SEMINARSKI RAD

KIN SELEKCIJA, ALTRUIZAM I TEORIJA IGARA

KIN SELECTION, ALTRUISM AND GAME THEORY

Lucija Mijanović

Preddiplomski studij molekularne biologije
(Undergraduate Study of Molecular Biology)
Mentor: doc. dr. sc. Damjan Franjević

Zagreb, 2015
1. UVOD ... 1
2. SOCIJALNE INTERAKCIJE .. 2
3. ALTRUIZAM ... 3
 3.1. Altruizam i razina selekcije ... 3
 3.2. Altruistične strategije ... 4
 3.3. Geni za altruizam .. 6
4. KIN SELEKCIJA ... 7
 4.1. Hamiltonovo pravilo .. 7
 4.2. Inkluzivni fitnes ... 8
 4.3. Prepoznavanje srodnika ... 8
 4.4. Zajednički predak .. 9
 4.5. Kvantitativni test Hamiltonovog pravila ... 9
5. TEORIJA IGARA .. 11
 5.1. Teorija igara i suradnja .. 12
 5.2. Zatvorenikova dilema .. 12
 5.2.1. Tit – for – tat (milo za drago) .. 13
 5.2.2. Win – stay, lose – shift (pobjeda – ostani, poraz – mijenjaj) 14
6. LITERATURA ... 15
7. SAŽETAK ... 16
8. SUMMARY .. 17
1. UVOD

Različiti aspekti životinjskih socijalnih interakcija intrigiraju ljude stotinama godina. Pisanja o socijalnom ponašanju životinja počinju s Aristotelom, no tek djelo Charlesa Darwina *On the Origin of Species* iz 1859. godine potiče razvoj modernog pristupa ovom pitanju, sa sugestijom kako je i ono rezultat prirodne selekcije. Društvena ponašanja variraju od stvaranja jednostavnijih malih skupina do života u organiziranim društvima karakteriziranima podjelom rada, suradnjom, altruizmom te kompeticijom. Društveno ponašanje je kompleksna kombinacija pozitivnih i negativnih učinaka života u skupinama, uspostavljanja dominacije, konflikta između spolova, nepotizma ukoliko su u skupini srodnici, te kooperacije. Raznolikost interakcija je dala impresivnu količinu materijala za proučavanje, što je dovelo do boljeg razumijevanja raznih fenomena u životinjskom ponašanju, ali i nas samih, kroz razvoj sociobiologije.

Cilj rada je osvrnuti se na jedan od fenomena u životinjskom ponašanju koji je dugo bio misterij - altruizam, te dati kratak pregled razvoja istraživanja i glavnih teorija kojima se objašnjava.
2. SOCIJALNE INTERAKCIJE

Altruizam i suradnja su vrste ponašanja definirane time što utječu na fitnes individue koja manifestira određeno ponašanje, ali i na fitnes jedinke prema kojoj je to ponašanje usmjereno. Obzirom na posljedice za fitnes donora i recipijenta, socijalne interakcije se mogu podijeliti u 4 skupine (Tablica1).

<table>
<thead>
<tr>
<th>posljedica za donora</th>
<th>posljedica za recipijenta</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>obostrana korist</td>
</tr>
<tr>
<td>-</td>
<td>sebičnost</td>
</tr>
<tr>
<td>+</td>
<td>altruizam</td>
</tr>
<tr>
<td>-</td>
<td>inat</td>
</tr>
</tbody>
</table>

3. ALTRUIZAM

3.1. Altruizam i razina selekcije

Pitanje altruizma je blisko povezano s pitanjem na kojem nivou prirodna selekcija djeluje. Charles Darwin se dotakao teme altruizma te pokušao dati svoj odgovor u knjizi The Descent of Man and Selection in Relation to Sex: „a tribe including many members who... were always ready to give aid to each other and sacrifice themselves for the common good, would be victorious over the most other tribes; and this would be natural selection." (Darwin, 1871). Smatrao je to oblikom grupne selekcije koja će omogućiti opstanak skupina s altruističnim jedinkama. Ukoliko bi selekcija funkcionirala na nivou jedinke, činilo se da altruizam ne može evoluirati, s obzirom da nije pogodan za altruista. No ukoliko bi djelovala na nivou skupine, to bi objasnilo opstanak altruizma. Skupine sa mnogo altruista bi imale prednost nad skupinama u kojima su samo sebične jedinke, te bi proces selekcije među tim skupinama omogućio evoluciju altruističnog ponašanja. Drugim riječima, pojedinac se žrtvuje za veće dobro.
Do 1960tih, grupna selekcija se smatrala glavnim razlogom opstanka altruističnih osobina, kada biolozi počinju raspravu o snazi njezina utjecaja. John Maynard Smith 1964. otvoreno sumnjiće u važnost grupne selekcije u radu *Group selection and kin selection*, kao i George C. Williams dvije godine kasnije u knjizi *Adaptation and Natural Selection* te zaključuju kako je ona slaba evolucijska sila koja nije dovoljna za osiguravanje opstanka altruizma.

