Demonstracijski uređaj za mjerenje polarizacijskih korelacija u pozitronskoj anihilaciji

Šenjug, Pavla

Master's thesis / Diplomski rad

2016

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:733253

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-15

Repository / Repozitorij:

Repository of the Faculty of Science - University of Zagreb

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET FIZIČKI ODSJEK

Pavla Šenjug

DEMONSTRACIJSKI UREĐAJ ZA MJERENJE POLARIZACIJSKIH KORELACIJA U POZITRONSKOJ ANIHILACIJI

Diplomski rad

Zagreb, 2016.

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET FIZIČKI ODSJEK

SMJER: ISTRAŽIVAČKI

Pavla Šenjug

Diplomski rad

Demonstracijski uređaj za mjerenje polarizacijskih korelacija u pozitronskoj anihilaciji

Voditelj diplomskog rada: doc. dr. sc. Mihael Makek

Ocjena diplomskog rada: _____

Povjerenstvo: 1. _____

2. _____

3. _____

Datum polaganja: _____

Zagreb, 2016.

Željela bih se zahvaliti mentoru doc. dr. sc. Mihaelu Makeku na svoj pruženoj pomoći, strpljenju i trudu. Također zahvaljujem svojoj obitelji i prijateljima na podršci pruženoj tijekom studiranja i pisanja diplomskog rada.

Sažetak

Cilj ovog rada bio je napraviti mjerni postav kojim se mogu mjeriti polarizacijske korelacije fotona nastalih u pozitronskoj anihilaciji. Princip mjerenja temelji se na činjenici da kod komptonskog raspršenja polarizirani fotoni imaju preferirani smjer raspršenja u odnosu na smjer početne polarizacije.

Napravljen je mjerni postav koji se sastoji od četiri cilindrična scintilacijska detektora, dva BaF_2 detektora i dva LSO detektora. BaF_2 detektori korišteni su za raspršivanje fotona nastalih anihilacijom pozitrona iz radioaktivnog izvora ^{22}Na , dok je detektiranje komptonski raspršenih fotona rađeno pomoću LSO detektora. Signali su obrađivani isključivo digitalno, korišten je digitalizator DRS4.

Mjerenjem je opaženo da se fotoni za faktor $\rho = (1.9 \pm 0.2 \pm 0.5)$ češće raspršuju u ravninama koje su međusobno okomite nego u istoj ravnini, što pokazuje postojanje korelacije njihovih polarizacija, te je konzistentno s teorijskim predviđanjima. To ujedno potvrđuje da se ovim jednostavnim mjernim postavom mogu mjeriti polarizacijske korelacije.

Zračenje koje nastaje u pozitronskoj anihilaciji ima najpoznatiju praktičnu primjenu u medicini. Pozitronska emisijska tomografija (PET) se temelji upravo na principu detekcije gama zračenja koje se dobiva pozitronskom anihilacijom. Mjerenje polarizacijskih korelacija fotona dobivenih iz pozitronske anihilacije otvara mogućnost za podizanje kvalitete slika dobivenih PET uređajima.

A Demonstration Setup for Measurement of Polarization Correlations in Positron Annihilation

Abstract

The aim of this study was to make a measurement setup that can measure polarization correlations of photons generated in positron annihilation. The measuring principle was based on the fact that in Compton scattering polarized photons have a preferred direction of scattering relative to the direction of the initial polarization.

A measurement setup was made consisting of four cylindrical scintillation detectors, two BaF_2 and two LSO detectors. BaF_2 detectors were used for scattering of the annihilation photons obtained from the radioactive isotope of sodium ^{22}Na , while the detection of Compton scattered photons was done using LSO detectors. Signals were measured and analyzed digitaly, a DRS4 digitizer was used for measurement.

Measurements have found that photons scatter more often by a factor $\rho = (1.9 \pm 0.2 \pm 0.5)$ in planes that are perpendicular to each other than in the same plane, which shows the existence of the

correlation of their polarization, and is consistent with theoretical predictions. It also confirms that this simple measurement setup can measure polarization correlations.

