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Only a small portion of known prokaryotes are amenable to cultivation in laboratory
conditions. For this reason culture-independent methods are introduced to study
prokaryotic diversity. Metagenomics is a field that studies microbes through direct DNA
sequencing from the environment, bypassing the need to cultivate them. The set of all
individual genomes pertaining to each species present in one niche can be seen as one
metagenome. Prokaryotes are not only diverse, but also show codon usage bias (CUB) at
the level of genomes and between genes of the same genome. Codons are used
unevenly with highly expressed genes showing codon usage patterns that are correlated
with the most abundant tRNAs, in order to enable the most efficient translation of RNA.
A metagenome can act as a genome and show codon usage bias that ultimately helps

predict the expression level of genes.

NOT ALL PROKARYOTES CAN GROW IN CULTURE

Woese and Fox (1977) introduced a molecular phylogenetic approach to the
classification of prokaryotes. On the basis of comparative analysis of the sequences of
small subunit rRNAs (16S rRNAs), they identified three domains of life, one eukaryotic
and two prokaryotic domains — Bacteria and Archea. Within the bacterial domain, they
were able to identify only 11 distinct phyla from microbes that were amenable to
cultivation. These were organisms that can grow on artificial media, under aerobic
conditions and at moderate temperatures which makes them easy to isolate.
Comparison of plate counts with direct microscopic counts has revealed that such easily
isolated organisms constitute less than 1% of all species diversity in environmental
samples (Staley and Konopka 1985), a phenomenon called the “great plate-count

anomaly”.

Pace et al. (1986) introduced a novel method for sequencing small subunit rRNA genes
that no longer required microorganisms to be cultivated. Nucleic acids can be directly
isolated from environmental samples and the sequences of small subunit RNAs directly
determined. Thus far, this method has provided evidence for 34 bacterial and 4 archeal

phyla (Table 1), according to the classification of the Ribosomal Database Project (RDP)



(Cole et al. 2009). Six bacterial and one archeal phylum still have no cultivatable
representatives. An additional six phyla of the prokaryotic domain have not a single
representative with complete whole genome sequencing projects. Most of the
knowledge gained from these poorly characterized organisms comes from

environmental samples.

Table 1: List of all archeal and bacterial phyla currently present in the Ribosomal Project Database and the
number of members of each phyla that have known 16S rRNA sequences from whole genome sequencing
projects. The highlighted phyla have no known cultivable representatives (Cole et al. 2009).

Achaea Crenarchaeota 22
Euryarchaeota 34
Korarchaeota 1
Nanoarchaeum

Bacteria Aquificae 5
Thermotogae 10
Thermodesulfobacteria 0
Deinococcus-Thermus 5
Chrysiogenetes 0
Chloroflexi 6
Thermomicrobia 1
Nitrospira 1
Deferribacteres 0
Cyanobacteria 34
Chlorobi 9
Proteobacteria 425
Firmicutes 158
Actinobacteria 55
Planctomycetes 0
Chlamydiae 12
Spirochaetes 18
Fibrobacteres 0
Acidobacteria 3
Bacteroidetes 15
Fusobacteria 1
Verrucomicrobia 3
Dictyoglomi 2
Gemmatimonadetes 1
Lentisphaerae 0
BRC1 0
OP10 0
OP11 0
T™M7 0
WS3 0
Dehalococcoides 3
SR1 0
oD1 0
Tenericutes 22




GENOMES SHOW CODON USAGE BIAS

Not only are prokaryotes diverse, they also differ in the usage of codons. The genetic
code is degenerate — 61 codons correspond to only 20 amino acids, therefore multiple
(i.e synonymous) codons encode the same amino acid. Synonymous codons are not used
equally in different organisms, a phenomenon called the codon usage bias (CUB)
(Ikemura 1985). A study of 100 archeal and eubacterial genomes (Chen et al. 2004)
proved a strong correlation between the GC content of a genome and preferred codons.
Since this correlation can be calculated solely from intergenic sequences, i.e. non-coding
sequences, these findings suggest a mutational pressure at the level of the entire
genome on the selection of preferred codons. However, there is also natural selection
acting on the choice of preferred codons in an organism. Preferred codons have been
shown to be correlated with the abundance of tRNA molecules in diverse organisms
from bacteria — Escherichia coli and Mycoplasma capricolum (lkemura 1985) — to
eukaryotic species — Schizosacharomyces pombe, Drosophila melanogaster and
Caenorhabditis elegans (Kanaya et al. 2001). CUB is therefore also influenced genome-
wide by natural selection. Natural selection also acts on differences in CUB between
genes of the same genome. It has been shown that CUB correlates strongly with the
level of gene expression in bacteria (Gouy and Gautier 1982) and metazoans (Duret
2002). Highly expressed genes have the most highly optimized codon usage. The most
likely hypothesis is that genes encoded by codons recognized by the more abundant
tRNA molecules can be translated more efficiently and that the translational selection

acting on highly expressed genes is stronger.

