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1. Introduction 
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1.1. Ubiquitination 

 

Ubiquitin (Ub) is ubiquitously expressed 76-amino-acid long polypeptide. We can 

find it in a huge number of species starting from yeast to human, and it is highly 

conserved protein. It is involved in a process called ubiquitilation, which is a covalent 

modification of protein. Originally described as destruction tag for misfolded or 

disused proteins Ub has recently been discovered as a key player in variety of other 

fundamental processes such as DNA repair, transcriptional regulation, signal 

transduction, cell cycle control and vesicular traffic. Similar to phoshporylation, 

ubiquitination is an inducible and reversible process that changes the properties of the 

modified substrate; for example, its subcellular localization, stability or enzymatic 

activity. In these processes, protein ubiquitination exhibits inducibility, reversibility 

and recognition by specialized domains, features similar to protein phosphorylation, 

which enable ubiquitin to act as a signalling device.  

 
Figure 1. ATP-dependent activation of Ub. Ub is activated in an ATP-dependent manner by an 

ubiquitin-activating enzyme (E1), and is then transferred to a ubiquitin-conjugating enzyme (E2) 

through thioester bond. An Ubiquitin-protein ligase (E3) specifically attaches ubiquitin to the ε-

amino group of a lysine residue in the target protein. Iterative addition of new Ub moieties to the 

Lys48 residues of conjugated Ub leads to polyUb chain formation. The substrate protein is then 

recognized and targeted for proteasomal degradation. Ubiquitination is a reversible process, in 

which Ub moieties are removed through the action of deubiquitinating enzymes (DUBs). (Source: 

Hoeller et al., 2006) 

In this post-translational protein modification Ub is covalently attached to target 

protein via an isopeptide bond between the carboxyl-terminal glycine (Gly-76) of Ub 
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and the ε-amino group of lysine of substrate proteins. The modification occurs in a 

three step enzymatic process and results in attachment of monoUb or polyUb chains 

to proteins: 1) The C-terminus of Ub is activated in an ATP-dependent manner by 

forming a thiol ester with cysteine residue of ubiquitin-activating enzyme (E1); 2) Ub 

is transferred to the active site cysteine of conjugating the enzyme (E2); and 3) single 

or multiple Ubs are transferred from E2 to the lysine residue of the target protein in 

reactions catalyzed by the ubiquitin ligase (E3) (Figure 1) (Hershko and Ciechanover, 

1998). 

 
 

Figure 2. Types of ubiquitination: Several types of ubiquitination are correlated with regulation 

of different cellular processes. a) The simplest one is monoubiquitination and it regulates 

endocytosis, endosomal sorting, DNA repair and many others. b) Addition of several single Ub 

molecules to different Lys residues results to multiple monoubiquitination and this modification is 

implicated in endocytosis. Polyubiquitination results from the attachment of a chain of Ub 

molecules to one or more Lys residues.  c) Ub chains formed via Lys48 are targets for proteosomal 

degradation whereas d) chains linked via Lys63 are enrolled in DNA repair, endocytosis and 

activation of protein kinases. (Source: Hoeller et al., 2006) 

There are several types of Ub modifications. The simplest type is defined as 

monoubiquitination where a single Ub moiety is attached (Hicke and Dunn, 2003). 

Alternatively, the substrate can be tagged with single Ub molecules on several lysine 

residues, giving rise to multiple monoubiquitination, known as multiubiquitination 

(Haglund et al., 2003). Polyubiquitination is also possible, because Ub contains seven 

lysine residues (Lys6, Lys11, Lys27, Lys29, Lys33, Lys48 and Lys63) which can be 

targeted by other Ubs in an iterative process. This process leads to the formation of an 
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Ub chain which is attached to a single lysine residue on substrate (Pickart and 

Fushman, 2004).  

 
Figure 3. Structural features of Ub. A) Ribbon and surface representations of Ub. The C terminal 

Gly76 through which Ub can bind its target proteins is marked. B) Lysine residues in Ub (blue) which 

can covalentlly bind other Ubs. C) Major recognition patches on Ub. The hydrophobic patch centred on 

Ile44 (green), the polar patch centred on Asp58 (blue) and the diglycine patch near the C-terminal 

Gly76 (pink) are shown (Source: Hurley et al., 2006). 

Different types of ubiquitination conjugates are engaged in regulation of different 

kinds of cellular processes. It is clear that polyUb chain formed through Lys48 has a 

role in targeting proteins for 26S proteosomal degradation, whereas Ub chains formed 

via Lys63 are involved in processes of endocytosis and DNA repair (Hershko and 

Ciechanover, 1998; Hofmann and Pickart, 2001). Monoubiquitination is an important 

signal during receptor endocytosis. It functions as an endosomal sorting signal 

targeting cell surface receptors for lysosomal degradation. Similarly, monoUb 

attached to biosynthetic and endocytic membrane proteins is a signal for cargo sorting 

into vesicles that bud into the late endosome lumen for delivery into the lysosome and 

it is implicated in DNA repair, histone activity and transcriptional regulation (Figure 

2.) (Dunn and Hicke, 2003). 

Non-proteasomal, Ub signals are based on monoubiquitination or other types of 

polyUb chains, including those linked through Lys63 and Lys6 (Ikeda and Dikic, 

2008; Hoffman, 2009). Over the last years a number of proteins were found to be 

ubiquitinated upon irradiation or treatment with DNA-damaging agents such as 

PCNA (Hoege et al., 2002), the core histone H2A and its variant H2AX (Bergink et 
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al., 2006), the 9-1-1 complex (Fu et al., 2008), the Fanconi pathway proteins 

FANCD2 and FANCDI (Smogorzevska et al., 2007), and the replication factor Rfc2 

(Tomida et al., 2008). 

The Ub marks at the damage site are based on monoUb or Lys63-chains. The 

downstream proteins have to recognize these modifications in a background of 

different constitutively ubiquitinated proteins. 

The human genome encodes about 40 different E2 enzymes and more than 500 

different E3 ligases, most of which are probably actively involved in protein 

ubiquitination. 

 

1.2. Ubiquitin as an inducible and reversible signal  

 

It is well known that protein ubiquitination is induced by a variety of stimuli. For 

instance, many cell surface receptors become ubiquitinated upon extracellular ligand 

stimulation (Dunn and Hicke, 2003). In addition, many cytoplasmic and nuclear 

proteins become ubiquitinated following their phosphorylation (Di Fiore et al., 2003). 

Ubiquitination shares many similarities with protein phosphorylation. The signal-

inducible substrate recognition and substrate specificity enabled by Ub ligases are 

very important. The functions of Ub ligases are tightly regulated by mechanisms such 

as compartmentalization, degradation, oligomerization and post-translational 

modifications (Dikic et al., 2003). E3 ligases play an important role in ubiquitination 

process, because they recognize the acceptor protein and for that reason they dictate 

the specificity of the reaction. There is a huge number of different Ub ligases present 

in cell emphasizing the need for their controlled regulation.  