The radiation that occurs in positron annihilation has the most well-known practical application in medicine (medical imaging). Positron emission tomography (PET) is based precisely on the principle of detecting gamma radiation, which is produced by positron annihilation. Measuring the polarization correlations of photons obtained from positron annihilation opens the possibility of raising the quality of images obtained by PET devices.

Sadržaj

1	Uvod 1						
2	podloga	2					
	2.1	Radio	aktivni raspadi 	2			
		2.1.1	Nuklearni beta raspad	2			
		2.1.2	Gama zračenje	3			
		2.1.3	Anihilacijsko zračenje i pozitronij	3			
	2.2	Intera	kcija nabijenih čestica s materijom	7			
		2.2.1	Interakcija teških nabijenih čestica s materijom	7			
		2.2.2	Interakcija beta čestica s materijom	7			
	2.3	Intera	kcija gama zračenja s materijom	8			
		2.3.1	Fotoelektrični efekt	10			
		2.3.2	Tvorba parova	10			
		2.3.3	Komptonsko raspršenje	10			
	2.4	Princi	p mjerenja polarizacijskih korelacija	12			
3	$\mathbf{E}\mathbf{ks}$	perime	entalni postav	16			
	3.1	$\operatorname{Scintil}$	acijski detektori	16			
		3.1.1	Općenita svojstva scintilacijskih detektora	16			
		3.1.2	BaF_2 scintilator	17			
		3.1.3	LSO scintilator	19			
	3.2	Digita	lizator signala DRS4	20			
	3.3	Odabi	r eksperimentalnih postavki	21			
		3.3.1	Odabir srednje frekvencije uzorkovanja	21			
		3.3.2	Odabir vremenskog prozora za integraciju signala	23			
		3.3.3	Određivanje pragova za pojednine detektore	24			
	3.4	Kalibr	acija detektora	25			
	3.5	Postuj	pak mjerenja	29			
		3.5.1	Geometrijske konfiguracije	29			
		3.5.2	Utjecaj odabira geometrije na očekivani iznos omjera asimetrije	31			
		3.5.3	Odabir događaja	33			
4	Rez	ultati		37			
5	Zak	ljučak		40			
A	Doc	latak:	Primier zapisa u binarni format	41			
- 1	Douatak: r rinjer zapisa u binarni iormat 41						
В	Doc	latak:	Programi	42			
	B.1	Progra	am za čitanje binarne datoteke	42			
	B.2	Progra	am za analizu podataka	44			
	B.3	Progra	am za oduzimanje šuma	49			

1 Uvod

Zračenje koje nastaje pri anihilaciji pozitrona s elektronom ima najpoznatiju praktičnu primjenu u medicinskom oslikavanju. Pozitronska emisijska tomografija (PET) se temelji upravo na principu detekcije gama zračenja koje se dobiva pozitronskom anihilacijom. Budući da su polarizacijski vektori anihilacijskih fotona okomiti jedan u odnosu na drugi, mjerenje ovih polarizacijskih korelacija moglo bi se iskoristiti kao jedan od kriterija za određivanje anihilacijskih događaja u PET-u [1, 2].

Cilj ovog rada bio je pokazati da se jednostavnim mjernim postavom, od četiri scintilacijska detektora i digitalizatora impulsa DRS4, mogu mjeriti polarizacijske korelacije dvaju fotona dobivenih u pozitronskoj anihilaciji. Poznato je da se dva fotona nastala anihilacijom pozitrona, gibaju u suprotnim smjerovima (pod kutom ~ 180°) zbog zakona očuvanja količine gibanja te da su polarizacije ovih dvaju fotona međusobno okomite zbog očuvanja ukupnog angularnog momenta [3]. Za mjerenje polarizacijskih korelacija korišteno je svojstvo polariziranih fotona da se s najvećom vjerojatnošću komptonski raspršuju pod kutom okomitim na vektor polarizacije. Kako su polarizacije anihilacijskih fotona međusobno okomite, postojati će angularna korelacija broja raspršenih fotona detektiranih u scintilacijskim detektorima.

