Mehanizmi unosa proteina kroz ovojnicu kloroplasta

Krznar, Petra

Undergraduate thesis / Završni rad

2010

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:850421

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-05-14
MEHANIZMI UNOSA PROTEINA KROZ OVOJNICU KLOROPLASTA

MECHANISMS OF PROTEIN IMPORT ACROSS CHLOROPLAST ENVELOPE

SEMINARSKI RAD

Petra Krznar

Preddiplomski studij molekularne biologije

Undergraduate study of Molecular Biology

Mentor: doc. dr. sc. Željka Vidaković-Cifrek

Zagreb, 2010
POPIS KRATICA

AKR - engl. ankyrin repeat-containing

ATP - adenozin trifosfat

CITO - citosol

CP - kloroplast

DEVD - sekvence aspartat-glutamat-valin-aspartat

ER - endoplazmatski retikulum

FNR - feredoxin-NADP⁺-oksidoreduktaza

GAP - engl. GTPase Activating Proteins

GDP - gvanozin difosfat

GEF - engl. Guanine Exchange Factors

GTP - gvanozin trifosfat

HIP - konzervirani motiv Hsp70 šaperona

HOP - konzervirani motiv Hsp70/90 šaperona

HSP - protein(i) temperaturnog stresa, engl. heat shock protein(s)

IEP - engl. inner envelope protein

IMS - engl. inter membrane space

LHCP - engl. light-harvesting chlorophyll a/b binding protein

NADP(H) – nikotin amid dinukleotid fosfat

N_{IMS} - C_{CITO} - topologija proteina, N-terminalni dio je u IMS, a C-terminalni u citosolu

OEP - engl. outer envelope protein

OMP - engl. outer membrane protein

POTRA - engl. polypeptide-transport-associated domain

PRO - prolin

SEC - engl. Sec system

SER - serin
SPP - engl. stromal processing peptidase
SRP - engl. signal recognition particle
TAT - engl. Tat system
TD - engl. targeting domain
TIC - engl. Translocon of the Inner membranes of the Chloroplast
TOC - engl. Translocon of the Outer membranes of the Chloroplast
TP - tranzitni peptid
TPP - engl. thylakoidal processing peptidase
TPR - engl. tetratricopeptide motif
TRX - tioredoksin
SADRŽAJ

1. UVOD .. 6

2. VANJSKA MEMBRANA OVOJNICE KLOROPLASTA .. 9

2.1. Ugradnja proteina u vanjsku membranu ovojnice kloroplasta 9

2.1.1. Proteini s transmembranskom domenom strukture jednostruke α-zavojnice 9

2.1.2. Proteini s transmembranskom domenom strukturnog oblika β-bačve 10

2.1.3. Proteini s transmembranskom domenom strukturnog oblika α-zavojnice i β-ploče 10

2.1.4. Proteini s terminalnom presekvencijom ... 10

2.2. Prijenos proteina preko kompleksa TOC ... 11

2.2.1. Dijelovi kompleksa TOC .. 11

2.2.1.1. Receptor proteina: Toc159 i Toc34 ... 11

2.2.1.2. Membranski kanal Toc75 .. 12

2.2.1.3. Toc12 i Toc64 – interakcija s IMS ... 13

2.2.2. Mehanizam prijenosa proteina preko kompleksa TOC 13

2.2.2.1. Prepoznavanje i vezanje .. 14

2.2.2.2. Prijenos ... 14

2.2.3. Regulacija prijenosa preko kompleksa TOC .. 15

3. MEĐUMEMBRANSKI PROSTOR OVOJNICE KLOROPLASTA 17

3.1. Proteini lokalizirani u međumembranskom (IMS) prostoru 17

3.2. Kompleks IMS kao dio generalnog puta .. 17

4. UNUTARNJA MEMBRANA OVOJNICE KLOROPLASTA .. 19

4.1. Ugradnja proteina u unutarnju membranu kloroplasta 19

4.2. Prijenos proteina preko kompleksa TIC .. 19

4.2.1. Dijelovi kompleksa TIC ... 20

4.2.1.2. Tic22 – poveznica s kompleksom IMS ... 20

4.2.1.3. Kanalni proteini Tic110, Tic20 i Tic21 ... 20
4.2.1.4. Tic40 – „motor“ kompleksa ... 21
4.2.1.4. Regulatorni proteini Tic62, Tic32, Tic55 ... 21
4.2.2. Mehanizam prijenosa proteina preko kompleksa TIC 22
4.2.3. Regulacija prijenosa preko kompleksa TIC ... 22
5. STROMA KLOROPLASTA ... 24
6. TILAKOIDI KLOROPLASTA .. 25
 6.1. Tat sistem u tilakoidima kloroplasta (cpTat) ... 25
 6.1.1. Dijelovi cpTat sistema ... 26
 6.1.2. Mehanizam prijenosa preko tilakoidne membrane cpTat sistemom 26
 6.2. Sec sistem u tilakoidima kloroplasta (cpSec) ... 26
 6.2.1. Dijelovi cpSec sistema ... 27
 6.2.2. Mehanizam prijenosa preko tilakoidne membrane cpSec sistemom 27
 6.3. SRP sistem u tilakoidima kloroplasta (cpSRP) .. 27
 6.3.1. Dijelovi cpSRP sistema .. 28
 6.3.2. Mehanizam prijenosa preko tilakoidne membrane cpSRP sistemom 28
 6.4. Spontana ugradnja kao mehanizam unosa u tilakoide 28
7. ALTERNATIVNI MEHANIZMI UNOSA PROTEINA 30
8. LITERATURA ... 31
9. SAŽETAK ... 33
10. SUMMARY .. 33
1. UVOD

Tipična biljna stanica sadrži nekoliko tisuća DNA sekvenci koje kodiraju nekoliko milijuna proteina. Za pravilnu funkciju stanice mora postojati dobra regulacija usmjeravanja proteina kako bi proteini bili smješteni u pravilne odijeljke. Pravilno sortiranje proteina neprekidno je prisutno u stanici, od početka formiranja strukture samog proteina, a i stanice, pa sve do razgradnje i zamjene proteina istovrsnim novosintetiziranim proteinom. Enzimi, membranski i strukturalni proteini su samo neki od proteina presudnih za funkcionalnost pojedinog dijela stanice, bilo da se radi npr. o mitohondriju s membranama koje imaju različiti sadržaj proteina ili jezgri koja nosi genetičku informaciju organizma. Proteini pritom mogu biti specifični za pojedinu strukturu ili pak imati sličnu aminokiselinsku sekvencu u različitim funkcionalnim cjelinama.

Većina proteina je hidrofilne prirode što onemogućuje njihov slobodan prijelaz preko membrane, već se za to koriste određeni kanali ili crpke. Pritom sudjeluju šaperoni, proteini koji potpomažu prijenos i ostvarivanje pravilne konformacije drugih proteina. Odmah po završetku sinteze proteina, dok se još nisu formirali pravilnu konformaciju, vežu se šaperoni i održavaju ih u nesmotanom stanju i prenose do njihovog ciljnog mjesta.

Svi proteini koji ne ostaju na mjestu sinteze, imaju jednu ili više tzv. ciljnih domena u svrhu usmjeravanja do pojedinog kompartmenta. Takve domene su u većinom kratki peptidi smješteni na N-terminalnom kraju proteina koje prepoznaju šaperoni Hsp70 i Hsp90 (slika 1). Oni se interagiraju tj. povezuju sa TD proteina, „čitaju“ dalju uputu i dalje preusmjeruju proteine do ciljanog organela. S obzirom da neki membranski sustavi prepoznaju različite TD, u stanici postoje i različiti mehanizmi sortiranja proteina. Unatoč činjenici da je takva domena esencijalna za prijenos proteina, dokazano je da ne mora biti dijelom aktivnog proteina. No, kako bi protein stigao na pravilno mjesto, razne proteaze razgrađuju TD proteina upravo u mjestu inkorporacije proteina. Tako nastali zreli protein se smata u pravilnu konformaciju i postaje funkcionalnim (Buchanan et al., 2002).