The level of expression of genes can be quantified through CUB by previously described
methods (Karlin and Mrazek 2000, Supek and Vlahovicek 2005). Briefly, MILC (Measure
Independent of Length and Composition) measures the distance between the
distribution of codon frequencies in a single gene (the observed CU) and a distribution of
codon frequencies within a set of sequences, or even the whole genome (the expected
CU). MELP (MILC-based Expression Level Predictor), a derivative of MILC, predicts
expression through the ratio of a gene’s MILC to a reference set, usually housekeeping
genes that are optimized in CUB. MELP is a quantitative predictor of gene expression;

the bulk of genes in an organism (i.e. the genomic average) have low MELP that



corresponds to low expression values, while housekeeping genes and genes responsible

for environmental adaptation are marked by high MELP values.

METAGENOMICS HELP DESCRIBE MICROBIAL DIVERSITY

Metagenomics, the culture-independent study of microbial communities, is a rapidly
growing field. There is an estimated 10°°® microbes in the biosphere (Dinsdale et al.
2008), ranging from the microbiota of vertebrates to photothrophic organisms in
oceans. Metagenomics have yielded important discoveries to elucidate the biology of
these abundant and varied organisms. In a recent example, study of the endosymbionts
of obese and lean mice has revealed that the gut microbiome of obese mice is enriched
with genes for energy harvest and that the microbes are more invasive than those of
lean mice (Turnbaugh et al. 2006). A metagenomic study of the nutrient rich
environment of the Sargasso Sea revealed that genomic diversity of the genus
Prochlorococcus, the most abundant photosynthetic organism in the seas, is
concentrated in discrete regions of the genome and largely due to lateral transfer of
genes by viruses (Venter et al. 2004). As shown in table 2, the development of
technology now offers more sequences to be generated at a lower cost, a 2-fold and 3-
fold decrease of the price per sequenced base with the pyrosequencing and lllumina
approach, respectively, compared to traditional dye-termination (Hugenholtz and Tyson

2008). This promises an increase of data from environmental sequencing projects.

Table 2: Comparison of the cost and throughput of sequencing technologies. New technologies (454-
Roche pyrosegeuncing and lllumina sequencing) generate far more sequence data per run, at a much
lower cost than conventional dye-terminator sequencing, but the reads are shorter. (Table from
(Hugenholtz and Tyson 2008)).

Dye-terminator (ABI | 0.07 0.1 700
3730xl)
454-Roche 400 0.003 400

pyrosequencing (GS
FLX titanium)

Illumina sequencing | 2,000 0.0007 35
(GAii)




Environmental sequencing projects most commonly use the whole genome shotgun
sequencing approach, and are not only a culture independent method but also an
approach that requires no prior knowledge about the genomes being sequenced (figure
1). Environmental samples are extracted directly from the habitat and usually
prokaryotic organisms are extracted through size exclusion filtering. Their genomic DNA
is liberated and randomly broken into smaller fragments that can be cloned into
sequencing vectors. The clones are sequenced using random primers to finally give
researches a set of fragments, or reads, each hundreds of nucleotides long. The most

tedious step is the assembly of these fragments (Brown 2002).

Environmental Sample

i

Bacteria

Small - Insert =19
Library Cloning (f &

Random End _—_-_ e =
Sequencing == —_—_-_—
---_- ——

¥

Assembly

Figure 1: Overview of the metagenomics approach to the study of
environmental samples. For a more detailed description, see text.
(Adapted from http://camera.calit2.net)

To deduce the sequence of the whole original DNA molecule, reads must be
computationally assembled (figure 2). The assembly process first finds overlaps between
reads to create continuous stretches of sequence — fragments named contigs. The
contigs are then assembled into scaffolds from information gained from mate pairs. A

mate pair is a set of two reads, each from an alternate end of the same read in a vector,



with a known distance between the two reads. Therefore, scaffolds consist of a number
of contigs with gaps of known length between them. To maximize the number of
overlaps and ultimately achieve quality assembly each genome must be randomly

broken and sequenced many times (Brown 2002).