The second key feature is deubiquitination, Ub removing mediated by specific 

enzymes (DUBs). These enzymes are responsible for switching off the Ub signal or 

shifting between different modifications of the same Lys residue (Hershko and 

Ciechanover, 1998). Both of modifications are recognized by specific protein 

domains, providing a mechanism for translation of the Ub or phospho-specific signal 

to downstream effectors (Hicke et al., 2005). Phosphorylation and ubiquitination are 

in tight connection in the cells and usually phosphorylation is a signal preceding 

ubiquitination. The main differences between these two signaling systems are that Ub 

is chemically more complex than phosphate and forms chains of different 

conformations, indicating distinct targets and functions in the cell (Pickart, 2000).  
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The Ub modifications affect the ability of target protein to interact with other and this 

is one of the keys to understand how Ub is involved in such a variety of cellular 

processes. This regulation necessitates the existence of interactors with distinct 

binding specificities and effectors functions. Consequently, a growing number of Ub-

interacting proteins with many specialized Ub-binding domains (UBDs) combined 

with a variable effector domains have been identified (Hicke et al., 2005; Hurley et 

al., 2006). Other proteins of Ub-related processes have evolved domains with Ub-like 

structures that share structural similarity with Ub (Ub fold) and mimic certain aspects 

of ubiquitination. They are known as Ub-like modifiers. Hence, they are conjugated to 

proteins and function in an "ubiquitin-like" manner (Welchman et al., 2005).  

 

1.3. Ubiquitin binding domains 

 

Typical Ub-binding domains have been initially discovered in bioinformatical 

sequence database searches. They appear as regions of locally confined sequence 

similarity shared by multiple proteins known or suspected to bind to Ub (Hoffman, 

2005). Like other functional protein domains, the dedicated UBDs can fold 

independently of the rest of the host protein, and can – at least to a certain degree – 

also function in isolation. For most of the predicted UBD classes, experiments have 

demonstrated that a majority of proteins harboring these domains actually do bind to 

Ub, although the affinities and chain preferences may vary considerably (Varadan et 

al., 2005) 

Usually, structures of isolated UBDs are not very informative, as UBDs are rather 

small modules of 15–60 residues and assume simple folds. More useful are structures 

of Ub–UBD complexes, which reveal the binding mode and the molecular surfaces 

involved. With very few exceptions, the truly modular UBDs exhibit two interesting 

trends in Ub recognition: (i) the UBD surface in contact with Ub is typically 

contributed by an α-helix of the UBD, and (ii) the Ub surface recognized by the UBD 

typically includes a hydrophobic surface patch surrounding the highly conserved Ile-

44 residue of Ub. 

Ub-binding domains can be classified into a number of different families, whose 

members share sequence and structural similarity only within the family. Currently, 

more than ten such families are known, each of them with multiple members in a 

given genome. 
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Table 1. Complex structures and binding affinities of ubiquitin binding domains.  

Ub-binding domain Source protein 
Binding affinity Kd 

(μM) 
Selected references 

UBA 

Dsk2 

hHR23A 

Mud1 

Ede1 

14.8 ± 5.3 

400 ± 100 (monoUb) 

390 ± 50 (monoUb) 

83 ± 9 

Ohno et al., 2005 

Varadan et al., 2005

Trempe et al., 2005 

Swanson et al., 2006

CUE 
Vps9 

Cue2 

20 ± 1 

155 ± 9 

Prag et al., 2003 

Kang et al., 2003 

GAT 

GGA3 

GGA3 

TOM1 

181 ± 39 

 

409 ± 13 

Prag et al., 2005 

Kawasaki et al., 2005

Akutsu et al., 2005 

UEV 
Vps23 

Tsg101 

 

510 ± 35 

Teo et al., 2004 

Garrus et al., 2001 

Ubc UbcH5 ~300 Brzovic et al., 2006

UIM Vps27 
277 ± 8 (UIM1) 

177 ± 17(UIM2) 
Swanson et al., 2006

DUIM Hrs 190 (wt) Hirano et al., 2006 

MUI Rabex-5 29 ± 4.8 Lee et al., 2006 

PAZ mHDAC6 ~58 
Seigneurin-Berny et 

al., 2001 

NZF Npl4 126 ± 26 Alam et al., 2004 

GLUE Eap45 ~135 Slagsvold et al., 2005

A20 ZnF Rabex-5 22 ± 0.4 Lee et al., 2006 

ZnF UBP Isopeptidase 5 2.8 
Reyes-Turan et al., 

2006 

VHS 

Vps27 

HRS 

STAM 

150 Mizuno et al., 2003

 

The first Ub-binding site to be characterized was found in a proteasome subunit 

present in proteasome subset, the S5A/RPN10 protein11. The S5a sequence, 
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necessary and sufficient for interactions with Ub, is short and simple, and was used as 

a starting point in several bioinformatics searches to identify similar sequences in 

other proteins. Hidden Markov models and iterative database searches that were based 

on the S5a sequence identified a sequence pattern known as the ubiquitin-interacting 

motif (UIM) (Hoffman and Falquet, 2001; Donaldson et al., 2003). Like the original 

S5a UIM, UIMs in a number of diverse proteins were quickly shown to be direct, 

bona fide ubiquitin-binding motifs. 

The UIM consists of a single α-helix, surrounded by a conserved alanine residue. The 

UIM helix enters in a shallow hydrophobic groove on the surface of Ub, and the 

alanine residue interacts with Ub Ile44. Other interactions are centred around Ile44 

and cover a modest amount of surface area, consistent with the low affinity 

interactions (Fisher et al., 2003; Swanson et al., 2003). 

Two recently described UIM variants illustrate the versatility of single helix-based Ub 

recognition. The MIU is a single helix that, so far, seems to be unique to one protein, 

the Rab5 exchange factor Rabex-5 (Lee et al., 2006; Penengo et al., 2006). The MIU 

is centered on a functionally essential alanine residue that contacts Ub Ile44. The MIU 

helix sits in the same hydrophobic groove that binds the UIM, but does so in the 

opposite orientation. The MIU is a remarkably clear-cut and elegant example of 

convergent evolution. 

The DUIM is another remarkable variation on the UIM theme. One face of the 

conventional UIM helix binds Ub, whereas the other face is exposed to solvent. In the 

DUIM, two UIM sequences are interlaid on a single helix such that both faces are 

capable of binding Ub (Hirano et al., 2006). The DUIM provides a mechanism for 

binding two, rather than one, Ub moiety, which provides an alternative to a double 

repeat of a conventional UIM. 

Another motif, the ubiquitin-associated (UBA) domain, was the first identified using 

bioinformatics techniques as a sequence pattern common to a subset of proteins that 

are involved in ubiquitination or deubiquitination reactions (Hoffman and Bucher, 

1996). UBA domains are compact three-helix bundles (Davies et al., 2004; Miller et 

al., 2004). PolyUb binding is the most established physiological function for the UBA 

domain (Tanaka et al., 2003; Raasi et al., 2004).  
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Figure 4. Helical ubiquitin-binding domain structures. Ub molecule (yellow) 

in ribbon and surface representations is shown with corresponding helical domain 

(blue) in ribbon representation. Ile44, the centre of the hydrophobic recognition 

patch on the Ub, is shown as green spheres. (Source: Hurley et al., 2006) 

UBA domains bind monoUb in vitro (Katoh et al., 2004; Kang et al., 2003) and have 

been found to play a role in a variety of other protein–protein interactions. The Ile44 

patch on monoUb binds to a conserved hydrophobic patch on the a1 and a3 helices of 

the UBA domain. 

The largest class of ubiquitin-binding domains are α-helical: UBA (ubiquitin 

associated), UIM (ubiquitin-interacting motif), DUIM (double-sided UIM), MIU 

(motif interacting with Ub) and CUE (coupling of Ub conjugation to endoplasmic 

reticulum degradation).  All of the helical ubiquitin-binding domains are known to 
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interact with a single region on Ub, the Ile44 hydrophobic patch. The UBA and CUE 

domains have structural homology, with common three-helical bundle architecture. 