Glavni problem kojeg su isticali u teoriji selekcije na nivou grupe je problem koji je Dawkins 1976. nazvao „subversion from within“. U populaciji s određenim brojem altruističnih jedinki, sebične jedinke dobivaju očitu prednost nad altruistima. Imat će bolji fitnes zahvaljujući altruistima, no za razliku od njih, ne plaćaju cijenu altruizma. Čak i ako je unutar grupe velik udio altruista, s vremenom će ih zamijeniti sebične individue te altruizam ne može opstati (Dawkins, 1976).

3.2. Altruistične strategije

Kada pričamo o altruističnom ponašanju, često se svi oblici altruizma stavljaju pod isti nazivnik. Postoji više modela altruizma koji imaju različite uloge u prirodi i javljaju se u različitim uvjetima te je važno napraviti razliku između recimo, upozoravanja na dolazak predatora i zajedničkog lova. Također, distinkcija je važna za empirijski rad, jer će različite altruistične strategije imati različita evolucijska ograničenja i selektivne pritiske – neke od tih strategija se javljaju u suprotnim okolišnim uvjetima, što znači da je potrebno razvijati eksperimente za svaki pojedini tip altruizma kako bi rezultati bili valjani, što nije bio čest slučaj.

Altruizam koji potiče opstanak uključuje često primjećene činove kao obrana od predatora ili parazita, upozorenje na dolazak predatora, kontrola temperature, zajednička termoregulacija. Ova vrsta altruizma je česta u okolišu s malim brojem jedinki u skupini i/ili obilnim resursima.

Altruizam usmjeren plodnosti se pojavljuje kada pomoć koju je recipijent dobio od donora uzrokuje povećanje njegovog ulaganja u reprodukciju, tj. ostavlja veći broj potomstva. Najpoznatiji primjer ove strategije su sterilni radnici kod Hymenoptera i termita, koji matici omogućuju da liježe i do milijune jajašaca. Kao i altruizam koji promiče preživljavanje, ova vrsta altruizma je česta u uvjetima malenog broja jedinki u skupini i obilnih resursa, no češći je od altruizma usmjerenog preživljavanju kada dolazi do ranih umiranja jedinki.

Pomaganje u poboljšanju resursa se javlja kada altruisti povećavaju lokalnu koncentraciju resursa. Takva ponašanja su česta kod mikroorganizama, koji znaju proizvoditi biomolekule za korištenje okolini iako je proizvodnja skupa, kao sekrecija siderofora koja povećava lokalnu koncentraciju željeza. Ova vrsta altruizma se javlja kod velike lokalne kompeticije i usmjerenja je povećanju resursa u okolišu.

Pomaganje u iskorištavanju resursa poboljšava učinkovitost kojom pripadnici skupine pretvaraju resurse u fitnes. Jaljenje o lokaciji i kvaliteti izvora hrane ostatku kolonije koristeći kemijske ili vizualne znakove povećava efikasnost traganja za hranom jer sprječava gubljenje vremena i energije, kao i zajedničko traganje za hranom ili zajednički lov. Ovo ponašanje će biti favorizirano ukoliko postoji veći unos kalorija uz altruističko ponašanje nego kada jedinka sama traga za hranom. Kao i prethodna strategija, i ova stvara elastičnost u populaciji, te zahtijeva jaku lokalnu kompeticiju kako bi opstala.
3.3. Geni za altruizam

William D. Hamilton je postulirao gene kao osnovu altruizma svojom teorijom inkluzivnog fitnesa 1964. Iako se njegova teorija prihvaća i koristi, naše znanje o genima koji bi mogli biti povezani s altruističnim ponašanjem je još uvijek šturo. Koji geni kodiraju određena altruistična ponašanja te kako? Thompson, Hurd i Crespi su 2013. pokušali istražiti tu temu, uz set kriterija kojima bi se mogli karakterizirati geni koji utječu na altruizam.