Teorijska podloga potrebna za razumijevanje fizikalnih procesa na kojima se temelji princip mjerenja polarizacijskih korelacija, obrađena je u drugom poglavlju, dok je sam princip mjerenja opisan u poglavlju 2.4.

Eksperimentalni postav, svojstva korištenih scintilacijskih detektora, te digitalizatora signala DRS4 opisani su u poglavlju 3.1 i 3.2. U poglavlju 3.3 opisan je proces odabira eksperimentalnih postavki, od kojih su najvažnije: srednja frekvencija uzorkovanja, vremenski prozor za integraciju signala, energetski pragovi za pojedine detektore, te geometrijska konfiguracija. U poglavlju 3.4 opisana je kalibracija korištenih detektora. Postupak mjerenja i korištene geometrijske konfiguracije opisani su u poglavlju 3.5.

U četvrtom poglavlju prezentirani su dobiveni rezultati iz osam mjerenja provedenih u dvije različite konfiguracije. Mjeren je broj parova anihilacijskih fotona koji su se komptonski raspršili pod različitim međusobnim kutovima. Uspoređivanjem broja događaja dobivenih za razne kutove tražio se omjer asimetrije. Slaganjem s teorijskim omjerom asimetrije potvrđena je mogućnost mjerenja polarizacijskih korelacija korištenim eksperimentalnim postavom.

2 Teorijska podloga

2.1 Radioaktivni raspadi

Radioaktivni raspadi su procesi koji se odvijaju spontano. Radioaktivna (nestabilna) jezgra prelazi iz stanja u kojem se nalazi u drugo stanje, emitirajući pritom radioaktivno zračenje. Osnovni tipovi radioaktivnog zračenja s pripadnim karakterističnim energijama, dani su u tablici 2.1.

vrsta	$\operatorname{podrijet}$ lo	proces	naboj	masa [MeV]	energijski spektar
α čestice jezgra		nukl. raspad ili reakcija	$+2\mathrm{e}$	3727.33	diskretan
β^- čestice	jezgra	nukl. raspad	-1e	0.511	kontinuiran
β^+ čestice	jezgra	nukl. raspad	+1e	0.511	kontinuiran
γ zrake	jezgra	nukl. deeksitacija	0	0	$\operatorname{diskretan}$
X zrake	elektr. oblak	atomska deeksitacija	0	0	$\operatorname{diskretan}$

Tablica 2.1: Vrste radioaktivnih zračenja i njihove karakteristike.

Za radioaktivne raspade vrijedi sljedeća jednakost, koja kaže da je broj raspada u svakom trenutku proporcionalan broju radioaktivnih jezgara:

$$\frac{dN}{dt} = -\lambda N \longrightarrow N(t) = N_0 \cdot e^{-\lambda t}$$

gdje je λ konstanta raspada, N_0 početni broj radioaktivnih jezgara, a N(t) broj preostalih, neraspadnutih jezgara u uzorku.

2.1.1 Nuklearni beta raspad

Nuklearni beta raspad javlja se kod jezgara s viškom protona ili neutrona, kao posljedica slabe interakcije. Ovisno o tome koji nukleoni su višak postoje dva tipa beta raspada, β^- i β^+ raspadi.

β^- raspad

$$(Z, A) \rightarrow (Z+1, A) + e^- + \bar{\nu}_e$$

Do β^- raspada dolazi kad jezgra ima višak neutrona. Raspadom neutrona u jezgri $(n \to p + e^- + \bar{\nu}_e)$, nastaje proton, koji ostaje vezan za jezgru i time mijenja atomski broj jezgre pa nastaje novi element, te elektron (β^- čestica) i antineutrino koji izlaze iz jezgre kao emitirano zračenje.

