E_{xc}[n] + V[n]$$
(11)

pri čemu je definirano da E_{xc} sadrži razlike $T - T_s$ odnosno T_c i $U - U_H$. Premda je ovako napisani izraz za funkcional energije formalno egzaktan, funkcional E_{xc} nije poznat. Obično se funkcional izmjene i korelacije rastavlja na dva dijela $E_{xc} = E_x + E_c$. E_c se pripisuje korelacijama (matematički gledano korelacije opisuju činjenicu da određeni događaji nisu nezavisni), a E_x se pripisuje Paulijevom principu. I dok se korelacije mogu definirati i u klasičnoj fizici, izmjena je pojam koji se objašnjava isključivo kvantnom fizikom, zbog nemogućnosti međusobnog razlikovanja čestica. Funkcional energije izmjene $E_x[n]$ može se napisati u ovisnosti o jednočestičnim orbitalama,

$$E_{x}\left[\left\{\phi_{i}\left[n\right]\right\}\right] = -\frac{q^{2}}{2}\sum_{jk}\int d^{3}r\int d^{3}r' \frac{\phi_{j}^{*}(\mathbf{r})\phi_{k}^{*}(\mathbf{r}')\phi_{j}(\mathbf{r}')\phi_{k}(\mathbf{r})}{|\mathbf{r}-\mathbf{r}'|},$$
(12)

ali nikakav opći egzaktni izraz koji bi bio ovisan o gustoći nije poznat. S druge strane, za funkcional energije korelacija $E_c[n]$ nije poznat nikakav općeniti egzaktni izraz niti u ovisnosti o jednočestičnim orbitalama niti o gustoći. $E_c[n]$ je poprilično kompleksna stvar i da ju se treba egzaktno znati, DFT metoda bi postala gotovo beskorisna. Prednost pisanja energije u obliku jednadžbe (11) je što je funkcional $E_{xc}[n]$ obično puno manji od poznatih članova T_s , U_H i V. Stoga se može pretpostaviti da će se pomoću jednostavnih aproksimacija za $E_{xc}[n]$ moći dobiti dobri rezultati za E[n]. Točna svojstva funkcionala [10,32] postavljaju određena ograničenja i korisni su vodiči u stvaranju aproksimacije za $E_x[n]$ i $E_c[n]$.

Dobiveni izraz za energiju (11) treba minimizirati, ali to nije moguće napraviti direktno po n jer je T_s sada napisan kao funkcional orbitala. Obično se koristi shema koju su predložili Kohn i Sham [31]. Prema toj shemi minimizacija se može napisati u slijedećem obliku:

$$0 = \frac{\delta E[n]}{\delta n(\mathbf{r})} = \frac{\delta T_s[n]}{\delta n(\mathbf{r})} + \frac{\delta V[n]}{\delta n(\mathbf{r})} + \frac{\delta U_H[n]}{\delta n(\mathbf{r})} + \frac{\delta E_{xc}[n]}{\delta n(\mathbf{r})} = \frac{\delta T_s[n]}{\delta n(\mathbf{r})} + v(\mathbf{r}) + v_H(\mathbf{r}) + v_{xc}(\mathbf{r})$$
(13)

gdje je $\delta V/\delta n = v(\mathbf{r})$ vanjski potencijal² u kojem se gibaju elektroni. Član $\delta U_H/\delta n$ daje Hartreejev potencijal dok se za član $\delta E_{xc}/\delta n$ može pisati v_{xc} . Taj se član ne može eksplicitno izračunati dok se ne napravi aproksimacija za E_{xc} .

S druge strane, za sustav neinteragirajućih čestica koji se giba u potencijalu $v_s(\mathbf{r})$, uvjet minimizacije može se jednostavno napisati:

$$0 = \frac{\delta E_s[n]}{\delta n(\mathbf{r})} = \frac{\delta T_s[n]}{\delta n(\mathbf{r})} + \frac{\delta V_s[n]}{\delta n(\mathbf{r})} = \frac{\delta T_s[n]}{\delta n(\mathbf{r})} + v_s(\mathbf{r}), \qquad (14)$$

jer kad nema interakcija, Hartreejev potencijal i potencijal izmjene i korelacija jednaki su nuli. Rješenje ove jednadžbe je $n_s(\mathbf{r})$. Usporedbom jednadžbi (13) i (14) vidi se da ako se za v_s odabere

$$v_s(\mathbf{r}) = v(\mathbf{r}) + v_H(\mathbf{r}) + v_{xc}(\mathbf{r}), \tag{15}$$

² Potencijal sadrži potencijal kristalne rešetke i bilo koji drugi vanjski potencijal u kojem se nalazi cijeli sustav, a nije dobiven iteracijom, odnosno *self-consistently* iz elektron-elektron interakcije poput v_H ili v_{xc} .

obje minimizacije imaju isto rješenje $n_s(\mathbf{r}) \equiv n(\mathbf{r})$. Drugim riječima, možemo izračunati gustoću interagirajućeg (višečestičnog) sustava u potencijalu $v(\mathbf{r})$ opisanog Schrödingerovom jednadžbom za sustav mnoštva čestica (1) rješavanjem jednadžbe proizvoljnog neinteragirajućeg (jednočestičnog) sustava u potencijalu $v_s(\mathbf{r})$. Pripadajuća Schrödingerova jednadžba

$$\left[-\frac{\hbar^2 \nabla^2}{2m} + v_s\right] \phi_i(\mathbf{r}) = \varepsilon_i \phi_i(\mathbf{r}), \qquad (16)$$

za rezultat daje orbitale $\phi_i(\mathbf{r})$ koje reproduciraju gustoću $n(\mathbf{r})$ polaznog sustava (to su iste orbitale kao i u izrazu (9)):

$$n(\mathbf{r}) \equiv n_s(\mathbf{r}) = \sum_i^N f_i |\phi_i(\mathbf{r})|^2, \qquad (17)$$

gdje f_i predstavljaju popunjenost *i*-te orbitale. Jednadžbe (15), (16) i (17) su slavne Kohn-Shamove (KS) jednadžbe. Pomoću njih se problem minimizacije energije E[n] svodi na rješavanje neinteragirajuće Schrödingerove jednadžbe. A minimizacijom E[n] pojednostavljen je polazni problem rješavanja Schrödingerove jednadžbe za sustav mnoštva čestica!

Rješavanje KS jednadžbi je nelinearan problem jer v_H i v_{xc} ovise o n koji ovisi o ϕ_i , a koji ovisi o v_s . Uobičajeni način rješavanja je da se pretpostavi početna gustoća $n(\mathbf{r})$, iz nje se izračuna odgovarajući $v_s(\mathbf{r})$ koji se uvrštava u jednadžbu (16) koja za rješenje daje ϕ_i . Iz dobivenih orbitala računa se pomoću jednadžbe (17) nova gustoća i sve ide ispočetka. Taj proces se ponavlja sve dok se ne zadovolje zadani uvjeti konvergencije. Takav postupak naziva se *self-consistency cycle*. Kada se dobije gustoća n_0 koja zadovoljava uvjete konvergencije može se izračunati ukupna energija prema

$$E_{0} = \sum_{i}^{N} \varepsilon_{i} - \frac{q^{2}}{2} \int d^{3}r \int d^{3}r' \frac{n_{0}(\mathbf{r})n_{0}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} - \int d^{3}r v_{xc}(\mathbf{r})n_{0}(\mathbf{r}) + E_{xc}[n_{0}].$$
(18)

Jednadžba (18) se dobije ako se za V[n] u jednadžbu (11) uvrsti

$$V[n] = \int d^{3}r v(\mathbf{r}) n(\mathbf{r}) = \int d^{3}r [v_{s}(\mathbf{r}) - v_{H}(\mathbf{r}) - v_{xc}(\mathbf{r})] n(\mathbf{r}) = V_{s}[n] - \int d^{3}r [v_{H}(\mathbf{r}) + v_{xc}(\mathbf{r})] n(\mathbf{r}), \quad (19)$$

pri čemu je za $v(\mathbf{r})$ uvrštena jednadžba (15). Iz jednadžbe (18) se vidi da ukupna energija nije naprosto suma svih ε_i . No iz izvoda jednadžbe (16) vidi se da su ε_i uvedene kao vlastite vrijednosti proizvoljne jednočestične jednadžbe čije vlastite funkcije (orbitale) daju ispravnu gustoću. Zapravo, samo gustoća u KS jednadžbama ima strogo fizikalni smisao.

2.1.1. Bazne funkcije i funkcionali

Kako bi se KS diferencijalna jednadžba (16) numerički riješila potrebno je raspisati KS orbitale pomoću prikladnog baznog skupa. U kvantnoj kemiji su se i prije DFT metode desetljećima proučavali bazni skupovi za molekule, kroz Hartree-Fock i CI metode [30]. Gotovo svo to znanje moglo se primijeniti i u DFT metodi što je uvelike doprinijelo velikoj popularnosti DFT metode u kemiji. Bazne funkcije dijele se po svom ponašanju kao funkcije radijalne koordinate na Slaterove orbitale (STOs, *Slater type orbitals*), koje eksponencijalno opadaju odmicanjem od izvora, te Gaussove orbitale (GTOs, *Gaussian type orbitals*), koje imaju oblik Gaussove krivulje.

Slaterove orbitale bolje opisuju pravo ponašanje atomskih valnih funkcija, ali se s Gaussovim orbitalama lakše numerički barata jer je umnožak dviju Gaussovih orbitala "smještenih" na različitim atomima opet Gaussova orbitala, dok produkt dvije Slaterove orbitale nije opet Slaterova orbitala. Zato je uveden kompromis između točnosti Slaterovih orbitala i prikladnosti Gaussovih, to su kontrahirane bazne funkcije, Slaterove orbitale raspisane preko malog broja Gaussovih orbitala. Primjeri takvih baznih skupova su 6-31G, 6-311++G(d,p) [14,30] i oni su vrlo česta metoda rješavanja KS-ovih jednadžbi u kvantnoj kemiji.

U praktičnoj primjeni teorije funkcionala gustoće (DFT) postoje u osnovi tri različite vrste aproksimacija. Od dvije već opisane jedna je konceptualne prirode, gdje se vlastite vrijednosti i orbitale Kohn-Shamovih jednadžbi interpretiraju kao fizikalne energije i valne funkcije, ali to nije nužna aproksimacija - naprosto se vlastitim vrijednostima u jednadžbi (16) ne pripiše nikakav smisao. Druga aproksimacija je numerička i vezana uz metodu rješavanja KS jednadžbe (16). To se prvenstveno odnosi na odabir odgovarajućeg baznog skupa. Treća aproksimacija se odnosi na formulaciju nepoznatog funkcionala izmjene i korelacije $E_{xc}[n]$ koji mora sadržavati sve višečestične aspekte problema.

Prvu aproksimaciju za $E_{xc}[n]$ dali su još 1965. Kohn i Sham, a to je aproksimacija lokalne gustoće (LDA-*local density aproximation*). Aproksimirali su funkcional s funkcijom lokalne gustoće $n(\mathbf{r})$,

$$E_{xc}[n] \approx E_{xc}^{LDA}[n] = \int d^3 r \, e_{xc}^{hom}(n) \Big|_{n \to n(\mathbf{r})} = \int d^3 r \, e_{xc}^{hom}(n(\mathbf{r})), \quad e_{xc}^{hom} = e_x^{hom} + e_c^{hom}$$
(20)

i za $e_{xc}^{hom}(n(\mathbf{r}))$ koristili istu ovisnost o gustoći kao i za homogeni elektronski plin za koji je $n(\mathbf{r})$ konstantna. Čak niti za tako jednostavni slučaj nije poznat egzaktni izraz za korelacijski dio e(n). Prvobitne aproksimacije zamijenili su kvantni Monte Carlo proračuni za elektronski plin [33]. Moderni izrazi za $e_c^{hom}(n)$ su parametrizacije tih podataka [34,35]. Ti izrazi su

implementirani u većinu standardnih DFT programskih paketa i u tipičnim aplikacijama daju vrlo dobre rezultate. Navedena aproksimacija za $E_{xc}[n]$ se pokazala iznenađujuće uspješna, čak i kada je primijenjena na potpuno drugačije sustave od elektronskog plina koji je referentni sustav za LDA. Djelomično se taj uspjeh aproksimacije lokalne gustoće može objasniti sistematskim poništavanjem pogreške, LDA podcjenjuje E_c , ali precjenjuje E_x što rezultira u neočekivano dobrim vrijednostima za E_{xc} . S druge strane, premda se točnost aproksimacije lokalne gustoće često smatra zadovoljavajućom u fizici čvrstog stanja, nije dovoljno dobra u atomskoj i molekulskoj fizici, gdje su dostupni vrlo precizni eksperimentalni rezultati. Također, LDA precjenjuje energije vezanja i jakost veza u molekulama i krutinama, što rezultira u premalim duljinama veza.

Ti se problemi većinom mogu ispraviti stupnjevitim (eng. *gradient*) ispravkama. Pri tome se uzelo u obzir da su svi realni sustavi prostorno nehomogeni, imaju gustoću $n(\mathbf{r})$ koja se mijenja u prostoru te se informacija o brzini promjene gustoće također treba uključiti u funkcional. Prvi pokušaj je bio uključiti te promjene razvojem u red potencija gradijenta gustoće (GEA), ali pravi uspjeh je polučen tek kada se pretpostavilo da se funkcional može napisati preko funkcija lokalne gustoće $n(\mathbf{r})$ i gradijenta lokalne gustoće $\nabla n(\mathbf{r})$

$$E_{xc}^{GGA}[n] = \int d^{3}r \ f(n(\mathbf{r}), \nabla n(\mathbf{r})).$$
⁽²¹⁾

Jednadžba (21) predstavlja opći oblik funkcionala, poznatog pod nazivom GGA (eng. *generalized-gradient approximations*). Različiti GGA razlikuju se u odabiru funkcije $f(n, \nabla n)$. Razlika od LDA je što je tamo u osnovi jedan izraz za $e_{xc}^{hom}(n)$, a brojne parametrizacije LDA su zapravo samo različiti načini pisanja te jednadžbe. Dok se kod GGA ovisno o metodi konstruiranja korištenoj pri dobivanju $f(n, \nabla n)$, mogu dobiti vrlo različite GGA. Stoga se i ovisno o primjeni koriste različite aproksimacije. U kvantnokemijskim računima zadnjih godina među najpopularnijima je funkcional B3-LYP. To je kombinacija GGA aproksimacije za korelacije [36], (nazvane LYP po trojcu autora: Lee, Young i Parr) i Beckeovog troparametarskog hibridnog funkcionala izmjene B3 [37]. Najčešće hibridni funkcionali, pa tako i B3, miješaju dio Hartree-Fock funkcionala izmjene s DFT funkcionalom izmjene. I premda je u konstruiranju takvih hibridnih funkcionala potrebno i malo empirizma u odabiru funkcionala, kao i pripadajućih težinskih faktora, u praksi se pokazalo da je B3 najuspješniji funkcional izmjene za proračune u kemiji, pogotovo u kombinaciji s LYP GGA funkcionalom korelacija.

Unatoč aproksimacijama DFT metoda daje vrlo precizne rezultate, a zahtjeva minimalne računalne resurse (u usporedbi s drugim metodama) te je zato vrlo brzo postala

vodeća metoda u proračunima elektronske strukture u kemiji i fizici čvrstog stanja. Naravno, ima i neke nedostatke. Nema jedinstvene aproksimacije koja bi se mogla primijeniti u svim problemima. Unatoč brojnim poboljšanjima, još uvijek postoje poteškoće pri korištenju DFT-a za opisivanje međumolekulskih interakcija, posebice van deer Waalsovih sila (odnosno disperzije), za opisivanje prijelaznih stanja, kao i u proračunima procijepa u poluvodičima. Za sada DFT ne može u potpunosti opisati disperziju što umanjuje točnost rezultata za sustave kojima dominira disperzija (interakcije atoma plemenitih plinova) ili sustave u kojima disperzija ima veliki utjecaj zajedno s drugim efektima (npr. u biomolekulama). Razvoj novih DFT metoda za rješavanje tog problema, promjenom funkcionala ili dodavanjem novih članova je trenutni predmet istraživanja.

2.2. Primjena teorije funkcionala gustoće

U ovoj disertaciji su pomoću teorije funkcionala gustoće izračunate optimizirane molekulske geometrije, krivulje potencijalne energije u ovisnosti o torzijskim kutovima, valni brojevi koji odgovaraju normalnim modovima vibracija, Kartezijeve harmonijske konstante sila, infracrveni intenziteti, Ramanove aktivnosti te depolarizacijski omjeri za molekule APST, GPTMS i njihove konformere te određene strukture APST polimera. Pri tome je korišten programski paket Gaussian 98 (i 03) u koji je implementirana teorija funkcionala gustoće. Računi su provedeni s baznim skupom funkcija 6-311++G(d,p) i B3-LYP funkcionalom izmjene i korelacija. Manji bazni skup (primjerice 6-31G(d,p)) je bio dobar u izračunima za APST molekulu, ali za veće molekule (primjerice GPTMS) korišten je detaljniji bazni skup funkcija (6-311++G(d,p)). I u odabiru baznog skupa treba naći neku optimalnu vrijednost. Naime, povećanjem baznog skupa rastu i potrebni računalni resursi, koji se također znatno povećavaju i s porastom samih proučavanih struktura (molekula).

Obzirom da su ti računi vrlo opsežni i dugotrajni, važno je što bolje pripremiti početne podatke. To se prvenstveno odnosi na što bolje poznavanje strukture molekule koja se istražuje. Ponekad se u literaturi mogu pronaći nešto jednostavnije strukture pa se one mogu uzeti kao osnova za daljnju konstrukciju proučavane strukture.

2.3. Skaliranje

Izračunate vibracijske frekvencije uglavnom su precijenjene u odnosu na eksperimentalne vrijednosti. Razlozi tome mogu biti nepotpuni bazni skup u primijenjenoj metodi, ne uzimanje u obzir (u teorijskom modelu) neharmoničnosti, odnosno opća tendencija

većine kvantnomehaničkih metoda da precijene konstante sila računate za ravnotežnu geometriju [38,39]. Stoga je potrebno skalirati konstante sila. DFT metoda računa položaje atoma te konstante sila u Kartezijevim koordinatama. U opisu molekulskih sustava koriste se interne koordinate kako bi se izbjegla suvišnost. Definiraju se ovisno o lokalnoj simetriji sustava i prema prijedlogu Fogarasia i Pulaya [40]. Kako bi se skaliranje moglo provesti, potrebno je konstante sila u Kartezijevom koordinatnom sustavu transformirati u konstante sila u koordinatama lokalne simetrije. Transformacija se radi pomoću pseudo inverza B^{-} od B^{-} matrice kojom se transformiraju Kartezijeve u interne koordinate, R = BX. Pri tome je relacija između F-matrica potencijalne energije: $F_{interne} = (B^{-})^{tr} \times F_{Kartezijeve} \times B^{-}$. Polje sila se zatim skalira prema shemi u kojoj se dijagonalni elementi matrice polja sila množe s faktorima skaliranja c_i , a odgovarajuće konstante interakcije množe se s $(c_i c_j)^{1/2}$. Faktori skaliranja uvode se prema vrsti internih koordinata.

3. Eksperimentalni dio

3.1. Priprema uzoraka

APST je kupljen od tvrtke ABCR u obliku 25% vodene otopine. Molekule vode stabiliziraju monomere APST-a, sprječavajući tako očvršćivanje i nastanak polimera.

Tanki filmovi APST polimera debljine približno 1 mm pripremljeni su polaganim isparavanjem vode iz 25%-tne vodene otopine APST-a. Isparavanje se odvijalo s PVC podloge, pri sobnoj temperaturi, u mraku. Proces je trajao otprilike tri tjedna, a nastali filmovi dali su se lako ukloniti što ukazuje na to da nije došlo do stvaranja kemijskih veza između PVC podloge i polimera.

Proces polimerizacije APST-a proučavan je u ovisnosti o tri parametra. Za proučavanje temperaturne ovisnosti uzorci su ostavljeni da polimeriziraju na podlozi od mjedi, na tri različite temperature: pri niskoj temperaturi od 8°C, zatim na sobnoj temperaturi, 23°C, te na povišenoj temperaturi od 60°C. Uzorak koji je polimerizirao na niskoj temperaturi držan je u hladnjaku, dok je uzorak koji je polimerizirao na povišenoj temperaturi držan u pećnici. Zatim je proučavana ovisnost polimerizacije o elektromagnetskom zračenju, u vidljivom i ultraljubičastom dijelu EM spektra. Uzorci su bili na PVC podlozi. Jedan uzorak ostavljen je da polimerizira u mraku, na sobnoj temperaturi, a dva su uzorka držana pod ultraljubičastim svjetiljkama valnih duljina 254 nm i 365 nm. I konačno, radi proučavanja utjecaja podloge uzorka na proces polimerizacije, uzorci su ostavljeni da polimeriziraju na sobnoj temperaturi na pet različitih podloga: teflon, PVC, staklo, mjed i silika. Opisani procesi trajali su između dva i tri tjedna.