They also have similar modes of binding to the Ile44 patch. The UIM and GAT 

domain structures are unrelated, except for being helical, and they interact with this 

patch in different ways. One of them is octahelical VHS (Vps27 (vacuolar protein 

sorting)/Hrs/STAM) domain (Hurley at al. 2006). The other two are GAT (Gga and 

TOM1) and PAZ (polyubiquitin-associated Zinc finger) UBDs, found in two-hybrid 

screens that used bait proteins not previously known to bind ubiquitin (Yamakami et 

al.,2003; Scott et al., 2004).  

 

Figure 5. ZnF domain structures. Three ZnF domains (NZF, UBP 

and A20 ZnF) are shown (blue) in ribbon representation, with Ub 

(yellow) in ribbon and surface representations. Ile44, the centre of 

the hydrophobic recognition patch on the Ub, is shown as green 

spheres. (Source: Hurley et al., 2006) 

The PAZ domain was also discovered to bind Ub in biochemical experiments 

(Segneurin-Berny et al., 2001), as was another type of zinc finger ubiquitin-binding 

motif, the NZF (Npl4 zinc finger) motif (Meyer et al., 2002; Kanayama et al., 2004), 

as well as the VHS (Vps27, HRS, STAM) (Mizuno et al., 2003) and GLUE (GRAM-

like ubiquitin-binding in Eap45) (Slagsvol et al., 2005) domains. At the end of the list 

is the UEV (ubiquitin-conjugating enzyme variant) motif, a domain similar to 
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catalytic domain of E2s (ubiquitin-conjugating enzymes) but without the active-site 

cysteine. Despite the structural relationship between the UEV and E2 catalytic 

domains, UEV domains are non-catalytic and function as non-covalent ubiquitin-

binding sites in proteins with disparate functions. 

There is a wide range in UBD – Ub affinities, but these interactions — especially 

those with monoUb — are on the low-affinity end of the scale (they typically have a 

Kd of 10–500 M). Biologically relevant, low-affinity protein–protein interactions are 

not without precedent. Weak UBD – Ub interactions are probably physiologically 

relevant because point mutations could be detrimental in vivo (Alam et al., 2004; Shih 

et al., 2002). UBD – interactions might be relatively weak because they function in 

reversible, transitory protein networks similar to one described above. Examples are 

UBD – Ub interactions that are probably part of the network required for the plasma 

membrane vesicles budding, because numerous endocytic proteins have UBDs and/or 

are monoubiquitinated (Hicke and Dunn, 2003)). In these cases, the modification of a 

protein with Ub would function as a switch recognized by UBDs that controls the 

regulated assembly of a network, as has been proposed for Src-homology-2 (SH2)-

DOMAIN–phosphotyrosine interactions and other regulatory switches (Lim et al., 

2002). Thanks to the presence of many deubiquitinating enzymes (DUBs) in most 

cells, ubiquitin-induced switches can be quickly reversed and individually regulated. 

Another reason for low-affinity UBD – Ub interactions might be the relatively high 

concentration of the free Ub in the cells (estimated to be 10 M in mammalian cells 

(Haas and Bright, 1985). An exposed UBD would be constitutively occupied with free 

Ub and unavailable for binding to a ubiquitinated partner. So, for higher affinity 

interactions the strength is achieved by the presence of several UBD motifs in the 

receptor or receptor complex, by the multimerization of Ub receptors, or by further 

contacts between the Ub receptor and the ubiquitinated target. 

The regulation of Ub binding domain can be carried through several mechanisms. One 

way is the regulation of the UBD accessibility. Several UBDs bind to Ub more 

effectively when they are outside the context of the full-length protein (Seigneurin-

Berny et al., 2001). This indicates that interactions between Ub and UBDs are 

controlled by inter- or intramolecular interactions, or by post-translational 

modifications. UBD accessibility might be controlled by steric occlusion: 

intramolecular interaction between a UBA domain and a Ubl domain inhibitis one Ub 

receptor that shuttles proteins to the proteasome, RAD2 (Walters et al., 2003). It is 
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clear that participation in other intra- or intermolecular protein–protein interactions is 

a mechanism that regulates the ubiquitin-binding ability of some UBDs. It is possible 

that other mechanisms of UBD regulation exist, such as post-translational 

modification and the control of subcellular localization. 

 

1.4. Ubiquitin binding zinc finger families 

 

One of the newest discovered Ub binding domain families is the ‘ubiquitin-binding 

Zn-finger’ (UBZ) family. It has been discovered through bioinformatical analysis of 

several yeast two-hybrid screens aimed at finding unconventional Ub interactors 

(Bienko et al., 2005). 

Ubiquitin-binding Zn-finger family is a group of proteins detected by the two-hybrid 

screen and characterized by short mono-nucleate Zn-fingers within their minimal 

interaction region. Among the proteins identified was TAX1BP1 with two copies of a 

C2H2-finger (Iha et al., 2008) and the uncharacterized 

protein FLJ44922 with one copy of a C2HC-finger. Both Zn-finger types were 

distantly related to each other, but also to a large class of DNA-binding Zn-fingers. 

Due to their experimentally confirmed binding to Ub (Bienko et al., 2005; Iha et al., 

2008), they are referred to as ‘ubiquitin-binding Zn-fingers’ UBZ1 (TAX1BP1-

family) and UBZ2 (FLJ44922 family). A bioinformatical search for Zn-fingers with 

more similarity to UBZ1/2 than to the DNA-binding Zn-fingers revealed a number of 

additional UBZ candidate families, UBZ3 up to UBZ9 (Koraljka Husnjak and Ivan 

Dikic, unpublished results). Of particular interest are the UBZ3 and UBZ4 families, as 

they are highly enriched in DNA damage response proteins, and their ubiquitin-

binding properties have been firmly established (Bienko et al., 2005; Bish and Myers, 

2007; Crosetto et al., 2008) 
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Figure 6. Multiple alignment of different members of 

UBZ 3 and UBZ4 family. Multiple alignment of human 

and yeast members of the UBZ3 and UBZ4 families (Zn-

coordinating residues in yellow). Residues involved in 

ubiquitin-binding are labeled by blue asterisks. (Source: 

Hofmann, 2009) 

The UBZ3 family is a C2H2 Zn-finger and has only one family member, the 

translesion DNA polymerase η (corresponding to Rad30 of budding yeast). 

Mammalian and fungal versions of this Y-family polymerase have a single copy of 

the UBZ3 finger, while the insect version contains two copies in the C-terminal 

region. The ubiquitin-binding properties and function of the UBZ3-containing Polη 

are similar to that of the UBM-containing polymerases Pol ι and Rev1 (Bienko et al., 

2005). An NMR structure of the UBZ3 domain of Pol η (Bomar et al., 2007) shows 

that the ubiquitin-interacting surface resides on a helix surface pointing away from the 

Zn-ligand. 
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Figure 7. Comparison of a UBZ structure with a DNA-

binding Zn-finger. In the UBZ3 structure (left, PDB: 1I5O); Zn 

and Zn-binding residues are shown in purple. Three residues in 

contact with Ub are shown as sticks. The DNA-binding KLF 

finger (right, PDB: 1P7A) is shown for comparison in the same 

orientation. The three residues shown as colored sticks 

correspond to the ubiquitin-binding residues of the UBZ3 finger. 

(Source: Hofmann, 2009) 

The UBZ4 family of domains is a C2HC Zn-finger found in several proteins from all 

eukaryotic lineages; most of the UBZ4-containing proteins appear to play a role in the 

DNA damage response. So far, ubiquitin-binding has been demonstrated for three 

UBZ4 proteins: the Y-family translesion polymerase κ (Bienko et al., 2005), the 

Werner-helicase interacting protein WRNIP1 (Bish and Myers, 2007; Crosetto et al., 

2008) and the ubiquitin ligase Rad18 (Notenboom et al., 2007). No ubiquitin-binding 

has been tested for other UBZ4 proteins involved in the DNA damage response, such 

as Artemis/Pso2, and RAP80. Structural information on the UBZ4 domain is currently 

not available, although it is predicted to assume a fold analogous to UBZ3. However, 

the three UBZ3 residues in direct contact with Ub (Bomar et al., 2007) are not very 

well conserved in UBZ4, and even less so in the UBZ1 and UBZ2 families. 