Većina proteina stanice kodirana je jezgrnim genima i prevedena u proteine na citosolnim ribosomima, bilo da su ribosomi vezani za endoplazmatski retikulum (ER) ili slobodni u citosolu. Početna faza sortiranja proteina događa se u citosolu – dio proteina se otpušta u citosol i usmjerava prema ciljanom organelu, dok ostali proteini sadrže tranzitni
peptid (TP) i odlaze u ER. Tako translacija TP uzrokuje prepoznavanje od strane ribosoma i njihovo vezanje na ER. Proteini ER sada se dalje presene i ulaze u sekretorni put. To je put unutarstaničnog sustava vezikula i cistern gdje proteini mogu biti dodatno modificirani bilo smatanjem, glikozilacijom ili dodatnim modifikacijama. Takvi novo modificirani proteini nastavljaju svoj put do ciljanog organela.

Slobodni proteini citosola koji nisu prepoznati od strane ER i koji ne sadrže TP, sadrže sekvencu TD. Citosolni faktori poput šaperona prepoznaju TD proteina te ih prenose do specifičnog receptora membrane određenog organela. Kontakt receptora i proteina većinom uzrokuje otvaranje transmembranskog kanala te početak unosa proteina. Transport pritom zahtijeva energiju dobivenu hidrolizom nukleozid trifosfata, tj. ulazak u organel zahtijeva adenozin trifosfat (ATP). Lokalizacija proteina unutar kompartimenta pak zahtijeva pravilnu konformaciju proteina, potpomognutu prisustvom šaperona. (Buchanan et al., 2002)

Kloroplasti su zeleni fotosintetski aktivni plastidi, okruglasta oblika, specifični za biljke i neke alge. Ssemiautonomnom su te poput mitohondrija sadrže vlastiti genom podrijetlom od cijanobakterije, zadražan prilikom endosimbioze prije više od 1,5 milijuna godina. (Andres et al., 2010). Naime, biljna stanica je nastala stapanjem heterotrofnih stanica i preteče cijanobakterija, uz masivan prijenos gena iz endosimbionta u jezgru nastale stanice. Danas kloroplasti sadrže oko 3000 proteina, od čega je samo 50-200 proteina kodirano vlastitim genomom (Kovács-Bogdán et al., 2010), odnosno većina je funkcionalnih kloroplasmnih proteina kodirana jezgrinim genima i sintetizirana na ribosomima citosola pa posttranslacijski unešena u kloroplaste.

Za pravilno funkcioniranje kloroplasta važan je precizan mehanizam unosa proteina da bi proteini dospjeli na mjesto gdje će obavljati svoju ulogu. Kako bi bili uspješno uneseni u kloroplast, proteini moraju sadržavati određeni signal te stoga sadrže N-terminalni tranzitni peptid (TP) odgovoran za specifičnost i ciljani unos. Prolazak kroz tri sustava membrana različitog sastava preko proteinskih kanala ili multiproteinskih kompleksa govori o kompleksnosti unosa u kloroplaste, dok proteini bez takvog TP ukazuju na zagonetku prijenosa proteina u kloroplaste. Proteinski kompleksi TOC i TIC su istraženi u velikoj mjeri. Opisane su njihove strukturne komponente i uloga u unosu proteina u kloroplaste. Zato će put prijenosa proteina u kojima sudjeluju ti kompleksi zvati općim putem prijenosa kako bi se mogao razlikovati od drugog načina prijenosa, tzv. alternativnog puta, u kojem ne sudjeluju TP o kojem za sada postoji puno manje informacija.
Slika 1. Shematski prikaz puta unosa proteina u kloroplaste: mRNA se prenosi u citoplazmu gdje dolazi do prevođenja proteina. Novonastale proteine prihvaća jedan od dva kompleksa za prijenos do membrane kloroplasta - kompleks šaperona Hsp90-Hsp70 ili kompleks proteina 14-3-3 s Hsp70. Protein se prenosi do provršine kloroplasta gdje ga prepoznaju proteini kompleksa TOC, potom slijedi prijenos do kompleksa TIC te unos u stromu kloroplasta. U stromi dolazi do proteolitičke razgradnje TP pomoću SPP (Kovács-Bogdán et al., 2010).
2. VANJSKA MEMBRANA OVOJNIĆE KLOROPLASTA

Složenost kloroplasta kao organela pronalazimo u tri vrste membrana s ukupno šest različitih funkcionalnih cjelina – vanjska membrana, međumembranski prostor, unutarnja membrana, stroma, tilakoidna membrana i lumen tilakoida. Membrane pritom sadrže veće količine galaktolipida u usporedbi s ostalim dijelovima eukariotske stanice, a ujedno su i siromašne fosfolipidima.

Vanjska membrana ovojnića kloroplasta propusa je za mnoge biološki važne molekule biljne stanice. Većina molekula nije lipofilna i ne prelazi membranu spontano, već preko različitih proteinskih kanala poput porina. Porini nespecifično i neselektivno propuštaju vodu i ostale molekule do veličine 10 kDa, kao što su ioni i neki metaboliti. Iako se vanjska membrana kloroplasta smatra glatkom, prema teoriji tekućeg mozaika u njoj se nalaze razni proteini, bilo da su to enzimi (ponajprije oni zaduženi za metabolizam galaktolipida) ili specijalni multiproteinski kompleksi zaduženi za unos esencijalnih proteina kloroplasta lokaliziranih negdje unutar membrana kloroplasta (Buchanan et al., 2002).

2.1. Ugradnja proteina u vanjsku membranu ovojnića kloroplasta

Proteini vanjske membrane kloroplasta (engl. outer envelope protein, OEP) većinom su sintetizirani bez N-terminalne presekvence te je za njihovu inkorporaciju odgovoran njihova struktura. Otkriveno je da je upravo transmembranska domena ovakvih proteina važna za njihovu pravilnu orijentaciju. Iako se dugi niz godina smatralo da je njihovo smještavanje spontano, noviji rezultati ukazuju da većina proteina OEP zahtijeva prisutnost energije u obliku trifosfata. Uz energiju, većina proteina stanice treba i određeni šaperon kako bi pomogao u njihovom smatanju (Soll and Tien, 1998). U slučaju ugradnje u vanjsku membranu, pronađen je protein AKR2 (engl. ankyrin repeat-containing) koji sintetizirane proteine u citosolu vodi do površine kloroplasta, a pritom je vezan za C-terminalni dio i buduću transmembransku domenu proteina (Balsera et al., 2009).

Strukturne razlike transmembranske domene nam omogućuju razlikovanje i podjelu proteina u nekoliko kategorija. Prema tome, postoje proteini s jednostrukom α-zavojnicom, transmembranskim segmentima β-bačve, α-zavojnicom i β-pločom u kombinaciji te proteini sintetizirani u obliku preproteina (Soll and Tien, 1998).

2.1.1. Proteini s transmembranskom domenom strukture jednostrukih α-zavojnica

Proteini ove skupine većinom imaju transmembransku topologiju NIMS-CCTO, odnosno njihov N-terminalni dio „strši“ u međumembranski prostor dviju membrane kloroplasta dok je njihov C-terminalni kraj slobodan u citosolu. Prijenos tih proteina se može podijeliti u tri koraka – vezanje za vanjsku membranu preko specifičnih lipida ili polipeptida, ugradnja

9
hidrofobnog segmenta α-zavojnice uz translokaciju dijelova koji će kasnije biti smješteni u IMS te u konačnici smatanje proteina u pravilnu konformaciju.

Signal koji uzrokuje direktnu insertaciju najvjerojatnije je pozitivan naboj, a ujedno je i stop signal daljnjoj translokaciji. Prema tome, nastaju membrańska „sidra“ većinom s pozitivnim nabojem na obje strane (cis – citosolna strana membrane i trans – intermedijarna strana membrane). OEP7, OMP14 i OMP24 (engl. outer membrane protein, OMP) su proteini koji imaju ovakvu raspodjelu nabojima na obje strane te jedan s trans strane. Protein OEM14 sadrži pozitivan naboj sa cis strane, negativni naboj unutar membrane koji neutralizira pozitivni naboj, te ponovnu pojavu pozitivnog naboj na trans strani. Protein OMP24 pak sa jednim pozitivnim nabojem na cis strani te prisustvom jednog negativnog naboj na trans strani malo iskače od ovog koncepta.