Radi proučavanja temperaturne ovisnosti uzorak APST polimera (dobiven isparavanjem u mraku, na sobnoj temperaturi i s PVC podloge) hlađen je u Janice kriostatu s

tekućim dušikom, model VPF-700, opremljen s Lake Shore kontrolorom temperature model 31S-T1. Uzorak je hlađen od temperature 300 K do 78 K.

3.2. Spektroskopske metode

3.2.1. Ramanovi spektri aminopropilsilantriola

Ramanov spektar vodene otopine APST-a snimljen je u frekvencijskom rasponu od 4000 cm⁻¹ do 100 cm⁻¹. Spektar je snimljen pomoću Brukerovog FT Raman spektrometra, model FRA 106/S, spojenog na EQUNOX 55 FT interferometar opremljen s germanijevim detektorom hlađenim tekućim dušikom. Kao izvor je korišten Nd:YAG laser snage do 500 mW s valnom duljinom pobude 1064 nm. Broj skenova bio je 1000, a spektralna rezolucija 2 cm⁻¹. Snimljeni su i polarizirani spektri s geometrijom raspršenja pod 90° kako bi se, radi lakše asignacije spektra, mogle izdvojiti polarizirane od nepolariziranih vrpci.

Ramanovi spektri APST polimera dobiveni pod različiti uvjetima polimerizacije snimljeni su u frekvencijskom rasponu od 3500 cm⁻¹ do 50 cm⁻¹ sa spektralnom rezolucijom 1 cm⁻¹ na Dilor Model Z24 spektrometru s trostrukim monokromatorom povezanim s IBM AT računalom. Širina pukotine je 600 μ m što odgovara spektralnoj širini pukotine od 5,76 cm⁻¹. Korišten je argonov ionski laser Coherent INNOVA-160 Model s valnom duljinom pobude 514,5 nm. Snaga lasera na samom uzorku bila je ispod 200 mW.

Na istom uređaju snimljeni su i spektri hlađenog uzorka polimera APST-a. Spektri su snimani pri temperaturama 300 K, 200 K, 160 K, 120 K i 78 K, u rasponu od 650 cm⁻¹ do 10 cm^{-1} . Za vrijeme snimanja spektara temperaturno odstupanje iznosilo je $\pm 0,05^{\circ}$ C.

3.2.2. Ramanovi spektri 3-glicidoksipropiltrimetoksisilana

98% čisti GPTMS je također kupljen od tvrtke ABCR i korišten je bez daljnjeg pročišćavanja. Polarizirani Ramanovi spektri tekućeg uzorka snimani su u staklenoj kapilari na Dilor Model Z24 spektrometru s trostrukim monokromatorom i s geometrijom raspršenja pod 90°. Širina pukotine je 500 μm što odgovara spektralnoj širini pukotine od 4,79 cm⁻¹. Korišten je argonov ionski laser Coherent INNOVA-400 Model s valnom duljinom pobude 514,5 nm. Snaga lasera na uzorku smještenom u makro komoru bila je 200 mW. Spektri su snimani u rasponu od 100 cm⁻¹ do 1600 cm⁻¹ i od 2500 cm⁻¹ pa do 3500 cm⁻¹.

Temperaturno ovisni Ramanovi spektri GPTMS molekule snimljeni su na Horiba Jobin Yvon T64000 instrumentu opremljenom s Olympus mikroskopom, Linkam stalkom za hlađenje THMS600 s TMS 94 kontrolerom i CCD Symphony detektorom. Ramanov spektrometar je radio s tri optičke rešetke od po 1800 zareza po milimetru u trostrukom oduzimajućem modu. Vrlo mala kapljica uzorka u tekućem stanju (približno 2-3 μ L) stavljena je u originalnu Linkamovu kvarcnu posudu koja osigurava dobar termalni kontakt i mala odstupanja u temperaturi (koja se procjenjuju da su do 0,1 K). Olympus objektiv s povećanjem 50x korišten je u svim eksperimentima pri niskoj temperaturi. Snaga lasera u Linkam postolju ispod mikroskopa bila je oko 20 mW.

3.2.3. Infracrveni spektri

Svi infracrveni spektri uzoraka snimljeni su u rasponu frekvencija od 4000 cm⁻¹ do 400 cm⁻¹ pri spektralnoj rezoluciji od 4 cm⁻¹. Spektri su snimani koristeći KBr pastile na Bruker Equinox 55 FT infracrvenom spektrometru s germanijevom diodom kao detektorom i volframovom halogenom svjetiljkom kao izvorom.

4. Vibracijska dinamika i struktura

4.1. Aminopropilsilantriol APST

Aminopropilalkoksisilani vrlo se često koriste kao veziva između organskih i anorganskih materijala. U procesu povezivanja prvi korak je hidroliza, pomoću dodane vode ili preostale vode na anorganskoj površini. Kao produkt hidrolize nastaje silanol, točnije aminopropilsilantriol (APST), NH₂(CH₂)₃Si(OH)₃. Zatim slijedi povezivanje s anorganskim materijalom uz eliminaciju vode. Kako bi se što bolje mogli pratiti i razumjeti procesi i načini povezivanja organskih i anorganskih molekula napravljena je teorijska i spektroskopska analiza APST-a. Napravljena je asignacija vibracijskih spektara dvaju konformera molekule APST-a te njezinog dimera. Na temelju toga proučavane su moguće strukture polimera te načini polimerizacije APST-a.

4.1.1. Računski dio

Molekula APST-a je stabilna u vodenoj otopini u zatvorenoj posudi. Pri kontaktu sa zrakom dolazi do isparavanja vode i polimerizacije APST-a. Stoga niti nema eksperimentalnih podataka o molekulskoj strukturi APST monomera. U literaturi se mogu naći podaci o strukturi *anti-n*-propilsilana CH₃CH₂CH₂SiH₃ (PS) [41,42]. Rezultati DFT računa daju za duljine veza CC, SiC, CH i SiH nešto veće vrijednosti od onih određenih eksperimentom [43]. Pogreška u računu pri tome nije bila veća od 0,7%. *Ab initio* računom pomoću HF metode dobivene vrijednosti duljina veza nešto su manje od onih eksperimentalno dobivenih. Vrijednosti valentnih kutova kod obje metode se vrlo dobro slažu

i odgovaraju vrijednostima dobivenima eksperimentom. Stoga se može reći kako struktura PS-a dobivena DFT metodom odgovara eksperimentalno utvrđenoj strukturi i može se koristiti kao polazna struktura u daljnjim računima. Polazna struktura APST-a dobivena je dodavanjem amino i hidroksi grupa na PS. Pri tome se pokazalo da je torzijski kut H-O-Si-C vrlo osjetljiv na promjene prilikom geometrijske optimizacije. Stoga je napravljeno skeniranje po krivulji potencijalne energije. Nakon svake promjene torzijskog kuta H-O-Si-C od 3,6°, napravljena je potpuna geometrijska optimizacija svih parametara molekule APST-a. Krivulju promjene potencijalne energije u ovisnosti o kutu H-O-Si-C prikazuje Slika 1. Minimalnu energiju ima molekula pri torzijskom kutu od 118°, a najveću za kut 0°. Pri tome visina barijere za promjenu kuta iz 0° u 180° iznosi 0,38 eV (3065 cm⁻¹). Za preostala dva torzijska kuta H-O-Si-C iz Si(OH)₃ grupe računi daju vrijednosti 60° i -60°. Struktura s najmanjom potencijalnom energijom (torzijski kut H-O-Si-C iznosi 118°) optimizirana je po svim geometrijskim parametrima. Dobiven je *trans* konformer sa Si-C-C-C torzijskim kutom od 179,5° (Slika 2).

Slika 1. Ovisnost potencijalne energije APST molekule o torzijskom kutu H-O-Si-C.

Slika 2. Trans konformacija molekule aminopropilsilantriola.

Tako dobivena struktura uzeta je kao polazište za još jedno skeniranje potencijalne energije, ovaj puta ovisno o promjeni torzijskog kuta Si-C-C-C, kako bi se dobile sve konformacijske strukture APST monomera. Polazna vrijednost Si-C-C-C kuta bila je -180° i u svakom od 100 koraka povećana je za 3,6° (Slika 3). Ostali parametri se nisu mijenjali tijekom optimizacije. Računom su dobivena dva konformera. *Trans* APST sa Si-C-C-C kutom od 180° i nova, *gauche*, konformacija s torzijskim kutom Si-C-C-C 80° (Slika 4). Slika 3 prikazuje da *trans* konformer ima nižu energiju nego *gauche*, stoga je i stabilniji od *gauche* konformera.

Izračunate su i barijere za prelazak iz jedne konformacije u drugu. Tako za prelazak iz *trans* u *gauche* konformaciju barijera iznosi 0,136 eV (1095 cm⁻¹). Za prelazak iz jedne *gauche* konformacije u drugu barijera iznosi 0,353 eV (2846 cm⁻¹). Najmanja barijera, 0,054 eV (438cm⁻¹), je za prelazak iz *gauche* u *trans* konformaciju.

Strukturna optimizacija po svim parametrima napravljena je i za *gauche* konformaciju. Pri tome je za torzijski kut Si-C-C-C dobiveno 75°. Geometrijski parametri *trans* i *gauche* konformera vrlo se malo razlikuju. Jedina značajna razlika je u torzijskom kutu Si-C-C-C.

Slika 3. Ovisnost potencijalne energije APST molekule o torzijskom kutu Si-C-C-C.

Slika 4. Gauche konformacija molekule aminopropilsilantriola.

Izračunate geometrijske parametre potrebno je usporediti s eksperimentalno određenim vrijednostima. U literaturi gotovo da i nema podataka o strukturi silanola u plinovitom stanju. Mogu se naći podaci o kristalnoj strukturi silanola [44]. Geometrijski podaci izračunati DFT metodom za Si(OH)₃ skupine uspoređeni su s difrakcijskim podacima

za silanolne grupe u anorganskim spojevima [45]. Brojne studije rendgenskom strukturnom analizom daju raspon od 0,1586 nm do 0,1703 nm za duljinu Si-OH veze [45]. DFT račun duljine Si-OH veze u molekuli APST-a daje 0,166 nm što ulazi u navedeni raspon. Za duljinu O-H veze račun daje 0,096 nm što je blisko prosječnoj izmjerenoj vrijednosti od 0,091 nm u spojevima sa silanolima [45].

Pomoć pri asignaciji spektara vodene otopine APST-a svakako je i poznavanje strukture dimera. Stoga je računata i konformacijska stabilnost dimera (Slika 5) dobivenog reakcijom dvaju *trans* konformera.

$$R-Si(OH)_3 + (OH)_3Si-R \rightarrow R-Si(OH)_2OSi(OH)_2 - R + H_2O$$

$$R = NH_2CH_2CH_2CH_2$$
(22)
(23)

Kako bi se odredila najstabilnija konformacija dimera napravljena je analiza ovisnosti potencijalne energije o torzijskom kutu Si-O-Si-C, najosjetljivijoj varijabli u izračunu potencijalne energije. Vrijednost Si-O-Si-C kuta povećavana je za 3,6° od početne vrijednosti 0°, sve do 360°. Svi ostali geometrijski parametri nisu se mijenjali, a imali su vrijednosti iz optimizirane molekule *trans* aminopropilsilantriola. Dobivenu krivulju potencijalne energije prikazuje Slika 6. DFT račun daje dva minimuma potencijalne energije. Za torzijski kut 93,6° dobiven je lokalni minimum, a globalni minimum izračunat je pri kutu od 244°. Pri tome je energija globalnog minimuma za 0,232 eV (1869 cm⁻¹) niža od energije lokalnog minimuma. U najnižoj točki potencijalne krivulje napravljena je optimizacija po svim parametrima. Tako dobivena vrijednost Si-O-Si-C torzijskog kuta iznosi 237,7°.

Slika 5. Dimer *trans* aminopropilsilantriola.

Slika 6. Potencijalna energija dimera u ovisnosti o torzijskom kutu Si-O-Si-C.

Izračunata duljina Si-OH veze u dimeru APST-a iznosi 0,1669 nm. Povećanje duljine te veze u odnosu na duljinu iste veze u monomeru može se objasniti lokalnim elektrostatskim odbijanjem [45]. DFT računom se za Si-O-Si kut u dimeru dobiva 143,2°. To je vrlo blizu vrijednosti izmjerenoj pomoću elektronske difrakcije za plinoviti disiloksan [46] $(144,1\pm0,8)^{\circ}$.

4.1.2. Skaliranje

U opisu molekulskih sustava koriste se interne koordinate kako bi se izbjegla suvišnost. Definiraju se ovisno o lokalnoj simetriji sustava i prema prijedlogu Fogarasia i Pulaya [40]. Prelazak na sustav internih koordinata potreban je i kako bi se provelo skaliranje polja sila. Skaliranje je provedeno prema postupku opisanom u poglavlju 2.3. Faktori skaliranja određeni su za polje sila internih koordinata. Obzirom da je za polaznu strukturu APST-a korišten PS, mogu se prikazati u istim internim koordinatama. Stoga se faktori skaliranja izračunati za PS mogu preuzeti i za molekulu APST. Izračun faktora skaliranja za DFT polje sila PS-a temelji se na objavljenoj asignaciji opaženih vibracijskih vrpci PS-a pomoću *ab initio* računa [42]. Vrijednosti faktora skaliranja za dijagonalne konstante sila za interne koordinate istezanja CC, SiC i SiH veza te za torzije prilagođene su minimiziranjem

razlike između opaženih i izračunatih frekvencija PS-a. Skalirano DFT polje sila za PS reproducira opažene vibracijske frekvencije s prosječnom pogreškom od 11 cm⁻¹. Dijagonalne konstante sila koje se odnose na istezanje CH i SiO veza, CH₂ i CH₃ savijanje, CCC, SiCC, NCC, SiOH i SiOSi deformacije te zibanje i klaćenje NH₂ grupe, skalirane su s faktorima skaliranja koje su preporučili Rauhut i Pulay [38]. Faktore skaliranja prikazuje Tabela 1.

T 4 1 1 4	F 14 1 1 ¹ · ³	
Interna koordinata	Faktor skaliranja"	
CC istezanje	0,970	
CSi istezanje	0,970	
CN istezanje	0,97	
SiO istezanje	0,920 ^b	
CH istezanje	0,920 ^b	
SiH istezanje	0,956	
NH istezanje	0,920 ^b	
OH istezanje	0,920 ^b	
SiCC deformacija	0,990 ^b	
CCC deformacija	0,990 ^b	
NCC deformacija	0,990 ^b	
SiOH deformacija	0,990 ^b	
SiOSi deformacija	0,990 ^b	
CH ₂ savijanje	0,915 ^b	
CH ₃ savijanje	0,915 ^b	
NH ₂ zibanje	0,915 ^b	
NH ₂ strizna vibracija	0,944	
NH ₂ klaćenje	0,806 ^b	
SiOH torzija	1,00	
Torzija	1,100	
^{a)} Izračunato		
^{b)} [38]		

Tabela 1. Faktori skaliranja za interne koordinate.

Za NH₂ grupu trebalo je zasebno razmatrati pripadajuće konstante sila pa su izračunata četiri faktora skaliranja. Faktor skaliranja za dijagonalnu konstantu sile strizne vibracije amino grupe izračunat je na temelju toga što se zna da je vrpca opažena na 1608 cm⁻¹ karakteristična za NH₂ striznu vibraciju. Faktor skaliranja iznosa 0,806 za NH₂

klaćenje [38] ukazuje da odgovarajuća konstanta sile ima veliku pogrešku te da je taj mod jako anharmoničan.

4.1.3. Vibracijska analiza

Cilj vibracijske analize je pronaći vibracijske modove povezane sa specifičnim molekulskim strukturama izračunatih konformera.

Vibracijske vrpce opažene u Ramanovim spektrima vodene otopine molekule aminopropilsilantriola (Slika 7 i Slika 8) uspoređene su s frekvencijama koje su izračunate DFT metodom i zatim skalirane.

Slika 7. Ramanov spektar vodene otopine APST-a i polimera APST-a u rasponu frekvencija od 3500-2500 cm⁻¹.

Slika 8. Ramanov spektar vodene otopine APST-a i polimera APST-a u rasponu frekvencija od 1700-200 cm⁻¹.

Obzirom da je molekula APST-a stabilna samo u vodenoj otopini nije se mogao snimiti infracrveni spektar molekule. Moguće je bilo snimiti infracrveni spektar polimera APST-a (Slika 9). Također su snimljeni i Ramanovi spektri polimera APST-a i uspoređeni s onima za vodenu otopinu (Slika 7 i Slika 8). Tabela 2 navodi kratice za nazive vibracijskih modova korištene dalje u radu. Tabela 3, Tabela 4 i Tabela 5 redom sadrže izračunate i opažene frekvencije za *trans* APST, *gauche* APST i *trans*-APST dimer.

U tabelama se također mogu naći i izračuni relativnih intenziteta vrpci unutar promatranog spektra i polarizacijski karakter tamo gdje je to moguće (Slika 10 i Slika 11).

Slika 9. Infracrveni spektar polimera APST-a u rasponu frekvencija od 4000-400 cm⁻¹.

Slika 10. Polarizirani Ramanov spektar vodene otopine APST-a u rasponu frekvencija od 3500-2500 cm⁻¹.

Slika 11. Polarizirani Ramanov spektar vodene otopine APST-a u rasponu frekvencija od 1700-200 cm⁻¹.

Naziv vibracije	Engleski naziv	Kratica
istezanje	stretching	ist
savijanje	bending	sav
uvojna vibracija	twisting	uv.v
zibanje	rocking	zib
strizna vibracija	scissoring	str.v
klaćenje	wagging	kl
simetrična deformacija	symetric deformation	sim def
antisimetrična deformacija	antisymetric deformation	asim def
torzija	torsion	tor

Tabela 2. Kratice za nazive vibracijskih modova.

Na temelju distribucije potencijalne energije (eng. *Potential Energy Distribution*, PED) dobivene pomoću DFT/B3-LYP metode, karakterističnih skupinskih vibracija kao i izračunatih infracrvenih intenziteta i Ramanovih aktivnosti napravljena je konformacijska analiza i asignacija vibracijskih spektara. Usporednom analizom raspodjele potencijalne

energije između frekvencija *trans* i *gauche* konformacija kao i dimera objašnjen je utjecaj promjena u strukturi molekula na normalne modove.

Molekula APST-a ima 19 atoma, odnosno 51 interni normalni vibracijski mod, dok molekula dimera ima 35 atoma što daje 99 vibracijskih stupnjeva slobode. Niti *trans* i *gauche* konformacije molekule aminopropilsilantriola niti njezin dimer nemaju simetriju.

ν_{i}	Opažene ^a	I Nsc	zračuna Sc	ite - B3LY IR	RA	PED ^c
1	-	3905	3747	93,89	94,77	OH ₃ ist
2	-	3899	3740	101,47	104,92	OH ₃ ist
3	-	3893	3735	75,58	126,00	OH ₃ ist
4	3370 m	3572	3427	1,81	6,80	NH ₂ ist
5	3308 sh	3492	3351	6,80	109,12	NH ₂ ist
6	3003 w dp	3068	2943	53,39	4,73	CH ₂ ist
7	2970 sh p	3044	2920	0,63	2,02	CH ₂ ist
8	2910 m dp	3031	2909	6,65	154,60	CH ₂ ist
9	2903 m dp	3022	2899	69,53	50,93	CH ₂ ist
10	2890 s p	3015	2893	9,36	113,30	CH ₂ ist
11	2872 sh	3003	2881	4,36	128,13	CH ₂ ist
12	1608 w dp	1664	1619	27,46	3,65	NH ₂ str.v
13	1452 s	1505	1440	4,24	0,04	CH ₂ str.v
14	1416 m	1486	1422	0,36	16,11	CH ₂ str.v
15	1390 sh	1453	1390	6,05	7,56	CH ₂ str.v
16	1338 sh p	1392	1333	5,03	1,20	CH ₂ kl
17	1310 m dp	1385	1326	0,93	5,53	CH ₂ uv.v, NH ₂ zib
18	1284 sh	1341	1286	18,04	1,26	CH ₂ kl
19	1267 sh dp	1335	1278	1,00	7,05	CH ₂ uv.v
20	1225 w dp	1270	1216	2,45	0,36	CH ₂ uv.v, CH ₂ zib, NH ₂ zib
21	1200 w p	1225	1177	18,39	4,24	CH ₂ kl
22	1080 sh	1087	1067	6,54	6,07	CN ist
23	1050 m	1082	1038	13,95	0,25	CH ₂ uv.v, NH ₂ zib
24	1011 sh	1029	1012	46,52	10,09	CC ist, NCC str.v
25	993 m	1015	999	18,24	2,89	CC ist
26	932 sh dp	975	938	70,17	1,53	CH ₂ zib, SiO ₃ ist, NH ₂ zib
27	-	927	896	147,45	1,0	SiO ₃ ist, SiOH def
28	880 sh	914	891	177,12	1,71	SiO ₃ ist, SiOH def
29	863 m p	872	852	116,27	2,13	SiO ₃ ist, SiOH def
30	780 sh	802	789	181,44	2,05	SiOH def, SiO ₃ ist
31	787 sh	787	772	118,57	2,86	SiOH def, SiO ₃ ist, SiC ist
32	760 w dp	778	768	166,47	0,64	SiOH def, SiO ₃ ist

Tabela 3. Opažene i izračunate frekvencije (cm⁻¹) *trans*-aminopropilsilantriola.