 

1.5. Wrnip1 is a member of UBZ4 family 

 

Wrnip1 (Werner helicase-interacting protein 1) is a protein with UBZ4 domain that 

can form homo-octameric complex (Tsurimoto et al., 2005). It has been implicated in 
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the bypass of stalled replication forks in bakers' yeast. However, the function(s) of 

human Wrnip1 has remained elusive so far. Recent experiments showed that Wrnip1 

was able to bind monoUb as well as polyUb chains (Crosetto et al., 2008). It has been 

described as a novel modulator for initiation or restart events during pol -mediated 

DNA synthesis. Its ATP-ase activity is utilized to sense the DNA ends and to regulate 

the extent of stimulation (Tsurimoto et al., 2005). In the nucleus of cultured cells 

human Wrnip1 is concentrated in a variety of structures, most of which have a 

punctuated, focal appearance and are visible throughout the cell cycle. A number of 

these foci overlap with replication factories, and the presence of Wrnip1 at DNA 

replication sites is greatly increased upon stalled replication forks, such as after UVC. 

The presence of Wrnip1 at sites other than replication foci also hints at possible 

functions beyond DNA replication. 

Recent findings showed that for localization of Wrnip1 inside replication factories 

UBZ domain is indispensable and is significantly enhanced by UVC irradiation. On 

the other hand, UBZ domain is not responsible for Wrnip1 homo-oligomerisation. The 

formation of oligomers is important for its presence inside nuclear foci. It has been 

shown that lacking of predicted leucine zipper (LZ) at position 496-547 (Kawabe et 

al., 2006) severely affected the ability of Wrnip1 to oligomerise. 

ATP-ase activity has also been shown present in Wrnip1. It can be stimulated by 

specific DNA structures such as DNA termini (Tsurimoto et al., 2005). This function 

clearly suggests that Wrnip1 could be a chaperone engaged in several transactions in 

the nucleus (Crosetto et al., 2008).  

Wrnip1 is a new member of a growing family of UBD-containing proteins that use 

their specific UBDs to localize in nuclear focal structures, not only after induced 

DNA damage but also in unstimulated cells. Its UBZ4 domain is clearly responsible 

for its engagement in DNA repair processes. This is the confirmation that this module 

of UBZ domain can indicate the relationship between the protein that contains it and 

DNA processing mechanisms. 
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1.6. Goals of the project 

 

The objective of this project was to reveal novel proteins containing UBZ4 domain 

and to characterize ubiquitin-binding features of selected ones. From the literature it is 

known that UBZ4 domain is a zinc-finger like ubiquitin-binding domain but only few 

proteins containing them were investigated (Wrnip1 and Rad18). Experiments so far 

showed that UBZ4 as a domain is mainly engaged in DNA processing so it would be 

interesting to find new proteins containing this domain.  

To accomplish this I performed iterative alignment using isolated sequence of UBZ4 

from Wrnip1 to get a number of proteins with putative UBZ4 domain.  

Protein of interest (C1orf124) (accession number AAH68478) was then analysed 

using standard biochemical techniques. 

I was mainly interested in the nature of protein binding to Ub. I wanted to elucidate if 

the putative UBZ4 domain on the C-terminal end of protein was responsible for its 

binding to different Ub species. I also wanted to reveal if UBZ4 domain recognizes a 

hydrophobic surface patch surrounding the highly conserved Ile-44 residue of Ub and 

which amino-acid inside the domain is responsible for this interaction. 
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2. Materials and methods 
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2.1. Materials 

 

The following items were purchased from Amersham Biosciences (GE Healthcare 

Life Sciences) (England): 

ºº  Anti-Mouse IgG 

The following items were purchased from AppliChem Co. (Germany): 

ºº  40% acrylamide / 0,8% bisacrylamide solution 

ºº  Glycerol 

ºº  Sodium dodecylsulphate (SDS) 

ºº  Tris base and Tris-HCl 

The following items were purchased from BD Biosciences-Clontech (USA): 

ºº  Difco agar 

The following items were purchased from BIO-Rad Co. (USA) 

ºº  All the equipment to run SDS-PAGE 

ºº  Precision plus proteinTM Dual color standards 

The following items were purchased from Fermentas Interantional INC. (Canada) 

ºº  BamHI restriction enzyme with its buffer 

ºº  EcoRI restriction enzyme with its buffer 

ºº  NotI restriction enzyme with its buffer 

ºº  SalI restriction enzyme with its buffer 

The following items were purchased from GIBCO Co. (USA): 

ºº  Ultra pure water (H2O) 

ºº  Penicillin-streptomycin 

The following items were purchased from Invitrogen Co. (USA): 

ºº  Agarose 

ºº  Chemically competent Escherichia coli of DH5α strain 

ºº  Lipofectamine reagent 

The following items were purchased from New England Biolabs Inc. (USA) 

ºº  1kb DNA Ladder 

ºº  DpnI restriction enzyme and its buffer 

ºº  T4 ligase and its buffer 

 

The following items were purchased from Qiagen Co. (Germany) 

ºº  QIAEX II Gel Extraction kit 

18 



ºº  QIAprep Spin Miniprep kit 

The following items were purchased from ROTH Co. (Germany) 

ºº  Ampicillin 

ºº  Β-mercaptoethanol 

ºº  Bovine Serum Albumine (BSA) 

ºº  Bromphenol Blue (BPB) 

ºº  Ethidium bromide (EtBr) 

ºº  Ethylene glycol bis (2-aminoethyl) tetraacetic acid (EGTA) 

ºº  Milk powder 

ºº  Phenylmethylsulphonylfluoride (PMSF) 

ºº  Ponceau S 

ºº  Sodium acetate 

ºº  N,N,N,N-tetramethy-ethylendiamine (TEMED) 

ºº  Triton X-100 

ºº  All inorganic salts and solvents 

The following items were purchased from Roche Co (Switzerland): 

ºº  Deoxynucleoside triphosphates (dNTPs) 

The following items were purchased from Sigma-Aldrich (USA): 

ºº  Anti-FLAG M5 monoclonal antibody 

ºº  Ammonium persulphate (APS) 

ºº  Aprotinin 

ºº  Dimethyl sulfoxide(DMSO) 

ºº  Dulbecco's Modified Eagle's Medium (DMEM) 

ºº  Hydroxyethyl-piperazineethanesulphonic acid (HEPES) 

ºº  Leupeptin hemisulfate 

ºº  Sodium orthovanadate 

Other items were purchased from the following sources: 

ºº  DNA Polymerase Pfu Ultra High Fidelity (with buffer) from STRATAGENE 

Co. (USA) 

ºº  Enhanced chemiluminiscence reagents from Santa Cruz Biotechnology (USA) 

ºº  Ethylenediaminetetraacetic acid disodiumsalt-2-hydrate (Na2EDTA) from 

Riedel-deHaen Co. (Germany) 

ºº  Fetal Bovine Serum from PAA Co. (Austria) 

ºº  Human embrionic kidney (HEK) 293 cells from ATCC Co. (USA) 
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ºº  Nitrocellulose membranes from Osmonics Co. (USA) 

º  Whatmº an filter papers from Whatman Co. 