Scaffold

Contig 1 Contig 2
/—/% /—/;\

e R i —

—— — g
Mate pair
= 4=
=»—4= Fragment

4=m Read (known sequence)
=== Roughly known length but not known sequence

Figure 2: A schematic representation of the assembly process
after whole genome shotgun sequencing. For a more detailed
description, see text. (Adapted from http://genome.jgi-psf.org)

The resulting assembly of the whole set of microbial genomes present in the sampled
space is the metagenome of that environment. Unfortunately, environmental
sequencing is often done at small coverage rates, i.e. smaller length of sequenced DNA,
so it rarely generates enough reads to assemble complete genomes of all the microbes
present. This does not pose a huge impediment for the research of prokaryotic
organisms because even the unassembled reads of shotgun sequencing typically contain

at least one gene per read (Goo et al. 2004).

The diversity of species in a metagenome depends on the nature of the environmental
niche it inhabits. Prokaryotic abundance can be estimated through fluorescence
microscopy and total genomic diversity calculated from the reassociation rate of DNA
isolated from a particular niche. Table 3 presents an overview of one such analysis that
provided an estimate of the species diversity of seven different environments (Torsvik,

Ovreas and Thingstad 2002). The DNA-based species definition defines a species as



prokaryotic organisms with more than 70% sequence identity. Through this estimate,
forest soil, a nutrient rich environment, has an estimated 6,000 species while a salt-
crystallizing pond, an extreme environment due to 22% salinity, is estimated to support
a mere 7 distinct species. Nutrient rich environments harbour more diverse species,

while those with extreme conditions are inhabited by a much smaller number of species.

Table 3: Prokaryotic abundance is determined by fluorescence microscopy while the total community
genome complexity is calculated from reassociation rate of DNA. Distinct genomes are calculated
assuming a species has >90% sequence similarity and with genome equivalents of the Escherichia coli
genome (4.1 x 106 bp). (Table adapted from (Torsvik et al. 2002))

Forest soil 4.8x10° 2.5x10% 6000
Pasture soil 1.4 x 10’ (1.5 x 10")-(3.5x 10™) 3500-8800
Pristine marine 3.1x10° 4.8x10"° 11,400
sediment

Marine fish-farm 7.7x10° 2.0x10° 50
sediment

Salt-crystalizing 6.0 x 107 2.9x10 7

pond




GOALS OF THE PROJECT

The primary aim of this project is to test whether there is translational optimization
(through the existence of codon usage bias) at the level of entire metagenomes and
whether this optimization acts on environment-specific genes. Tringe and collaborators
(2005) found that roughly half of the predicted samples in metagenomes from three
distinct environments showed homology to the COG (clusters of orthologous groups of
proteins) database. Thus, we will explore whether our environmental samples have
sufficient evolutionary links to better researched organisms to functionally annotate

their organisms through homology searches.

Codon usage bias exists at the level of genomes. On the basis of three observations we
hypothesize that CUB exists at the level of metagenomes as well. First, organisms living
in the same environment live in similar conditions — i.e. temperature, pH or ion
compositions — that influence the composition of DNA, most importantly GC bias. There
are significant differences between the GC content of sequenced metagenomes
(Foerstner et al. 2005), a factor that strongly influences CUB (Chen et al. 2004). Second,
horizontal gene transfer is an important means of adaptation between organisms in
microbial communities (Gogarten, Doolittle and Lawrence 2002). Third, organisms in the
same environment often share the same essential functions, for example phosphorus
removal in enhanced biological phosphorus removal (EBPR) sludge communities (Martin

et al. 2006).



SOFTWARE AND BIOLOGICAL DATABASES

NCBI Trace Archive

The National Center for Biotechnology Information (NCBI) Trace Archive is a public
repository of reads from various large-scale sequencing projects, including metagenomic
projects. The data is deposited in the format of DNA sequence chromatograms (traces),

as base calls and quality estimates.

We used the ftp site of the NCBI Trace archive (ftp://ftp.ncbi.nih.gov/pub/TraceDB/) for
retrieving datasets of traces from metagenomics projects. The ftp makes the following

files available:

e fasta.organism.XXX.gz: FASTA format files.

e qual.organism.XXX.gz: quality scores in FASTA format.

e clip.organism.XXX.gz: quality clip values for a read as provided by the sequencing
center.

e anc.organism.XXX.gz: tab delimited files containing the ancillary information for
each read

e xml.organism.XXX.gz: ancillary data in xml format

Celera Assembler

| used the Celera Assembler WGS version 5.2 in this project for the assembly of traces
from metagenomic projects. It was first used for assembly of the Drosophila
melanogaster genome from whole genome shotgun data (Myers et al. 2000). This is an
open source software, available through SourceForge (http://sourceforge.net/),

designed for a Linux operating system.