Que e Xeure a		Iz	računa	te - B3LYF) b		
vi	Opazene	Nsc	Sc	IR	RA	PED	
33	-	824	751	219,78	0,59	NH ₂ kl, CN ist, CH ₂ zib	
34	737 vw	772	747	80,59	0,85	CH ₂ zib, NH ₂ kl	
35	710 w p	704	684	2,70	4,26	SiC ist, SiO3 ist, CH2 zib	
36	698 vw p	694	675	13,07	6,53	CH ₂ zib, SiC ist	
37	453 w	444	440	10,83	0,95	NCC str.v, SiCC str.v, SiO ₃ zib	
38	390 w	399	398	92,58	2,70	SiO ₃ sim def	
39	357 w	367	367	95,60	0,66	SiOH tor, SiO ₃ asim def	
40	-	323	323	33,48	1,23	SiO ₃ asim def, SiOH tor	
41	-	274	291	51,03	1,07	CN tor, SiO ₃ zib	
42	-	274	280	13,64	1,84	CN tor, SiO ₃ asim def, SiOH tor, SiO ₃ zib	
43	-	260	260	8,08	2,26	SiO ₃ zib, SiO tor	
44	-	241	240	23,36	1,82	CCC str.v, SiO ₃ sim def, SiOH tor	
45	-	231	231	22,45	0,73	SiO ₃ zib, SiOH tor, CCC str.v	
46	-	207	208	47,95	0,53	SiO tor, SiO ₃ zib, SiO ₃ asim def	
47	-	139	144	22,82	0,18	CC tor, SiOH tor, SiC tor	
48	-	121	122	102,48	0,86	SiOH tor, SiO ₃ asim def, SiO ₃ zib	
49	-	82	83	15,28	0,12	SiO ₃ zib, SiCC str.v, SiOH tor	
50	-	73	76	4,74	0,17	CC tor, SiO_3 zib, CH_2 zib, $SiOH$ tor	
51	-	48	48	1,17	0,25	SiC tor, CC tor, SiO ₃ zib	

^a Opaženo u Ramanovom spektru vodene otopine APST-a; Korištene kratice: s-jako (strong), m-umjereno (moderate), w-slabo (weak), v-vrlo, sh-rame (shoulder), p-polarizirano, dp-depolarizirano.
^b Izračunate vrijednosti imaju slijedeće kratice: B3LYP=B3LYP/6-31G(d,p), Nsc = izračunate neskalirane

^b Izračunate vrijednosti imaju slijedeće kratice: B3LYP=B3LYP/6-31G(d,p), Nsc = izračunate neskalirane vrijednosti, Sc=skalirane frekvencije, IR=izračunati IR intenziteti (km·mol⁻¹), RA=Raman aktivnosti raspršenja (Å⁴ u⁻¹).

^c Distribucija potencijalne energije (PED) izračunata B3LYP/6-31G(d,p) metodom, navedeni su doprinosi veći od 10% i u padajućem redoslijedu. Kratice za nazive vibracijskih modova sadrži Tabela 2.

ν_i	Opažene ^a	Iz Nsc	računat Sc	te - B3LY IR	re ^b RA	PED ^c
1	-	3901	3743	84,61	89,31	OH ₃ ist
2	-	3898	3740	101,43	117,08	OH ₃ ist
3	-	3893	3736	69,85	127,35	OH ₃ ist
4	3370 m	3572	3427	0,73	46,31	NH ₂ ist
5	3308 m	3493	3351	0,91	112,05	NH ₂ ist
6	3003 w dp	3071	2946	38,45	20,17	CH ₂ ist
7	2970 sh p	3053	2929	19,09	54,58	CH ₂ ist
8	2903m dp	3037	2915	23,96	95,37	CH ₂ ist
9	2910 sh dp	3014	2892	15,14	19,99	CH ₂ ist
10	2890 s p	3013	2891	28,89	220,37	CH ₂ ist
11	2872 sh	3001	2880	32,74	120,87	CH ₂ ist
12	1608 w dp	1664	1619	28,21	3,52	NH ₂ str.v
13	1453 s	1509	1444	3,25	0,14	CH ₂ str.v
14	1416 m	1492	1428	0,29	12,86	CH ₂ str.v
15	1390 sh	1450	1388	10,09	5,14	CH ₂ str.v
16	1358 w	1404	1345	2,95	2,10	CH ₂ kl, CH ₂ uv.v
17	1310 m dp	1386	1328	1,06	7,07	CH_2 uv.v, NH_2 zib, CH_2 kl
18	1284 sh	1339	1282	4,81	2,71	CH ₂ kl, CH ₂ uv.v
19	1252 sh dp	1335	1279	0,37	2,94	CH ₂ uv.v, CH ₂ kl
20	1236 w p	1281	1229	9,51	1,94	CH ₂ kl, CH ₂ zib, NH ₂ zib
21	1184 sh	1196	1153	12,20	1,50	CH ₂ uv.v, CH ₂ kl
22	1080 sh	1087	1067	15,95	6,29	CN ist, CC ist
23	1070 m dp	1106	1064	12,51	1,08	CH2 uv.v, NH2 zib, CC ist, CH2 kl
24	1011 sh dp	1037	1013	6,94	2,40	CC ist
25	967 m p	990	963	25,70	4,46	CC ist, CH ₂ uv.v
26	932 sh	969	935	22,27	2,33	CH2 zib, NH2 zib, SiO3 ist
27	920 w dp	933	904	183,98	1,26	SiO ₃ ist, SiOH def
28	-	886	869	119,02	1,64	SiOH def, SiO ₃ ist
29	862 m p	894	866	233,60	1,03	SiO ₃ ist, SiOH def
30	796 m dp	799	786	129,65	2,02	SiOH def, SiO ₃ ist
31	754 w	791	779	164,14	1,47	SiOH def, SiO ₃ ist
32	-	778	758	113,60	0,55	CH ₂ zib, SiOH def, SiO ₃ ist

Tabela 4. Izračunate frekvencije (cm⁻¹) *gauche*-aminopropilsilantriola.

Oražara ^a		Izı	ačunat	te - B3LY	\mathbf{P}^{b}	DED¢
vi	Opazene	Nsc	Sc	IR	RA	red
33	-	824	755	138,65	1,03	NH ₂ kl
34	-	765	741	124,69	2,93	SiO ₃ ist, NH ₂ kl, CH ₂ zib, SiOH def
35	-	723	699	3,02	1,21	CH ₂ zib
36	646 vw	638	626	25,04	15,33	SiC ist, SiO ₃ ist
37	490 sh	495	490	7,79	1,50	NCC str.v, SiCC str.v, CCC str.v, SiO ₃ zib
38	-	382	381	102,13	3,04	SiO ₃ asim def, SiO ₃ sim def, NCC str.v
39	357 w	368	367	75,24	0,97	SiOH tor, SiO ₃ sim def, SiO ₃ asim def
40	-	312	311	10,44	1,34	SiO ₃ asim def, SiOH def
41	-	296	296	5,32	1,05	SiOH tor, SiO3 asim def, SiO3 zib
42	-	277	285	32,41	0,47	CN tor
43	-	275	274	12,07	0,43	NCC str.v, CCC str.v
44	-	258	260	70,53	0,87	SiO ₃ zib, CN tor, SiOH tor
45	-	231	232	20,69	0,30	SiOH tor, CCC str.v
46	-	195	196	118,22	0,49	SiOH tor, SiO3 asim def, CCC str.v, SiCC str.v
47	-	163	165	7,72	0,52	SiO ₃ zib, SiCC str.v, SiOH tor, CC tor
48	-	124	125	87,87	0,70	SiOH tor, SiO ₃ zib, SiO ₃ asim def
49	-	88	91	0,17	0,07	SiC tor
50	-	85	89	6,40	0,12	CC tor, SiC tor, SiCC str.v, SiO ₃ zib
51	-	32	33	1,25	0,11	SiC tor

^a Opaženo u Ramanovom spektru vodene otopine APST-a; Korištene kratice: s-jako (strong), m-umjereno (moderate), w-slabo (weak), v-vrlo, sh-rame (shoulder), p-polarizirano, dp-depolarizirano.
^b Izračunate vrijednosti imaju slijedeće kratice: B3LYP=B3LYP/6-31G(d,p), Nsc = izračunate neskalirane

^b Izračunate vrijednosti imaju slijedeće kratice: B3LYP=B3LYP/6-31G(d,p), Nsc = izračunate neskalirane vrijednosti, Sc=skalirane frekvencije, IR=izračunati IR intenziteti (km·mol⁻¹), RA=Raman aktivnosti raspršenja (Å⁴ u⁻¹).

^c Distribucija potencijalne energije (PED) izračunata B3LYP/6-31G(d,p) metodom, navedeni su doprinosi veći od 10% i u padajućem redoslijedu. Kratice za nazive vibracijskih modova sadrži Tabela 2.

ν_{is}	Opažene ^a	I: Nsc	zračuna Sc	te - B3LY IR	(P ^b RA	PED ^c
1	-	3900	3742	70,30	118,02	OH ist
2	-	3897	3739	66,57	120,61	OH ist
3	-	3895	3737	91,20	78,41	OH ist
4	-	3772	3619	258,70	94,07	OH ist
5	3435 IR vs	3577	3432	1,00	44,40	NH ₂ ist
6	3370 vw	3571	3427	0,80	44,82	NH ₂ ist
7	3360 IR s	3497	3355	1,25	110,97	NH ₂ ist
8	3300 w	3493	3351	1,22	107,48	NH ₂ ist
9	2970 sh	3067	2943	66,20	22,86	CH ₂ ist
10	2937 IR s	3066	2942	65,68	7,11	CH ₂ ist
11	-	3052	2928	0,18	1,06	CH ₂ ist
12	-	3045	2921	0,06	0,69	CH ₂ ist
13	2925 sh	3034	2911	10,56	104,36	CH ₂ ist
14	-	3033	2910	7,32	132,97	CH ₂ ist
15	2894 s	3020	2897	55,70	130,19	CH ₂ ist
16	-	3019	2897	71,86	35,95	CH ₂ ist
17	-	3014	2892	3,07	19,78	CH ₂ ist
18	-	3010	2888	1,77	90,58	CH ₂ ist
19	-	3005	2883	3,35	172,33	CH ₂ ist
20	2870 IR sh	2995	2874	18,25	140,00	CH ₂ ist
21	1629 IR m	1665	1620	28,68	3,79	NH ₂ str.v
22	1590 IR m	1664	1619	28,49	3,76	NH ₂ str.v
23	1485 IR w	1504	1440	4,28	0,06	CH ₂ str.v
24	-	1503	1438	3,84	0,16	CH ₂ str.v
25	1456 s	1485	1422	0,34	18,46	CH ₂ str.v
26	1413 m	1484	1420	0,50	17,80	CH ₂ str.v
27	1389 IR w	1451	1389	6,84	6,39	CH ₂ str.v
28	1387 w	1451	1389	4,95	9,51	CH ₂ str.v
29	1331 IR w	1391	1333	6,18	1,58	CH ₂ kl
30	-	1391	1333	4,84	1,54	CH ₂ kl
31	1310 m	1385	1327	0,97	5,75	CH ₂ uv.v, NH ₂ zib
32	-	1384	1326	0,99	5.72	CH ₂ uv.v, NH ₂ zib

Tabela 5. Opažene i izračunate frekvencije (cm⁻¹) *trans*-APST dimera.

		I	zračuna	te - B3LY	P ^b	DEDc
ν_{is}	Opažene ^a	Nsc	Sc	IR	RA	PED ^c
22	1209 ID ah	1241	1206	14 22	2 2 2	
22 24	1508 IK SII	1240	1200	14.55	2,33	
54 25	-	1226	1283	28,52	1,03	
33 26	-	1225	1280	1,20	5,52 7.65	CH ₂ uv.v
30 27	1255 W	1333	12/8	1,00	7,05	CH ₂ uv.v
37 20	121/ SN	1269	1214	2,03	0,59	CH ₂ uv.v, CH ₂ zlb, NH ₂ zlb
38 20	- 1200 ID al	1209	1214	2,07	0,58	CH_2 uv.v, CH_2 ZID, NH_2 ZID
39 40	1200 IK Sh	1225	11//	20,28	6,04	
40	-	1222	11/5	42,42	3,41	
41	1080 sh	1089	1068	5,96	6,6/	CN 1st
42	-	1087	1066	17,54	6,23	CN 1st
43	1052 m	1081	1038	18,76	0,48	CH_2 uv.v, NH_2 zib
44	-	1080	1036	43,27	0,24	CH_2 uv.v, NH_2 zıb
45	1025 IR vs	1065	1027	717,42	0,71	SiOSi ist, CC ist
46	-	1032	1015	43,53	16,44	CC ist
47	-	1025	1007	111,79	6,01	CC ist
48	-	1017	999	20,93	3,57	CC ist
49	-	1013	995	185,60	1,67	CC ist
50	960 m	991	976	15,19	7,62	SiOH def
51	-	966	927	21,40	0,61	CH ₂ zib, NH ₂ zib, CH ₂ uv.v
52	922 IR sh	963	925	78,14	0,84	CH ₂ zib, NH ₂ zib, CH ₂ uv.v
53	-	913	891	186,28	1,74	SiO ist, SiOH def, SiC ist
54	863 m	906	881	50,20	3,27	SiO ist, SiOH def
55	-	893	866	370,39	0,99	SiO ist, SiOH def
56	860 IR sh	867	854	6,02	2,02	SiO ist, SiOH def
57	818 w	848	822	177,66	0,21	SiO ist, SiOH def
58		828	791	199,15	1,01	SiOH def, SiO ist
59	785 IR w	814	772	238,74	1,06	SiOH def, SiO ist
60	760 IR w	806	756	52,88	2,87	NH ₂ kl, CN ist
61	-	788	753	180,54	0,25	CH ₂ zib, NH ₂ kl
62	737 w	781	749	5,40	0,22	CH ₂ zib
63	727 w	775	742	149,36	0,09	NH ₂ kl, CN ist
64		739	723	47,81	5,87	SiC ist

		I	zračuna	te - B3LY	\mathbf{P}^{b}	
ν_{is}	Opažene ^a	Nsc	Sc	IR	RA	PED ^c
65	692 IR m	709	691	14 67	0.27	SiC ist SiO ist
66	698 vw	700	680	1 91	0,27	CH ₂ zib
67	-	697	676	0.38	0.84	CH ₂ zib
68	590 IR w	624	606	34 90	11 50	SiOSi ist
69	534 m	517	517	95 80	0.78	SiOH tor
70	453 m	447	443	31.57	0.13	NCC str v
71	-	439	436	14.97	3.84	SiO ₃ sim def. SiOSi def. SiO ₃ asim def
72	_	433	428	10.17	1.29	NCC str.v. SiO ₃ asim def
73	_	420	418	160.78	0.56	SiO_3 sim def. SiOSi tor
74	_	369	368	109.36	0.58	SiOH tor, SiO ₃ asim def
75	-	335	333	37,49	0,69	SiO3 asim def, SiOH tor, SiO3 sim def
76	-	322	320	1,08	1,04	SiO3 asim def, SiO3 sim def, SiOSi tor
77	-	300	301	41,06	0,18	SiO ₃ asim def, CN tor, SiO ₃ zib
78	-	288	299	59,36	0,57	CN tor
79	-	277	288	22,91	0,24	CN tor
80	-	275	276	3,05	0,47	SiO ₃ zib, SiO ₃ asim def
81	-	256	256	41,36	0,38	SiOH tor
82	-	244	244	40,16	0,17	SiOH tor, SiO ₃ zib, CCC str.v
83	-	237	237	22,06	0,63	CCC str.v, NCC str.v, SiOH tor
84	-	225	225	42,20	1,75	CCC str.v, SiO3 zib, SiO3 sim def, SiOH tor
85	-	210	209	30,67	1,23	SiO ₃ asim def, SiO ₃ zib, SiOH tor
86	-	192	191	9,82	1,13	SiO ₃ asim def, SiO ₃ zib, SiOH tor
87	-	187	186	23,48	2,14	SiO ₃ asim def, SiOH tor, SiO ₃ zib
88	-	153	152	8,10	3,83	SiO ₃ zib, SiO ₃ asim def, CCSi str.v
89	-	139	144	0,39	0,09	CC tor
90	-	136	142	0,71	0,00	CC tor
91	-	120	120	1,06	0,25	SiOSi def
92	-	94	94	2,77	0,02	SiOSi tor, CCSi str.v
93	-	77	80	3,10	0,16	CC tor, SiO ₃ zib, CH ₂ zib
94	-	75	76	2,57	0,14	CC tor, SiO ₃ zib, CH ₂ zib
95	-	59	59	1,59	0,51	SiO ₃ zib, CCSi str.v
96	-	42	43	0,13	0,24	SiC tor, SiOSi tor

ν_{is}	Opažene ^a	I Nsc	zračunate Sc	- B3LYP ^I IR	RA	PED ^c
97	-	35	37	0,71	0,20	SiOH tor, SiOSi tor, SiC tor
98	-	18	19	0,15	0,02	SiOSi tor
99	-	13	13	0,51	0,04	SiOSi tor, SiOH tor

^a Opaženo u Ramanovom spektru vodene otopine APST-a; Korištene kratice: s-jako (strong), m-umjereno (moderate), w-slabo (weak), v-vrlo, sh-rame (shoulder), p-polarizirano, dp-depolarizirano, IR-opaženo u infracrvenom spektru polimera APST-a.

^b Izračunate vrijednosti imaju slijedeće kratice: B3LYP=B3LYP/6-31G(d,p), Nsc = izračunate neskalirane vrijednosti, Sc=skalirane frekvencije, IR=izračunati IR intenziteti (km·mol⁻¹), RA=Raman aktivnosti raspršenja ($Å^4 u^{-1}$).

^c Distribucija potencijalne energije (PED) izračunata B3LYP/6-31G(d,p) metodom, navedeni su doprinosi veći od 10% i u padajućem redoslijedu. Kratice za nazive vibracijskih modova sadrži Tabela 2.

DFT proračun vibracijskog spektra odnosi se na slobodnu molekulu APST-a. Najveće vrijednosti izračunatih frekvencija dobivene su za OH istezanje i iznose od 3750 cm⁻¹ do 3735 cm⁻¹. Te vrijednosti su u skladu s normalnim modovima OH istezanja na 3700 cm⁻¹, opaženima u izoliranim silanolnim skupinama. U vodenoj otopini APST-a ne mogu se opaziti vibracijske vrpce OH istezanja izoliranih SiOH grupa. Snimljeni Ramanov spektar vodene otopine APST-a (Slika 7) daje vrlo široku vrpcu oko 3300 cm⁻¹. To se može objasniti prisustvom vode, točnije stvaranjem vodikovih veza između hidroksilnih skupina jer stvaranje vodikovih veza djeluje na spektar tako da uzrokuje širenje spektralnih vrpci i pomak prema nižim frekvencijama [47]. OH istezanja u spektrima silanolskih oligomera [48] također se nalaze u rasponu od 3500 cm⁻¹ do 3400 cm⁻¹.

Usporedba Ramanovih spektara polimeriziranog uzorka i vodene otopine (Slika 7) u rasponu od 3500 cm⁻¹ do 3300 cm⁻¹ ukazuje na strukturne promjene. U spektru polimera ne opažaju se istezanja OH skupina, stoga se dvije vrpce pri 3370 cm⁻¹ i 3300 cm⁻¹, preostale nakon polimerizacije, mogu pripisati istezanjima NH₂ skupine. U infracrvenom spektru polimera APST-a (Slika 9) opažene su dvije linije koje se preklapaju, na 3435 cm⁻¹ i 3360 cm⁻¹, koje se mogu pripisati istezanju NH₂ skupine.