 

2.1.1. Constructs 

 

ºº  pCMV-FLAG-C1orf124 construct was prepared as described in methods 

ºº  pCMV-FLAG-C1orf124 (D479A) construct was generated by site-directed 

mutagenesis of residue Asp479 to alanine 

ºº  pGST-UBZ construct was prepared as described in methods 

ºº  pGST-Ub construct was prepared in Ivan Đikić's lab 

ºº  pGST-tetraUb construct was prepared in Ivan Đikić's lab 

º  pGST-º Ub (I44A) cnstruct was prepared in Ivan Đikić's lab 

All constructs listed above are resistant to Ampicillin. 

 

2.1.2. Antibodies 

 

º  anti-º FLAG M2 monoclonal antibody from Sigma Aldrich (USA) 

 

2.1.3. Buffers 

 

50x TAE buffer 

Tris 2 M 

EDTA 0,5 M 

Acetic acid 1 M 

 

10x DNA loading buffer 

Glycerol 50% 

EDTA 0,1 M 

SDS 1% 

Bromophenol blue 0,2% 

Xylene cyanol 0,2% 
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GST-Buffer 1 

Tris-HCl, pH 7,5 0,02 M 

EDTA, pH8 0,01 M 

EGTA 5 mM 

NaCl 0,15 M 

PMSF 1 mM 

βMe 0,1% 

 

GST-Buffer 2 

Tris-HCl 0,02 M 

EDTA 0,01 M 

NaCl 0,15 M 

Triton X-100 0,005% 

PMSF 1 mM 

βMe 0,1% 

 

GST-Buffer 3 

Tris-HCl 0,02 M 

βMe 0,1% 

NaN3 0,1% 

 

Lysis Buffer, pH 7,5 

HEPES 50 mM 

NaCl 150 mM 

EDTA 1 mM 

EGTA 1mM 

NaF 25 mM 

Triton X-100 1% 

Glycerol 10% 

ZnCl2 10 μM 

 

Protease inhibitors: 

PMSF 1mM 

Leupeptin 2 μg/ml 
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Aprotinin 10 μg/ml 

 

Phosphatase inhibitor: 

Sodium Orthovanadate 1mM 

 

Separating gel buffer 

Tris-HCl, pH 8,8 1,5 M 

SDS 0,4% 

 

Stacking gel buffer 

Tris-HCl, pH 6,8 0,5 M 

SDS 0,4% 

 

TE buffer 

Tris 10 mM 

Na2EDTA 1 mM 

 

10x thrombine cleavage buffer 

TrisCl, pH 8,4 200mM 

NaCl 1.5 M 

CaCl2 25 mM 

 

2 x Leammli-Sample Buffer 

Tris, pH 6,8 25 ml 

Glycerol 20 ml 

SDS, 10% 20 ml 

Bromophenol blue 1 mg 

β-merkaptoethanol 5 mL 

 

10 x PBS (Phosphate-Buffered Saline), pH 7,3 

NaCl 80 g 

KCl 2 g 

NaH2PO4*7H2O 11,5 g 

KH2PO4 2 g 
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10 x Running buffer 

Tris 30 g 

Glycine 144 g 

SDS 10 g 

dH2O up to 1 l 

 

10 x Transfer buffer 

Tris 22,3 g 

Glycine 105 g 

dH2O up to 1 l 

 

20 x TBS (Tris-Buffered Saline), pH 7,6 

Tris 201,17 mM 

NaCl 1,198 M 

 

2.1.4. Solutions and plates 

 

Ponceau S solution 

Ponceau S 0,5 g 

Acetic acid 10 ml 

dH2O up to 100 ml 

 

Western blot blocking solution, pH 7,5 

1 x TBS 

BSA 5% 

Na-azide 0,1% 

 

1% BSA (Bovine Serum Solution)/PBS solution  

BSA was dissolved in PBS buffer and pH was adjusted to 7,5 

 

The media (both liquid and solid) were autoclaved at 121°C, 15 min. 

LB medium and plates 

Bacto tryptone 10 g 

Bacto yeast extract 5 g 
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NaCl 5 g 

Difco agar (for plates only) 15 g 

dH2O up to 1 l 

Ampicillin 100 μg/ml (added after autoclaving, after the solution had  

 cooled to  

 ≈55°C 

2.1.5. Gels 

 

1.5% agarose gel 

Agarose                                  3.75 g 

1 x TAE Buffer                       250 ml 

 

Solutions were boiled using microwave to dissolve.  

After running, gels were kept 30 min in 1:100000 ethidium bromide solution for 

staining. 

 

Polyacrylamide gels 

 
Table 2. Recepies for polyacrylamide separating and stacking gels 

Stock solution (3 gels) 
Separating (lower) 

gel 

Stacking 

(upper) gel 

Final acrylamide concentration 7% 8% 3,9% 

Lower buffer / (ml) 3,750 3,750 - 

Upper buffer / (ml) - - 1,25 

ddH2O / (ml) 8,625 8,250 3,21 

10% APS / (μl) 50 50 25 

TEMED / (μl) 10 10 5 

40% acrylamide/0,8% bisacrylamide / 

(ml) 
2,625 3,000 0,49 
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2.2. Methods 

 

2.2.1. Bioinformatical tools 

 

PSI-BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi) was used to perform multiple 

alignment of the Wrnip1 UBZ domain sequence with the E-value equal 10-3 and 

three-iterations against the NCBI nonredundant protein sequence database (nr 

database) (Jones and Swindell, 2002;  Altschul et al. 1997; Altschul et al. 1998) 

Obtained sequences were then aligned using CLUSTALW2 multiple alignment tool 

(http://www.ebi.ac.uk/Tools/clustalw2/index.html) (Chenna et al. 2003). 

Sequence of C1orf124 protein was analysed in Pfam database 

(http://pfam.sanger.ac.uk/) (Finn et al. 2006)  

 

2.2.2. Molecular cloning 

2.2.2.1. Amplification 

The following plasmidic constructs were prepared and used for the experiments here 

described:  pCMV FLAG – C1orf124 using NotI and SalI and pGEX – UBZ 

(C1orf124) using EcoRI and BamHI. Primers used for cloning of these constructs are 

listed in the Table. 

 
Table 3. List of primers and their sequences used for molecular cloning 

Name of the 

primer 
Sequence 

ORF-FLAG for 5' ATTGCGGCCGCCGATGATGACTTGATGTTG 3' 

ORF-FLAG bac 5' GCGGTCGACTCAAAGACTTTCTTCGCTTTT 3' 

ORF-GEX for 5' CGCGGATCCAAAATGGTTAATTGCCCA 3' 

ORF-GEX bac 5' GCCGAATTCGTATTTGATAGTGTCACC 3' 

 

The template cDNA used in the generation of Wrnip1 constructs was obtained from 

the German genomic consortium RZPD (Item No. IRATp970E1156D – Full length 

clone). Primers were obtained from MWG BIOTECH, Martinsried. 
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Table 4. PCR reaction mix 

DNA template 20 ng 

10x pfu DNA polymerase 

Buffer 
5 μL 

Primer-forward (10 μM) 1 μL 

Primer-backward (10 μM) 1 μL 

dNTPs 1 μL 

Pfu DNA polymerase (2,5 

U/μL) 
1 μL 

ddH2O up to 50 μL 

 

PCR program used is indicated in table below 
Table 5. PCR program for amplification of cDNA 

Segment Cycles Temperature Time 

1 1 95°C, denaturation 10 min 

2 16 95°C, denaturation 30 s 

  62°C, annealing 30 s 

  72°C, elongation 1 min 

3 1 
72°C, final 

elongation 
10 min 

4 1 4°C ∞ 

 

 

2.2.2.2. Restriction digestion 

Restriction digestion of the amplification products 
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Table 6. Reaction mixes for restriction digestion    

 
pCMV FLAG 

C1orf124 

pGEX UBZ 

C1orf124 
pCMV-FLAG pGEX 2T 

DNA 20 μL 20 μL 10 μL 10 μL 

10x Buffer O 5 μL - 5 μL 0 μL 

10x Buffer 

Tango 
- 10 μL - 10 μL 

EcoRI restriction 

enzyme 

(2,5U/μL) 

- 1 μL - 1 μL 

BamHI 

restriction 

enzyme 

(2,5U/μL) 

- 1 μL - 1 μL 

NotI restriction 

enzyme 

(2,5U/μL) 

1 μL - 1 μL - 

SalI restriction 

enzyme 

(2,5U/μL) 

1 μL - 1 μL - 

ddH2O up to 50 μL up to 50 μL up to 50 μL up to 50 μL 

 

Restriction digestion was performed on 37°C for 4 hours. 