Kriteriji koje bi gen trebao zadovoljiti su da zadovoljava Hamiltonovo pravilo (vidi poglavlje 4.1.), alelnar premjante gena trebaju se moći povezati sa varijacijama u altruističnom ponašanju, ekspresija treba biti osjetljiva na okolišne uvjete, sa kompleksnošću ponašanja trebao bi rasti broj i kompleksnost gena koji određuju to ponašanje. Također, očekuje se da će se geni nalaziti na mjestima niske učestalosti rekombinacije, imati mogućnost koexpresije, te posjedovati aditivne i pleiotropne efekte. Autori smatraju da bi pleiotropija trebala biti ključna u evoluciji altruizma, jer on uključuje kombinaciju cijene i dobrog i dobrobiti koji mogu simultano utjecati na fiziologiju, morfologiju, reprodukciju i ponašanje.

Analize altruizma i društvenosti kod ljudi su primjetile jake efekte varijacija oksitocina i vazopresina na različite altruistične fenotipove. To sugerira da bi geni koji kod ljudi utječu na altruizam mogli biti dio gena koji moduliraju oksitocin-vazopresin-dopaminski živčani i neuroendokrini sustav (Thompson et al, 2013).
4. KIN SELEKCIJA

Prve ideje u smjeru teorije kin selekcije su bili komentari Haldanea i Fishera o mogućoj važnosti srodnosti u određivanju društvenih postupaka. Poznata je navodna Haldaneova izjava: „I would lay down my life for two brothers or eight cousins“. No tek W. D. Hamilton iznosi cjelokupan matematički model kojim dokazuje važnost srodnosti u evoluciji društvenosti. NJegova teorija kaže kako gen ne mora nužno biti pozitivno selektiran preko povećanja fitnesa svog nosioca. Radi zajedničkog pretka srodnici imaju određenu vjerojatnost posjedovanja replika istog gena, zbog čega se gen altruista može prenositi i evoluirati ukoliko altruističnim činom dođe do povećanja fitnesa njegovog srodnika (Hamilton, 1964).

Nakon što je teorija objavljena, mnogi biolozi su je prihvatili kao bolju alternativu teoriji grupne selekcije. Mnogi primjeri altruizma primjećeni u prirodi se mogu objasniti kin selekcijom te lijepo prate Hamiltonovo pravilo. Primjećeno je kako Marmotini neće dati upozorenje ostatku skupine svaki put kada spaze predatora nego samo kada je u blizini mnogo srodnika (Sherman, 1977), kao i to da šišmiši vampiri u mnogo većem omjeru dijele hranu sa srodnicima nego sa ostatkom populacije (Wilkinson, 1990). Inkluzivnim fitnesom se objašnjavala i sterilnost radnika u zadrugama socijalih insekata, što je jedan od najekstremnijih poznatih primjera altruizma te je fenomen veće međusobne povezanosti sestara (r=0,75) nego majke i kćeri (r=0,5) (Trivers & Hare, 1976). Hamilton je svojim radom dao velik doprinos razumijevanju ponašanja životinja, te potakao sasvim nov način prisupa problemu altruizma.

4.1. Hamiltonovo pravilo

Naravno, postoje uvjeti pod kojima će se manifestirati altruistično ponašanje, što je Hamilton prikazao formulom r x B > C, gdje je C cijena (cost) koju altruist plaća altruističnim činom, B je dobrobit (benefit) koju ostvaruje recipijent, a r je koeficijent njihove srodnosti (relatedness), tj. vjerojatnost da altruist i recipijent nose isti alel gena naslijeđen od pretka. Ukoliko je cijena altruističnog ponašanja (C) manja od dobrobiti (B) umnožene sa koeficijentom srodnosti altruista i recipijenta (r), to ponašanje će biti favorizirano. Dobrobit (B) i cijena (C) se mjere u obliku reproduktivnog fitnesa. Koeficijent srodnosti ovisi o genealoškom odnosu između altruista i recipijenta. U diploidnih vrsta koje se razmnožavaju
seksualno, r će za braću i sestre iznositi 1/2, kao i za roditelje i djecu, za djedove ili bake i unučad 1/4, za prve rođake 1/8 i tako dalje. Što je veća vrijednost r, veća je i vjerojatnost da recipijent altruističnog ponašanja također nosi gen za altruizam. Time nam Hamiltonovo pravilo pokazuje da je moguće da se altruizam proširi prirodnom selekcijom, sve dok je cijena altruističkog čina nadjačana dobrobiti koju dobiju recipijenti (Hamilton, 1964).