Vrpce koje pripadaju CH istezanju mogu se naći u spektralnom području od 3000 cm⁻¹ do 2800 cm⁻¹ [49]. U tom dijelu Ramanovog spektra otopine APST-a opaža se široka vrpca sačinjena od vrpci na 3003 cm⁻¹, 2970 cm⁻¹, 2910 cm⁻¹, 2903 cm⁻¹, 2890 cm⁻¹ i 2872 cm⁻¹. Sve su te vrpce pripisane metilenskom istezanju. Ramanov spektar polimeriziranog uzorka daje široku vrpcu sačinjenu od preklapajućih vrpci pri 2970 cm⁻¹, 2925 cm⁻¹ i 2894

 cm^{-1} , što su također istezanja CH₂ skupine. U infracrvenom spektru polimera APST-a opažaju se dvije jake vrpce na 2937 cm⁻¹ i 2870 cm⁻¹ koje su pripisane CH istezanju.

U infracrvenom spektru u području od približno 1700 cm⁻¹ do 2750 cm⁻¹ nalaze se vrlo široke vrpce slabog intenziteta sačinjene od viših tonova modova iz područja *otiska prstiju*. Na 1629 cm⁻¹ i 1590 cm⁻¹ nalaze se dvije vrpce srednjeg intenziteta koje se mogu pripisati striznim vibracijama NH₂ grupe. U Ramanovom spektru vodene otopine APST-a (Slika 8) strizni mod amino grupe predstavlja slaba depolarizirana vrpca na 1608 cm⁻¹.

Vibracijske vrpce koje su opažene u spektrima u rasponu od približno 1500 cm⁻¹ do 1100 cm⁻¹ mogu se pripisati vibracijama metilenske skupine. Jaka vrpca na 1452 cm⁻¹, vrpca srednje jakosti na 1416 cm⁻¹ i vrpca opažena kao rame na 1390 cm⁻¹ pripisane su striznim vibracijama CH₂ skupine. Vrpce opažene kao ramena u Ramanovom spektru vodene otopine na 1338 cm⁻¹ i 1284 cm⁻¹ te slaba vrpca u infracrvenom spektru na 1331 cm⁻¹ opisane su kao klaćenje CH₂ skupine.

U izračunatim vibracijskim spektrima za trans i gauche konformere postoje neke razlike u opisu normalnih modova vezanih uz vibraciju zibanja NH₂ grupe. Do razlika dolazi zbog različitog položaja amino grupe u konformerima. Kod trans konformera PED su relativno jednoznačne za te normalne modove dok je kod gauche konformera miješanje internih koordinata u odgovarajućim modovima puno veće. Normalni mod v_{17} na 1310 cm⁻¹, primjerice, ima jednu internu koordinatu više u PED-u trans konformera nego kod gauche-a. Kod *trans* konformera najveći doprinos promatranom modu daju uvojna vibracija CH₂ grupe i zibanje NH₂ grupe, dok je kod *gauche*-a prisutno i klaćenje CH₂ grupe. Veća razlika prisutna je kod normalnog moda v_{20} , opaženog pri 1225 cm⁻¹ za *trans* konformer i pripisanog uvojnoj vibraciji CH₂ grupe zajedno sa zibanjem CH₂ i NH₂ grupa. Za gauche konformer taj mod opažen je kao slaba, polarizirana vrpca pri 1236 cm⁻¹ pripisana klaćenju CH₂ grupe pomiješanim opet sa zibanjem CH₂ i NH₂ grupa. Istezanje CN veze opaženo je kod oba konformera i u dimeru APST-a kao rame u Ramanovom spektru pri 1080 cm⁻¹. Normalni mod v_{23} također se razlikuje u položaju i asignaciji za *trans* i *gauche* konformacije. Ramanova vrpca srednjeg intenziteta opažena pri 1050 cm⁻¹ pripisana je tom modu *trans* konformera i opisana kao uvojna vibracija CH₂ grupe pomiješana sa zibanjem NH₂ grupe. Analogni mod gauche konformera opažen je na 1070 cm⁻¹ kao srednje jaka i depolarizirana vrpca pripisana uvojnoj vibraciji CH₂ i zibanju NH₂ grupe pomiješanima još s istezanjem CC veze i klaćenjem CH₂ grupe. Do razlike dolazi zbog drugačije strukture trans i gauche molekula uzrokovanih promjenom torzijskog kuta SiCCC. Postojanje obaju linija u Ramanovom spektru vodene otopine APST-a (Slika 8) ukazuje na to da su u vodenoj otopini prisutni i *trans* i *gauche* konformer. S druge strane, u Ramanovom spektru APST polimera ne opaža se linija na 1070 cm⁻¹ što ukazuje na to da u polimeru nema *gauche* konformera.

U infracrvenom spektru APST polimera (Slika 9) opažaju se vrlo jaka vrpca pri 1025 cm⁻¹ i slaba vrpca na 590 cm⁻¹. Na temelju DFT proračuna te se vrpce mogu pripisati normalnim modovima dimera APST-a i to istezanju SiO veza u Si-O-Si mostu. Ramanov spektar APST polimera (Slika 8) također daje jaku liniju na 1140 cm⁻¹ koja se može pripisati Si-O-Si istezanju u polimeru ljestvaste strukture [50].

Normalni modovi v_{24} i v_{25} mogu se pripisati istezanju CC veze. Mod v_{24} opažen je na 1010 cm⁻¹ kao rame u Ramanovom spektru, dok se v_{25} opaža kao srednje jaka vrpca na 993 cm⁻¹ za *trans* i 951 cm⁻¹, polarizirana vrpca, za *gauche* konformer. Istezanje SiO veze doprinosi vibracijskim modovima u dijelu spektra od 950 cm⁻¹ do 600 cm⁻¹. Vrpca opažena pri 920 cm⁻¹ može se pripisati SiO istezanju u kombinaciji sa SiOH deformacijom *trans* konformera, dok se ekvivalentni mod za *gauche* konformer može opaziti pri 880 cm⁻¹ kao rame. Vrpca na 863 cm⁻¹ ima isti PED i zajednička je za oba monomera. Srednje jaka vrpca u Ramanovom spektru vodene otopine APST-a opažena je pri 960 cm⁻¹. Analizom normalnih modova ta se vrpca može opisati kao SiOH savijanje kod dimera. Vrpce opažene u Ramanovom spektru pri 796 cm⁻¹, 780 cm⁻¹, 787 cm⁻¹, 760 cm⁻¹ i 754 cm⁻¹ pripisane su SiOH deformaciji monomera APST-a u kombinaciji sa istezanjem SiO veza. To odgovara već objavljenoj asignaciji vibracijskih vrpci silanolne grupe [51,52]. Vrpce slabog intenziteta, opažene pri 710 cm⁻¹ i 646 cm⁻¹ u spektru vodene otopine APST-a pripisane su istezanju SiC i SiO veza za *trans* i *gauche* konformere, redom.

Različit položaj amino grupe i na niskim frekvencijama utječe da *trans* i *gauche* konformeri imaju nekoliko normalnih modova s istim PED-om, ali se oni u spektru opažaju na različitim mjestima. Normalni mod *gauche* konformera opisan kao strizna vibracija NCC, SiCC i CCC grupa plus zibanje SiO₃ grupe opaža se u spektru pri 490 cm⁻¹, dok se isti mod za *trans* konformer nalazi na 453 cm⁻¹.

ν_{i}	Opažene ^a	Izi Nsc	računate - Sc	- B3LYP ^b IR	RA	PED ^c						
	trans-APST											
23	1050 m	1082	1038	13,95	0,25	CH ₂ uv.v, NH ₂ zib						
37	453 w	444	440	10,83	0,95	NCC str.v, CCSi str.v, SiO ₃ zib						
			Ę	gauche-APS	Г							
23	1070 m dp	1087	1064	15,95	6,29	CH ₂ uv.v, NH ₂ zib						
37	490 sh	495	490	7,79	1,50	NCC str.v, CCSi str.v, SiO ₃ zib						
				APST dime	•							
45	1025 IR vs	1065	1027	717,4	0,71	SiOSi ist, CC ist						
69	534 m	517	517	95,8	0,78	SiOH tor						

Tabela 6. Karakteristične frekvencije.

^a Opaženo u Ramanovom spektru vodene otopine APST-a; Korištene kratice: s-jako (strong), m-umjereno (moderate), w-slabo (weak), v-vrlo, sh-rame (shoulder), p-polarizirano, dp-depolarizirano, IR-opaženo u infracrvenom spektru polimera APST-a.

^b Izračunate vrijednosti imaju slijedeće kratice: B3LYP=B3LYP/6-31G(d,p), Nsc=izračunate neskalirane vrijednosti, Sc=skalirane frekvencije, IR=izračunati IR intenziteti (km·mol⁻¹), RA=Raman aktivnosti raspršenja (Å⁴ u⁻¹).

^c Distribucija potencijalne energije (PED) izračunata B3LYP/6-31G(d,p) metodom, navedeni su doprinosi veći od 10% i u padajućem redoslijedu. Kratice za nazive vibracijskih modova sadrži Tabela 2.

U spektru se opažaju još dvije vrpce koje se mogu povezati s torzijom SiOH grupe. Vrpca slabog intenziteta na 357 cm⁻¹ pripisuje se normalnom modu monomera APST-a, v_{39} , opisanom kao SiOH torzija pomiješana s deformacijama SiO₃ skupine. Vrpca srednjeg intenziteta opažena pri 534 cm⁻¹ u Ramanovom spektru vodene otopine APST-a, pripisuje se torziji SiOH grupe u dimeru. Ovaj se normalni mod može smatrati karakterističnim za dimer (Tabela 6) obzirom da ga se ne pronalazi u izračunatim spektrima monomera APST-a.

U Ramanovom spektru vodene otopine aminopropilsilantriola nađene su vrpce karakteristične za *trans* (1050 cm⁻¹) i *gauche* (1070 cm⁻¹) konformere, a vrpca na 534 cm⁻¹ ukazuje i na prisutnost molekula dimera (Tabela 6).

4.2. 3-Glicidoksipropiltrimetoksisilan GPTMS

3-Glicidoksipropiltrimetoksisilan (GPTMS), CH₂(O)CH-CH₂-O-(CH₂)₃-Si(O-CH₃)₃, pripada skupini epoksisilana. Vrlo se često koristi u procesima modifikacije epoksi smola [7].

4.2.1. Računski dio

Pretpostavljena geometrija GPTMS-a preuzeta je od prethodno istraženog APST-a [43] te je prilagođena dodavanjem glicidoksi i metoksi grupa [53]. Tako dobivena struktura je optimizirana. Zatim je napravljeno detaljno skeniranje potencijalne energije (PE), kako bi se pronašle neke moguće konformacije ove molekule. Polazna geometrija u tim proračunima uvijek je bila optimizirana geometrija. Skeniranje je provedeno po tri torzijska kuta: Si-C-C-C (ϕ) , C-C-C-O (χ) i O-C-C-O (ψ) , najosjetljivija na promjene. Kutovi su povećavani po 3,6° od početne vrijednosti 0° do 360°. Nakon svakog povećanja kuta provedena je optimizacija po svim preostalim geometrijskim parametrima. Računi predviđaju postojanje sedam različitih stacionarnih točaka što ukazuje na postojanje sedam mogućih konformacija GPTMS molekule. Za sve stacionarne točke napravljena je optimizacija po svim geometrijskim parametrima, a zatim i izračun polja sila te vibracijskih frekvencija. Pri tome je korišten jednostavni sistem opisivanja i označavanja konformera u ovisnosti o vrijednostima triju torzijskih kutova φ , χ i ψ : t = trans za kutove iznosa ~180°, a g = gauche za kutove od ~ 60°. U skladu s tim oznakama polazna geometrija, ista kod svih skeniranja potencijalne energije, s torzijskim kutovima $\varphi = -176^\circ$, $\chi = 178^\circ$ i $\psi = -66^\circ$ nazvana je 1-*ttg* konformer. Većina geometrijskih parametara (duljine veza i valentni kutovi) imaju gotovo iste vrijednosti za sve konformere. Razlike su najviše naglašene kod torzijskih kutova. Iznose torzijskih kutova po kojima se radilo skeniranje, nekih valentnih kutova kao i pripadajuće energije za sve konformere prikazuje Tabela 7.

	Kut / °						
	1-ttg	2-gtg	3-gtg	4- <i>tgg</i>	5-tgg	6- <i>ttg</i>	7 <i>-ttt</i>
$SiC_1C_2C_3(\phi)$	176,62	-69,38	70,03	177,88	-179,70	177,09	176,75
$C_{1}C_{2}C_{3}O_{26}(\chi)$	177,80	-176,42	177,80	-64,32	63,99	178,78	179,62
$C_2C_3SiO_{11}$	-169,89	67,64	48,08	-169,52	-162,36	-170,75	-167,64
$C_2C_3SiO_{15}$	73,05	-50,12	-69,31	73,50	80,36	72,12	75,31
$C_2C_3SiO_{19}$	-48,94	-170,83	169,89	-48,00	-41,80	-49,80	-46,64
$C_3SiO_{11}C_{12}$	-142,15	-150,09	-152,57	-145,96	-137,92	-140,93	-143,14
$C_3SiO_{15}C_{16}$	-69,77	-64,29	-69,38	-73,59	-61,06	-70,96	-69,16
$C_{3}SiO_{19}C_{20}$	-169,22	-168,43	-169,54	-164,56	-169,03	-167,43	-167,95
$C_1O_{26}C_{27}C_{30}$	-88,77	-88,43	-88,00	-89,22	-89,61	-178,90	-176,34
$O_{26}C_{27}C_{30}O_{32}(\Psi)$	-66,30	-66,44	-66,01	-66,41	-65,33	87,28	-164,50
$O_{26}C_{27}C_{30}C_{33}$	2,97	2,88	3,34	2,96	4,00	156,04	-96,13
$ E ^{b}$ / eV	27780,66255	27780,67284	27780,73657	27780,62188	27780,74252	27780,81877	27780,77153
$\Delta E^{\rm c}$ / meV	156,2	145,9	82,2	196,9	76,3	0	47,2

Tabela 7: Izračunati kutovi i energije za optimizirane konformere^a GPTMS-a.

^a Numeraciju atoma prikazuje Slika 15.
^b Energije imaju negativne vrijednosti.
^c Razlika energije prema konformeru s najnižom energijom, 6-*ttg*.

Krivulju potencijalne energije u ovisnosti o torzijskom kutu φ prikazuje Slika 12. Kao rezultat ovog skeniranja dobivena su tri konformera: polazni konformer 1-*ttg* i dva nova 2-*gtg* i 3-*gtg*. Pripadajući iznosi kuta φ su 176,62°, -69,38° i 70,03°, redom. Konformeri 2-*gtg* i 3-*gtg* međusobno se razlikuju po orijentaciji metoksi grupa. Razlika u energiji između ta dva konformera je 0,064 eV (514 cm⁻¹), dok izračunata vrijednost barijere za prelazak iz konformera 2-*gtg* u 3-*gtg* iznosi 0,15 eV (1208 cm⁻¹) (Tabela 8).

Slika 12: Ovisnost potencijalne energije molekule GPTMS o torzijskom kutu Si-C-C-C (ϕ).

Krivulja potencijalne energije dobivena promjenom torzijskog kuta χ (Slika 13) prikazuje dva nova konformera: 4-*tgg* i 5-*tgg*. Torzijski kut χ za konformer 4-*tgg* iznosi -64,32°, a za 5-*tgg* iznosi 63,99°. Najveća razlika u strukturi ova dva konformera je također u orijentaciji metoksi grupa. Razlika njihovih energija iznosi 0,121 eV (973 cm⁻¹), ali za prelazak iz konformera 4-*tgg* u 5-*tgg* potrebno je savladati barijeru koja prema našim proračunima iznosi 0,264 eV (2133 cm⁻¹) (Tabela 8).

Slika 13: Ovisnost potencijalne energije molekule GPTMS o torzijskom kutu C-C-C-O (χ).

Posljednji izračun potencijalne energije napravljen je u ovisnosti o promjeni torzijskog kuta Ψ (Slika 14). Kao rezultat dobivena su još dva nova konformera: 6-*ttg* i 7-*ttt* s vrijednostima torzijskog kuta Ψ = 87° i -164°, redom. Razlika između konformera 1-*ttg*, 6-*ttg* i 7-*ttt* opaža se u orijentaciji epoksi prstena. Geometrijska optimizacija dobivenih konformera po svim parametrima pokazala je da najnižu energiju ima konformer 6-*ttg*, a samim time to je i najstabilnija konformacija. Energija konformera 7-*ttt* je za 0,047 eV (381 cm⁻¹) veća od energije najstabilnijeg konformera, 6-*ttg*, dok je barijera za prelazak iz konformera 6-*ttg* u 7*ttt*, 0,086 eV (692 cm⁻¹). Slika 15 prikazuje molekulsku geometriju s numeracijom atoma za najstabilniji konformer.

Tabela 7 uz neke geometrijske parametre navodi i razlike u energiji između najstabilnijeg konformera i ostalih. Izračunate potencijalne barijere za izmjenu konformera prikazuje Tabela 8. Kako se iz podataka u navedenim tabelama vidi, neki konformeri imaju vrlo bliske vrijednosti energije, međutim, potencijalne barijere za njihovu izmjenu su puno veće.

Slika 14: Ovisnost potencijalne energije molekule GPTMS o torzijskom kutu O-C-C-O (ψ).

	1 <i>-ttg</i>	2-gtg	3-gtg	4-tgg	5-tgg	6-ttg	7 <i>-ttt</i>
1-ttg	0	98,7	109,9	170,1	142,5	241,6	70,1
2-gtg	64,0	0	149,8	_	_	_	_
3-gtg	70,4	145,1	0	_	_	_	_
4- <i>tgg</i>	139,5	_	_	0	264,5	_	_
5-tgg	139,5	_	_	292,1	0	_	_
6- <i>ttg</i>	255,9	_	_	_	_	0	85,8
7 <i>-ttt</i>	87,5	_	_	_	_	89,0	0

Tabela 8: Izračunate energetske barijere (meV) između konformera^a.

^a Barijere su navedene za prijelaze iz konformera navedenih u recima u konformere navedene u stupcima.

Slika 15: 6-ttg konformer molekule GPTMS-a.

4.2.2. Vibracijska analiza

Vibracijski spektri molekule GPTMS-a asignirani su uspoređivanjem opaženih i izračunatih frekvencija, izračunatih Ramanovih aktivnosti i infracrvenih intenziteta, frekvencija karakterističnih grupa te usporedbom s molekulama APST-a [43] i AMPTES-a (3aminopropiltrietoksisilan) [54]. Asignacija se bazira na distribuciji potencijalne energije (PED) dobivene iz skaliranog polja sila izračunatog DFT metodom. Molekula GPTMS-a ima 35 atoma što daje 99 internih normalnih vibracijskih modova. Kako molekula nema simetriju, svi modovi aktivni su i u Ramanovom i u infracrvenom spektru. Velika pomoć pri razlikovanju modova bliskih po frekvenciji, a time i njihovoj boljoj asignaciji, bili su i izračunate Ramanove aktivnosti i infracrveni intenziteti. Asignaciju najstabilnijeg konformera, 6-ttg, prikazuje Tabela 9. Uz usporedbu opaženih Ramanovih i infracrvenih vrpci s izračunatim normalnim modovima, u tabeli se nalaze i naznake relativnih intenziteta vrpci unutar danog spektra te polarizacijski karakter gdje je to bilo moguće. Prosječna pogreška između opaženih i izračunatih frekvencija iznosi 11 cm⁻¹. DFT račun normalnih modova pokazuje da je većina modova kod svih konformera gotovo ista s vrlo sličnim PED-om. Ima svega nekoliko vrpci karakterističnih za pojedine konformere i njih prikazuje Tabela 10. Usporedbom PED-a između svih konformera moguće je objasniti utjecaj pojedinih molekulskih struktura na normalne modove.