The STRING/COG database

The Clusters of Orthologous Groups of proteins (COGs) database is a tool for
classification of proteins on the basis of the concept of orthologs— homologous proteins
derived by vertical descent (Tatusov et al. 2003). The identification of orthologs in a

genome proceeds through comparison of protein sequences and relies on the premise

10



that orthologs are more similar to each other than to any other protein in the genome.
The construction protocol includes automatic detection of orthologs as well as manual

curation and annotation.

The STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) database
(http://string.embl.de/) includes a more comprehensive COG database extended
through a protocol similar to the original COG database. | used version 8.0 in this project

(Jensen et al. 2009), hence it is referred to as the STRING/COG database.

BLAST

The Basic Local Alignment Search Tool (BLAST) is a freely available tool
(http://www.ncbi.nlm.nih.gov/BLAST/download.shtml) for searching a database of
sequences with a query sequence (Altschul et al. 1997). | used BLAST version 2.2.10 on a

Linux system.

Perl

The Perl scripting language (http://www.perl.com) is a widely used dynamic
programming language due to its flexibility and adaptability. It has become one of the
most popular tools for bioinformatics because of the facility with which it can
manipulate text files, the most commonly used format in biological databases. The
usability of Perl is enhanced with an existing freely available set of Perl modules

designed for bioinformatic solutions in the life sciences — Bioperl (Stajich et al. 2002).

All the Perl scripts used in this project are available upon request.

R

R is a freely available program for statistical computation and graphics. It is available
through local CRAN mirrors (http://cran.r-project.org/), websites that host the R
program distributions on its domains and make it available for download. The program’s
ability to manipulate large datasets with ease makes it a good choice for statistical

analysis of metagenomes.
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MILC and MELP

MILC (Measure Independent of Length and Composition) quantifies the distance in
codon usage between a certain open reading frame and some expected distribution of
codons (Supek and Vlahovicek 2005). Mathematically, the measure is based on
goodness of fit. Individual contribution of each amino acid to the MILC statistics is

calculated as

0
Ma = ZZOCln—C =ZZ OClnE
- E. & e

where O.is the actual observed count of codon c in a gene and E. is the expected count
of that codon. Observed counts can be replaced by frequencies, where f. is the
frequency of codon c in a gene and g is the expected frequency of that codon. The total

difference in codon usage is then defined as

MILC = - C

YoM,
L

The sum of all contributions (stop codons are excluded from the calculation) is divided
by L, gene length in codons. C is the correction factor for overestimation of overall bias
in shorter sequences. It is calculated as

_ Za(ra - 1)

C
L

— 0.5

where r, is the number of possible codons for the amino acid a, its degeneracy class.

MELP (MILC-based Expression Level Predictor) is a statistic that predicts the expression

level of genes. It is defined as

MIL Cgenome average

MILCreference set

MILCgenome average IS @ measure of distance from the average codon usage of a microbial
metagenome. MILC eference set iS the distance from the average codon usage of a

reference set, for which housekeeping genes are used.

12



Even though measurements for MILC are corrected for length we used a threshold of
100 codons for all our open reading frames, as is recommended by many researchers

when using codon usage measures.

GC CONTENT MEASURE

The metagenomic GC content was calculated through the measure

GC — (GCmax - GCactual)
measure (GCmax - GCmin)

where GChax and GCpi, are the theoretical maximum and minimum GC content,
respectively, of a nucleotide sequence encoding a certain protein sequence. GCyctyal iS

the true GC content of the sequence.

13



METHODS FOR ANALYSIS OF METAGENOMES

i o0 6N

¢

Figure 3: overview of the analysis pipeline. For a more detailed description see text.
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Assembly

| downloaded the trace data, including fasta, quality, clip, ancillary information and mate

pairs (where available) from the NCBI trace archive.

Table 4: Names of metagenomes used in this project, their NCBI Project IDs and references for the original
sequencing projects.