β^+ raspad

$$(Z, A) \rightarrow (Z - 1, A) + e^+ + \nu_e$$

Do β^+ raspada dolazi kad jezgra ima višak protona. Raspadom protona u jezgri $(p \to n + e^+ + \nu_e)$, nastaje neutron, koji ostaje vezan za jezgru i time mijenja atomski broj jezgre pa nastaje novi element, te pozitron (β^+ čestica) i neutrino koji izlaze iz jezgre kao emitirano zračenje.

Glavna karakteristika beta raspada je kontinuirani energijski spektar emitirane beta čestice. Kontinuirani spektar javlja se zbog dijeljenja energije dobivene raspadom (Q-vrijedost) između dvije emitirane čestice, beta čestice i neutrina, odnosno antineutrina. Kod beta raspada često se događa da je nastala jezgra kćer u pobuđenom stanju, pa se uz emisiju beta čestice i neutrina događa i emisija gama zraka.

Za detekciju emitiranih beta čestica važno je da one uspiju izaći iz uzorka. Beta čestice imaju naboj (± 1) , pa relativno brzo gube energiju prolaskom kroz materiju. Zbog toga je mjerenje točnije što je radioaktivni uzorak tanji.

2.1.2 Gama zračenje

Osnovne karakteristike gama zračenja dane su u tablici 2.1. Do gama zračenja dolazi uslijed procesa nuklearnih deekscitacija. To su procesi u kojima jezgra prilikom prelaska iz višeg pobuđenog stanja u niže pobuđeno ili osnovno stanje jezgre emitira fotone odgovarajuće energije. Zbog diskretnog spektra energijskih stanja jezgre, gama zračenje može poprimiti samo određene vrijednosti energije u rasponu od tipično 100 keV do nekoliko MeV-a.

Pobuđena stanja jezgre najčešće se dobivaju nuklearnim beta raspadom. Na primjer:

$$^{22}_{11}Na \rightarrow^{22}_{10}Ne^* + e^+ + \nu_e$$

gdje je Ne^* pobuđeno stanje jezgre neona s energijom od 1274.5 keV[5]. Prelaskom u osnovno stanje, jezgre neona zrače fotone energije $E_{\gamma} = 1274.5 \, keV$. Kao produkt raspada radioaktivnog natrija uz gama zračenje dobivaju se još pozitron i antineutrino. Pozitron brzo izgubi energiju u materijalu te se anihilira s elektronom emitirajući pri tom dva fotona, a ta emisija fotona naziva se anihilacijsko zračenje.

2.1.3 Anihilacijsko zračenje i pozitronij

Anihilacijsko zračenje je zračenje nastalo anihilacijom pozitrona s elektronom. Pozitroni se obično dobivaju iz β^+ radioaktivnih izvora. Kao što je za detektiranje beta čestica važno da uzorak bude što tanji, ovdje je važno da uzorak bude doboljno debeo, kako bi pozitron uspio izgubiti energiju, zaustaviti se i anihilirati s jednim od okolnih elektrona.

Prije anihilacije elektrona i pozitrona dolazi do stvaranja egzotičnog atoma, pozitronija. Pozitronij je vezano stanje elektrona i pozitrona, slično atomu vodika, uz zamjenu protona pozitronom. Budući da je masa pozitrona jednaka masi elektrona, reducirana masa ovog sistema je približno upola manja od reducirane mase atoma vodika, slijedi (ako se zanemari fina i hiperfina struktura) da su energijski nivoi također upola manji[6].