Još je jedan protein ove skupine poseban i po svojoj topologiji i raspodjeli naboj. TOC34 ima pozitivno nabijen C-terminalni dio koji je esencijalan za insertaciju, te uzrokuje promjenu u transmembranskoj topologiji i postaje N_{CITO}-C_{IMS}. N_{CITO} označava da je N-terminalni dio proteina okrenut prema citosolu, dok je C-terminalni dio „uronjen“ u IMS. Na taj je način većina pozitivnog naboj smještena s trans strane (Soll and Tien, 1998).

2.1.2. Proteini s transmembranskom domenom strukturnog oblika β-bačve

Transmembranske domene u obliku β-bačvi sadrže i različit obrazac raspodjele pozitivnog i negativnog naboa što onemogućuje točno predviđanje topologije ovih proteina. Proteini OEP21 i OEP24 su u ovoj skupini proteina. Jedina pretpostavka vezana za proces njihove inkorporacije je spontanost - ne zahtijevaju energiju dobivenu hidrolizom trifosfata niti prisutnost nekog aparata za unos poput kompleksa TOC ili TIC (Soll and Tien, 1998).

2.1.3. Proteini s transmembranskom domenom strukturnog oblika α-zavojnice i β-ploče

Protein OEP16 je za sada jedini čija je tercijarna struktura posljedica naizmjeničnog rasporeda α-zavojnica i β-ploče. Poznata je i topologija proteina: N_{CITO}-C_{IMS}. N-terminalni kraj ovog proteina stvara četiri β-ploče, dok njegov karboksilni kraj čine tri hidrofobne α-zavojnice. Pozitivan naboj C-kraja odgovaran je za insertaciju, pri čemu poput prethodne skupine ne treba trifosfate (Soll and Tien, 1998).

2.1.4. Proteini s terminalnom presekvencom

Posebnost ovih proteina je u njihovom individualnom putu unosu. Naime, oni sadrže N-terminalni bipartit, TP sastavljen od dva peptida, koji upućuje protein u stromu. C-kraj takvog TP uz informaciju o unosu u pravi organel sadrži i stop-transfer signal koja uzrokuje zaustavljanje i usidranje proteina u membrani (Balsera et al., 2009).
Toc86 jedan je od proteina za kojeg se pretpostavlja da treba određeni proteinski aparat za unos. Naime, on treba ATP kao energiju za unos, no nakon unosa mu je nepotrebna pa se samo smatanje u zrelu trodimenzionalnu strukturu odvija neovisno o energiji. Toc75 je tipičan protein ove skupine čija je translokacija zaustavljena prije nego što je u potpunosti prenesen u stromu uz posljedicu zadržavanja u vanjskoj membrani kloroplasta (Soll and Tien, 1998).

2.2. Prijenos proteina preko kompleksa TOC

Unos proteina u kloroplaste je posttranslacijski proces koji uključuje citosolne faktore koji vode preprotein do površine kloroplasta, bilo da će se on ugraditi u vanjsku membranu ili započeti dulji put. Ako se protein treba unijeti u kloroplast, on će ući postupnom translokacijom preko kompleksa TOC i TIC (TOC - engl. Translocon of the Outer membranes of the Chloroplasts; TIC - engl. Translocon of the Inner membranes of the Chloroplasts) za koje se smatra da su dio tzv. glavnog puta unosa proteina. Proteini su vođeni terminalnom presekvencom. Iako se dugi niz godina smatralo da je sekundarna struktura TP-važna za prepoznavanje (Soll and Tien, 1998), danas se sa sigurnošću zna da TP stvara „perfektnu nasumičnu zavojnicu“ koja omogućuje interakciju sa šaperonima te insertaciju kroz kanal TOC (Andres et al., 2010).

Translokacija preko vanjske membrane kloroplasta složeni je proces koji uključuje prepoznavanje i vezanje preproteina, prijenos te translokaciju preko membrane. Pritom su proteini kompleksa TOC najvažnijih suradnici koji tvore multiproteinske agregate s osnovnim zadatkom prijenosa preko membrane. S obzirom na postojanje ogromnog broja proteina, pojavio se i zahtijev za reguliranim unosom proteina (Soll and Tien, 1998).

2.2.1. Dijelovi kompleksa TOC

Pokušaji izolacije kompleksa TOC sežu unatrag dvadesetak godina, s uspješnom karakterizacijom prve tri komponente. S vremenom su identificirani i ostali dijelovi, a kasnije i njihova struktura i funkcija. Prepoznavanje, prijenos kroz kanal i regulacija samo su neke od uloga ovog proteinskog kompleksa (Soll and Tien, 1998).

2.2.1.1. Receptori proteina: Toc159 i Toc34

Translokacija je energetski zahtjevano proces te početna faza zahtijeva energiju dobivenu hidrolizom GTP. GTP iskorištavaju Toc34 i Toc159 (slika 2), proteini s homolognom GTP-veznom G-domenom. Ova domena od 20 kDa sastoji se od kombinacije pet α-zavojnica i šest β-ploča smještenih s obje strane membrane. Strukturalne jedinice su organizirane u obliku tri motiva, s katalitičkom domenom koja funkcionira kao prekidač za promjenu konformacije (Vojta et al., 2008).
G-domene ovih proteina se povezuju i smatra se da su važan element mehanizma unosa. Dimerizacija ovih receptora ne utječe na vezivanje preproteina već uzrokuje inicijaciju translokacije. Poznato je naime da GTP-vezni proteini djeluju kao „molekularni prekidači“ koji mijenjaju aktivno GTP-vezno stanje sa inaktivnim stanjem nastalim hidrolizom GTP-a i zamjenom sa nehidrolizabilnim GDP-om. Tako se proteini aktiviraju vezanjem GTP-a, odrade svoj „posao“ te se hidrolizom inaktiviraju. Većinom su oni stimulirani s GAP (GTPase Activating Proteins), obitelji regulatornih proteina koji se mogu vezati za aktivirane proteine i stimulirati njihovu GTPaznu aktivnost ili s GEF (Guanine Exchange Factors) proteinima slične funkcije. No u slučaju kompleksa TOC oni nisu prisutni, već sami supstrati djeluju kao stimulitori unosa.

Homologna struktura proteina Toc34 sadrži citosolnu G-domenu usidrenu u membranu kratkom hidrofobnom sekvencom blizu karboksilnog kraja. Receptorski protein Toc34 ima visoki afinitet za fosforilirane proteine. Prema tome, zajedno s mogućnošću prepoznavanja nefosforiliranih proteina od strane proteina Toc159, ove dvije komponente omogućuju razlikovanje dva specifična puta za unos preproteina (Andres et al., 2010).

Proteini atToc33 i atToc34 su izoforme proteina Toc34 dobivene u modelnoj biljci A. thaliana, pri čemu je protein atToc33 visoko eksprimiran u listovima te stimuliran fotosintetskim preproteinima, dok je atToc34 primarno smješten u korijenu i aktiviran nefotositetskim proteinima (Vojta et al., 2008).

2.2.1.2. Membranski kanal Toc75

N-terminalna domena tzv domena POTRA (engl. polypeptide-transport-associated domain) te C-terminalna domena (translokacijska pora) u obliku β-bačve s 16-18 β-ploča,
osnovni su dijelovi strukture proteina Toc75. Domene POTRA sudjeluju u održavanju kompleksa TOC, prepoznavanju proteina te interakciji sa šaperonima. Zadržavanje Toc75 u vanjskoj membrani kloroplasta moguće je zbog postojanja poliglizinskog dijela (ponavljajućih dijelova aminokiselina glicin) u C-terminalnom dijelu proteina. On naime onemogućuje asocijaciju s proteinom Hsp70, proteinom iz skupine temperaturno-inducibilnih proteina, prije ugradnje. Funkcija proteina Toc75 je stvaranje kanala veličine 1,4 nm koji stupa u interakciju s prekursorima proteina.