ν_{i}	Opažene ^a	Nsc	Izračunate Sc	e-B3LYP ^b IR	RA	PED ^c	Grupa ^d
1	3056 R m dp	3166	3038	28,20	93,57	CH ₂ ist	epoksi
2	3006 R s p	3118	2992	17,51	90,81	CH ist	epoksi
3	_	3097	2971	24,67	102,25	CH ₃ ist	metoksi
4	_	3096	2970	32,82	57,23	CH ₃ ist	metoksi
5	_	3090	2964	35,89	99,94	CH ₃ ist	metoksi
6	_	3084	2959	35,78	15,54	CH ₂ ist	propilni lanac
7	_	3080	2956	31,09	136,94	CH ₂ ist	epoksi
8	2944 R s p	3075	2950	40,80	77,41	CH ₃ ist	metoksi
9	_	3063	2939	32,00	55,12	CH ₃ ist	metoksi
10	_	3057	2933	44,49	53,98	CH ₃ ist	metoksi
11	2924 R s p	3046	2923	11,62	64,83	CH ₂ ist	propilni lanac
12	2892 R s p	3035	2912	29,18	61,75	CH_2 ist	propilni lanac
13	_	3013	2891	90,14	199,18	CH ₃ ist	metoksi
14	2872 R s sh	3011	2889	13,91	187,53	CH_2 ist	propilni lanac
15	2844 R vs p	3005	2883	62,93	142,25	CH ₃ ist	metoksi
16	2839 IR vs	3001	2879	63,81	82,88	CH ₃ ist	metoksi
17	_	2996	2875	33,11	56,82	CH ₂ ist	glicidoksi
18	_	2978	2857	45,74	72,82	CH_2 ist	propilni lanac
19	_	2953	2833	94,39	212,47	CH_2 ist	propilni lanac
20	2762 IR vw	2944	2825	19,95	6,83	CH ₂ ist	glicidoksi

Tabela 9: Opažene i izračunate frekvencije (cm⁻¹) najstabilnijeg GPTMS konformera, 6-*ttg*.

vi	Opažene ^a	Nsc	Izračunate Sc	e-B3LYP ^b IR	RA	PED ^c	Grupa ^d
21	1466 R sh dp	1530	1474	4,22	4,60	CH ₂ str.v , CH zib	epoksi
22	1480 R m dp	1524	1458	4,06	5,62	CH ₂ str.v	propilni lanac
23	_	1507	1442	1,86	8,35	CH ₃ asim def	metoksi
24	_	1506	1440	7,23	11,55	CH ₃ asim def, CH ₂ str.v	metoksi
25	_	1505	1440	5,45	3,04	CH ₃ asim def, CH ₂ str.v	metoksi
26	_	1504	1439	7,76	5,57	CH ₃ asim def	metoksi
27	_	1501	1436	3,93	19,26	CH ₃ asim def, CH ₂ str.v	metoksi
28	_	1499	1434	6,73	14,46	CH ₃ asim def	metoksi
29	_	1498	1434	5,98	5,32	CH ₃ asim def	metoksi
30	1441 IR m	1493	1429	7,23	1,15	CH ₂ str.v	glicidoksi
31	_	1486	1421	0,26	3,21	CH ₃ sim def	metoksi
32	_	1468	1420	2,36	5,23	CH ₂ str.v, CH ₂ kl, CH zib, CC ist	epoksi
33	_	1482	1418	0,67	1,17	CH ₃ sim def	metoksi
34	_	1480	1416	0,83	2,26	CH ₃ sim def	metoksi
35	1389 R w	1458	1395	6,72	7,28	CH ₂ str.v	propilni lanac
36	1367 IR vw	1421	1369	14,09	6,24	CH ₂ kl, CH zib, CC ist	propilni lanac
37	1313 IR m	1368	1317	23,73	4,31	CH ₂ kl	glicidoksi
38	1296 R w dp	1343	1288	36,92	3,81	CH ₂ kl	propilni lanac
39	_	1324	1267	1,01	10,86	CH ₂ uv.v	propilni lanac
40	1256 R s	1288	1257	4,56	29,01	CH zib, CC ist	epoksi
41		1292	1237	0,17	0,67	CH ₂ uv.v	propilni lanac

vi	Opažene ^a	Nsc	Izračunat Sc	e-B3LYP ^b IR	RA	PED ^c	Grupa ^d
42	_	1272	1229	5,61	5,77	CH ₂ uv.v	glicidoksi
43	1196 IR vs	1232	1186	37,85	7,12	CH ₂ kl	propilni lanac
44	1162 R vw	1207	1164	6,86	2,83	CH ₂ zib	propilni lanac
45	1159 IR s	1206	1155	68.28	1,36	CH ₃ zib, CO ist	metoksi
46	_	1203	1152	63,39	2,22	CH ₃ zib	metoksi
47	_	1200	1149	60,44	1,36	CH ₃ zib	metoksi
48	_	1174	1149	2,13	1,03	CH ₃ zib	metoksi
49	1136 R w	1155	1137	17,66	4,25	CC tor, CH ₂ zib, CH zib	epoksi
50	_	1179	1128	0,36	1,82	CH ₃ zib	metoksi
51	_	1177	1126	0,60	1,97	CH ₃ zib	metoksi
52	_	1173	1123	0,99	3,07	CH ₃ zib	metoksi
53	1114 R w	1151	1108	1,05	1,86	CH ₂ kl, CO ist	glicidoksi
54	1106 R w	1102	1098	5,50	5,32	CC tor, CH zib, CO ist	glicidoksi
55	1100 IR s	1139	1095	12,25	7,76	CO ist, CH ₂ kl	glicidoksi
56	1085 IR vs	1130	1085	575,95	0,47	CO ist, SiO ist, CH ₃ zib	metoksi
57	_	1117	1072	316,27	2,70	CO ist, SiO ist	metoksi
58	_	1111	1066	265,63	3,28	CO ist, SiO ist	metoksi
59	1058 R vw	1062	1045	0,66	4,23	CC ist, CO ist	propilni lanac
60	1030 R w	1041	1022	14,04	10,13	CC ist, CO ist	propilni lanac
61	995 IR m	1009	992	18,13	2,52	CH ₂ zib, CC ist, CO ist	glicidoksi
62	962 IR vw	1020	979	11,43	1,49	CH ₂ uv.v, CH ₂ zib	propilni lanac

ν_i	Opažene ^a	Nsc	Izračunat Sc	e-B3LYP ^b IR	RA	PED ^c	Grupa ^d
63	953 IR w	987	958	8,56	1,01	CH ₂ zib, CO ist	glicidoksi
64	910 IR m	937	922	40,04	4.75	CO ist, CC ist, CO tor	epoksi
65	856 IR s	865	862	27,17	4,30	CO tor, CC ist	epoksi
66	822 IR vs	834	804	60,63	0,77	CH ₂ zib, SiO ist	propilni lanac
67	793 IR s	811	791	122,92	1,86	SiC ist, SiO ist	
68	762 IR s	790	775	67,08	4,60	CO ist, CCO str.v	epoksi
69	_	794	766	62,39	5,09	SiO ist, CO ist	
70	_	771	743	90,20	1,79	SiO ist, CH ₂ zib	
71	679 IR w	691	668	1,85	0,92	CH ₂ zib, SiO ist	propilni lanac
72	642 R vs p	628	607	8,38	18,42	SiO ist	
73	530 R vw	515	515	23,48	1,66	CCO str.v	glicidoksi
74	480 R vw	485	482	11,21	0,92	COC def, CCC def, OCC def	glicidoksi
75	443 R vw	448	446	38,44	0,77	SiO ₃ sim def, CCC def, OCC def	epoksi
76	395 R vw	391	390	11,55	0,51	SiO ₃ asim def, SiOC def	
77	_	362	361	8,38	0,84	CCC def, OCC def, COC def	epoksi
78	_	351	350	14,61	0,32	SiO ₃ asim def, SiOC def	
79	330 R w dp	328	329	10,11	2,28	SiO ₃ asim def, CCO str.v	propilni lanac
80	_	241	243	4,40	0,54	SiO ₃ zib, CC tor, SiOC def, SiO ₃ asim def	
81	246 R m dp	228	228	2,28	1,16	SiO ₃ zib, SiOC def, CCO str.v, CCC str.v, SiO ₃ asim def	
82	_	199	199	3,42	1,57	SiOC def, CCO str.v, CCC str.v	
83	_	184	183	3,55	2,30	SiOC def, CCSi str.v	

ν_{i}	Opažene ^a	I Nsc	zračunate Sc	-B3LYP ^b IR	RA	PED ^c	Grupa ^d
84		161	168	4,84	0,10	CC tor, CO tor	propilni lanac
85	_	147	150	9,90	0,37	SiOC def, SiO ₃ sim def	
86	_	126	126	6,18	0,61	SiOC def, SiO ₃ asim def	
87	_	117	120	2,18	0,19	CO tor, CC tor, SiO ₃ zib, SiOC def	glicidoksi
88	_	111	113	1,88	0,33	CC tor, SiO tor, SiO ₃ zib, COC def	epoksi
89	_	94	96	0,69	0,07	CO tor, SiC tor, CC tor	
90	_	85	89	0,24	0,22	CO tor, SiO tor	
91	_	77	80	0,07	0,17	CO tor, SiO tor	
92	_	71	73	0,86	0,07	SiO tor, CO tor	
93	_	62	64	1,64	0,53	SiO tor, CO tor	
94	_	58	61	2,31	0,30	SiO tor, CO tor	
95	_	50	53	1,36	0,20	CO tor, SiO tor, SiC tor	glicidoksi
96	_	41	41	3,33	0,21	SiO tor, CCSi str.v, CC tor, CCC str.v	
97	_	39	39	3,10	0,14	SiO tor, CO tor, SiO ₃ asim def, SiO ₃ zib	
98	_	27	28	4,00	0,27	CC tor, CO tor, CCSi str.v	
99	_	21	21	0,95	0,09	SiC tor, CC tor, SiO tor, CO tor	

^a Korištene kratice: R-opaženo u Ramanovom spektru GPTMS-a, IR-opaženo u infracrvenom spektru GPTMS-a, s-jako (strong), m-umjereno (moderate), w-slabo (weak), v-vrlo, sh-rame (shoulder), p-polarizirano, dp-depolarizirano.

^b Izračunate vrijednosti imaju slijedeće kratice: B3LYP=B3LYP/6-311++G(d,p), Nsc = izračunate neskalirane vrijednosti, Sc=skalirane frekvencije, IR=izračunati IR intenziteti (km·mol⁻¹), RA=Raman aktivnosti raspršenja (Å⁴ u⁻¹).

^c Distribucija potencijalne energije (PED) izračunata B3LYP/6-311++G(d,p) metodom, navedeni su doprinosi veći od 10% i u padajućem redoslijedu. Kratice za nazive vibracijskih modova sadrži Tabela 2.

^d Karakteristične grupe čije su vibracije u PED-u s najvećim doprinosima.

Tabela 10: Izračunate i opažene karakteristične vrpce konformera (cm⁻¹).

	PED ^a 1–ttg	2–gtg	3–gtg	4–tgg	5–tgg	6–ttg	7–ttt	Opaženo ^c
C ₃₃ H ₂ str.v, CH zib ^b	_	_	_	_	_	1474	1473	1466 R sh dp
C ₃₃ H ₂ str.v, CH zib	1461	1463	1465	1463	1462	_	_	1456 R m dp
C ₂₇ H ₂ str.v	_	_	_	_	_	1429	1447	1441 IR m
C ₂₇ H ₂ str.v	1418	1417	1416	1417	1417	_	_	1414 IR m
C ₂₇ H ₂ kl, CC ist	1341	1342	1342	1341	1340	_	_	1340 IR m
C ₂₇ H ₂ kl	_	_	_	_	_	1317	1323	1313 IR m
SiO ist	602	_	_	603	606	607	606	642 R vs p
SiO ist, SiC ist	_	578	577	_	_	_	_	612 R vs p

^a Distribucija potencijalne energije (PED) izračunata B3LYP/6-311++G(d,p) metodom, navedeni su doprinosi veći od 10% i u padajućem redoslijedu. Kratice za nazive vibracijskih modova sadrži Tabela 2.
^b Numeraciju atoma prikazuje Slika 15.
^c Korištene kratice: R-opaženo u Ramanovom spektru GPTMS-a, IR-opaženo u infracrvenom spektru GPTMS-a, s-jako (strong), m-umjereno (moderate), v-vrlo, p-

polarizirano, dp-depolarizirano.

Analiza normalnih koordinata omogućila nam je i da razlikujemo normalne modove koji potječu od različitih molekulskih grupa GPTMS-a, poput epoksi, glicidoksi ili metoksi grupe te propilnog lanca.

U visokofrekventnom području vibracijskih spektara nalazi se nekoliko vrpci koje su pripisane CH istezanju unutar CH₃, CH₂ i CH strukturnih grupa. Uzimajući u obzir izračunate Ramanove aktivnosti, jake vrpce opažene na 3056 cm⁻¹ i 3006 cm⁻¹ u Ramanovom spektru (Slika 16) pripisane su normalnim modovima CH₂ i CH istezanja u epoksi prstenu. Tri vrpce opažene u Ramanovom i infracrvenom spektru (Slika 16 i Slika 17) na 2944 cm⁻¹, 2844 cm⁻¹ i 2839 cm⁻¹ pripisane su normalnom modu CH istezanja metoksi grupa. CH₂ istezanju propilnog lanca pripisane su četiri vrpce opažene u Ramanovom i infracrvenom spektru (Slika 17) na 2924 cm⁻¹, 2892 cm⁻¹, 2872 cm⁻¹ i 2762 cm⁻¹.

U području frekvencija 1500 cm⁻¹ do 1100 cm⁻¹ Ramanovog spektra (Slika 18) opažene su četiri vrpce: 1480 cm⁻¹ (v_{22}), 1389 cm⁻¹ (v_{35}), 1196 cm⁻¹ (v_{43}) i 1162 cm⁻¹ (v_{44}) koje se mogu pripisati vibracijskim modovima CH₂ grupa u propilnom lancu.

Jaka vrpca opažena na 1256 cm⁻¹ (v_{40}) u Ramanovom spektru je karakteristična vrpca za epoksi grupu [55]. Ta je vrpca u literaturi često pripisana disajnom modu epoksi prstena, ali uzevši u obzir rezultate naše analize normalnih modova, vrpca je pripisana CH zibanju u kombinaciji s istezanjem CC veze u epoksi prstenu.

Slika 16: Ramanov spektar GPTMS molekule u području 3500-2500 cm⁻¹.

Slika 17: Infracrveni spektar GPTMS molekule u području 3500 cm⁻¹ do 2500 cm⁻¹.

Slika 18: Ramanov spektar GPTMS molekule u području 1600 cm⁻¹ do 100 cm⁻¹.

Slika 19: Infracrveni spektar GPTMS molekule u području 1700 cm⁻¹ do 400 cm⁻¹.

U rasponu od 1000 cm⁻¹ do 760 cm⁻¹ u infracrvenom spektru (Slika 19) opaža se šest jakih ili srednje jakih vrpci. Modovi u tom području povezani su s vibracijama glicidoksi grupe. Na temelju proračuna normalnih koordinata vrpca na 995 cm⁻¹ pripisana je zibanju CH₂ skupine u glicidoksi grupi zajedno s CC i CO istezanjima propilnog lanca. Dva normalna moda opažena pri 910 cm⁻¹ (v_{64}) i 762 cm⁻¹ (v_{68}) su čiste vibracije epoksi prstena. Mod v_{64} sastoji se od CO i CC istezanja u kombinaciji s torzijom oko CO veze, a v_{68} interpretiran je kao CO istezanje povezano sa striznim vibracijama CCO grupe. Prema izračunatom PED-u, torzija oko CO veze u kombinaciji s CC istezanjem pripisana je jakoj infracrvenoj vrpci na 856 cm⁻¹. Vibracije propilnog lanca u kombinaciji sa SiO istezanjem opažene su kao jake vrpce pri 822 cm⁻¹ i 793 cm⁻¹.

U frekventnom području od 530 cm⁻¹ do 240 cm⁻¹ u Ramanovom spektru (Slika 18) opaža se šest vrpci slabog intenziteta. Proračuni u tom području predviđaju strizne vibracije CCO grupe, te COC, CCC i OCC, SiOC i SiO₃ deformacije. Vrpca pri 530 cm⁻¹ pripisana je striznoj vibraciji CCO valentnog kuta glicidoksi grupe. Vrpca opažena pri 480 cm⁻¹ opisana je kao COC deformacija, a vrpca opažena pri 443 cm⁻¹ kao SiO₃ simetrična deformacija, obje u kombinaciji s CCC i OCC deformacijama epoksi prstena.

Asimetrična deformacija SiO₃ grupe opaža se u dvije vrpce slabog intenziteta, na 395 cm⁻¹ (v_{76}) i 330 cm⁻¹ (v_{79}). U mod v_{76} uključena je i SiOC deformacija metoksi grupa, dok je u modu v_{79} prisutna i strizna vibracija CCO grupe u propilnom lancu.

Vrpca srednjeg intenziteta opažena pri 246 cm⁻¹ pripisana je zibanju SiO₃ grupa, SiOC deformaciji, striznoj vibraciji CCO i CCC grupa zajedno sa SiO₃ asimetričnom deformacijom.

4.2.2.1. Karakteristične vrpce konformera

Usporednom analizom izračunatih vibracijskih spektara svih sedam konformera dobivaju se četiri normalna moda čije su frekvencije posebno osjetljive na promjene torzijskih kutova φ , χ i ψ (Tabela 10). Kako bi se istaknule spektralne vrpce koje obilježavaju najstabilniji konformer, izmjerena je temperaturna ovisnost Ramanovog spektra tekućeg uzorka u rasponu temperatura od 293 K do 203 K. Razlike su opažene u relativnom intenzitetu vrpci pri 642 cm⁻¹ i 612 cm⁻¹ (Slika 20a) te kod vrpci pri 1466 cm⁻¹ i 1456 cm⁻¹ (Slika 20b).

Dvije vrlo jake i polarizirane vrpce opažene su u Ramanovom spektru na 642 cm⁻¹ i 612 cm⁻¹. Relativni intenzitet te dvije vrpce pokazuje eksponencijalnu ovisnost o promjeni temperature (Slika 21) danu izrazom

$$\frac{I_{642}}{I_{612}} = A \exp\left(\frac{B}{T}\right),\tag{24}$$

gdje su I_{642} i I_{642} integrirani intenziteti odgovarajućih vrpci, $A = 0.72 \pm 0.01$, $B = (348.46 \pm 3.76)$ K i *T* je temperatura. Prema zakonima statističke termodinamike omjer populacija za dva konformera dan je sličnim izrazom

$$\frac{N_1}{N_2} = \exp\left(\frac{\Delta G}{k_B T}\right),\tag{25}$$

Gdje je ΔG razlika Gibbsovih slobodnih energija dvaju konformera, a k_B Boltzmannova konstanta. Usporedbom ove dvije relacije možemo procijeniti $\Delta G = 0,03$ eV (242 cm⁻¹) po molekuli, a omjer $N_1/N_2 = 3,29$ na sobnoj temperaturi. Omjer populacija naraste do 5,56 pri temperaturi 203 K. Ovdje treba naglasiti da se ΔG razlikuje od ΔE , razlike energija za slobodnu molekulu (Tabela 7), ponajviše jer su mjerenja rađena na tekućem uzorku.

Slika 20: Temperaturna ovisnost Ramanovog spektra.

Slika 21: Temperaturna ovisnost omjera integriranog intenziteta vrpci na 641 cm⁻¹ i 612 cm⁻¹.

Vrpca na 642 cm⁻¹ pripisana je pomoću analize normalnih modova i izračunatih Ramanovih aktivnosti čistom istezanju SiO veza za 1-*ttg*, 4-*tgg*, 5-*tgg*, 6-*ttg* i 7-*ttt* konformere molekule GPTMS-a (Tabela 10). Mijenjanjem torzijskog kuta φ (Slika 15, Tabela 7) dolazi do promjene konformacijske strukture što je razlog zašto odgovarajući normalni mod kod preostala dva konformera ima drugačiji položaju i asignaciju. Stoga je vrpca opažena pri 612 cm⁻¹ pripisana istom vibracijskom modu konformera 2-*gtg* i 3-*gtg* te opisana kao istezanje SiO veza u kombinaciji sa SiC istezanjem. To se slaže s podacima iz literature za SiO istezanje [55] i sa sličnim rezultatima dobivenim za molekulu APTES-a [54]. Uz pretpostavku da jedini značajni doprinos intenzitetu vrpci dolazi od konformera s najnižom energijom u grupi, vrpca na 642 cm⁻¹ može se pripisati konformeru 6-*ttg*, a vrpca na 612 cm⁻¹ 3-*gtg* konformeru.

Druga razlika u temperaturno ovisnom Ramanovom spektru opažena je za vrpce pri 1466 cm⁻¹ i 1456 cm⁻¹ (Slika 20b). U tom području spektra nalazi se puno vrpci koje se međusobno preklapaju pa zato nije bilo moguće dobiti pouzdane integrirane intenzitete metodom usklađivanja. Ipak, može se primijetiti da se intenzitet vrpce na 1466 cm⁻¹ povećava kako se temperatura smanjuje, dok se intenzitet vrpce na 1456 cm⁻¹ pri tome smanjuje.