Pozitronij se raspada elektromagnetski na dva, odnosno tri fotona, ovisno o tome u kojem osnovnom stanju (l = 0) se nalazio prije raspada. Osnovno stanje je kao kod vodika rascijepljeno na hiperfinu strukturu, zbog interakcije magnetskih momenata (spinova). Za l = 0 postoje četiri različita stanja spina:

• singletno stanje, odnosno para-pozitronij (p-Ps) sa $S = 0, S_z = 0$:

$$|S=0, S_z=0\rangle = \frac{1}{\sqrt{2}} (|\uparrow\rangle |\downarrow\rangle - |\downarrow\rangle |\uparrow\rangle)$$

• tripletno stanje, odnosno orto-pozitronij (o-P
s) sa $S=1,\,S_z=-1,\,0,\,1$

$$\begin{split} |S = 1, S_z = 1\rangle &= |\uparrow\rangle |\uparrow\rangle \\ |S = 1, S_z = 0\rangle &= \frac{1}{\sqrt{2}} \left(|\uparrow\rangle |\downarrow\rangle + |\downarrow\rangle |\uparrow\rangle\right) \\ |S = 1, S_z = -1\rangle &= |\downarrow\rangle |\downarrow\rangle \end{split}$$

Stanje pozitronija može se opisati kao produkt orbitalne valne funkcije i vektora koji opisuje spinsko stanje:

$$\Psi_{n,l,m}\left(\overrightarrow{r}\right)\left|S,\,S_{z}\right\rangle$$

gdje je orbitalna valna funkcija jednaka onoj za atom vodika, uz zamjenu mase elektrona reduciranom masom elektron-pozitron para[6].

Pozitronij se raspada elektromagnetski, pa su paritet i nabojna konjugacija očuvani. Poznavanjem svojstvenih vrijednosti pariteta i nabojne konjugacije pozitronija, moguće je saznati nešto o produktima raspada.

Očuvanje pariteta je posljedica simetrije na inverziju koordinatog sustava. Svojstvene vrijednosti operatora pariteta mogu biti ±1. U slučaju da je svojstvena vrijednost nekog sustava -1, kaže se da sustav ima neparan paritet, dok za svojstvenu vrijednost pariteta +1, sustav ima paran paritet. Stanje pozitronija opisano je produktom orbitalne valne funkcije i vektora spina. Orbitalna valna funkcija je svojstveno stanje operatora pariteta, sa svojstvenom vrijednosti $(-1)^l$: $\hat{P}\Psi_{n,l,m}(\vec{r}) = \Psi_{n,l,m}(-\vec{r}) = (-1)^l \Psi_{n,l,m}(\vec{r})$. Paritet vektora spina može se gledati kao produkt pariteta spinskih vektora pojednih čestica koje čine pozitronij. Budući da se pozitronij sastoji od čestice e^- i pripadne antičestice e^+ , čiji su pariteti suprotnog predznaka, produkt pojedinih pariteta daje svojstvenu vrijednost -1. Slijedi da je svojstvena vrijednost ukupnog pariteta pozitronija $-(-1)^l$, što znači da je p-Ps i o-Ps (osnovno stanje l = 0) stanje s neparnim paritetom.

Budući da je početno stanje neparnog pariteta, konačno stanje (nakon anihilacije) mora biti negativnog pariteta. To daje uvjet, u slučaju raspada na dva fotona, na međusobnu orijentaciju polarizacije: vektori polarizacije dvaju fotona su međusobno okomiti (slika 2.1).

Slika 2.1: Anihilacijski fotoni, nastali raspadom para-pozitronija, emitirani su u suprotnim smjerovima, zbog očuvanja impulsa, te s međusobno okomitim polarizacijskim vektorima, zbog očuvanja pariteta [1].

Međusobna okomitost vektora polarizacije dvaju anihilacijskih fotona može se objasniti na sljedeći način [7]. Neka se pozitronij, koji se nalazi u stanju $l = 0, S = 0, S_z = 0$ (p-Ps), raspada na dva fotona. Zbog zakona očuvanja impulsa, u slučaju da pozitronij prije raspada miruje, nastali

Slika 2.2: Raspad pozitronija na dva fotona. Lijevo fotoni imaju desnu kružnu polarizaciju (RHC). Desno fotoni imaju lijevu kružnu polarizaciju (LHC)[7].