Gel extraction of the inserts 

Inserts were separated from the template by electrophoresis on 2% agarose gel. Inserts 

were cut out of the gel and extracted from it with QIAEX II Gel extraction kit 

according to provided protocol. 
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2.2.2.3. Ligation 
Table 7. Ligation mix 

10x T4 DNA Ligase Buffer 1 μL 

Vector 4,5 μL 

DNA insert 4,5 μL 

T4 DNA ligase (10U/μL) 0,5 μL 

 

Ligation was performed on 16 °C over night. 

2.2.2.4. DH5α transformation 

For bacterial transformation with competent cells 5 μL of the ligation mix and 50 μL 

of DH5α competent cells were taken. The mixture was gently mixed and kept on ice 

for 30 minutes. After incubation period, bacteria were heat-shocked in termoblock for 

45 seconds on 42°C and afterwards put on ice for 2 minutes. The whole mixture was 

transferred to 1 mL pre-heated LB medium and shaken for 1 hour on 37°C. 

Thereafter, the mixture was centrifuged (5 min, RT, 5 000 x g) and 900 μL of 

supernatant was discarded. The pellet was resuspended in the remaining media and 

plated on LB plates containing Ampicillin. The plates were incubated overnight on 

37°C. 

2.2.2.5. Plasmid amplification 

Single bacterial colonies were picked up from overnight plates. Colonies were put into 

5 μL LB medium containing Ampicillin and left overnight at 37°C. Next day QIAprep 

Spin Miniprep kit was used to purify plasmid according to manufacturer’s protocol. 

2.2.2.6. Sequencing 

DNA concentration was detected using spectrophotometer (Eppendorf-

Biophotometer). One μg of plasmid DNA was lyophilized and sequenced by MWG 

BIOTECH, Martinsried (https://ecom.mwgdna.com/services/home.tc) using 

commercially available primer. The DNA sequence identification was performed 

using BLAST (www.ncbi.nlm.nih.gov/BLAST).  
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2.2.3. Site directed in vitro mutagenesis 

2.2.3.1. Amplification 
Table 8. PCR reaction mix used for site directed in vitro mutagenesis 

DNA template 20 ng 

10x Pfu DNA polymerase buffer 5 μL 

Primer-forward (10 μM) 1 μL  

Primer-reverse (10 μM) 1 μL 

dNTPs 1 μL 

Pfu DNA polymerase (2.5 U/μL) 1 μL 

ddH2O Up to final volume of 50 μL 

 

PCR program used for site directed mutagenesis is indicated in table below 
Table 9. PCR program used for site directed in vitro mutagenesis 

Segment Cycles Temperature Time 

1 1 95°C, denaturation 1 min 

2 18 95°C, denaturation 1 min 

  55°C, annealing 1 min 

  68°C, elongation 16 min 

3 1 68°C, final elongation 16 min 

4  4°C ∞ 

 
Table 10. List of primers used for site directed in vitro mutagenesis 

Primers Template Purpose 

Forward: 

CAGATTAATGAGCACTTGGCCTGGTGCCTTGAA

GGTGAC 

Reverse: 

GTCACCTTCAAGGCACCAGGCCAAGTGCTCATT

AATCTG 

pCMV 

FLAG – 

C1orf124 

pCMV 

FLAG – 

C1orf124 

D479A 
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2.2.3.2. DpnI treatment 

Dpn I digestion of the amplification products 

PCR product 50 μL 

Dpn I restriction enzyme (10 U/μL) 1 μL 

1 hour, 37°C incubation 

 

The basic procedure utilizes a supercoiled double-stranded DNA vector with an insert 

of interest and two synthetic oligonucleotide primers containing the desired mutation. 

The oligonucleotide primers, each complementary to opposite strands of the vector, 

are extended during temperature cycling by PfuTurbo DNA polymerase. 

Incorporation of the oligonucleotide primers generates a mutated plasmid containing 

staggered nicks. Following temperature cycling, the product is treated with Dpn I. The 

Dpn I endonuclease (target sequence: 5´-Gm6ATC-3´) is specific for methylated and 

hemimethylated DNA and is used to digest the parental DNA template and to select 

for mutation-containing synthesized DNA. DNA isolated from almost all E. coli 

strains is dam methylated and therefore susceptible to Dpn I digestion. The mixture 

was used for DH5α bacterial transformation.  

 

2.2.3.3. DH5α transformation 

DH5α transformation was performed as described above with 5 μL of Dpn I digestion 

product and 100 μL of competent bacteria cells. 

2.2.3.4. Plasmid amplification 

Plasmid amplification was performed as described above. 

 

2.2.3.5. Sequencing 

Sequencing was performed as described above. 
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2.2.4. GST protein purification 

2.2.4.1. BL21 transformation 

For bacterial transformation with competent cells 500 ng of plasmid and 50 μL of 

BL21 competent cells were taken. Transformation was performed ase described 

above. 

2.2.4.2. Protein expression induction and purification 

Single colonies were picked up from over night plates. Colonies were put into 5 mL 

LB medium containing Ampicillin and left to shake over night at 37°C. The day after, 

5 mL culture was added to 200 mL of fresh LB medium containing ampicillin and put 

to shake at 37°C until optical density of culture reached 0,35 – 0,6 when 0,5 mM 

IPTG was added. Culture was put to shake at 37°C for 4 hours. Bacteria were 

centrifuged (20 min, 4°C, 5000 x g) and supernatant discarded. Pellet was 

resuspended in 40 mL of chilled PBS in Falcon tube. Bacteria were again centrifuged 

(20 min, 4°C, 5000 x g) and supernatant discarded. Pellet was resuspended in 20 mL 

of GST Buffer 1. Suspension of bacteria cell was kept on ice and sonicated  4 times 

for 1 minute with 1 minute of cooling down interval in between. After sonication 500 

μL of 20% Triton X-100 was added to suspension. Suspension was transferred to 

centrifuge tubes and centrifuged (20 min, 4°C, 10 000 x g). Glutathione sepharose 

beads were washed 3 times in 500 μL and added to supernatant. Suspension was then 

incubated on rotator over night at 4°C. Next day beads were washed 3 times in 30 mL 

of GST Buffer 2 and resuspended in 2 mL of GST Buffer 3.  

Different amounts of GST fusion protein suspension were mixed with Leammli buffer 

boiled on 95°C and ran on SDS-PAGE. The gel was stained with Coomasie blue 

solution and destained with de-staining solution. The amount of GST fusion protein 

was determined. 