Analizom normalnih modova vrpca na 1466 cm⁻¹ opisana je kao strizna vibracija CH₂ grupe povezana sa zibanjem CH skupine u epoksi prstenu za konformere 6-*ttg* i 7-*ttt* (Tabela 10). Zbog različitih torzijskih kutova χ i ψ (Slika 15, Tabela 7) drugačije su konformacijske strukture, a time i položaj odgovarajućih normalnih modova za preostalih pet konformera. Stoga je vrpca opažena u Ramanovom spektru na 1456 cm⁻¹ pripisana istom modu za 1-*ttg*, 2-*gtg* i 3-*gtg*, 4-*tgg* i 5-*tgg* konformere.

Čista strizna vibracija CH₂ skupine u glicidoksi grupi još je jedan normalni mod čija je frekvencija osjetljiva na promjenu torzijskih kutova χ i ψ . Ta je vibracija pripisana infracrvenoj vrpci na 1441 cm⁻¹ (Slika 19) za konformere 6-*ttg* i 7-*ttt*. Normalni mod s istom distribucijom potencijalne energije (PED) kod preostalih pet konformera opažen je u infracrvenom spektru pri 1414 cm⁻¹.

Na temelju analize normalnih modova srednje jaka vrpca opažena u infracrvenom spektru na 1313 cm⁻¹ može se pripisati čistom klaćenju CH₂ skupine u glicidoksi grupi za konformere 6-*ttg* i 7-*ttt*. Mijenjanjem torzijskog kuta ψ dolazi do promjene u položaju i asignaciji odgovarajućeg temeljnog moda kod preostalih pet konformera. Stoga je srednje jaka vrpca opažena u infracrvenom spektru pri 1340 cm⁻¹ pripisana istome modu za konformere 1-*ttg*, 2-g*tg*, 3-*gtg*, 4-*tgg* i 5-*tgg* i opisana kao klaćenje CH₂ skupine u kombinaciji s istezanjem CC veze.

4.3. Aminopropilsiloksan APS

Hidrolizom silana nakon koje slijedi isparavanje vode nastaju polisiloksani koji mogu imati različitu strukturu, primjerice linearnu, cikličku, ljestvastu ili kubičnu. Aminopropilsiloksan (APS) nastaje polimerizacijom APST-a, odnosno aminopropilalkoksisilana. O različitim konformacijama polimera ovise i veze kojima je on povezan s jedne strane s organskim, a s druge strane anorganskim spojevima.

Handke i njegovi suradnici su analizirali vibracijski spektar silikata i siloksana te su predložili prstenasti model kojeg čine atomi silicija i kisika za različite prstene. Pri tome su koristili PM3 [56] i HF/6-31G(d) [57,58] metode. Povezali su karakteristične vrpce u infracrvenim spektrima s normalnim modovima izračunatim za prstene s tri, četiri i šest članova koji čine sastavne dijelove kavezolikih struktura.

Za APST molekulu (koja je osnovni element u izgradnji APS polimera) je, do sada, u ovom radu opisano proučavanje konformacijske stabilnosti i vibracijskih spektara pomoću DFT-B3-LYP/6-31G(d,p) metode [43]. Također je napravljena analiza Ramanovih spektara APS polimera u području malih valnih brojeva [59] koja ukazuje na postojanje ljestvaste strukture srednjeg uređenja (što će detaljnije biti opisano u šestom poglavlju).

U ovom poglavlju proučavat će se infracrveni i Ramanovi spektri APS-a koji je polimerizirao na PVC podlozi pri sobnoj temperaturi. Asignacija vibracijskih spektara napravljena je pomoću DFT metode, koristeći B3-LYP funkcional i 6-311++G(d,p) bazni skup. Računi vibracijskih spektara provedeni su za dvije različite konformacije prstena od kisika i silicija: ljestvastu strukturu (Slika 22) i kubičnu strukturu (Slika 23). Ljestvasta struktura s dva prstena korištena je u računu strukture i vibracijske dinamike APS-a (Slika 24). Istražena je i ovisnost geometrijskih parametara i vibracijske frekvencije o broju podjedinica koje tvore ljestvastu strukturu. Zbog računalnih ograničenja najdulji lanac u istraživanju sastoji se od osam prstena.

Slika 22. Ljestvasta struktura.

Slika 23. Kubična struktura.

Slika 24. Aminopropilsiloksan (APS).

Ramanovi spektri uzoraka snimljeni su u području od 10 cm⁻¹ do 1700 cm⁻¹. Korištena je geometrija raspršenja od 90°. Ulazna svjetlost polarizirana je okomito u odnosu na ravninu raspršenja. Polarizacija raspršenog svjetla analizirana je u vertikalnom (VV) i horizontalnom (VH) smjeru (Slika 25). Promjena orijentacije uzorka u odnosu na upadnu i raspršenu polarizaciju nije donijela nikakve promjene u Ramanovim spektrima. Proučavanjem uzorka kroz ukrštene polarizatore uočena je optička anizotropija. Kada svjetlost upada na uzorak okomito na ravninu rasta, nikakvo svjetlo ne prolazi kroz sustav što ukazuje na izotropiju u tom smjeru. Nakon što je uzorak okrenut za 90° tako da je svjetlo upadalo na uzorak paralelno s ravninom rasta (kroz tanku stranu uzorka), opažen je maksimalni intenzitet transmitiranog svjetla za uzorak koji je orijentiran dijagonalno između ukrštenih polarizatora što ukazuje da ipak postoji određeni red u orijentaciji.

FT infracrveni spektar APS-a snimljen je u rasponu frekvencije od 400 cm⁻¹ do 1800 cm⁻¹ pri spektralnoj rezoluciji od 4 cm⁻¹ (Slika 26).

Slika 25. Polariziran Ramanov spektar APS polimera i nepolariziran Ramanov spektar vodene otopine APST-a.

Slika 26. Infracrveni spektar APS-a.
4.3.1. Računski dio

Kako bi se što bolje interpretirali snimljeni vibracijski spektri, napravljeni su i DFT proračuni mogućih struktura dobivenih polimerizacijom. Za ljestvastu (Slika 22) i kubičnu strukturu (Slika 23) te APS (Slika 24) izračunate su molekulske strukture, polja sila, vibracijske frekvencije te Ramanove aktivnosti i infracrveni intenziteti. Pri tome je korišten Beckeov troparametarski hibridni funkcional izmjene u kombinaciji s Lee-Young-Parr korelacijskim funkcionalom (B3-LYP) i standardnim baznim skupom 6-311++G(d,p).

Ljestvasta struktura računata je postepeno. Prvo su napravljeni proračuni najjednostavnije strukture, osmeročlanog kvadratnog prstena koji se sastoji od četiri atoma silicija smještenih u vrhovima kvadrata te četiri atoma kisika smještenih na stranicama kvadrata. Na svaki atom silicija spojena su i dva vodikova atoma. Takva prstenasta struktura poslužila je kao osnova za izgradnju ljestvastih struktura različitih duljina. Najdulja izračunata struktura je ona s osam prstena i to zbog računalnih ograničenja. Naime, zbog velikog broja atoma u većim strukturama proračuni su trajali dugo (tjednima), a zbog vanjskih uvjeta bili su i često prekidani što je kod računanja vibracijskih frekvencija značilo i gubljenje podataka, odnosno ponovno pokretanje izračuna, pa je te duge račune postalo nemoguće provesti do kraja. Ljestvasta struktura s dva prstena sačinjena od atoma kisika i silicija kojoj su dva aminopropilna lanca spojena na srednje atome silicija činila je osnovu za proračun strukture i vibracijske dinamike APS-a. Kubična struktura s atomima silicija smještenima u vrhovima, a atomima kisika u središtu bridova kocke, računata je uz pretpostavku O_h simetrije.

Optimizacija geometrije provedena je relaksacijom svih strukturnih parametara. Izračun geometrije dao je duljine veza, valentne i torzijske kutove za minimume na plohi potencijalne energije. Zatim je provedena vibracijska analiza u stacionarnim točkama plohe potencijalne energije koje odgovaraju realnim minimumima jer u računu nisu dobivene imaginarne frekvencije.

4.3.2. Geometrijska struktura

Duljine veza i kutovi izračunati DFT metodom uspoređeni su s eksperimentalnim podacima određenima u studijama rendgenskih zraka za siloksisilseskvioksane [60] i oktasilseskvioksane [61]. Tabela 11 sadrži sve navedene podatke.

Prstenaste strukture sačinjene od atoma silicija i kisika koje imaju više članova (više od tri) uvijek su deformirane do neke mjere [56]. Na deformaciju prstena ukazuje i raspon Si-O-Si kutova u ljestvastoj strukturi s osam prstena, od 150,9° do 157,6°.

	Duljine	e veza ^{a,b}	Kutovi			
	Si	-0	Si-G	O-Si-O		
	Long. Trans.		Long.	Trans.		
Kocka	0,1644	0,1644	149,2	149,2	109,1	
Prsten	0,1645	0,1645	159,0	159,0	110,3	
Prsten2	0,1637-0,1647	0,1644-0,1646	156,4-157,0	151,2-157,4	109,5-110,2	
Prsten3	0,1638-0,1648	0,1644-0,1646	153,5-156,2	152,9-157,4	109,3-110,1	
Prsten4	0,1638-0,1648	0,1644-0,1646	154,5-155,8	152,2-157,1	109,2-110,2	
Prsten5	0,1638-0,1648 0,1644-0,1646		154,0-155,1 152,2-156,7		109,0-110,0	
Prsten6	0,1638-0,1648	0,1644-0,1646	154,0-154,8	151,9-156,6	109,1-110,0	
Prsten7	0,1638-0,1648	0,1644-0,1646	154,0-155,0	152,2-156,6	109,2-110,2	
Prsten8	0,1638-0,1648	0,1644-0,1647	154,0-154,7	152,0-156,6	109,0-110,0	
Eksp ^c	0,1585-0,1620		147,2	105,0-114,0		
Eksp ^d	0,1659		15	106,6		

Tabela 11. Izračunate duljine veza i kutovi za kubičnu, prstenastu i ljestvastu strukturu.

^a Udaljenosti su dane u nm, a kutovi u stupnjevima.

^b Korištene su kratice: Long. - za duljine veza i kutove longitudinalno obzirom na smjer ljestvaste strukture. Trans. – za duljine veza i kutove koji su transverzalni u odnosu na smjer ljestvaste strukture. Prsten X-

ljestvasta struktura s X prstena.

° [60].

^d [61].

Iz DFT proračuna ljestvastih struktura može se uočiti kako duljine veza te valentni kutovi variraju simetrično od krajeva molekule prema sredini. Tabela 11 sadrži raspone vrijednosti. Duljina SiO veza za kubičnu i prstenastu strukturu je unutar raspona vrijednosti za ljestvastu strukturu. Kod svih računatih ljestvastih struktura se može primijetiti kako se donja granica raspona vrijednosti Si-O-Si kutova gotovo ni ne mijenja, dok se gornja granica raspona smanjuje kako se povećava broj prstena u strukturi. Također, ta je promjena izraženija kod kutova koji su orijentirani longitudinalno duž ljestvaste strukture u odnosu na transverzalne Si-O-Si kutove. To se može objasniti time da su transverzalni kutovi smješteni unutar ljestvaste strukture dok su atomi iz longitudinalnih kutova zapravo rubni atomi zbog čega imaju i manji utjecaj susjednih atoma. O-Si-O kutovi su u istom rasponu za sve ljestvaste strukture. Sve izračunate vrijednosti geometrijskih parametara vrlo su bliske izmjerenim vrijednostima u cikličkim spojevima koji sadrže osmeročlane prstene od atoma kisika i silicija [60,61] te se može reći da geometrija izračunate ljestvaste strukture dobro opisuje stvarnu strukturu.

4.3.3. Vibracijska analiza

Najmanju proučavanu strukturu, prstenastu, čini osam atoma koji daju 18 normalnih modova. Modovi v_1 , v_7 , v_{10} i v_{14} su dvostruko degenerirani. Preostalih 14 fundamentalnih modova prikazuje Slika 27. Izračunate i opažene frekvencije tih modova za prstenastu, ljestvastu i kubičnu strukturu kao i za APS polimer sadrži i uspoređuje Tabela 12. U području frekvencija do 100 cm⁻¹ računi predviđaju pet vibracijskih vrpci s vrlo niskom Ramanovom aktivnošću. Analiza dijela Ramanovog spektra s malim valnim brojevima pokazala je da u tom području prevladava vrlo jaka bozonska vrpca [59]. Stoga tih pet izračunatih vrpci nije moguće opaziti. Modeliranjem Ramanovog spektra u području malih valnih brojeva otkrivena je široka spektralna vrpca na 206 cm⁻¹ [59]. Ta se vrpca, prema proračunu normalnih modova, sastoji od nekoliko doprinosa koji potječu od vibracijske deformacije propilnih grupa te kvadrupolarnog moda v_6 (Slika 27) prstenaste strukture. Sljedeće se u Ramanovom spektru mogu opaziti dvije jake, polarizirane vrpce pri 451 cm⁻¹ i 520 cm⁻¹. Vrpca pri 451 cm⁻¹ odgovara normalnom modu v_8 koji se može opisati kao disajni mod prstenaste strukture pri kojem se gibaju atomi kisika, dok vrpca pri 520 cm⁻¹ odgovara normalnom modu v_9 koji se može također opisati kao disajni mod prstenaste strukture samo se ovdje gibaju atomi silicija. Normalni mod v_{10} je dvostruko degeneriran i može se pripisati vrpci slabog intenziteta opaženoj kao rame u Ramanovom i infracrvenom spektru pri 583 cm⁻¹. Kombinacije ova dva posljednja moda mogu se prepoznati i u kubičnoj strukturi. Vibracija izračunata na 580 cm⁻¹ za kubičnu strukturu odgovara potpuno simetričnom modu pri kojem se svih osam atoma silicija smještenih u vrhovima kocke gibaju u fazi, prema središtu kocke. To se može prikazati kao linearna kombinacija dva v₉ moda prstenaste strukture koji vibriraju u fazi. Taj je prikaz identičan, neovisno o projekciji kocke. S druge strane, ako prstenaste strukture vibriraju u protufazi, prikaz ovisi o tome s koje strane gledamo kocku. Gledano odozgora, ta se vibracija i može opisati kao linearna kombinacija dva v9 normalna moda koji su u protufazi. Odnosno, gledano sa strane imamo linearnu kombinaciju dva v_{10} normalna moda koji vibriraju u fazi. Za taj mod izračunata frekvencija iznosi 556 cm⁻¹. Vrpca slabog intenziteta pri 615 cm⁻¹ u infracrvenom spektru može se pripisati modu v_{11} . U području od 900 cm⁻¹ do 1100 cm⁻¹ nalazi se nekoliko jakih vrpci koje se preklapaju, a mogu se opaziti i u Ramanovom i u infracrvenom spektru. Te se vrpce, prema DFT proračunima, mogu pripisati vibracijama aminopropilnog dijela molekule [43] i normalnom modu v_{12} .

Slika 27. Normalni modovi Si-O prstenaste strukture.

	Prsten		Kocka		Draton 2 ^c	ADC	Eksp.			
	ν	IR ^a	Raman ^b	ν	IR^{a}	Raman ^b	PIStell2	AFS	IR	Raman
v_1	3	0,0	0,2	48	0,0	0,0	55	55		
v_2	12	0,0	0,0	159	0,0	0,0	13	13		
v_3	18	0,0	0,1	72	0,0	0,0	27	26		
ν_4	64	6,5	0,0				64	65		
v_5	70	0,4	0,0				79, 86	80, 102		
ν_6	192	0,0	4,0	166	0,0	2,5	176, 204	153, 155		206
v_7	334	68,7	0,0	329, 396	0,0 170,0	0,0, 0,0	336, 399	331, 351		
ν_8	420	0,0	5,8	438	0,0	35,9	423, 432	429, 437	435	451
v 9	537	0,0	17,3	580	0,0	6,2	548, 559	519, 562		520
ν_{10}	562	3,7	0,0	556	28,1	0,0	550, 570, 611	536, 577, 610	582	583
v_{11}	622	0,0	17,3	665	0,0	21,5	639, 645	633	615	
v_{12}	1092	0,0	0,0	1040	0,0	0,0	1070, 1083	1054, 1070		1054
v_{13}	1131	2,5	0,1	1131	0,0	1,7	1120, 1134	1117, 1123	1128	
v_{14}	1140	1027,4	0,1	1139	2060,9	0,0	1126, 1142, 1155	1104, 1133, 1137	1151	1144

Tabela 12. Izračunate i opažene frekvencije kubične i ljestvastih struktura te APS-a (cm⁻¹).

^aIR relativni intenzitet (proizvoljne jedinice). ^bRamanova aktivnost (proizvoljne jedinice). ^cLjestvasta struktura s dva prstena.

Jaka vrpca u infracrvenom dijelu spektra pri 1128 cm⁻¹ može se pripisati normalnom modu v_{13} koji se opisuje kao SiO istezanje u protufazi. S druge strane, SiO istezanje u fazi opis je normalnog moda v_{14} i može se opaziti kao vrpca srednjeg intenziteta u Ramanovom spektru pri 1144 cm⁻¹. Preostale vrpce u spektrima nisu od vibracija prstenastih struktura već od vibracija metilenskih grupa te amino grupe u propilnim lancima što je već asignirano ranije u poglavlju 4.1.3. [43].

Kubična struktura ima visoku simetriju te su modovi degenerirani i ne dolazi do cijepanja polaznih vibracija.

S druge strane, dodavanjem novih podjedinica (prstena) ljestvastoj strukturi dolazi do cijepanja polaznih vibracija u nove sličnih frekvencija. Polazni normalni modovi (koje prikazuje Slika 27) mogu se lako prepoznati u većim strukturama sve do ljestvaste strukture od sedam podjedinica. U ljestvastoj strukturi od osam podjedinica normalni modovi su linearne kombinacije polaznih normalnih modova. Frekvencije tih normalnih modova i dalje su grupirane oko vrijednosti izračunatih za prstenastu strukturu. Povećanje masivnosti strukture vjerojatno je uzrok miješanju normalnih modova, koje se javlja kod struktura s osam podjedinica. Ta masivnost također daje stabilnost lokalnim modovima opaženima u proračunu najveće ljestvaste strukture. To znači da jedna podjedinica vibrira u određenom modu dok su preostali atomi u strukturi praktički nepomični. Kod relativno malih struktura to nije moguće budući da je masa silicijevog atoma znatno veća u usporedbi s masom kisika.

5. Ovisnost strukture APS-a o uvjetima polimerizacije

Nakon napravljene asignacije vibracijskih spektara vodene otopine aminopropilsilantriola te aminopropilsilanola, može se proučavati postupak polimerizacije APST-a pod različitim uvjetima. Voda stabilizira APST stoga ga se mora držati u vodenoj otopini i to u zatvorenoj posudi. Kada je otopina u kontaktu sa zrakom, dolazi do isparavanja vode iz otopine i do polimerizacije uzorka. Pokazalo se da uvjeti polimerizacije (primjerice temperatura, elektromagnetsko zračenje ili podloga na kojoj se nalazi uzorak) utječu na strukturu nastalog polimera. Stoga je polimerizacija provođena pod različitim uvjetima. Postupak je opisan u poglavlju 3.1., a nastali uzorci analizirani su Ramanovom spektroskopijom.

5.1. Rezultati i diskusija

Na temelju DFT analize molekulskih vibracija APST-a i APS-a mogu se izdvojiti vrpce u Ramanovim spektrima koje su karakteristične za *trans* i *gauche* konformacije molekule (Slika 2 i Slika 4) kao i one koje odgovaraju stvaranju Si-O-Si veza u polimeriziranim ljestvastim strukturama (Slika 24, Tabela 13). Proces kondenzacije APST-a na sobnoj temperaturi je vrlo spor proces (nekoliko tjedana). Proces je moguće ubrzati povećanim isparavanjem tako da se poveća temperatura ili da se smanji vlaga u zraku.

$v_{opažene} / cm^{-1}$	$v_{izračunate} / cm^{-1}$	Asignacija ^a	struktura
583	577	Si-O-Si ist	ljestvasta
615	615	Si-O-Si ist	ljestvasta
1050	1038	CH ₂ uv.v, NH ₂ zib	trans
1070	1064	CH ₂ uv.v, NH ₂ zib	gauche
1145	1137	Si-O-Si ist	ljestvasta

Tabela 13. Karakteristične vibracije APST molekule i APS polimera.

^a Kratice za nazive vibracijskih modova sadrži Tabela 2.