Protein Toc75 zajedno s receptorskim proteinima čini srž kompleksa TOC (slika 2). Ukupna masa varira od 500 kDa pa do 1 MDa što ukazuje na različite stehiometrijske odnose među komponentama srži kompleksa. Varijacije stehiometrijskih odnosa ovise o vrsti biljaka a razlikuju se i unutar same vrste, pa tako primjerice za grašak (P. sativum) odnosi su 4:5:4:1 ili 3:3:1 za proteine Toc34, Toc75 i Toc159. Dodatne varijacije se odnose na dinamički sastav srži i prisustvo izoformi (Andres et al., 2010).

2.2.1.3. Toc12 i Toc64 – interakcija s IMS

Toc12 je jedan od dinamički asociiranih proteina s kompleksom TOC koji sudjeluje u povezivanju kompleksa TOC s kompleksom TIC (slika 2). Sadrži J-domenu (koja je slična DNA-vezujućem proteinu J) s unutrašnje strane vanjske membrane kloroplasta. On se povezuje s proteinima imsHsp70 najvjerojatnije kako bi vezao nadolazeće preproteine i spriječio njihovo otpuštanje u citosol stimulirajući hidrolizu ATP. On je jedan od proteina koji stvaraju most s kompleksom TIC (Tic22), a ujedno je vezan s proteinom Toc64.

Protein Toc64 sastavljen je od tri funkcionalno različite regije – aminoterminalne domene s dijelom transmembranske regije, centralne domene homologne amidazama te C-terminalne domene s TPR motivima (engl. tetratricopeptide motifs). Slabo je vezan za kompleks TOC, a vjerojatno sudjeluje u ciljanoj prevodenju citosolnih preproteina do kompleksa TOC te njihovo smještanje kod TPR domene kako bi daljnjom reakcijom sa Hsp90 bili prenešeni dalje (Andres et al., 2010).

2.2.2. Mehanizam prijenosa proteina preko kompleksa TOC

Kako bi proteini uspješno započeli svoj prijenos preko vanjske membrane kloroplasta, trebaju se dovesti do kompleksa TOC. Takav protein potom treba biti prepoznat od istog kompleksa te interakcijom podjedinica kompleksa TOC, započinje prijenos. Promjena uvjeta u kojima se proces odvija, prisustnost energije ili dodatnih „pomoćnika“ uvjetuje sam prijenos proteina koji završava s uspješnom translokacijom (Andres et al., 2010).
2.2.2.1. Prepoznavanje i vezanje

Prepoznavanje proteina od strane kompleksa TOC najvažniji je, ali reverzibilan i energetski neovisan korak za unos proteina. S obzirom na uvjete u stanici te ogroman promet raznovrsnih proteina, proteini za ulaz u kloroplaste moraju početno biti dovedeni do površine kloroplasta. Osnovni zadatak pritom imaju šaperoni iz obitelji Hsp70. Oni održavaju polipeptid odmotanim i topljivim odnosno pravilno formiranim za unos (Vojta et al., 2008). Trenutno postoje dva mehanizma predložena za dovođenje proteina, a razlikuju se po fosforiliranosti proteina, tj. jesu li proteini u fosforiliranom obliku ili nisu.

Heterooligomerni kompleks sastavljen od citosolnog Hsp70 šaperona, 14-3-3 proteina koji sudjeluju u prepoznavanju i samog fosforiliranog preproteina karakterizira prvi mehanizam ciljnog transporta do površine vanjske membrane (slika 1). U svrhu pravilnog usmjeravanja preproteina, oni moraju biti fosforilirani što omogućuje prepoznavanje od strane 14-3-3 proteina, stvaranje kompleksa s Hsp70 i dalji prijenos do proteinskih receptori Toc34 (Andres et al., 2010).

Drugi mehanizam odnosi se na nefosforilirane preproteine. Oni naime vežu Hsp90 u citosolu te nastali kompleks vežu s koreceptorom Toc64 preko TPR domene, no ne direktno preko preproteina već preko šaperona (slika 1). Posljedica ovakve interakcije je kratkotrajno međudjelovanje s GTP-vezanom G-domenom proteina Toc34 koja sada prepoznaje TP i na sebe preuzima preprotein. Upravo u ovom koraku se povezuje put fosforiliranih i nefosforiliranih proteina, odnosno i jedni i drugi se povezuju s proteinom Toc34 i započinju prijenos (Vojta et al., 2008).

2.2.2.2. Prijenos

Translokacija je drugi dio prijenosa preko vanjske membrane kloroplasta uzrokovani GTPaznom aktivnošću proteina Toc159, pri čemu je hidroliza GTP-a jedini izvor energije. Konformacijska promjena proteina Toc159 uzrokovana hidrolizom sada uzrokuje proguravanje proteina kroz translokacijsku poru Toc75. Protein Toc75 naime sadrži vezno mjesto s unutrašnje strane vanjske membrane kloroplasta čime on provlači preprotein kroz kompleks TOC. Dinamička komponenta ovog kompleksa, protein Toc64, aktivirana je za interakciju s Toc12 već pri transferu preproteina s Toc34. Ovako povezane komponente uzrokuju vezivanje proteina imSHsp70 ovisnog o ATP preko J-domene (slika 2). Tako je šaperon međumembranskog prostora spreman na vezivanje i dalji prijenos proteina uz hidrolizu ATP (Vojta et al., 2008).

2.2.3. Regulacija prijenosa preko kompleksa TOC

Kompleks TOC je većinom reguliran hidrolizom GTP-a u GDP i fosforilacijom komponenti kompleksa, osobito receptornih proteina Toc34 i Toc159. Neki supstrati ovog kompleksa mogu također biti fosforilirani u citosolu pomoću kinaza ovisnih o ATP. Takvi preproteini su potom vezani na proteine 14-3-3 te zajedno s Hsp70 bivaju preneseni do receptora. Iako specifičnost ciljanog dovođenja proteina nije pomijenjena, fosforilacija u citosolnoj fazi utječe na stopu translokacije. Prema tome, moguće je da je fosforilacija važan regulacijski mehanizam pod utjecajem nekih okolišnih čimbenika koji uzrokuju bolje vezivanje nekih proteina u usporedbi s drugim.

S druge strane, protein Toc34 može biti fosforiliran čime dolazi do inaktivacije receptora te on ne može niti prepoznati preprotein, niti vezati GTP. Određena fosfataza ovisna o ATPu uzrokuje njegovu reaktivaciju.

Izmjena GTP-GDP pridonosi regulaciji ovog procesa. Proteini Toc159 i Toc34 za svoju aktivnost trebaju GTP, odnosno njegovu hidrolizu, dok je GDP-vezni oblik inaktiviran. Tako kaskada prijenosa započinje tek vezanjem GTP-a za protein Toc34 kako bi uopće moglo doći do prepoznavanja, odnosno vezanjem GTP-a za protein Toc159 može doći do vezanja preproteina prenešenog s proteina Toc34 koji paralelno mijenja GTP za GDP (Stengel et al., 2007).
3. MEĐUMEMBRANSKI PROSTOR OVOJNICE KLOROPLASTA

Vodeni medij međumembranskog prostora funkcionalna je poveznica između vanjske i unutarnje membrane kloroplasta. Eksperimentalno je slabo proučen zbog otežane izolacije pa mu je nepoznat točan kemijski sastav i fiziološka svojstva. Unatoč tome, snimke elektronskim mikroskopom dokazale su prisutnost proteina koji poput mosta proslave kroz ovaj prostor i povezuju dvije membrane ovojnice kloroplasta. Najveća važnost ovakvih translokacijskih kanala je upravo u potpomognutoj transferu proteina kodiranih u jezgri u kloroplast i to u unaprijed određen funkcionalno važan dio plastida (Buchanan et al., 2002).