 

2.2.4.3. Preparation of Ub, I44A-Ub and 4xUb proteins 

200 μL of GST-Ub, GST I44A-Ub and GST 4xUb bound to Glutathione beads were 

taken for further preparation. Beads were washed three times in 600 μL of thrombine 

cleavage buffer and added to 200 μL of cleavage buffer containing 2 U of thrombine. 

Mixture was incubated over night on 22°C. After incubation PMSF was added to 
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inhibit thrombine. Mixture was spun down and supernatant was used for GST pull 

down assay or stored at 4°C 

 

2.2.5. Cell culture 

 

HEK293T cells were grown and maintained in a cell tissue incubator, in 5% CO2 

humid atmosphere at 37°C and cultured in DMEM supplemented with 10% fetal 

bovine serum. Appropriate antibiotics were added to growth media; penicillin (100 

U/mL) and streptomycin (100 μL/g). Passaging was performed every 2-3 days. 

 

2.2.6. Transfections 

 

Transient transfections were performed for overexpression experiments. Agent for 

transfection was Lipofectamine 2000 reagent. One day before transfections cells were 

plated according to manufacturer’s protocol (the amount of cells is in proportion to 

the relative surface area belonging to culture vessel) 

Cells were transfected using DNA (μg) to Lipofectamine 2000 reagent (μL) ratio of 

1:3. For 6-well dishes, 0.5 μg of DNA were used. According to manufacturer’s 

protocol Lipofectamine 2000 reagent was mixed with serum free medium (DMEM 

medium without serum) and incubated for 5 minutes. DNA was diluted in serum free 

media and mixed gently. After 5 minutes incubation, diluted DNA was combined with 

diluted Lipofectamine 2000 reagent. Mixture was mixed gently and incubated for 30 

minutes at room temperature. Before complex was added to cells, fresh serum free 

medium was added to cells. After incubation period complexes were added to cells 

and dishes are mixed gently by rocking the plate. Transfections were stopped 4-6 

hours after, by changing serum free medium to medium with serum. 

Plasmids used for transfection were pCMV FLAG – C1orf124 wt and pCMV FLAG – 

C1orf124 D479A 
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2.2.7. Preparation of cell lysates 

 

Thirty-six hours after transfection cells were lysed. Dishes containing cells were put 

on ice, the media was removed by suction and cells were washed with 500 μL of cold 

PBS buffer (-Ca, -Mg). After washing, 400 μL of ice cold lysis buffer was added to 

each well of 6-well plate. After 30 minute incubation on ice, cell lysates were scraped, 

transferred to pre-cooled 1.5 mL tube and clarified by centrifugation (25 min, 4°C, 16 

000 x g) to remove Triton X-100 insoluble fraction. TCL (Total Cell Lysate) and 

Leammli buffer were mixed in 1:1 ratio, boiled for 5 minutes on 95°C to prepare 

samples for performing Western Blotting. The remaining TCLs were used for GST-

pull down assays. If the lysates were not used immediately after preparation, they 

were stored at -20°C. 

 

2.2.8. GST pull down assay 

 

GST pull down assay was performed using following GST fusion proteins bound on 

Glutathione sepharose beads : GST-empty, GST-Ub, GST-4xUb, GST-I44A Ub, 

GST-UBZ (C1orf124); TCLs: FLAG C1orf124 and FLAG C1orf124 D479A; 

thrombine cleaved proteins: Ub, I44A Ub, 4XUb.  

Following mixtures were prepared: 

Mix 1 

GST-empty 5 μL 

TCL – FLAG-C1orf124 100 μL 

Lysis buffer 500 μL 

 

Mix 2 

GST-Ub 7 μL 

TCL – FLAG-C1orf124 100 μL 

Lysis buffer 500 μL 

 

Mix 3 

GST-4xUb 7 μL 

TCL – FLAG-C1orf124 100 μL 
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Lysis buffer 500 μL 

 

Mix 4 

GST-I44A Ub 7 μL 

TCL – FLAG-C1orf124 100 μL 

Lysis buffer 500 μL 

Mix 5 

GST-empty 5 μL 

TCL – FLAG-C1orf124 D479A 100 μL 

Lysis buffer 500 μL 

 

Mix 6 

GST-Ub 7 μL 

TCL – FLAG-C1orf124 D479A 100 μL 

Lysis buffer 500 μL 

 

Mix 7 

GST-4xUb 7 μL 

TCL – FLAG-C1orf124 D479A 100 μL 

Lysis buffer 500 μL 

 

Mix 8 

GST-I44A Ub 7 μL 

TCL – FLAG-C1orf124 D479A 100 μL 

Lysis buffer 500 μL 

 

Mix 9 

GST-UBZ (C1orf124) 10 μL 

Thrombine cleaved Ub 20 μL 

Lysis buffer 500 μL 

 

Mix 10 

GST-UBZ (C1orf124) 10 μL 

Thrombine cleaved I44A Ub 20 μL 
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Lysis buffer 500 μL 

 

Mix 11 

GST-UBZ (C1orf124) 10 μL 

Thrombine cleaved 4xUb 20 μL 

Lysis buffer 500 μL 

Mixtures were incubated on a rotator at 4°C over night. After incubation beads were 

washed three times with 600 μL of lysis buffer. After last washing beads were spun 

down, supernatant was discarded and 40 μL of Leammli sample buffer was added. 

Samples were the heated at 95°C for 5 minutes. 

 

2.2.9. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE) and Western blot 

 

Samples were prepared as described previously, then separated by SDS-PAGE (80 V 

for upper gel and 120 V for lower gel) and transferred to nitrocellulose membrane 

(200 mA, 60 min) in 1 x transfer buffer, supplemented with 20% (v/v) methanol. The 

total level of loaded and transferred proteins was revealed by incubating membrane in 

Ponceau S solution for 1 min and afterwards shortly washed in dH2O. The staining is 

reversible, so the membrane was then washed in TBS buffer, two times for 5 min, and 

blocked in TBS containing 5% BSA for 1.5 hours at RT. Immunoblotting was 

performed overnight with the anti-FLAG M2 monoclonal primary antibodies diluted 

in TBS with 5% BSA at +4°C in 1:10 000 ratio. After overnight incubation, 

membrane was washed three times in TBS containing 0.05% Triton X-100 for 10 min 

each, the membrane was incubated with secondary antibody (anti-mouse-IgG), for 1 

hour at RT. Secondary antibody was prepared in filtered TBS with 5% milk powder 

and 0.05% Tween. After incubation, membrane was subsequently washed three times 

as before. Proteins levels were finally revealed using enhanced chemiluminescent 

reagents according to the manufacturer’s instructions. If needed, membranes were 

afterwards striped in 0.2 NaOH solution for 5 minutes. 
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3. Results  
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3.1. C1orf124 protein contains putative UBZ domain 

 

PSI-BLAST analysis of Wrnip1 UBZ domain sequence gave set of 13 proteins which 

showed evolutionary relationship with input domain. All of 13 proteins in the set 

contained UBZ4 domain characteristics. Multiple alignment of obtained protein set 

showed that CCHC UBZ4 motif is highly conserved as well as aspartate residue in-

between second Zn-binding dyad. 

 
Figure 8. Multiple alignement of protein set obtained by PSI-BLAST. 

Zn-binding motif is presented in red. Highly conserved aminoacids are 

presented in black. 

 

Novel proteins from data set were analyzed in Pfam protein family database and 

protein C1orf124 was chosen for further experiments. Pfam database analysis of 

C1orf124 protein showed presence of the zinc binding region inside SprT-like 

metalloprotease domain starting at 41st and ending at 207th amino acid residue. 
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3.2. C1orf124 is binding to monoubiquitin and polyubiquitin chains 

 

In order to confirm binding of C1orf124 to different ubiquitin species GST pull down 

assay was performed. As a stationary phase GST-constructs of ubiquitin species GST-

Ub – with only one ubiquitin, GST-4xUb, GST-Ub I44A mutated in hydrophobic 

patch region) were used and as a mobile phase total cell lysate of HEK293T cells 

overexpressing FLAG-tagged C1orf124 protein. 