5.1.1. Utjecaj temperature

Utjecaj temperature na proces polimerizacije proučavan je pri 8°C, 23°C i 60°C. Ramanove spektre uzoraka koji su polimerizirali pri navedenim temperaturama prikazuje Slika 28. U spektrima se može opaziti nekoliko temperaturno osjetljivih vrpci. Intenzitet vrpce koja je opažena na 1070 cm⁻¹ najveći je za uzorak koji je polimerizirao na 60°C. Toj vrpci se smanjuje intenzitet kako se smanjuje temperatura polimerizacije. S druge strane, vrpci na 1050 cm⁻¹, koja se gotovo niti ne vidi na 60°C, intenzitet se povećava sa smanjenjem temperature polimerizacije. Prema DFT proračunu vibracijskih modova molekule APST-a, vrpca na 1050 cm⁻¹ odgovara uvojnoj vibraciji CH₂ skupine povezanoj sa zibanjem NH₂ skupine u propilnom lancu *trans* konformacije molekule. Vrpca na 1070 cm⁻¹ odgovara istoj vibraciji *gauche* konformacije (Tabela 13).

Slika 28. Ovisnost polimerizacije o temperaturi.

Opažene promjene u intenzitetu mogu se objasniti time što *trans* i *gauche* konformeri imaju različite energije osnovnog stanja (Tabela 14). Pri tome je *trans* konformer malo stabilniji. Prilikom zagrijavanja otopine dolazi do povećanja u populaciji *gauche* konformera, na račun *trans* konformera. S druge strane, intenzitet vrpce opažene na 1145 cm⁻¹ se smanjuje kako se temperatura povećava. Ta je vrpca karakteristična za stvaranje Si-O-Si veza u ljestvastoj strukturi. Pridružena je istezanju u fazi Si-O-Si veza na prečkama ljestvaste strukture. Vrpca opažena na 583 cm⁻¹ je protufazno Si-O-Si istezanje duž stranica ljestvaste strukture, dok vrpca na 615 cm⁻¹ predstavlja isto takvo istezanje, ali u fazi. Intenziteti tih dvaju vrpci također se smanjuju pri većim temperaturama što ukazuje na to da je *trans* konformer skloniji stvaranju ljestvaste strukture.

	trans	gauche
Energija / eV	-18758,4878	-18758,4153
$\Delta E_{trans-gauche}$ / eV	0,1	36
$\Delta E_{gauche-gauche}$ / eV	0,3	53
$\Delta E_{gauche-trans}$ / eV	0,0	54

Tabela 14. Energije konformera i barijera za prelazak među konformerima.

5.1.2. Utjecaj elektromagnetskog zračenja

Utjecaj elektromagnetskog zračenja na proces polimerizacije proučavan je na uzorku koji je polimerizirao u mraku te na dva uzorka koji su polimerizirali pod ultraljubičastim svjetiljkama valnih duljina 365 nm i 254 nm. Ramanove spektre struktura dobivenih solidifikacijom uzoraka pri različitim valnim duljinama zračenja prikazuje Slika 29. Spektri se značajnije razlikuju samo u području karakterističnih vibracijskih vrpci. Usporedbom tih vrpci može se primijetiti da se povećanjem frekvencije zračenja smanjuju intenziteti vrpci karakterističnih za *trans* konformer i za Si-O-Si vezu (Tabela 13), dok se povećava intenzitet vrpce karakteristične za *gauche* konformer. Može se reći da zračenje potpomaže stvaranje *gauche* strukture, sprječavajući time nastanak ljestvaste strukture.

Slika 29. Ovisnost polimerizacije o elektromagnetskom zračenju.

5.1.3. Utjecaj podloge

Kako podloga na kojoj uzorci polimeriziraju utječe na proces polimerizacije proučavano je za podloge od teflona, PVC-a, stakla, mjedi i silike. Slika 30 prikazuje Ramanove spektre dobivene solidifikacijom uzoraka na pet različitih podloga. Tanki filmovi koji su nastali na teflonu i podlozi od PVC-a su se mogli lako odstraniti što ukazuje na to da nema kemijskih veza između polimeriziranih uzoraka i te dvije podloge. Uzorci stavljeni na staklo, mjed i siliku napravili su kemijske veze sa svojim podlogama. Morfologija podloge utječe na proces polimerizacije. Naime, kada silan ne stvara veze s podlogom (kao što je slučaj za teflonsku podlogu te podlogu od PVC-a) ili kad je podloga amorfna (kao što je staklena podloga) spektri imaju vrpcu na 1145 cm⁻¹, što znači da je stvorena ljestvasta struktura.

Slika 30. Ovisnost polimerizacije o podlozi.

S druge strane, kad imamo kristaliničnu podlogu, kao što su silikatna podloga ili podloga od mjedi, u spektru nema Si-O-Si vrpce, što znači da ljestvasta struktura nije prisutna. Ali ti spektri imaju vrpcu na 1070 cm⁻¹ koja je karakteristična za *gauche* konformer. Moguće objašnjenje je u nesumjerljivosti dvaju perioda: ljestvaste strukture i kristala podloge. Iz studija o modelu Frenkel-Kontorova [62,63] zna se da je stvaranje nesumjerljive strukture na periodičkoj podlozi vjerojatnije na nižim temperaturama. To se može povezati s činjenicom da je udio ljestvaste strukture veći kad se isparavanje odvija na nižim temperaturama (Slika 28).

Pokazalo se da su strukture s najboljim uređenjem one koje su polimerizirale na PVC podlozi, a proces polimerizacije se odvijao u mraku, na sobnoj temperaturi, približno tri tjedna. Kod tih uzoraka opažena je samo vrpca koja odgovara *trans* konformeru, a vrpca na 1145 cm⁻¹, koja se može pripisati istezanju Si-O-Si veza, ima najveći intenzitet. To potvrđuje i činjenica da se u tim spektrima može opaziti bozonska vrpca na približno 40 cm⁻¹. Analiza bozonske vrpce koja je detaljnije opisana u slijedećem poglavlju ukazuje na postojanje srednje uređene strukture.

Unatoč tome što povećanja temperature i zračenja ubrzavaju proces polimerizacije, ona smanjuju stvaranje Si-O-Si veza. Usporedbom vrpci koje su karakteristične za *trans* i *gauche* konformere može se vidjeti da intenzitet *gauche* vrpce postaje veći s povećanjem temperature i frekvencije zračenja. Moguće objašnjenje je da s povećanjem temperature i frekvencije zračenja molekule dobivaju energiju koja je dovoljna za svladavanje energijske barijere pri prelasku iz *trans* u *gauche* konformer (Tabela 14) [43]. Zbog svoje izvijene strukture malo je vjerojatno da će *gauche* konformer stvarati ljestvaste strukture.

6. Temperaturna ovisnost Ramanovih spektara APS-a

Proučavanjem strukture polimera u ovisnosti o različitim uvjetima polimerizacije uočeno je da mogu nastati različite strukture polimera ovisno o podlozi na kojoj se odvijala kondenzacija. Pokazalo se da na PVC podlozi ne dolazi do kemijske reakcije polimera s podlogom, a da nastali polimer ima ljestvastu strukturu. Stoga se u daljnjem proučavanju svojstava APST polimera, polimerizacija provodila na PVC podlozi.

Područje malih valnih brojeva u Ramanovim spektrima daje nam informacije o makromolekularnoj strukturi amorfnih materijala. Zbog toga je napravljena analiza Ramanovih spektara APST polimera u području malih valnih brojeva. Spektri su snimani pri različitim temperaturama, od 300 K do 78 K.

Polarizirani Ramanovi spektri snimani su u rasponu od 650 do 10 cm⁻¹. Korištena je geometrija raspršenja od 90°. Ulazna svjetlost polarizirana je okomito u odnosu na ravninu raspršenja. Polarizacija raspršenog svjetla analizirana je u vertikalnom (VV) i horizontalnom (VH) smjeru (Slika 31). Promjena orijentacije uzorka u odnosu na upadnu i raspršenu polarizaciju nije donijela nikakve promjene u Ramanovim spektrima.

Uzorci su također pregledani i kroz ukrštene polarizatore. Kada svjetlost upada na uzorak okomito na ravninu rasta, nikakvo svjetlo ne prolazi kroz sustav. Nakon što je uzorak okrenut za 90° tako da je svjetlo upadalo na uzorak paralelno s ravninom rasta (kroz tanku stranu uzorka), opažen je maksimalni intenzitet transmitiranog svjetla za uzorak koji je orijentiran dijagonalno između ukrštenih polarizatora. To ukazuje na postojanje optičke anizotropije u polimeru iako se to ne može opaziti u polariziranim Ramanovim spektrima.

Slika 31. Temperaturna ovisnost polariziranog Ramanovog spektra analiziranog u a) vertikalnom smjeru i b) horizontalnom smjeru.

6.1. Teorija i rezultati

U području malih valnih brojeva, točnije od 20 cm⁻¹ do 200 cm⁻¹, Ramanov spektar APST polimera sadrži široku asimetričnu vrpcu, karakterističnu bozonsku vrpcu (BP). Prema modelu Martina i Breniga (MB) [64] bozonska vrpca predstavlja akustički mod uzorka koji postaje aktivan u Ramanovom spektru zbog sloma izbornih pravila kod amorfnih materijala.

Dobro je poznato da se Ramanov spektar u području malih valnih brojeva može podijeliti na tri doprinosa [65,66]:

$$I_{exp}(v) = I_{QE}(v) + I_B(v) + I_V(v).$$
(26)

 $I_{QE}(v)$ je kvazi-elastično raspršenje centrirano oko valnog broja nula i za $v < 20 \text{ cm}^{-1}$, $I_B(v)$ je bozonska vrpca i $I_V(v)$ vibracijski doprinos na malim valnim brojevima zbog optičkih fonona. Radi lakše usporedbe s teorijskim modelima korisno je uvesti redefinirani Ramanov intenzitet:

$$I_{R}(v) = I_{exp}(v) \cdot v \cdot [n(v,T)+1]^{-1} = I_{RQE}(v) + I_{RB}(v) + I_{RV}(v)$$
(27)

pri čemu je $n(v,T) = \exp(hcv/k_BT)-1]^{-1}$ temperaturni Bose faktor. U području $v \ge 10 \text{ cm}^{-1}$, gdje su zanemarivi doprinosi kvazi-elastičnog raspršenja svjetlosti, redefinirani Ramanov intenzitet $I_{RB}(v)$ se može faktorizirati:

 $I_{RB}(v) = C(v) \cdot G(v)$ (28)

gdje C(v) opisuje vezanje između svjetla i vibracijskih modova, a G(v) je gustoća vibracijskih stanja. Poteškoća u interpretaciji $I_{RB}(v)$ je u tome što postoje dvije nepoznate funkcije, C(v) i G(v) koje se ne mogu razlučiti samo optičkim mjerenjima. U MB modelu [64] primijenjen je Debyeev izraz za vibracijsku gustoću stanja akustičkih fonona pri niskim valnim brojevima, G(v) $\propto v^2$. Model sadrži prostorne fluktuacije valnog vektora \vec{q} transverzalnih (TA) i longitudinalnih (LA) akustičkih fonona kao i dielektrična svojstva neuređenih sredina. To implicira da je prevladavajući uzrok bozonske vrpce koeficijent vezanja fotona i fonona:

$$C(\nu) = \nu^{2} \cdot [g_{TA}(\nu) \cdot E_{TA} + g_{LA}(\nu) \cdot E_{LA}].$$
⁽²⁹⁾

Pri čemu su $g_i(v)$ Fourierove transformacije od $G_{dis}(r)$ prostorne korelacijske funkcije nereda u amorfnim krutinama, r je udaljenost, a E_i su parametri vezanja svjetla i vibracija. Dio bozonske vrpce s malim valnim brojevima stoga ima kvadratnu ovisnost o valnom broju, reproducirajući tako Debyeevu gustoću akustičkih stanja. Profil te vrpce u području visokih frekvencija ovisi o aproksimaciji korištenoj za $G_{dis}(r)$. Prema Malinovsky-Sokolov (MS) modelu [67] nekoliko formi od $g_i(v)$ je fizikalno prihvatljivo. U slučaju polimernih filmova APST-a ukupni spektar ima oblik Lorentziana pa model s eksponencijalnom ovisnošću za korelacijsku funkciju nereda, $G_{dis}(r) = \exp(-r/R_C)$, daje najbolje rezultate u modeliranju bozonske vrpce. R_C je takozvani strukturni korelacijski radijus. Za ovakav odabir funkcije nereda dobiva se:

$$g_{TA}(v) = \left(v^2 + v_{TA}^2\right)^{-2}$$
(30)

$$g_{LA}(v) = (v_{TA}/v_{LA})^5 \cdot (v^2 + v_{LA}^2)^{-2}.$$
(31)

Reducirani Ramanov intenzitet $I_{REDexp}(v) = I_R(v)/v^2$ izračunat je pomoću izmjerenog Ramanovog spektra $I_{VH}(v)$. Za modeliranje podataka korišten je slijedeći izraz za reducirani Ramanov intenzitet, $I_{REDcalc}(v)$:

$$I_{REDcalc}(\nu) = \frac{I_{R}(\nu)}{\nu^{2}} = I_{0} + \frac{\nu^{2} \cdot E_{TA}}{\left(\nu^{2} + \nu_{TA}^{2}\right)^{2}} + \left(\frac{\nu_{TA}}{\nu_{LA}}\right)^{5} \cdot \frac{\nu^{2} \cdot E_{LA}}{\left(\nu^{2} + \nu_{LA}^{2}\right)^{2}} + I_{V} \cdot \frac{\left(\Gamma_{V}/2\right)^{2}}{\left(\nu - \nu_{V}\right)^{2} + \left(\Gamma_{V}/2\right)^{2}} \cdot \frac{1 - \exp(-hc \nu/k_{B}T)}{\nu}.$$
(32)

Intenzitet kvazi-elastičnog raspršenja teži u nulu za valne brojeve $\nu \ge 15 \text{ cm}^{-1}$ te je zanemaren u ovom modelu. Pozadinski šum, kojeg se često nalazi u Ramanovim spektrima, uključen je u modeliranje $I_{REDealc}(\nu)$ kao slobodni parametar I_0 . Vibracijska vrpca u dijelu Ramanovih spektara malim valnim brojevima prikazana je S pomoću Lorentziana $I_V \cdot (\Gamma_V/2)^2 / [(v - v_V)^2 + (\Gamma_V/2)^2]$ gdje je I_V maksimalni intenzitet, a Γ_V poluširina vrpce. Parametri modela procijenjeni su pomoću metode najmanjih kvadrata usklađivanjem na opažene spektralne amplitude s nesigurnostima računatima prema stvarnom broju fotona. Model ovisi o osam parametara, pri čemu ovisnost o četiri od njih nije linearna. Stoga je primijenjena iterativna optimizacijska rutina kako bi se pronašle vrijednosti parametara pri najboljem usklađivanju nakon koje je napravljena Jackknife procedura kako bi se procijenile nesigurnost izračunatih parametara [68]. Testiranje koje pokazuje koliko je model (32) prikladan provodi se pomoću ocjene prilagodbe G ili pomoću reduciranog hi-kvadrat χ_r^2 testa. Uobičajeno je da se prihvate modeli s G > 0,001 ili s $\chi_r^2 \le 1,5$ [65]. Vrijednosti parametara pri najboljem usklađivanju i pripadajuće nesigurnosti prikazuje Tabela 15. Pri testiranju modela dobivene su slijedeće vrijednosti: ocjena prilagodbe G = 1 te reducirani hikvadrat $\chi_r^2 = 0,21$. Rezultate usklađivanja reduciranog Ramanovog intenziteta prikazuju Slika 32 i Tabela 15.

Slika 32. Usklađivanje reduciranog Ramanovog intenziteta pri temperaturi 300 K.

T (K)	$I_0 \pm \sigma_{10}$ (proizv.jed)	$E_{TA} \pm \sigma_{ETA}$ (proizv.jed)	$v_{TA} \pm \sigma_{vTA}$ (cm ⁻¹)	$E_{LA} \pm \sigma_{EIA}$ (proizv.jed)	$\nu_{LA} \pm \sigma_{\nu LA} \ (cm^{-1})$	$I_V \pm \sigma_{IV}$ (proizv.jed)	$\frac{v_V \pm \sigma_{vV}}{(\text{cm}^{-1})}$
300	$0,937 \pm 0,042$	146287 ± 815	55,19±0,36	13,80±1,51	14,12±0,30	258,18±12,07	206,48±1,17
200	2,286±0,015	207562 ± 917	61,07±0,41	36,44±3,92	16,77±0,35	139,70±3,50	195,51±0,88
160	1,891±0,019	235801 ± 1885	$59,05 \pm 0,55$	42,55±5,16	16,30±0,39	$280,25 \pm 7,73$	194,31±0,66
120	1,939±0,028	266693 ± 2168	58,33±0,42	$48,43 \pm 4,06$	15,89±0,27	425,82±12,09	$205,77 \pm 0,63$
78	4,169±0,016	278072 ± 1382	56,42±0,35	72,08±4,71	15,82±0,22	219,69±6,01	180,90±0,49

Tabela 15. Bozonski i vibracijski doprinosi reduciranom Ramanovom spektru u području malih valnih brojeva.

Prema DFT računu [69] široku vrpcu u obliku Lorentziana na 206 cm⁻¹ sačinjava nekoliko doprinosa koji potječu od vibracijskih deformacija propilnog lanca. Osim ove vrpce, u VV spektru uzorka postoje još dvije izražene vibracijske vrpce pri 454 cm⁻¹ i 522 cm⁻¹ (Slika 31). Pomoću DFT računa [69] primijenjenog na ljestvastu strukturu polimera, vrpca na 454 cm⁻¹ pripisana je disajnom modu Si-O-Si prstena, dok je druga vrpca pripisana kvadrupolarnom modu iste grupe atoma. Obje vrpce su potpuno polarizirane.

Prisustvo bozonske vrpce u Ramanovom spektru, u području malih valnih brojeva, ukazuje na postojanje srednjeg uređenja u neuređenom polimeru APST-a, sve do 78 K. Optička anizotropija uzorka kao i polarizirane vibracijske vrpce na 454 cm⁻¹ i 522 cm⁻¹ s druge strane sugeriraju slojevitu ljestvastu strukturu orijentiranu paralelno s ravninom rasta. Uzrok nedostatka uređenja pri tome može biti debljina slojeva, orijentacija ljestvastih struktura u različitim slojevima, kao i njihova duljina.

7. Zaključak

Kombiniranjem rezultata spektroskopskih mjerenja i numeričkih računa DFT metodom napravljena je konformacijska analiza te asignacija spektara za molekule APST i GPTMS te APST polimer.

U Ramanovom spektru vodene otopine aminopropilsilantriola nađene su vrpce karakteristične za *trans* (1050 cm⁻¹) i *gauche* (1070 cm⁻¹) konformere. Spektri polimera dobivenog vrlo polaganom polimerizacijom daju vrpcu jakog intenziteta (1145 cm⁻¹) koja se može opisati istezanjem SiO veze u Si-O-Si mostu ljestvaste strukture polimera. Analiza je pokazala da u polimeru prevladava *trans* struktura.

Konformacijska analiza GPTMS molekule DFT metodom provedena skeniranjem potencijalne energije po tri torzijska kuta SiCCC (φ), CCCO (χ) i OCCO (ψ) dala je sedam stabilnih konformera: 1-*ttg*, 2-*gtg* i 3-*gtg*, 4-*tgg* i 5-*tgg*, 6-*ttg* i 7-*ttt*. Većinom imaju zanemarive razlike u izračunatim spektrima. Konformer s najnižom energijom je 6-*ttg*. Potpuna asignacija izmjerenih vibracijskih spektara napravljena je za tu najstabilniju molekulu. Usporedbom rezultata spektroskopskih mjerenja i DFT proračuna moguće je izdvojiti četiri para odgovarajućih vibracijskih vrpci koje su karakteristične za tri različite grupe konformera. Vrpce pri 1466 cm⁻¹, 1441 cm⁻¹ i 1313 cm⁻¹ pripisane su konformerima 6*ttg* i 7-*ttt*. Odgovarajući normalni modovi za preostalih pet konformera imaju iste vrpce na 1456 cm⁻¹, 1414 cm⁻¹ i 1340 cm⁻¹. Jaka Ramanova vrpca pri 612 cm⁻¹ pripisana je vibracijama istezanja SiO veza u molekulama 2-*gtg* i 3-*gtg* dok od sličnog normalnog moda u preostalih pet konformera potječe jaka Ramanova vrpca na 642 cm⁻¹. Treća grupa sastoji se od konformera 1-*ttg*, 4-*tgg* i 5-*tgg* s karakterističnim vrpcama na 1456 cm⁻¹, 1414 cm⁻¹, 1340 cm⁻¹ i 642 cm⁻¹.