3.1. Proteini lokalizirani u međumembranskom (IMS) prostoru

Teško dostupan i nestabilan kompartment kloroplasta čini IMS prostor. Prema dostupnim podacima pronadene su dva proteina smještena unutar ovog područja.

MGD1 je protein koji sadrži terminalnu presekvencu, no ona nije u potpunosti procesuirana. Ulazi u IMS preko kompleksa TOC te u međumembranskom prostoru ostaje određeno vrijeme te se prenosi dalje u kloroplast, bilo u stromuli ili tilakoidu.

Tic22 se razlikuje od proteina MGD1 i sa svojom strukturu i načinom prijenosa. Put prijenosa preko vanjske membrane nije točno određen te trenutno postoje samo rasprave prelazi li protein Tic22 membranu koristeći kompleks TOC. Uz to, Tic22 nema nikakav TP i nije procesuiran peptidazom što ukazuje na njegovu lokaciju unutar IMS (Balsera et al., 2009).

3.2. Kompleks IMS kao dio općeg puta

Posljednje dvije komponente kompleksa TOC su dinamički asocirani proteini Toc12 i Toc64. Ovi proteini zajedno s proteinima imsHsp70 te Tic22 čine međumembranski kompleks (slika 2), lociran s trans strane vanjske membrane kloroplasta. Postoji jako malo podataka vezanih uz ovaj kompleks, a jedna od informacija je neovisnost kompleksa o energiji (hidrolizi GTP-a).

Protein Tic22 sudjeluje i u prepoznavanju TP preproteina te ga prenosi prema kompleksu TIC. Zajedno s Toc64 povezuje se s preproteininima unutar IMS. Protein Toc64 je pak najvažnija komponenta ovog kompleksa. To je protein dualističke prirode koji djeluje i unutar kompleksa TOC i kompleksa IMS. Pritom nije važna njegova citosolna komponenta već samo dio s unutrašnje strane membrane. Točna domena kojom sudjeluje u interakciji s preproteinom još nije utvrđena, no sa sigurnošću se zna da ne prepoznaje TP već neke
specifične regije unutar proteina. Protein Toc64 katalizira i interakciju s proteinom Toc12 kao dio kompleksa TOC (Qbadou et al., 2007).

Aktivirani Toc12 djeluje na ATPaznu aktivnost šaperona imsHsp70 koji se asocira s prekursorom. Takav protein u stanju prekursora je kompetentan za prijenos preko kompleksa TIC. Interakcijom proteina imsHsp70 s Tic22, završava se prijenos preproteina preko IMS. Preprotein je tako doveden do površine unutarnje membrane kloroplasta (Oreb et al., 2007.).
4. UNUTARNJA MEMBRANA OVOJNIČICE KLOROPLASTA

Djelovanje poput molekularnog sita neizostavna je uloga svake membrane. Unutarnja membrana slobodno je propusna za male nenabijene molekule uz izuzetak kisika i amonijaka. Također, nedisocirane monokarboksilne kiseline manje molekularne mase ostvaruju prolaz kroz ovaj lipidni dvosloj. Esencijalni metaboliti stanice koji su pak uspješno prošli kroz vanjski omotač, prolaže dalje u stromu korištenjem specijalnih transportera. Sličnost s vanjskom membranom je prisustvo enzima, sintaza lipida tilakoidne membrane (Buchanan et al., 2002).

4.1. Ugradnja proteina u unutarnju membranu kloroplasta

Proteini IEP (engl. inner envelope protein, IEP) su proteini unutarnje membrane kloroplasta. Kako bi se uklupili u membranu nužna im je N-terminalna sekvence koju proteini OEP ne trebaju. Uz to zahtijevaju prisutnost energije u obliku ATP te procesirajući jedinici u stromi. Ovi proteini su poveznica kompleksa TOC i TIC, oni ulaze preko kompleksa TOC, a samom inkorporacijom postaju dio kompleksa TIC.

Eksperimentalno zahtjevna istraživanja ponovo su otežana dostupnošću i izolacijom unutarnje membrane kloroplasta. Unatoč tome, otkriveno je nekoliko mehanizama unosa ovakvih proteina, dok se naslućuje i postojanje potencijalno novog, alternativnog puta prijenosa i ugradnje ovakvih proteina.

Neki proteini poput Tic110 sintetizirani su kao preprotein s TD koja ga vodi u stromu. Proteolitičkom razgradnjom pomoću stromalne peptidaze, Tic110 gubi TD i kao zreli protein ugrađuje se u membranu s jednim do dva membranski umetnuta segmenta.

Nešto slabije je poznata stimulirana ugradnja za vrijeme translokacije kroz kompleks TIC (sličnost s proteinima OEP i stop signalom) te put prijenosa pomoću kompleksa TOC koji završava spontanom ugradnjom u membranu (Soll and Tien, 1998).

4.2. Prijenos proteina preko kompleksa TIC

Nakon prolaska kroz kompleks TOC i IMS, dalji prijenos proteina ide preko unutrašnjeg translokon - kompleksa TIC. Prolaskom kroz ova tri kompleksa proteini se procesuiraju kako bi mogli uspostaviti funkcionalnu konformaciju. Za to je zadužena stromalna procesuirajuća peptidaza (SPP) koja miće TD i omogućuje smještavanje proteina u stromu ili nastavak puta preko tilakoidne membrane (Kovács-Bogdán et al., 2010).
4.2.1. Dijelovi kompleksa TIC

Potpuna identifikacija proteina ovog kompleksa nije poznata, no najnoviji podaci ukazuju na postojanje nekoliko proteina. Njihove funkcije su ekvivalentne Toc proteinima – prepoznavanje, translokacija i pokretačka sila unosa proteina, a poznato je da neki proteini sudjeluju samo u redoks regulaciji translokacije (Kovács-Bogdán et al., 2010).

Slika 3. Dijelovi kompleksa TIC: u vanjskoj membrani kloroplasta nalazi se kompleks TOC, dok je u unutarnjoj membrani kompleks TIC. Tic22 je dio kompleksa IMS te najvjerojatnije predaje preprotein kanalnom proteinu Tic20. Tic110 glavna je pora kompleksa TIC, dok je Tic40 „motor” zaslužen za generiranje energije prijenosa. Hsp93 pomaže u zauzimanju pravilne konformacije proteina, dok su proteini Tic55, Tic62 i Tic32 regulatori prijenosa preko kompleksa TIC. (Kovács-Bogdán et al., 2010)

4.2.1.2. Tic22 – poveznica s kompleksom IMS

Topljivi protein Tic22 u IMS prostoru preferira povezivanje s kompleksom IMS, dok je periferno asociiran s glavninom kompleksa TIC. Sudjeluje u stvaranju superkompleksa TOC-TIC te je vezan uz kanalni protein Tic20 (slika 3) kojem predaje preprotein (Balsera et al., 2009).

4.2.1.3. Kanalni proteini Tic110, Tic20 i Tic21

Gotovo polovica strukture proteina Tic110 čine transmembranske α-zavojnice na aminokraku s ulogom u prepoznavanju TP i ugradnjom proteina. Jedan hidrofilni dio proteina Tic110 smješten je u stromi gdje C terminalni kraj stvara globularnu domenu koja reagira s molekularnim šaperonima (Balsera et al., 2009). Drugi dio pak ulazi u IMS prostor gdje stvara superkompleks s kompleksom TOC te uz četiri amphipatične transmembranske α-zavojnice stvara kation-selektivni kanal.
Istraživanja vezana uz eksperesiju u tkivima te homozigotnim mutantama doprinijeli su zaključku kako je upravo protein Tic110 glavna pora kompleksa TIC (slika 3). Moguće je da postoje dodatni kanali koji bi sudjelovali u translokaciji ili membranskoj insertaciji (Kovács-Bögédán et al., 2010).