anihilacijski fotoni gibaju se u suprotnim smjerovima (npr. duž z-osi slika 2.2). Za opis polarizacije fotona može se prvo uzeti kružna polarizacija. Ako se foton giba u nekom smjeru, postoje dvije različite kružne polarizacije, desna kružna polarizacija (RHC) i lijeva kružna polarizacija (LHC):

$$\begin{split} |R\rangle &= \frac{1}{\sqrt{2}} \left(|x\rangle + i \, |y\rangle \right) \\ |L\rangle &= \frac{1}{\sqrt{2}} \left(|x\rangle - i \, |y\rangle \right) \end{split}$$

gdje je $|R\rangle$ desna kružna polarizacija, $|L\rangle$ lijeva kružna polarizacija, dok su $|x\rangle$ i $|y\rangle$ linerane polarizacije duž x, odnosno y-osi. Kod kružnih polarizacija, amplitude za pronalaženje polarizacije u stanju linearne polarizacije $|x\rangle$ i $|y\rangle$ su jednake, ali kasne u fazi za 90°.

Na slici 2.2 lijevo prikazan je raspad para-pozitronija na dva RHC fotona. U slučaju da je jedan od fotona RHC polariziran (projekcija ukupnog angularnog momenta na smjer gibanja je +1), da bi bio očuvan ukupni angularni moment, drugi foton koji se giba u suprotnom smjeru također mora biti RHC polariziran. U slučaju da je jedan od fotona LHC polariziran, i drugi mora biti LHC polariziran (slika 2.2 desno).

Inverzijom lijevog slučaja, RHC fotoni emitirani u suprotnim smjerovima, dobiva se desni slučaj, LHC fotoni emitirani u suprotnim smjerovima. Budući da je paritet p-Ps neparan (svojstvena vrijednost je -1), amplitude za raspad na dva RHC fotona, $|R_1R_2\rangle$, i na dva LHC fotona, $|L_1L_2\rangle$, su jednakih vrijednosti, ali suprotnog predznaka. Stoga je jedino konačno stanje raspada pozitronija koje čuva paritet i angularni moment:

$$|F\rangle = |R_1R_2\rangle - |L_1L_2\rangle$$

Primjenom operatora pariteta na konačno stanje u raspadu pozitronija dobije se da je njihova svojstvena vrijednost -1, čime je očuvan paritet početnog stanja:

$$\hat{P}|F\rangle = |L_1 L_2\rangle - |R_1 R_2\rangle = -|F\rangle$$

Dobiveno konačno stanje kaže da ako se izmjeri da je jedan foton RHC (odnosno LHC), drugi foton mora biti također RHC (odnosno LHC).

Iz dobivenog konačnog stanja opisanog pomoću kružnih polarizacija može se dobiti konačno stanje opisano pomoću linearnih polarizacija. Linearne polarizacije $|x\rangle$ i $|y\rangle$ mogu se zapisati pomoću desne i lijeve kružne polarizacije. Iz definicije desne i lijeve kružne polarizacije slijedi:

$$\begin{split} |x\rangle &= \ \frac{1}{\sqrt{2}} \left(|R\rangle + |L\rangle \right) \\ |y\rangle &= -\frac{i}{\sqrt{2}} \left(|R\rangle - |L\rangle \right) \end{split}$$

U slučaju da je izmjereno da je jedan foton x-polariziran, a drugi y-polariziran, $|x_1y_2\rangle$, amplituda vjerojatnosti iznosi $\langle x_1y_2 | F \rangle = \langle x_1y_2 | R_1R_2 \rangle - \langle x_1y_2 | L_1L_2 \rangle$. Svaka čestica je nezavisna, pa vrijedi:

$$\langle x_1 y_2 \mid R_1 R_2 \rangle = \langle x_1 \mid R_1 \rangle \langle y_2 \mid R_2 \rangle = \frac{1}{\sqrt{2}} \cdot \frac{i}{\sqrt{2}} = \frac{i}{2} \\ \langle x_1 y_2 \mid L_1 L_2 \rangle = \langle x_1 \mid L_1 \rangle \langle y_2 \mid L_2 \rangle = \frac{1}{\sqrt{2}} \cdot \frac{-i}{\sqrt{2}} = -\frac{i}{2}$$

Iz čega slijedi da je amplituda vjerojatnosti za pronalaženje dvaju anihilacijskih fotona u stanju $|x_1y_2\rangle$ jednaka +*i*. Znači da je vjerojatnost, da su polarizacije emitiranih fotona međusobno okomite, jednaka 1.