Proučavanje temperaturne ovisnosti integriranih Ramanovih intenziteta tekućeg uzorka omogućilo nam je asignaciju vrpci na 642 cm⁻¹ i 1466 cm⁻¹ energetski najnižem konformeru, 6-*ttg* te vrpci na 612 cm⁻¹ i 1456 cm⁻¹ konformeru 3-*gtg*. Populacijski omjer za ta dva konformera u tekućoj fazi ide od 3,29 na sobnoj temperaturi do 5,56 na temperaturi od 203 K.

Usporednom analizom izračunatih frekvencija kubične i ljestvastih struktura različitih veličina, predviđa se širenje vibracijskih vrpci kod većih lanaca zbog cijepanja početno degeneriranih vibracija. Opažene vibracijske vrpce u Ramanovom i infracrvenom spektru su vrlo široke što ukazuje na postojanje ljestvastih struktura različitih veličina.

Istraživanje parametara koji utječu na proces polimerizacije pokazalo je da su strukture s najboljim uređenjem one koje su polimerizirale na PVC podlozi, a proces polimerizacije se odvijao u mraku, na sobnoj temperaturi, približno tri tjedna. Kod tih uzoraka opažena je samo vrpca koja odgovara *trans* konformeru, a vrpca na 1145 cm⁻¹, koja se može pripisati istezanju Si-O-Si veza, ima najveći intenzitet. To potvrđuje i činjenica da se u tim spektrima može opaziti bozonska vrpca na približno 40 cm⁻¹. Analiza bozonske vrpce ukazuje na postojanje srednje uređene strukture.

Poznavanje svojstava različitih konformera proučavanih struktura kao i mogućnost njihovog raspoznavanja u vibracijskim spektrima od velike je važnosti u primjeni tih materijala.

Literatura

- M. J. Owen u M. Chaudhury, A. V. Pocius (ur.): "Adhesion science and engineering 2: Surfaces, chemistry and applications", Elsevier (2002) Amsterdam.
- R. K. Sood, S. Krishnamoorthy, B. L. Khandelwal, International Journal of Cement Composites and Lightweight Concrete 6 (1984) 93-98.
- Z. Demjén, B. Pukánszky, E. Földes, J. Nagy, J. Colloid Interface Sci. 190 (1997) 427-436.
- S. Lučić Blagojević, V. Kovačević, M. Leskovac, D. Vrsaljko, V. Volovšek, C. Nover, e-Polymers (2004) 036.
- 5. M. Deng, V. B. C. Tan, T. E. Tay, Polymer 45 (2004) 6399-6407.
- 6. J. Murphy "Additives for Plastics Handbook", Elsevier (2001).
- W.-G. Ji, J.-M. Hu, L. Liu, J.-Q. Zhang, C.-N. Cao, Surf. Coat. Technol. 201 (2007) 4789-4795.
- M. Yamaguchi, O. Nishimura, S.-H. Lim, K. Shimokawa, T. Tamura, M. Suzuki, Colloids Surf. A: Physicochem. Eng. Aspects 284-285 (2006) 532-534.
- Gaussian 03, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.

Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W.
Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G.
Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D.
Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford,
J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L.
Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M.
Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A.
Pople, Gaussian, Inc., Wallingford CT, 2004.

- R. M. Dreizler, E. K. U. Gross "Density Functional Theory", Springer-Verlag, Berlin, (1990).
- 11. K. Capelle, Braz. J. Phys. 36 (2006) 1318-1343.
- 12. R.v. Leeuwen, Adv. Quant. Chem. 43 (2003) 24-94.
- 13. W. Kohn, Rev. Mod. Phys. 71 (1999) 1253-1266.
- 14. J. A. Pople, Rev. Mod. Phys. 71 (1999) 1267-1274.
- G. Aurelio, A. Fernández-Martínez, G. J. Cuello, G. Román-Ross, I. Alliot, L. Charlet, Chem. Geo. 270 (2010) 249-256.
- L. F. Alzate, C. M. Ramos, N. M. Hernández, S. P. Hernández, N. Mina, Vib. Spec. 42 (2006) 357-368.
- M. Alcolea Palafox, G. Tardajos, A. Guerrero-Martínez, V. K. Rastogi, D. Mishra, S. P. Ojha, W. Kiefer, Chem. Phys. 340 (2007) 17-31.
- 18. W. Qin, X. Li, W.-W. Bian, X.-J. Fan, J.-Y. Qi, Biomaterials 31 (2010) 1007-1016.
- M. Hoefling, F. Iori, S. Corni, K. E. Gottschalk, Chem. Phys. Chem. 11 (2010) 1763-1767.
- 20. A. Houari, S. F. Matar, M. A. Belkhir, J. Magn. Magn. Mater. 312 (2007) 298-304.
- M. Yu. Lavrentiev, S. L. Dudarev, D. Nguyen-Manh, J. Nucl. Mater. 386-388 (2009)
 22-25.
- 22. A. Houari, S. F. Matar, M. A. Belkhir, J. Magn. Magn. Mater. 322 (2010) 658-660.
- C. O. Rodriguez, G. Fabricius, M. G. Stachiotti, N. E. Christensen, Physica C 282-287 (1997) 1619-1620.
- K. Larbaoui, A. Tadjer, B. Abbar, H. Aourag, B. Khelifa, C. Mathieu, J. Alloys Compd. 414 (2006) 20-25.
- L. Belkhiri, R. Lissillour, A. Boucekkine, J. Mol. Struct. (THEOCHEM) 757 (2005) 155-164.
- 26. O. Dmitrenko, S. Bai, C. Dybowski, Solid State Nucl. Magn. Reson. 34 (2008) 186-190.

- M. S. Raman, V. Ponnuswamy, P. Kolandaivel, K. Perumal, J. Mol. Liq. 142 (2008) 10-16.
- M. S. Raman, V. Ponnuswamy, P. Kolandaivel, K. Perumal, J. Mol. Liq. 151 (2010) 97-106.
- 29. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964).
- A. Szabo, N. S. Ostlund "Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory", Dover Publications, New York, (1995).
- 31. W. Kohn, L. Scham, Phys. Rev. 140, A1133 (1965).
- 32. M. Levy, J. P. Perdew, Phys. Rev. A 32 (1985) 2010-2021.
- 33. D. M. Ceperley, B. J. Alder, Phys. Rev. Lett. 45 (1980) 566-569.
- 34. J. P. Perdew, A. Zunger, Phys. Rev. B 23 (1981) 5048-5079.
- 35. J. P. Perdew, Y. Wang, Phys. Rev. B 45 (1992) 13244-13249.
- 36. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 37, (1988) 785-789.
- 37. A. D. Becke, J. Chem. Phys. 98, (1993) 5648-5652.
- 38. G. Rauhut, P. Pulay, J. Phys. Chem. 99 (1995) 3093-3100.
- 39. A. P. Scott, L. Radom, J. Phys. Chem. 100 (1996) 16502-16513.
- 40. G. Fogarasi, P. Pulay u J. R. Durig (ur.): "Vibrational Spectra and Structure", vol. 14, Elsevier, Amsterdam (1985), str. 162.
- 41. M. Haysashi, J. Nakagawa, Y. Aguni, Bull. Chem. Soc. Jpn. 53 (1980) 2468.
- 42. J. R. Durig, C. Pan, G. A. Guirgis, Spectrochim. Acta A 59 (2003) 979-1002.
- L. Bistričić, V. Volovšek, V. Dananić, I. Movre Šapić, Spectrochim. Acta A 64 (2006) 327-337.
- 44. P. D. Lickiss, Adv. Inorg. Chem. 42 (1995) 147-262.
- 45. D. Nyfeler, T. Armbruster, Am. Mineral. 83 (1998) 119-125.
- A. Almenningen, M. Traetterberg, K. Hedberg, V. Ewing, O. Bastiansen, Acta Chem. Scand. 17 (1963) 2455.
- 47. F. J. Boerio, S. Wirasate u N. J. Everall, J. M. Chalmers, P. Griffiths (ur.): "Vibrational Spectroscopy of Polymers: Measurements of the Chemical Characteristics of Polymers and Rubbers by Vibrational Spectroscopy", John Wiley & Sons, Chichester (2007).
- I. S. Ignatyev, F. Partal, J. J. López González, T. Sundius, Spectrochim. Acta A 60 (2004) 1169-1178.
- H. Günzler, H. U. Gremlich "Uvod u infracrvenu spektroskopiju", Školska knjiga, Zagreb (2006).
- 50. P. R. Underhill, G. Goring, D. L. DuQuesnay, Appl. Surf. Sci. 134 (1998) 247-253.

- F. Boccuzzi, S. Coluccia, G. Ghiotti, C. Morterra, A. Zecchina, J. Phys. Chem. 82 (1978) 1298-1303.
- 52. B. A. Morrow, A. J. McFarlan, J. Phys. Chem. 96 (1992) 1395-1400.
- I. Movre Šapić, L. Bistričić, V. Volovšek, V. Dananić, K. Furić, Spectrochim. Acta A 72 (2009) 833-840.
- 54. L. Bistričić, V. Volovšek, V. Dananić, J. Mol. Struct. 834-836 (2006) 355-363.
- B. Riegel, S. Blittersdorf, W. Kiefer, S. Hofacker, M. Müller, G. Schottner, J. Non-Cryst. Solids 226 (1998) 76-84.
- 56. M. Sitarz, M. Handke, W. Mozgava, Spectrochim. Acta A 55 (1999) 2831-2837.
- 57. M. Handke, W. Jastrzębski, J. Mol. Struct. 704 (2004) 63-69.
- 58. M. Handke, W. Jastrzębski, J. Mol. Struct. 744-747 (2005) 671-675.
- V. Volovšek, L. Bistričić, K. Furić, V. Dananić, I. Movre Šapić, J. Phys.: Conference Series 28 (2006) 135-138.
- 60. N. Auner, B. Ziemer, B. Herrschaft, W. Ziche, P. John, J. Weis, Eur. J. Inorg. Chem. (1999) 1087-1094.
- 61. P. Bornhauser, G. Calzaferri, Spectrochim. Acta A 46 (1990) 1045-1056.
- 62. O. M. Braun, Yu. S. Kivshar, Physics Reports 306 (1998) 1-108.
- 63. O. M. Braun, Yu. S. Kivshar "The Frenkel-Kontorova Model: Concepts, Methods, and Applications", Springer, Berlin (2004).
- 64. A. J. Martin, W. Brenig, Phys. Status Solidi 64 (1974) 163-172.
- 65. L. Bistričić, G. Baranović, S. Ilijić, Spectrochim. Acta A 61 (2005) 1537-1546.
- S. A. Kirillov, G. A. Voyiatzis, T. M. Kolomiyets, S. H. Anastasiadis, Phys. Lett. A 262 (1999) 186-190.
- 67. V. K. Malinovsky, A. P. Sokolov, Solid State Comm. 57 (1986) 757-761.
- B. Efron "The Jackknife, the Bootstrap and Other Resampling Plans", SIAM, Capital City Press (1994).
- V. Volovšek, L. Bistričić, V. Dananić, I. Movre Šapić, J. Mol. Struct. 834-836 (2007) 414-418.

Životopis

Dipl. inž. Iva Movre Šapić znanstvena je novakinja na Fakultetu kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu.

Rođena je 1978. godine u Bjelovaru, a maturirala je na Prirodoslovno-matematičkoj gimnaziji u Zagrebu (V. gimnazija) 1996. godine.

Diplomirala je fiziku na Prirodoslovno-matematičkom fakultetu Sveučilišta u Zagrebu 2001. godine. Od iste godine radi na Fakultetu kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu kao znanstveni novak. Sudjeluje u izvođenju nastave iz kolegija Fizika I i Fizika II.

2002. godine upisala je poslijediplomski studij na Prirodoslovno-matematičkom fakultetu Sveučilišta u Zagrebu, smjer Atomska i molekularna fizika. Od 2002. do 2006. znanstveni je novak na projektu "Fizikalna svojstva djelomično uređenih molekulskih sustava" Ministarstva znanosti obrazovanja i športa, a od 2007. je znanstveni novak na projektu "Vibracijska dinamika i struktura multifunkcionalnih polimernih sustava" Ministarstva znanosti, obrazovanja i športa. Od 2010. godine suradnik je i na projektu "Izgradnja, odabir i usuglašavanje hrvatskoga nazivlja u fizici" (IHNF) u okviru projekta STRUNA, Instituta za hrvatski jezik i jezikoslovlje.

Aktivno je sudjelovala na šest međunarodnih kongresa i na tri domaća znanstvena skupa.

Bila je član organizacijskog odbora međunarodnog kongresa "18th European Symposium on Polymer Spectroscopy" (ESOPS18). Bila je urednica knjige sažetaka za isti kongres.

Sudjelovala je na 41. međunarodnoj olimpijadi iz fizike, održanoj u Zagrebu 2010. godine kao ocjenjivač eksperimentalnih radova.

Popis objavljenih djela

Uredničke knjige

1. Book of Abstracts of the 18th European Symposium on Polymer Spectroscopy / Volovšek, Vesna; Bistričić, Lahorija; Movre Šapić, Iva (ur.). Zagreb : Fakultet kemijskog inženjerstva i tehnologije, 2010 (zbornik).

Izvorni znanstveni i pregledni radovi u CC časopisima

1. Movre Šapić, Iva; Bistričić, Lahorija; Volovšek, Vesna; Dananić, Vladimir; Furić, Krešimir.

DFT Study of Molecular Structure and Vibrations of 3-Glycidoxypropyltrimethoxysilane. // Spectrochimica Acta Part A - Molecular and Biomolecular Spectroscopy. 72 (2009), 4; 833-840 (članak, znanstveni).

2. Volovšek, Vesna; Bistričić, Lahorija; Dananić, Vladimir; Movre Šapić Iva. DFT study of vibrational dynamics and structure of aminopropylsiloxane polymer. // Journal of Molecular Structure. 834-836 (2007) ; 414-418 (članak, znanstveni).

3. Bistričić, Lahorija; Volovšek, Vesna; Dananić, Vladimir; Movre Šapić, Iva. Conformational stability and vibrations of aminopropylsilanol molecule. // Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy. 64 (2006) ; 327-337 (članak, znanstveni).

4. Lopac, Vjera; Movre, Iva; Mrkonjić, Ivana; Radić, Danko. Chaotic properties of the elliptical stadium billiard. // Progress of Theoretical Physics Supplement. 150 (2003) ; 371-375 (članak, znanstveni).

Znanstveni radovi u drugim časopisima

1. Volovšek, Vesna; Bistričić, Lahorija; Furić, Krešimir; Dananić, Vladimir; Movre Šapić, Iva.

Temperature Dependence of Polarized Low Wavenumber Raman Spectra of Aminopropylsilanetriol Polymer. // Journal of Physics: Conference Series. 28 (2006) ; 135-138 (članak, znanstveni).

Sažeci u zbornicima skupova

1. Movre Šapić, Iva; Volovšek, Vesna; Furić, Krešimir; Bistričić, Lahorija; Dananić, Vladimir.

Raman analysis of polymerization of APST molecule // Book of Abstracts 18th European Symposium on Polymer Spectroscopy / Volovšek, Vesna ; Bistričić, Lahorija ; Movre Šapić, Iva (ur.).

Zagreb : Fakultet kemijskog inženjerstva i tehnologije, 2010. 72-72 (poster,međunarodna recenzija,sažetak,znanstveni).

2. Bistričić, Lahorija; Volovšek, Vesna; Dananić, Vladimir; Movre Šapić, Iva; Leskovac, Mirela.

DFT studija strukture hibridnih polimera zasnovanih na 3-glicidoksipropiltrimetoksisilanu // Knjiga sažetaka Šestog znanstvenog sastanka Hrvatskog fizikalnog društva / Buljan, H. ; Horvatić, D. (ur.).

Zagreb : HFD, 2009. 129-129 (poster, domaća recenzija, sažetak, znanstveni).

3. Bistričić, Lahorija; Volovšek, Vesna; Dananić, Vladimir; Movre Šapić, Iva; Leskovac, Mirela.

DFT Vibrational Study of Organic-Inorganic Hybrid Polymers Based on 3-Glicidoxypropyltrimethoxysilane // EUCMOS 2008 XXIX European Congress on Molecular Spectroscopy, Book of Abstracts / Musić, S., Ristić, M., Krehula, S. (ur.). Zagreb : IRB, 2008. 189-189 (poster,međunarodna recenzija,sažetak,znanstveni).

4. Movre Šapić, Iva; Bistričić, Lahorija; Volovšek, Vesna; Dananić, Vladimir. DFT Study of Molecular Structure and Vibrations of 3-Glycidoxypropyltrimethoxysilane // XXIX European Congress on Molecular Spectroscopy, Book of Abstracts / Musić, Svetozar ; Ristić, Mira ; Krehula, Stjepko (ur.).

Zagreb : IRB, 2008. 77-77 (poster, međunarodna recenzija, sažetak, znanstveni).

5. Dananić, Vladimir; Movre Šapić, Iva.

The role and properties of the Si-O-Si and Si-N(H)-C bridges in silica network structure and polymer formation-a DFT study // 17th European Symposium on Polymer Spectroscopy-Book of Abstracts / Wilhelm, P. (ur.).

Graz : Austrian Centre for Electron Microscopy and Nanoanalysis, 2007. 43-43 (poster, međunarodna recenzija, sažetak, znanstveni).

6. Movre Šapić, Iva; Bistričić, Lahorija; Volovšek, Vesna; Dananić, Vladimir. Conformational Stability and Vibrations of Glycidoxypropyltrimethoxysilane // 17th European Symposium on Polymer Spectroscopy- Book of Abstracts / Wilhelm, P. (ur.). Graz : Austrian Centre for Electron Microscopy and Nanoanalysis, 2007. 63-63 (poster,međunarodna recenzija,sažetak,znanstveni).

7. Movre Šapić, Iva; Bistričić, Lahorija; Volovšek, Vesna; Dananić, Vladimir. Konformacijska stabilnost i vibracije glicidoksipropilmetoksisilana // knjiga sažetaka 5. znanstvenog sastanka Hrvatskog fizikalnog društva. Zagreb : HFD, 2007. 68-68 (poster,domaća recenzija,sažetak,znanstveni).

8. Volovšek, Vesna; Bistričić, Lahorija; Dananić, Vladimir; Movre Šapić, Iva. DFT study of vibrational dynamics and structure of aminopropylsiloxane polymer // Book of abstracts, XXVIII European Congress on Molecular Spectroscopy / Sevim, Akyuz ; Elif, Akalin (ur.).

Istanbul : Istanbul University, 2006. 207 (poster, međunarodna recenzija, sažetak, znanstveni).

9. Volovšek, Vesna; Bistričić, Lahorija; Furić, Krešimir; Dananić, Vladimir; Movre Šapić, Iva.

Temperature Dependence of Polarized Low Frequency Raman Spectra of Aminopropylsilanetriol Polymer // Abstracts, Symposium Y - Optical Spectroscopic Techniques / Shen Ze Xiang (ur.). Singapore : NUS Singapore, 2005. 18 (poster,međunarodna recenzija,sažetak,znanstveni).

10. Bistričić, Lahorija; Dananić, Vladimir; Movre Šapić, Iva; Volovšek, Vesna. Conformational Stability and Vibrations of Aminopropylsilanetriol Molecule // XXVII European Congress on Molecular Spectroscopy : Book of abstracts / Handke, Miroslaw ; Hasik, Magdalena ; Paluszkiewicz, Czeslawa (ur.). Krakov : Wydawnictwo Naukowe, 2004. 133-133 (poster,međunarodna recenzija,sažetak,znanstveni).

11. Volovšek, Vesna; Furić, Krešimir; Bistričić, Lahorija; Dananić, Vladimir; Movre Šapić, Iva.

Influence of the Polymerization Conditions on the Structure of Aminopropylsilanetriol // XXVII European Congress on Molecular Spectroscopy : Book of abstracts / Handke, Miroslaw ; Hasik, Magdalena ; Paluszkiewicz, Czeslawa (ur.). Krakov : Wydawnictwo Naukowe, 2004. 231-231 (poster,međunarodna recenzija,sažetak,znanstveni).

12. Volovšek, Vesna; Bistričić, Lahorija; Dananić, Vladimir; Movre, Iva. Konformacijska stabilnost i vibracije aminopropilsilantriola // Četvrti znanstveni sastanak Hrvatskog fizikalnog društva : knjiga sažetaka / Kumerički, Krešimir (ur.). Zagreb : HFD, 2003. 78-78 (poster,domaća recenzija,sažetak,znanstveni).