5-Way (CG) Acid Mine Drainage Biofilm Metagenome 13696 (Tyson et al. 2004)
Human Distal Gut Biome 16729 (Gill et al. 2006)
Lean Mouse 1 Gut Metagenome 17391 (Turnbaugh et al.
Obese Mouse 1 Gut Metagenome 17397 2006)
US EBPR Sludge Metagenome 17657 (Martin et al. 2006)
OZ EBPR Sludge Metagenome 17659

| performed the trace data assembly using the Celera Assembler, a program specifically
developed for assembly of the human genome, using modified options to accommodate
the inherent differences of metagenomic data to that of a single eukaryote. To
circumvent the smaller coverage rate, | increased the error rates for building contigs to
14%, reduced the overlap length size to 14 and disabled fragment correction. Bubble
popping was also disabled, a feature designed to identify haplotype differences in whole

genome assembly projects.

Assigning ORFs and COG categories

| used all of the assembled data — singletons, contigs and scaffolds — as query to the
STRING/COG database in a BLASTX search (compares a nucleotide query to a protein
database) with an e-value cutoff of 10®. The position of matches to proteins in the COG
database helped us identify open reading frames (ORFs) in the query sequences of

metagenomic data.

An in-house script assigns COG categories to genes based on the 3-nearest neighbour
consensus rule. More exactly, a COG category is assigned to a gene only if the three best

hits (smallest E-values) are all from the same orthologous group.

15



Analyzing codon usage

An in-house script extracted ribosomal open reading frames using STRING/COG
characterization. | extracted ORFs that matched COGs of ribosomal proteins in the

translation, ribosomal structure and biogenesis (J) super category.

We analyzed codon usage through an in-house Perl script that calculates the Measure
Independent of Length and Composition (MILC) and GC content through calculations
previously described. MILC(genome average) Calculates the distance of an ORF from the
genome average, while MILCriposomal) Shows the distance of each ORF from the reference
set — ribosomal genes. We graphed the results for every metagenome in R, showing
MILC genome average) @aNd MILCribosomat) €ach on an axis, colouring each ORF according to GC
content and showing a regression line through the graph where MILC(genome average) €quals

Ml I-C(ribosomal)-

Randomizing codons

To simulate a situation in which a metagenome would have no codon usage bias, we
randomized the codons for each ORF in the acid mine drainage biofilm metagenome.
The amino acid sequence was kept the same, but the synonymous codon used was
randomly assigned using an in-house Perl script. The reference set (ribosomal genes)
was not randomized. We graphed the results in R in the same manner as the previous

graph.

Predicting expression values

We used and in-house Perl script to calculate the MILC-Based Expression Level Predictor
(MELP) for every ORF, using ribosomal genes as the reference set due to their ubiquitous
high level of expression. The graphical representation shows the number of ORFs that
have MELP values in the top 3% and low 3% (indicating high expression and low

expression, respectively) separated according to their STRING/COG super category.

16



Species diversity

The taxonomic annotation of assembled sequences was derived from a BLAST search
against all 16S rRNA sequences available in the Ribosomal Database Project (RDP)
version release 10.13 (Cole et al. 2009). We performed a BLASTN search of all the
metagenomic sequences against the RDP database with an E value cutoff of 10™° and
word size of 20. The top hit from the query metagenome (i.e. smallest E-value) for each
guery was statisticaly processed in R and provided us with an estimate of species

diversity.

17



RESULTS

ASSEMBLY OF METAGENOMES

Table 5: Statistics of the Celera Assembler for extreme metagenomes assemblies. Contigs in scaffolds,
contigs not in scaffolds (degenerate contigs) and singleton reads are highlighted and were used for further
analysis. Singleton reads are reads that could not be placed in a contig, but are neither ambiguous nor
repetitive. The length of all scaffolds (TotalBasesInScaffolds) and degenerate contigs (DegenContiglength)
are shown in DNA bases.

Metagenome Acid mine US EBPR | OZ EBPR Lean mouse | Obese
biofilm sludge sludge gut mouse gut
Total Scaffolds 32551 3493 5306 7247 419 440
TotalContigsInScaffolds | 32551 4762 6485 7488 419 440
TotalBasesInScaffolds 68181719 12323873 21292466 22377089 547050 577912
TotalDegenContigs 17834 4612 5740 9129 50191 29592
DegenContiglLength 30052223 1054 6563029 10978589 515839 5182865
SingletonReads 104351 26848 51535 62996 772190 543487

Table 6: Coverage statistics of metagenome assemblies after assembly with the Celera Assembler. The
measure ContigsOnly is the length of all contigs in scaffolds and their exact repeats divided by scaffold
length. ContigsAndDegens adds degenerate contigs divided by scaffold length. The AllReads measure
includes all the reads used for the assembly divided by scaffold length.