Postoji mogućnost da je protein Tic20 takav dodatni kanal u unutrašnjoj membrani kloroplasta u neposrednoj blizini Tic110. Naime, četiri transmembranske α-zavojnice hidrofobnog Tic20 ukazuju na strukturnu sličnost s Tic110 zbog čega se smatra da oni dinamično asiriraju i disiriraju u svrhu stvaranja kanala (Benz et al., 2008.). Unatoč tome, Tic20 uz prisutnost proteina Tic21 čini megadaltonski proteinski kompleks u kojem nema prisutne glavne pore. Moguće je da je to kompleks koji prethodi translokaciji proteina do Tic110 ili je zaseban kompleks unosa proteina.

Tic21 je sličan proteinu Tic20 te postoji mogućnost da je i on kanalni protein. Važno je pritom napomenuti da niti proteinu Tic20 niti proteinu Tic21 nije dokazana kanalna aktivnost. S obzirom na težinu izvođenja ovakvih eksperimenata, zasada još ne postoji točno objašnjen translokon unutrašnje membrane. Funkcioniraju li oni zasebno ili su dio većeg kompleksa, jesu li odgovorni za unos različitih preproteina ili je pak njihova funkcija ograničena na određeno stanje razvoja, samo su neka od pitanja, za sada bez odgovora (Kovács-Bögédán et al., 2010).

4.2.1.4. Tic40 – „motor“ kompleksa

Proteini sintetizirani u citosolu za svoj unos trebaju energiju dobivenu hidrolizom ATP-a. Pritom energija, odnosno ATP, nije iskorišten za stvaranje membranskog potencijala već za aktivnost nekih šaperona ovisnih o ATP-u (Cpn60 i Hsp100). Tic40 je integralni membranski protein usidren u membranu transmembranskom regijom. N-terminalni dio proteina Tic40 je inkorporiran u membranu dok je C-terminalna domena okrenuta stromi. Stromalni dio sastavljen je od dva zasebna dijela – Hip (konzervirani motiv Hsp70 šaperona) i Hop (Hsp70/90 organizirajućih proteina) domena te domena s TPR motivom važnim za proteinske interakcije (slika 3). Upravo je Hip/Hop domena zaslužna za točnost šaperon ATP ovisne aktivnosti u kombinaciji sa staničnim proteinom Hsp93, dok je TPR motiv mjesto interakcije s proteinom Tic110 (Benz et al., 2008).

4.2.1.4. Regulatorni proteini Tic62, Tic32, Tic55

Tic62 i ostali proteini ove grupe sadrže NADP(H) ili Rieske željezo-sumporni centar u svrhu redoks regulacije. Centralni dio ovog proteina je uključen u povezivanje s kompleksom TIC, dok je njegova površina hidrofobna i omogućuje vezanje za lipide unutarne membrane. C-terminalna domena sadrži nekoliko ponavljajućih sljedova Pro-Ser koji su uključeni u protein-protein interakcije. NADP(H) vezno mjesto proteina Tic62 nalazi se na N-terminalnom dijelu zbog čega ovaj protein pripada obitelji kratkolančanih dehidrogenaza s
aktivnom enzimatskom funkcijom dehidrogenaze. Protein Tic62 u interakciji je s feredoksin-NADP+-oksidoreduktazom (FNR) čime se uspostavlja poveznicu s fotosintezom, te je ovaj protein ovisan o omjeru NADP+/NADPH (slika 3). Prema tome, u stromi je lokaliziran u reduciranom stanju, dok je povezan s kompleksom TIC u uvjetima više koncentracije NADP⁺.

Za protein Tic32 koji je usko vezan uz unutrašnju membranu kloroplasta smatra se da reagira s N-terminalnim dijelom proteina Tic110 (slika 3). Funkcionalno je sličan proteinu Tic62 zbog dehidrogenazne aktivnosti, no razlikuju se u redoks uvjetima – Tic32 je čvrsto asociiran za unutarnju membranu u reduciranom stanju.

Treća komponenta sustava je protein Tic55 (slika 3), oksigenaza sa Rieske centrom. Umetnut je u membranu pomoću dvije transmembranske zavojnice na C-terminalnom kraju dok mu je amin domena izložena stromi u obliku β-ploča. Blizina proteina Tic62 te struktura Rieske žljeze-sumpornog centra govori o regulacijskoj ulozi, potencijalno u ulozi prijenosnika elektrona (Kovács-Bogdán et al., 2010).

4.2.2. Mehanizam prijenosa proteina preko kompleksa TIC

Put prijenosa proteina do unutrašnje membrane ide preko kompleksa TOC i IMS, preko proteina Toc te nekih proteina Tic među kojima je i protein Tic22. Tic22 je dio kompleksa IMS te poveznica s kompleksom TIC, preciznije, nalazi se u blizini kanalnog proteina Tic20. Slijedi li daljnji prijenos preko posebnog kanalnog proteina Tic20 u kombinaciji s proteinom Tic21 ili je pak taj protein intermedijer u prijenosu proteina do proteina Tic110, glavne pore unutrašnje membrane, pokazat će daljnja istraživanja.

Prilikom prolaska preproteina kroz protein Tic110 odnosno njegove TP, veže se protein Tic40 koji potpomaže postupnom smanjenju afiniteta preproteina za Tic110 i njegovo otpuštanje u stromu. Ta interakcija uzrokuje konformacijsku promjenu prilikom čega se otvara Hip/Hop domena i stimulira aktivnost „motora“ šperona staničnog Hsp93 (slika 3) te povlači protein u stromu. U stromi je potom procesuiran sa SPP te sklopljen u pravilnu konformaciju uz pomoć staničnog šperona Hsp93 (Benz et al., 2008.).

4.2.3. Regulacija prijenosa preko kompleksa TIC

Blizina fotosintetskog aparata uvjetuje proteinu Tic64 regulaciju redoks uvjeta sudjelovanjem u prijenosu elektrona u kloroplastu, isto kao i Tic32 te Tic55. Regulacija se pritom odvija asocijacijom, odnosno disocijacijom pojedinih proteina regulatora s kompleksa TIC.

Tioredoksini (Trx) bi također mogli sudjelovati u regulaciji unosa proteina. To su mali proteini s redoks aktivnim disulfidnim mostovima pomoću kojih se regulira enzimska aktivnost. Oksidacijom njihovih konzerviranih cisteinskih domena mogu se reverzibilno reducirati različiti tipovi proteina. Na taj se način modulira njihova konformacija ili aktivnost.

22
Postoji nekoliko tipova Trx zaslužnih za regulaciju, poput Trx F i Trx M koji sudjeluju u prijenosu redoks signala do ciljnih enzima.

Važnost prijenosa proteina preko unutarnje membrane čini se kao jedan od najzahtjevnijih regulacijskih sustava što je ukazano postojanjem i treće vrste regulacije. Kalcij kao sekundarni glasnik važan je sudionik regulacije vezivanjem kalmodulina koji „osjeća“ njegovu prisutnost. Kalmodulin pritom smanjuje afinitet za kalcij kod proteina translokona te je medijator prijenosa (Kovács-Bogdán et al., 2010). Protein Tic32 s NADP(H) veznom domenom te Ca2+-kalmodulin veznom domenom, esencijalan je protein koji modulira dva različita međusobno isključujuća tipa regulacije (Benz et al., 2008).
5. STROMA KLOROPLASTA

U gustom granuliranom fluidu unutar kloroplasta odvijaju se mnoge reakcije važne za život biljaka. Prema endosimbiotskoj teoriji, smatra se da je stroma kloroplasta po porijeklu citoplazma prokariota u kojoj se nalazi cirkularna DNA. Poput ostalih prokariota, u stromi se nalaze i ribosomi koji sudjeluju u sintezi kloroplasnih proteina (http://plantphys.info/cell/chloroplast.html).

Kloroplastni proteom, odnosno stromalni proteom sadrži različite proteine uključene u biokemijske puteve poput sinteze i razgradnje trifosfata, Calvinov ciklus i druge. Nadalje, velik broj proteina je uključen u translokaciju, smatanje, procesiranje, modificiranje i proteolitičku razgradnju. Zanimljivo je da je SPP najaktivniji protein, ali ga ima manje nego šaperona Cpn60 ili Hsp93 (Zybailov et al., 2008).