4.2. Inkluzivni fitnes

Teorija kin selekcije se može promatrati kao pogled evolucije iz perspektive gena, gdje postoji kompeticija među genima za povećanje frekvencije u genskoj zalihi, dok su individualni organizmi samo nosioci koji služe za daljnju propagaciju gena (Dawkins, 1976). Altruizam se iz ovog gledišta čini savremenim logičnim – gen „želi“ dobiti što više vlastitih kopija u sljedećoj generaciji, a jedan od načina kojim to može postići je da uzrokuje altruistično ponašanje prema ostalim nositeljima istog gena, što će se događati sve dok je uvjet Hamiltonovog pravila zadovoljen.

No Hamilton je svoju teoriju bazirao na inkluzivnom fitnesu (Hamilton, 1964), a naziv „kin selekcija“ je uveo Maynard Smith kako bi jasno odvojio Hamiltonovu teoriju od teorije grupne selekcije (Smith, 1964). Teorijom inkluzivnog fitnesa iznosi kako u obzir ne treba uzeti samo izravnu reproduktivnu uspješnost organizma (direktni fitnes), nego i njegovu indirektnu reprodukciju, preko identičnih kopija gena. Tako bi inkluzivni fitnes organizma bio rezultat direktnog fitnesa i utjecaja na fitnes ostalih organizama u populaciji, ponderiran sa koeficijentom srodnosti r (indirektni fitnes). Uzimajući to u obzir, može se zaključiti kako se prirodnom selekcijom maksimizira inkluzivni fitnes jedinki u populaciji (Grafen, 2006). Time možemo dati smisao altruizmu i na razini jedinke, a ne samo gena – organizam time povećava svoj inkluzivni fitnes.

4.3. Prepoznavanje srodnika

Uzevši u obzir postavke teorije kin selekcije, nameće se pitanje prepoznavanja. Je li potrebno međusobno prepoznavanje altruista i srodnika kojem se altruistički čin usmjerava? Mnoge životinje mogu prepoznati srodnike, na primjer primati. Većina ih živi u skupinama u kojima se nalaze i srodnici i nesrodne jedinke, tako da će imati veliku korist od sposobnosti da
prepoznaju srodnike prema kojima će se ponašati altruistično. Smatra se da je najvažniji mehanizam rano udruživanje srodnika, no neke kasnije studije ukazuju na mogućnost da prepoznaju svoje srodnike na temelju vizualne sličnosti (Silk, 2001).

4.4. Zajednički predak

4.5. Kvantitativni test Hamiltonovog pravila

Od 1960tih pa do današnjeg dana, objavljeno je mnogo radova koji se bave kvalitativnim istraživanjem Hamiltonove teorije, no kvantitativni testovi se nisu provodili, upravo zbog poteškoća u kvantifikaciji dobrobiti i cijene altruističnih činova. Jedan od prvih je proveden 2011., gdje su autori simulirali sustav robota koji traže hranu, te su manipulirali razinama dobrobiti i cijene (populacije su imale različite C/B omjere) dijeljenja hrane. Nivo altruizma se definirao proporcijom hranidbenih artikala koje su roboti dijelili sa ostalim jedinkama svoje skupine. Populacije su prošle 500 generacija, tijekom kojih je evoluirao
altruizam i fiksirao se na nivou koji je ovisio o povezanosti jedinki unutar populacije te C/B omjeru. U svim slučajevima, tranzicija sa vrlo niskog nivoa altruizma na stabilni nivo koji se zatim održavao u populaciji je ostvarena kada je r vrijednost postala veća od C/B vrijednosti. Hamiltonovo pravilo je izdržalo ovaj test, predviđajući sa izrazito visokom točnošću minimalnu povezanost potrebnu za evoluciju altruizma. Osim toga, točnost se održala i prilikom pojave pleiotropnih efekata, epistatskih efekata, te mutacija koje imaju utjecaj na ponašanje i fitnes, iako ti faktori nisu bili uzeti u obzir u Hamiltonovoj verziji pravila iz 1964 (Waibel et al, 2011).
5. TEORIJA IGARA