Za amplitudu vjerojatnosti pronalaženja dvaju anihilacijskih fotona u stanju $|x_1x_2\rangle$, dobiva se po istom principu vrijednost 0: $\langle x_1x_2 | F \rangle = 0$.

Očuvanje nabojne konjugacije je posljedica simetrije na zamjenu čestica i antičestica. U slučaju pozitronija operacija nabojne konjugacije svodi se na operaciju pariteta, te zamjenu čestica u vektoru spina:

$$\begin{split} |S = 1, S_z = 1\rangle &= |\uparrow\rangle_1 |\uparrow\rangle_2 \longrightarrow |S = 1, S_z = 1\rangle = |\uparrow\rangle_2 |\uparrow\rangle_1 \\ |S = 0, S_z = 0\rangle &= \frac{1}{\sqrt{2}} \left(|\uparrow\rangle_1 |\downarrow\rangle_2 - |\downarrow\rangle_1 |\uparrow\rangle_2\right) \longrightarrow \frac{1}{\sqrt{2}} \left(|\uparrow\rangle_2 |\downarrow\rangle_1 - |\downarrow\rangle_2 |\uparrow\rangle_1\right) = -\frac{1}{\sqrt{2}} \left(|\uparrow\rangle_1 |\downarrow\rangle_2 - |\downarrow\rangle_1 |\uparrow\rangle_2\right) \\ \end{split}$$

što vodi na promjenu predznaka $-(-1)^S$, u slučaju o-Ps to je $-(-1)^1 = +1$, dok je u slučaju p-Ps $-(-1)^0 = -1$.

Ukupna svojstvena vrijednost operatora nabojne konjugacije pozitronija je $(-1)^{l+S}$, u slučaju o-Ps (l = 0, S = 1) dobiva se svojstvena vrijednost -1, dok u slučaju p-Ps (l = 0, S = 0) svojstvena vrijednost iznosi +1.

Fotoni imaju svojstvenu vrijednost nabojne konjugacije -1, pa sustav od n fotona ima svojstvenu vrijednost $(-1)^n$. Slijedi da se o-Ps, da bi vrijedilo očuvanje nabojne konjugacije, može raspasti samo na neparan broj fotona, a p-Ps samo na paran broj fotona. Vjerojatnost raspada jako opada s porastom broja fotona. Najvjerojatniji raspadi su p-Ps na dva fotona, te o-Ps na tri fotona (ne može na jedan foton zbog očuvanja impulsa).

2.2 Interakcija nabijenih čestica s materijom

Prolaskom nabijene čestice kroz materiju dolazi do različitih interakcija između upadne čestice i sastavnih dijelova materije pri čemu upadna čestica gubi energiju i/ili mijenja smjer kretanja. Uobičajeno je nabijene čestice podijeliti u dvije skupine, elektrone i pozitrone, te teške nabijene četice (npr. alfa čestice, protoni, mioni). Glavne interakcije su elektromagnetske, i to neelastični sudari s atomskim elektronima materijala, te elastični sudari s jezgrom. U posebnim slučajevima javljaju se i Čerenkovljevo zračenje i zakočno zračenje (bremsstrahlung).

Prolazak čestica kroz materiju obično se opisuje veličinom zvanom zaustavna snaga $\frac{dE}{dx}$, tj. specifičnim gubitkom energije po jedinici prijeđenog puta.