Nakon translokacije kroz komplekse TOC i TIC, N-terminalni TP se proteolitički razgrađuje. U tome sudjeluje energija u obliku ATP-a i SPP, veliki monomerni enzim koji svojom aktivnošću daje zrele proteine za stromu ili pak one koji se moraju preusmjeriti do tilakoida. Proteini koji su pronašli svoje konačno odredište u stromi, dalje su oblikovani u aktivnu konformaciju pomoću stromalnih šaperona, dok je većina proteina usmjerena prema tilakoidima uz pomoć bipartitnog signala (Stengel et al., 2007).
6. TILAKOIDI KLOROPLASTA

Nakupine tilakoida nazivaju se grana-tilakoidi. Imaju inkorporiranu glavninu fotosistema II. Tilakoidi koji povezuju grana unutar strome nazivaju se stroma-tilakoidi. ATP sintaza i fotosistem I su uglavnom smješteni u tim tilakoidima (Buchanan et al., 2002). Tako su upravo najvažniji događaji procesa fotosinteze smješteni duboko unutar kloroplasta, te proteini poput nekih enzima trebaju proći komplicirani i dalek put od ribosoma citosola do same tilakoidne membrane odnosno lumena tilakoida.

Slika 4. Pregled mehanizama unosa proteina u tilakoide: proteini koji trebaju biti smješteni negdje unutar kloroplasta većinom ulaze kroz komplekse TOC i TIC. Potom su procesirani sa SPP te kreću dalje u tilakoide, bilo ATP ovisnim Sec putem, pH ovisnim Tat putem, spontano ili GTP ovisnim SRP putem. (Jarvis and Robinson, 2004.)

6.1. Tat sistem u tilakoidima kloroplasta (cpTat)

Tat sistem, odnosno mehanizam, označava arginin-arginin sustav prijenosa (engl. twin-arginine). Podrijetlom je iz cijanobakterija gdje izbacuje proteine veličine i do 100 kDa od kojih su neki zaduženi za prijenos kofaktora. Transport uključuje prijenos proteina uz korištenje energije protonskog gradijenta (slika 4) budući da je unutar tilakoida i do tisuću puta više protona u usporedbi s koncentracijom u stromi (Balsera et al., 2009).
6.1.1. Dijelovi cpTat sistema

Proteini Tha4, Hcf106 i cpTatC sudjeluju u ovom prijenosu, a konzervirani su i u algi i biljaka. Njihovi homolozi su pronađeni u bakterijama gdje su imenovani proteinima TatA, TatB i TatC.

Hcf106 (19 kDa) i Tha4 (9 kDa) bitopični su proteini smješteni u tilakoidnoj membrani gdje njihove amfipatske zavojnice „strše“ u stromu. Hcf106 je u neposrednoj blizini cpTatC proteina (34 kDa) sastavljenog od šest transmembranskih zavojnica, pri čemu oni zajedno stvaraju stabilni kompleks zadužen za prvobitni dodir s proteinima iz strome (Balsera et al., 2009).

6.1.2. Mehanizam prijenosa preko tilakoidne membrane cpTat sistemom

Vezivanje preproteina za proteinski kompleks uz prisutnost protonskog gradijenta aktivira protein Tha4 i stvara poru u membrani veličine supstrata. Sama translokacija nije dovoljno razjašnjenja pa postoje dva potencijalna modela koji bi je objasnili. Prema prvom modelu, protein Tha4 u membrani polimerizira oko supstrata čime stvara poru za prijenos, dok druga hipoteza pretpostavlja konformacijsku promjenu proteina Tha4. Takvom konformacijskom promjenom dolazi do odmatanja amfipatskih zavojnica ili do destabiliziranja lipidnog dvosloja čime je omogućen prijenos.

Unešeni protein potom sa svojim A-X-A motivom stupaju u interakciju s TPP-om, enzimom iste funkcije kao i SPP samo lokaliziranom u tilakoidima. Tada dolazi do proteolitičke razgradnje dijela proteina. Nakon toga djelovanjem šaperona dolazi do uspostave funkcionalne konformacije te se protein može aktivno uključiti u rad kloroplasta (Balsera et al., 2009).

6.2. Sec sistem u tilakoidima kloroplasta (cpSec)

Glavni sekretorni sistem u cijanobakterija sastavljen je od proteinskog kanala i periferno asociiranog „motora“ (slika 4). U biljakama je nazvan cpSec (secretory) sistem i sastavljen je od svega nekoliko proteina. Sudjeluje u posttranslacijskom unosu luminalnih proteina poput plastocijanina i citokroma f te u kotranslacijskom prijenosu D1 podjedinice fotosistema II uz pomoć SRP sistema. Pritom su supstrati translocirani u nesmotanom stanju, dok se kofaktori postupno nakupljuju u lumenu (Balsera et al., 2009).
6.2.1. Dijelovi cpSec sistema

Proteini SecY, SecE i cpSecA biljni su homolozi cijanobakterijskih proteina gdje su zaduženi za sekreciju. Kao dio biljnog proteoma, sudjeluju u unosu u tilakoide i to ponajviše proteina aktivnih u fotosintezi.

Protein SecY sastavljen je od nekoliko transmembranskih zavojnica koji zajedno s proteinom SecE stvara translokacijski kanal. Transmembranska zavojnica s karboksilnim krajem mjesto je interakcije proteina SecE sa SecY čime se stvara kompleks od 180 kDa. Protein cpSecA s DEVD (Asp-Glu-Val-Asp) sekvencom i Walker B motivom (zaduženim za trifosfatno vezivanje) je ATPaza koja svojim helikaznom aktivnošću stvara energiju potrebnu za translokaciju (Balsera et al., 2009).

6.2.2. Mehanizam prijenosa preko tilakoidne membrane cpSec sistemom

Prvi protein koji sudjeluje u prepoznavanju supstrata je cpSecA. Prepoznaje SP prekursora u stromi, prekursora slične strukture kao i kod proteina cpTat, no bez arginin-arginin motiva. Prepoznavanje uzrokuje vezivanje proteina cpSecA za tilakoidnu membranu te hidrolizu ATP-a. Energija dobivena hidrolizom dostatna je za parcijalno propuštanje proteina kroz SecY-SecE kanal.

Međudjelovanje proteina SecY i SecE dodatno potiče hidrolizu ATP-a čime se dodatno stimulira otpuštanje preproteina kroz kanal. Kompletan prijenos dodatno potiče razlika u koncentraciji protona između dva kompartimenta. Po završetku translokacije, protein se procesira TPP-om, dok protein cpSecA izlazi iz membrane i započinje novi ciklus insertacije-deinsertacije u tilakoidnu membranu u kombinaciji s hidrolizom ATP-a (Balsera et al., 2009).

6.3. SRP sistem u tilakoidima kloroplasta (cpSRP)

SRP je signalna prepoznavajuća čestica (signal recognition particle), dio proteina koji sudjeluje u staničnom mehanizmu transporta proteina u ER ili u membranu bakterija odnosno arheja. cpSRP sistem je heterodimer sastavljen od proteina cpSRP43 i cpSRP54, a sudjeluje u unosu proteina u tilakoide (slika 4). Pritom može sudjelovati u kombinaciji sa Sec sistemom kako bi se unijeli proteini kodirani kloroplastnim genomom ili samostalno, unosom proteina poput LHCP (Balsera et al., 2009).
6.3.1. Dijelovi cpSRP sistema

Proteini cpSRP54 i cpSRP43 dijelovi su SRP-a, pri čemu je cpSRP43 specifičan za zelene biljke te djeluje postranslacijski. FtsY i YidC su preteče u cijanobakterijama zelenih proteina cpFtsY i Alb3.