Glavna razlika originalne teorije igara te evolucijske teorije je da se evolucijska teorija igara (EGT) ne temelji na pretpostavci o racionalnosti igrača, nego na ideji da prirodna selekcija uzrokuje kretanje organizama prema optimizaciji reproduktivnog uspjeha (Hammerstein & Selten, 1994). Za organizam je dovoljno da posjeduje strategiju, a selekcija pokazuje koliko je zapravo dobra ta strategija. Ključno je pri tom prepoznati da se uspjeh strategije ne mjeri po tome koliko je ona dobra sama po sebi, nego u usporedbi sa ostalim postojećim strategijama te njihovim frekvencijama unutar populacije. Početak razvoja evolucijske teorije igara obilježio je rad Maynard Smith-a i Price-a (1973), u kojem iznose način analize strategija te daju matematički kriterij kojim se može predvidjeti uspješnost različitih strategija.

5.1. Teorija igara i suradnja

Iako je kin selekcija dala svoj doprinos razumijevanju pojave altruizma u prirodi, nije mogla odgovoriti na pitanje suradnje među individuama koje nisu srodnici. Što utječe na njihovo ponašanje prema drugoj jedinki? Trivers je predložio teoriju recipročnog altruizma – organizam se upušta u altruistično ponašanje ovisno o vjerojatnosti da recipijent uzvратi altruističnim činom nekad u budućnosti (Trivers, 1971). Iako naziv sugerira drukčije, recipročni altruizam svojim značajkama predstavlja suradnju (West et al, 2006). Individua će trenutno platiti cijenu čina, no dugoročno će suradnja imati pozitivne posljedice na njegov fitnes. Prema Hamiltonovoj shemi (Tablica 1), to spada u ponašanje gdje postoji obostrana korist (+/+), a ne altruizam (-/+). Individue bi tako, u ponovljenim interakcijama, uzajamno pomagale jedna drugoj. Ukoliko recipijent ne bi uzvratio kada to bude moguće, interakcija se prekida. No ukoliko recipijent uzvarača, uzajamno pomaganje se nastavlja i time pruža prednost objema jedinkama koje sudjeluju. Teorija nije odmah prihvaćena jer se smatrala evolucijski nestabilnom (osjetljivost na jedinke koje varaju te ne uzvraćaju pomoć), no kasnije će se ponovno uzeti u obzir, zahvaljujući razvoju EGT. Axelrodovim radom na igri ponovljene zatvorenikove dileme 1981, Triversova teorija dobila je dobru teoretsku podlogu.

5.2. Zatvorenikova dilema

Jedna od najproučivanijih igara u EGT je zatvorenikova dilema, koja testira strategije dvaju zatvorenika koja su dovedena na ispitivanje. Imamo 2 igrača, koji moraju odabrati između međusobne suradnje (priznavanje krivnje) i odbijanja suradnje (izdati drugoga), ne znajući koju strategiju drugi igrač odabire. Ako igrač odbije suradnju, oslobođen je, što je poželjnije od suradnje jer u tom slučaju ide na izdržavanje kazne. Ukoliko oba odbiju suradnju, rezultat je gori nego da su obojica surađivali, zbog čega dolazi do dileme. S obzirom da igraju jednom, očekivana strategija je odbijanje suradnje.
No ako se igra modificira tako da igrači igraju veći broj rundi zaredom (ponovljena zatvorenikova dilema), jasno je da je to dugoročno loša strategija i suradnja postaje racionalnija opcija. Repetitivnost omogućuje mijenjanje strategije tijekom igre te kažnjavanje suparnika u slučaju odbijanja suradnje u prethodnim rundama. Postoje 4 moguća ishoda, od kojih je za igrača najpoželjniji T (temptation to defect), zatim R (reward for mutual cooperation), P (punishment for mutual defection), te najmanje poželjan S (sucker's payoff) (Tablica 2). Drugi dio definicije igre je da igrači ne mogu zaobići dilemu iskorištavajući jedan drugog, jer obostrana suradnja (R) daje bolji ishod od naizmjeničnih iskorištavanja (S i T) (Axelrod, 1981).