Metagenome Acid mine US EBPR OZEBPR | Human gut Lean mouse Obese mouse
biofilm sludge sludge gut gut

ContigsOnly 1.44 4.44 2.92 2.14 1.30 2.02

ContigsAndDegens 2.74 6.15 3.81 3.35 3.60 19.30

AllReads 3.79 7.25 5.13 5.48 16.17 40.62

BLAST

Table 7: Summary of BLASTX results for each metagenome (query) against the COG database at E value
cutoff of 10, The number of sequences used as query (scaffolds, contigs and singletons) and the number
and percent of the query sequences that had a match in the database are given.

Metagenome Acid mine USEBPR OZEBPR Human gut Lean mouse Obese
biofilm sludge sludge gut mouse gut

Number of sequences 154736 36222 63760 79613 822800 573519

used as query

Number of sequences 110591 32367 49785 59553 33177 18561

with match in database

% of sequences with 71.47 89.36 78.08 74.80 4.03 3.24

match in database
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Table 8: Number of open reading frames (ORFs) found in metagenomes and the number and percent of
found ORFs used for further study. ORFs that are degenerate, malformed or shorter than 100 codons were

eliminated.

number of ORFs 112232 30244 46758 57058 27744 17267
found

number of ORFs 79257 20175 29754 47765 4955 4058
used

% of ORFs used 70.62 66.71 63.63 83.71 17.86 23.50

SPECIES DIVERSITY

Table 9: Top 5 species in the acid mine drainage biofilm

metagenome, according to their RDP classification.

Shewanella algae 52.01
uncultured Chloroflexi bacterium TK-SH14 31.50
Prochlorococcus marinus str. MIT 9313 4.59
uncultured bacterium MES_rTCB88 0.66
Xanthomonas axonopodis 0.66

Table 10: Top 5 species in the US EBPR sludge

metagenome, according to their RDP classification.

Shewanella algae 49.27
uncultured Chloroflexi bacterium TK-SH14 34.10
Zymomonas sp. S5 2.79
uncultured bacterium MES_rTCB88 2.18
Prochlorococcus marinus str. MIT 9313 2.06

Table 11: Top 5 species in the OZ EBPR sludge

metagenome, according to their RDP classification.

uncultured Chloroflexi bacterium TK-SH14 39.61
Shewanella algae 39.57
Zymomonas sp. S5 10.72
Mannheimia granulomatis 6.62
Prochlorococcus marinus str. MIT 9313 1.64
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Table 12: Top 5 species in the human distal gut
metagenome, according to their RDP classification.
uncultured Catenibacterium sp 1.80
Prochlorococcus marinus str. MIT 9313 1.68
uncultured bacterium p-922-s962-5 1.28
uncultured bacterium JPL1_61 1.26
uncultured bacterium orangl_aai55d06 1.18

Table 13: Top 5 species in the lean mouse gut

metagenome, according to their RDP classification.

Prochlorococcus marinus str. MIT 9313 17.50
Mycoplasma arthritidis 2.27
uncultured bacterium HD5--2 1.94
uncultured bacterium myd5_aaa04h09 1.72
uncultured bacterium C14_g02_2 1.60

Table 14: Top 5 species in the obese mouse gut

metagenome, according to their RDP classification.

Prochlorococcus marinus str. MIT 9313 19.10
uncultured bacterium mcbc118 3.33
uncultured bacterium mcbc51 3.26
uncultured bacterium mcbc51 2.72
uncultured bacterium MD27_aaa04g10 2.18
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CUB IN METAGENOMES
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Figure 3: MILC metagenome average vs. MILC ribosomal for the US EBPR sludge metagenome (top) and
OZ EBPR sludge metagenome (bottom). In figures 3-7 each ORF is plotted according to its distance from
the metagenome average (MILC metagenome average) and distance from the reference ribosomal set
(MILC ribosomal). ORFs are coloured according to the GC content. Additionally, a regression line is plotted
where the distance from the metagenome average equals the distance from the ribosomal set.
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Figure 4: MILC metagenome average vs. MILC ribosomal for the lean mouse gut metagenome (top) and
obese mouse gut metagenome (bottom). For a detailed explanation of the plot see figure 3.
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Figure 5: MILC metagenome average vs MILC ribosomal for the human distal gut metagenome (top) and
acid mine drainage biofilm metagenome (bottom). For a detailed description of the plot see figure 3.
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Figure 6: MILC metagenome average vs. MILC genome average for the acid mine sludge metagenome with
randomized codons. The amino acid sequence of each ORF is preserved, while the codons are chosen
randomly. The reference ribosomal set is not randomized. For a detailed description of the plot see figure