Proteinski receptor preproteina cpFtsY je inkorporiran u membranu, dok je Alb3 (Albino3) integralni membranski protein. Sastavljen je od pet transmembranskih zavojnica sa slobodnim aminom krajem u lumenu tilakoida te karboksilnim krajem u stromi. Proteini cpSRP54 i cpFtsY su GTPaze koje se recipročno aktiviraju prilikom stvaranja kompleksa stabilnog samo ako su oba proteina u GTP-vezanom stanju. Upravo u tom stanju moguća je njihova interakcija s preproteinom (Balsera et al., 2009).

6.3.2. Mehanizam prijenosa preko tilakoidne membrane cpSRP sistemom

Kotranslacijski put ugradnje proteina i postranslacijski put, dva su puta prijenosa preko SRP sistema pri čemu je njihova osnovna razlika prisutnost odnosno odsutnost Sec puta.

U ranoj fazi elongacije, po kotranslacijskom modelu, dolazi do prividnog vezanja proteina cpSRP54 za protein u nastajanju. cpFtsY potom djeluje na protein cpSRP54 i uzrokuje hidrolizu GTP-a te prijenos na translokon Alb3/Sec.

Postranslacijski put je neovisan o Sec sistemu te prijelazni kompleks nastaje vezivanjem preproteina za AKR regiju proteina cpSRP43. cpSRP54 ostvaruje kontakt s proteinom te nastaje kompleks cpSRP54-GTP/cpSRP43 preko samog supstrata. Takav kompleks je prepoznat od strane proteinskog receptora cpFtsY koji prebacuje konglomerat iz strome u tilakoide. Samo prebacivanje tj. reakcija između receptora i kompleksa uzrokuje hidrolizu GTP-a te odvajanje supstrata i prebacivanje do proteina Alb3 koji inkorporira supstrat u membranu tilakoida (Balsera et al., 2009).

6.4. Spontana ugradnja kao mehanizam unosa u tilakoide

Ako unos proteina nije uvjetovan postojanjem stromalnih faktora, membranskih translokatora ili trifosfata, govorimo o spontanoj inserciji (slika 4). Unatoč tome, i u ovom slučaju ulogu imaju TP. TP-ove skupine pokazuju sličnost s ostalim TP odgovornim za unos u tilakoide, no uz pojedine razlike poput kiselih aminokiselina u području C regije.

Krucijalna strukturalna razlika koja uvjetuje upravo ovaj način unosa proteina jest u postojanju dvije hidrofobne zavojnice koje okružuju N-terminalni dio zrelog proteina. Naime, jednu zavojnicu čini TP, dok je druga zavojnica hidrofilna aminokiselina.

Prijenosom ovakva proteina kroz membranu pokušava se očuvati N-terminalna hidrofilna regija i njene dvije zavojnice stvarajući intermedijer u obliku transmembranske
omče. Kada se omča počne unositi, TP nije prepoznat ili se proteolitički razgrađuje, ovisno o proteinu i njegovoj budućoj ulozi (Balsera et al., 2009).
7. ALTERNATIVNI MEHANIZMI UNOSA PROTEINA

U dosadašnjem prikazu unosa proteina opisala sam opći mehanizam unosa, a postoje naznake pronalaska i alternativnih mehanizama. Upravo taj opći mehanizam uključuje energiju u obliku ATP nužno potrebnim za unos, supstrate osjetljive na proteaze, kompeticiju s preproteinima unešenim u stromu i prisutnost TP-a, koji su ujedno i kriteriji razlikovanja općeg i alternativnog mehanizma (Nada and Soll, 2004). Međutim, što ako TP ne postoji, a ipak su alternativni proteini pronađeni u kloroplastima i moraju se tamo prenijeti? Proteom kloroplasta otkriva i do 30% proteina koji ne sadrže TP. Koji je mehanizam unosu u takvom slučaju?

Prije nekoliko godina po prvi puta su pronađeni takvi proteini, proteini Tic32 i ceQORH. Njihovom analizom utvrđeno je da ne postoji TP, da su lokalizirani unutar kloroplasta i da njihov mehanizam unosa ne obuhvaća komplekse TOC i TIC, ali da za unos postoje energetski zahtjevi u obliku ATP-a (Balsera et al., 2009).

Rezultati istraživanja vezani uz protein ceQORH govore o potencijalnom novom proteinom mjestu unos, konzerviranom u jednosupnica i dvosupnica, a neupitna je razlika naspram proteina općeg mehanizma unosa prisutnost velike koncentracije ATP-a. Upravo zbog ogromne količine ATP-a, smatra se da šaperoni ne sudjeluju u konačnom prolazu proteina kroz membranu (Miras et al., 2007). Protein Tic32 naspram proteina ceQORH zahtijeva minimalnu količinu ATP-a za unos, ne pokazuje kompeticiju niti s jednim preproteinom za stromu, a stimuliranje unosa se ne postiže proteazno-osjetljivim komponentama (Nada and Soll, 2004).

Novija otkrića govore i o nekolicini proteina (CAH1 i NPP1) koji sadrže signal za unos u ER, ali bez TP (Balsera et al., 2009). Pronađeno je da upravo ti proteini ulaze u kloroplaste prenešeni vezikulama ER-a i Golgijeva aparata, a postoji i hipoteza da se takvi proteini glikoziliraju (Stengel et al., 2007). Je li to mehanizam kojima se unose proteini bez TP ili je to samo jedan od izuzetaka, nova je nepoznanica i novo područje za buduća istraživanja (Balsera et al., 2009).
8. LITERATURA

http://en.wikipedia.org/wiki/Thylakoid

http://en.wikipedia.org/wiki/Protein#Cellular_localization

http://plantphys.info/cell/chloroplast.html

9. SAŽETAK

Endosimbioza kao zajednica dvaju jednostavnih organizama rezultirala je nastankom kloroplasta, organela složene grave. Dvostruka membrana koja čini ovojnicu kloroplasta u kombinaciji s tilakoidnim membranama predstavlja zahtjevan sustav koji je zadržao vlastiti genom. Međutim, iz kloroplasta je tijekom evolucije velik broj gena prenesen u jezgru pa u ovaj plastid ulaze proteinini sintetizirani na citosolnim ribosomima. Fotosinteza koja se odvija unutar kloroplasta, jedan je od najvažnijih procesa u živom svijetu. Za odvijanje tog procesa potrebni su strukturalno i funkcionalno raznoliki proteinini. Fascinantan je njihov put i mehanizam unosa, koji uključuje vanjsku membranu ovojnice, međumembranski prostor, unutarnju membranu ovojnice te stromu i tilakoide. Put unosa uključuje kompleks Translocon of the Outer membranes of the Chloroplast (TOC) i Translocon of the Inner membranes of the Chloroplast (TIC), proteolitičku razgradnju tranzitnog peptida (TP) te formiranje konačne strukture pomoću šaperona. Nadalje, otkriveni su proteinini koji ne prate takav obrazac unosa u kloroplast pa se postavlja pitanje jesu li to samo izuzeci ili pak postoje novi, alternativni načini unosa proteina koji će se otkriti u budućnosti.

10. SUMMARY

Endosymbiosis of two simple organisms has resulted in development of chloroplast, an organelle with complicated architecture. In addition to inner and outer envelope membranes, chloroplasts contain thylakoids - a system of membranes inside the organelle. Although chloroplasts possess own genome, during the evolution a great number of genes are transferred from the chloroplast genome to the nuclear genome. Therefore, a number of proteins needed for chloroplast function are encoded by nuclear genome and synthesized on cytosolic ribosomes. They have to be imported into the chloroplast. Photosynthesis is one of the most important processes in living world and it is placed in chloroplast. Structurally and functionally diverse proteins are acquired for that important process. Their pathway and mechanism of import is fascinating. It includes outer membrane, inter-membrane space, inner membrane, stroma and thylakoids. It involves complexes Translocon of the Outer membranes of the Chloroplast (TOC) and Translocon of the Inner membranes of the Chloroplast (TIC), proteolitic removal of transit peptide (TP) and chaperones which help to create final structure. On the other hand, new proteins are discovered and they do not show that kind of importing pattern, so there is remaining question to be solved – are those proteins just exception or there is a new, alternative pathway of importing proteins into chloroplast?