<table>
<thead>
<tr>
<th>igrač A</th>
<th>suradnja</th>
<th>odbija suradnju</th>
</tr>
</thead>
<tbody>
<tr>
<td>suradnja</td>
<td>R=3, R=3</td>
<td>S=0, T=5</td>
</tr>
<tr>
<td>odbija suradnju</td>
<td>T=5, S=0</td>
<td>P=1, P=1</td>
</tr>
</tbody>
</table>

5.2.1. Tit – for – tat (milo za drago)

Axelrod je dokazao i kako se uz TFT taktiku suradnja može razviti čak i u populacijama sa mnogo egoista, dovoljna je mala skupina organizama koji će međusobno djelovati kooperativno kako bi se suradnja počela uspostavljati u populaciji. Također, jednom
kad se strategija suradnje ustali, može se obraniti od drugih strategija (sebičnih jedinki). No kako bi se recipročni altruizam održao, neki uvjeti trebaju biti zadovoljeni. Jedinke trebaju imati mogućnost ponovljenih interakcija tijekom perioda u kojem se stignu razviti recipročne interakcije, trebaju moći prepoznati jedinku s kojom su već bili u interakciji i sjetiti se njenih prijašnjih poteza, te je potrebna diskriminacija jedinki koje varaju. Smatra se da altruisti mogu odabrati suradnju s drugom jedinkom preko direktna obzervacije i sjećanja na njeno ponašanje, direktna recipročnost (Cox et al, 1999), ili preko njene reputacije, indirektna recipročnost (Nowak & Sigmund, 1998), što zahtijeva određenu razinu kognitivnih sposobnosti.

5.2.2. Win – stay, lose – shift (pobjeda – ostani, poraz – mijenjaj)

Iako je taktika Tit – for – tat u Axelrodovim turnirima prihvaćena kao najbolja, kasnije je primjećeno kako i ona ima određene nedostatke. Uspjeh TFT djelomično leži i u urednosti računalnog turnira, u kojem se greške ne događaju, dok u prirodi to nije slučaj. Ako dva TFT igrača igraju i jedan greškom odbije suradnju, drugi će to kazniti, što vodi do sekvence izmjjenjivanja suradnje i kažnjavanja čime se uspjeh oba igrača smanjuje. Ova strategija podrazumijeva kaznu nakon već jedne devijacije, iako je opraštanje potrebno kako bi se ponovno uspostavila kooperacija (Nowak & Sigmund, 1992).

Zato je predložena još jedna strategija, Win-stay, lose-shift (WSLS), koja je također jednostavna no ne posjeduje probleme navedene kod TFT. WSLS ponavlja prethodni potez ukoliko je zadovoljan uspjehom (ako je dobio T ili R), a ako je rezultat P ili S mijenja taktiku. Strategija je uspoređena s još 3 (TFT, ALLC, ALLD) u simulaciji ponovljene zatvorenkove dileme sa mogućnošću grešaka. Zaključci simulacije su sljedeći: ako je dobrobit koja se dobije od suradnje ispod kritične vrijednosti, ALLD je odabrana; ako je dobrobit iznad kritične vrijednosti odabire se WSLS. TFT nikad nije odabrana u ovom evolucijskom procesu, ali je smanjila prag za selekciju WSLS. Autori su zaključili kako bi se TFT mogao smatrati katalistom za pojavu suradnje, ali WSLS je njen cilj (Nowak 2007).
Darwin C., 1871, *The Descent of Man and Selection in Relation to Sex*, New York: Appleton

http://www.britannica.com/topic/animal-social-behaviour

http://todayinsci.com/H/Haldane_JBS/HaldaneJBS-Quotations.htm
7. SAŽETAK

8. SUMMARY

In evolutionary biology, an organism is said to behave altruistically when its behaviour causes fitness benefit to the recipient, at a cost to its own. Biologists became very interested in that kind of behaviour because it seemed contradictory to Darwin's theory of evolution. Why would an organism behave in a way that reduces its fitness and why has it not been eliminated by natural selection? First theories favored group selection, whose idea was that an organism sacrifices itself for the benefit of the group, but the shortcomings of the idea soon became obvious. First important progress was made by W. D. Hamilton in 1964., who proposed kin selection theory. By helping a relative, an organism increases chances in propagation of mutually shared genes, which in turn increases its inclusive fitness. He proposed a model which takes into account cost and benefit for altruist and recipient, and their relatedness (r x B > C). But altruism was noticed between non-kin too, so kin selection couldn't grasp the whole picture. That part of the puzzle was solved by Robert Trivers in 1971., who proposed reciprocal altruism theory. An organism will help another if he can expect help in return. If two organisms manage to establish cooperation, both of them benefit so cooperation will be maintained. His theory was supported with evidence from evolutionary game theory, and today it's considered a main explanation for altruism and cooperation, next to kin selection.