B 

A 

 
Figure 9. Binding of C1orf124 protein to different ubiquitin 

species.  A: Protein blot on membrane stained with Ponceau; B: 

Western blotting on proteins pulled down by GST-Ub and GST-

4xUb detected with antibody against FLAG tag. 

 

Figure 9A presents Ponceau stained membrane, and 9B results of Western blotting of 

pulled down proteins. Western blotting was performed with antibody against FLAG 

tag (lane 1, MW=60 kD). These experiments showed the presence of the 

overexpressed protein C1orf124 in TCL. Pull down assay revealed different affinity 

of C1orf124 for different substrates: our protein was bound strongly to Ub chains 

containing 4 Ub moieties (lane 4B) and binding weakly to monoUb (lane 3). Protein 

didn’t bind to empty GST protein which served as a negative control (lane 2). It also 

didn’t bind to GST-Ub I44A construct which contains mutation inside hydrophobic 

patch, indicating the role of this hydrophobic patch for UBZ 4 binding. 
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3.3. UBZ4 domain of C1orf124 protein is responsible for binding to 

different Ub species 

 

We wanted to show whether UBZ4 domain C1orf124 was responsible for ubiquitin 

binding so w used GST constructs containing isolated UBZ domain C1orf124 protein. 

These constructs were used as a stationary phase and as a mobile phase purified Ub, 

UbI44A and 4xUb. Western Blotting assay was done afterwards. 

B 

A 

 
Figure 10. UBZ4 domain of C1orf124 protein is responsible for binding to Ub.  

A: Protein blot on membrane stained with Ponceau; B: Western blotting on ubiquitin 

species pulled down by GST-UBZ4 detected with antibody against ubiquitin. 

 

Figure 10 shows the results: Figure 10A presents Ponceau stained membrane an figure 

10B Wester boltting on ubiquitin species pulled down with isolated UBZ4 in GST 

construct. Blotting with anti-Ub antibody showed that UBZ4 domain of C1orf124 

antibody is strongly bound to 4xUb (lane 8), while binding to mono Ub (lane 2) and 

mutated UbI44A (lane 5) was abolished. These results indicate specificity of 

C1orf124 binding to Ub. 
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3.4. Aspartate residue in-between second Zn-binding dyad of UBZ 

domain is responsible for binding of C1orf124 protein to Ub species 

 

To further investigate the binding properties of our protein, we performed reversed 

pull down assay. Mutant of C1orf124 was prepared with aspartate residue in-between 

second Zn-binding dyad of UBZ mutated into alanine residue. This construct was 

examined on its ability to pull down different Ub speices. GST pull down assay was 

performed with GST constructs of different Ub species as a stationary phase and TCL 

of HEK293T cells overexpressing FLAG-tagged mutant C1orf124 protein as a mobile 

phase, followed by Western Blotting. 

 

B 

A 

Figure 11. Mutant C1orf124 protein showed no binding to any Ub specie.  

A: Protein blot on membrane stained with Ponceau; B: Western blotting on 

proteins pulled down by GST-Ub and GST-4xUb detected with antibody against 

FLAG tag 

 

Figure 11B shows the results of Western blotting of proteins detecte with antibody 

against FLAG tag. Presence of protein C1orf124, with mutated aspartate residue into 

alanine residue in the total cell lysate confirmed expression in the cell (lane 5) but 

binding to all Ub species constructs, GST-Ub (lane 2), GST-4xUb (lane 3) and GST-

UbI44A (lane 4) was abolished.  

These results confirmed the key role of Asp497 in the UBZ4 domain for the ubiquitin 
bnding.  
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4. Discussion 
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PSI-BLAST analysis provided us with 13 protein member dataset containing putative 

UBZ4 domains. Proteins from the dataset showed sequence features that corresponded 

with UBZ4. We could see two highly conserved Zn-binding dyads (C2 and HC). They 

are important for this protein family as they bind Zn atom coordinately and provide 

domain with specific structure (Figure 8.). Aspartate residue in-between of second Zn-

binding dyad is also highly conserved and crucial for binding as I showed. From this 

13 member protein set we picked the C1orf124 protein for further analysis. 

Pfam database analysis of protein C1orf124 indicated presence of SprT-like 

metalloprotease domain starting at 41st and ending at 207th amino acid residue. Sprt-

like metalloprotease family represents approximately 160 residues in a group of 

proteins conserved from fungi to humans. It is still uncharacterised. Presence of the 

protease domain and ubiquitin-binding domain in the same protein could easily 

indicate deubiquitinating protease function. 

In order to experimentally analyze the UBZ4 domain and its binding supstrates, we 

cloned C1orf124, expressed it in several animal cell lines and performed pull down 

assay with different Ub species. 

Our results showed that protein C1orf124 bound with high affinity to 4xUb, and with 

lower to mono Ub. 4xUb is the smallest fragment of polyUb chain recognised by 

domains that bind to Ub polymers. Probably UBZ4 protein can recognise hydrophobic 

patch around Ile44 on single Ub moiety but the overall affinity was lower.  

To specify the binding domain of the protein I made a GST chimera containing UBZ4 

domain of protein C1orf124. Isolated domain showed binding to polyUb chains but 

not to monoUb or to Ub I44A mutant (mutant with Ile to Ala; responsible for Ub 

binding) (De Fiore et al. 2003). Ub itself is a small protein usually recognised bound 

to its targeted molecule, so these results suggest that the possibility of interaction 

between full length Ub-binding protein and ubiqitylated protein. 

For further characterization of binding domain, we used C1orf124 mutant (mutant 

with Asp to Ala in-between second Zn-binding dyad of UBZ4; responsible for 

recognition of Ub). This mutant did not bind to any of the Ub species. This could 

indicate the crucial role of Asp in Ub binding. Analogous to UBZ3 structure (Figure 

7.) Asp479 residue could be on the opposite side of α-helix in the domain and the 

formation of Zn-finger structure actually could push it outside on to find its interactor.  

The only UBZ4 domain protein analyzed in details up to now is Wrnip1. Its function 

is still elusive. Characterization of its UBZ4 domain showed ability to bind mono Ub 
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and poly Ub as well as increasing presence and localisation in DNA replication sites 

during DNA damage mediated by UBZ4 domain. In comparison, C1orf124  

In comparison, the novel protein C1orf124 containing very interesting combination of 

domains could be one of the nuclear proteins localising in DNA replication factories. 

If it’s known that UBZ4 domain is often found in proteins that are involved in DNA 

repair processes then in combination with protease domain it can suggest a function of 

regulation of ubiquitinated proteins in DNA replication factories or nucleus it self.  
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5. Conclusion 
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In this project we found bioinformaticaly 13 potential protein containing UBZ4 

domain. 

We cloned one of these proteins, C1orf124 and characterized its UBZ4 domain. 

We analysed binding properties of C1orf124 containing UBZ4 domain. Cloned 

C1orf124 showed strong affinity toward polyUb, weak affinity toward monoUb and 

did not bind mutated UbI44A with abrogated key aminoacid. 

Cloned UBZ4 domain showed strong affinity to polyUb but didn’t bind to monoUb or 

mutated one. 

Reverse experiments showed abrogation of Ub binding to C1orf124 mutated in Asp 

located in-between second Zn-binding dyad indicating the key role of this residue in 

these interactions.  
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