3.
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Figure 7: MILC metagenome average vs. MILC genome average for the Saragasso Sea metagenomic
sample with the four most abundant species coloured blue. Only part of the sample is coloured according
to GC content. For a detailed description of the rest of the plot see figure 3. (Perica and Lucic 2008).
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EXPRESSION LEVELS WITHIN STRING/COG CATEGORIES
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Figure 8: Representation of the top 3% and low 3% of ORFs by MELP (red bars and green bars,
respectively) within STRING/COG super families. Yellow bars show the representation of a super category
in the entire metagenome. High and low MELP values are indicative of high and low expression of ORFs,
respectively. For explanations of the STRING/COG super categories see supplementary table 1.
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INSIGHTS INTO PROKARYOTIC DIVERSITY

The phylogenetic classification of organisms in metagenome samples through the 16S
rRNA sequences present (tables 9-14) provides an estimate of prokaryotic diversity in
the metagenomic samples. Extreme environments are expected to harbour a small
number of species (Torsvik et al. 2002). The acid mine (table 9), United States (table 10)
and Australian EBPR sludge (table 11) show the immense prevalence of the top 2
species, each present in more than 30% of the sample. On the other hand, the
microbiome the human gut (table 12) has no species present in more than 2% of the
sample despite its unfavourable environment. The gut is not a classic extreme
metagenome because the organisms living there exist in a symbiosis with the host

organism.

Before exploring the species diversity of the mouse’s guts, an important note is that only
4% and 3% of assembled sequences of the lean and obese mouse, respectively, were
functionally annotated (table 7). A homology search with databases like STRING/COG is
only as successful with a comprehensive database. The mouse gut metagenomes
obviously contain genes that still need to be more closely investigated. We assigned
STRING/COG categories according to the 3-neighbour rule, which might have failed to
annotate some of the genes that could have been assigned functions with a less
stringent process. It was of higher importance to avoid false positives, i.e. genes
assigned wrong functions, than to annotate all genes. The presence of close to 20% of
the top species in mouse microbiomes (tables 13 and 14) might be biased by the lack of

homologous sequences in the RDP database, similarly to the STRING/COG database.

METAGENOMES SHOW CODON USAGE BIAS AT THE LEVEL OF GENOMES

The distance in CUB from genomic average versus the distance from ribosomal
reference set was plotted for each metagenome (figures 3-5). Figure 6 shows the plot of
MILC(metagenome) VS. MILC(ribosomal fOr the acid mine sludge biofilm metagenome where the

amino acid sequence of ORFs from the metagenome was retained but the codons used
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randomized, while the reference set was not randomized. Comparison of the CUB plot of
the acid mine in figure 5 and the same metagenome randomized in figure 6 shows a
clear loss in the shape of the graph. In figure 6, the distance from the genomic average is
more or less constant for all ORFs. This clearly shows that a selection on the choice of

codons exists at the level of metagenomes.

CUB is known to exist at the level of genomes of single organisms (lkemura 1985). The
influence of the most abundant prokaryotic species in a sample on the codon usage of a
whole metagenome has been previously studied (Perica and Lucic 2008). Figure 7
demonstrates that the four most abundant species (coloured blue), comprising
approximatly 25% of the whole sample, follow the same trend as the rest of the

metagenome.

What is the biological purpose of maintaining a codon usage bias at the level of
metagenomes? Horizontal gene transfer is known to be frequent between unicellular
organisms living in the same ecological niche (Gogarten et al. 2002). The transfer of a
gene is not in itself sufficient for the gene to function in a different organism, the
expression of the gene needs to be regulated equivalently as well. We suggest that CUB
is maintained in metagenomes to, at least at a transcriptional level, facilitate expression

of horizontally transferred genes.

EXPRESSION LEVELS WITHIN COG FUNCTIONAL CATEGORIES REVEAL CLUES
ON ENVIRONMENTAL ADAPTATION

MELP can help predict expression values of genes in genomes, and therefore
metagenomes, which show codon usage bias. Homology through tools such as the
STRING/COG database can help functionally classify genes. A marriage of these two
computational methods reveals insights into the adaptations organisms make to their
environment and is shown in figure 8. The counts of ORFs in the top 3% and low 3% by

MELP values are shown within each STRING/COG super category.
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PROTEIN STABILITY NEEDS TO BE RETAINED IN ACIDIC ENVIRONMENTS

The acid mine drainage metagenome is extracted from a pink biofilm that grew on the
surface of a sulphuric acidic (pH ~0.8) solution at ~42 C. Previous proteomic studies have
shown enrichment of the metagenome in ribosomal and chaperon proteins (Ram et al.
2005). In concordance, we found that ORFs with the functions of information storage
and processing, i.e. category J — translation, ribosomal structure and biogenesis, are
overrepresented in the categories with high MELP (figure 8). This indicates that the high
expression of genes involved in translation and related activities is necessary to ensure
protein stability at a very low pH at least partly by refolding. RNA processing and
modification (super category A) shows very low MELP values, indicating that these
processes might be altogether absent in such an acidic environment. The human distal
gut metagenome also exists at a very low pH, hence it shows high expression values of

the J category responsible for protein stability.

METAGENOMES IN DIGESTIVE TRACKS ARE ADAPTED FOR ENERGY HARVEST

Microorganisms living in the human gut synthesize essential amino acids and vitamins
and process otherwise indigestible substances such as certain plant polysaccharides (Gill
et al. 2006). In agreement with these functions is the overall high expression levels of
metabolic categories energy production and conversion (C) and carbohydrate transport

and metabolism (G) shown in figure 8.

The diet of a mouse is similar to that of humans. Consequently, the metagenomes of
both the lean and obese mouse have high MILC values in metabolic categories C and G
(figure 8). Interestingly, the lean mouse shows much higher MILC values in these
categories than the obese mouse. Previous studies have shown that the microbiome in
an obese mouse’s gut has an increase in the number of genes involved in energy harvest
(Turnbaugh et al. 2006). We propose that due to the smaller number of genes in the
lean mouse microbiome organisms, it must optimize the expression of genes for energy
harvest to ensure enough nutrition for itself. The microbiome of the obese mouse has a
greater choice of genes for energy harvest, and therefore they need not all be optimized

for translation.
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METABOLISM OF METAGENOMES DEPENDS ON ENVIRONMENTAL
CONDITIONS

Enhanced biological phosphorous removal (EBPR) sludge communities are maintained in
reactors for biological removal of excess inorganic phosphate from wastewater. Two
geographically distant metagenomes were used in this project, one located in the United
States of America (US) and the other in Australia (OZ) (Martin et al. 2006). Regardless of
the distance between them, both metagenomes show a very similar distribution of
expression within COG categories (figure 8) due to very similar environmental conditions
and metabolic processes. The same set of genes needs to be highly expressed in both
metagenomes and, similarly, the same set of genes is rarely used. Genes in the category
for replication, recombination and repair (L) have very low MELP values (figure 8)

suggesting very high mutation rates in the metagenomes of EBPR sludge communities.
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CONCLUSIONS

e Metagenomes show codon usage bias.
e Levels of expression of genes can be predicted through codon usage.

e Genes in a metagenome can be functionally characterised through

computational homology methods.

e Important conclusions about the metabolism of metagenomes can be gained

from the marriage of gene expression prediction and functional characterisation.

e Extreme metagenomes have adaptations to their environments that are evident

in the control of gene expression.
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Supplement

ary table 1: Codes and descriptions of COG functional categories.

Information storage and processing

J Translation, ribosomal structure and biogenesis

A RNA processing and modification

K Transcription

L Replication, recombination and repair

B Chromatin structure and dynamics

Cellular processes and signalling

D Cell cycle control, cell division, chromosome partitioning
Y Nuclear structure

\Y Defence mechanisms

T Signal transduction mechanisms

M Cell wall/membrane/envelope biogenesis

N Cell motility

z Cytoskeleton

w Extracellular structures

U Intracellular trafficking, secretion, and vesicular transport
0] Posttranslational modification, protein turnover, chaperones
Metabolism

C Energy production and conversion

G Carbohydrate transport and metabolism

E Amino acid transport and metabolism

F Nucleotide transport and metabolism

H Coenzyme transport and metabolism

I Lipid transport and metabolism

P Inorganic ion transport and metabolism

Q Secondary metabolites biosynthesis, transport and catabolism
Poorly characterized

R General function prediction only

S Function unknown

X Uncharacterised
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