2.2.1 Interakcija teških nabijenih čestica s materijom

Teške nabijene čestice brzo gube energiju prolaskom kroz materiju. Razlog je veliki broj sudara po jedinici prijeđenog puta, tako da unatoč tome što je energija izgubljena u jednom neelastičnom sudaru s atomskim elektronima relativno mala obzirom na kinetičku energiju upadne čestice, dolazi do značajanog gubitka energije. Izgubljena energija kod neelastičnih sudara s atomskim elektronima, predana je elektronima te dolazi ili do pobuđenja ili do ionizacije atoma. Druga vrsta sudara su elastični sudari s jezgrom, ali budući da je masa upadnih čestica puno manja od mase jezgara ne dolazi do značajnog gubitka energije.

Gubitak energije teških nabijenih čestica u materiji dan je Bethe-Blochovom formulom:

$$-\frac{dE}{dx} = 2\pi N_e r_e^2 m_e c^2 \rho \frac{Z}{A} \frac{z^2}{\beta^2} \left[ln \left(\frac{2m_e \gamma^2 v^2 W_{max}}{I^2} \right) - 2\beta^2 \right]$$
(2.1)

gdje je:

 $r_e = 2.817 \times 10^{-13} cm$ klasični radijus elektona

 m_e masa elektona

 $N_e = 6.022 \times 10^{23} mol^{-1}$ Avogadrov broj

I srednji potencijal pobuđenja

 Z,A,ρ atomski broj, atomska masa i gustoća apsorbirajućeg materijala

znaboj upadne čestice u jedinicama e

 $\beta = v/c, \gamma = 1/\sqrt{1-\beta^2}\,$ od upadne čestice

 W_{max} maksimalna prenesena energija u jednom sudaru

2.2.2 Interakcija beta čestica s materijom

Beta čestice, elektroni i pozitroni, također interagiraju s materijom uglavnom preko neelastičnih sudara, pa se za opis gubitka energije može koristiti Bethe-Blochova formula uz neke korekcije. Zbog male mase beta čestica, neke pretpostavke korištene u Bethe-Blochovoj formuli više ne vrijede. Prilikom sudara beta čestice s atomskim elektronom dolazi do znatne promjene putanje beta člestice, te je moguć prijenos puno veće energije u pojedinom sudaru. Kod sudara elekton-elekton mora se uzeti u obzir i neraspoznatljivost čestica. Modificirana Bethe-Blochova formula dana je sljedećom formulom:

$$-\frac{dE}{dx} = 2\pi N_e r_e^2 m_e c^2 \rho \frac{Z}{A} \frac{1}{\beta^2} \left[ln \left(\frac{\tau^2 (\tau+2)}{2 \left(I/m_e c^2 \right)^2} \right) + F(\tau) \right]$$
(2.2)

gdje je

au kinetička energija čestice u jedninicama $m_e c^2$,

$$\begin{split} F\left(\tau\right) &= 1 - \beta^2 + \frac{\tau^2/8 - (2r+1)ln2}{(\tau+1)^2} \text{ za elektrone,} \\ F\left(\tau\right) &= 2ln2 - \frac{\beta^2}{12} \left(23 + \frac{14}{\tau+2} + \frac{10}{(\tau+2)^2} + \frac{4}{(\tau+2)^3}\right) \text{ za pozitrone.} \end{split}$$

Još jedna važna razlika u odnosu na teške nabijene čestice je to što su elektroni i pozitroni na nuklearnim energijama relativističke čestice, pa se uz gubitak energije kroz sudare događa i gubitak energije zbog takozvanog zakočnog zračenja (bremsstrahlung). Na energijama elektrona i pozitrona koje se pojavljuju u ovom radu (do 500 keV) efekt zakočnog zračenja može se zanemariti.

2.3 Interakcija gama zračenja s materijom

Interakcija gama zračenja s materijom odvija se kroz tri glavna procesa: fotoelektičnog efekta, komptonskog raspršenja i tvorbe parova. Važna svojstva inerakcije gama zračenja s materijom dolaze zbog činjenice da fotoni nemaju naboj, pa ne mogu interagirati s materijom na isti način kao nabijene čestice. Udarni presjek za procese kojima fotoni interagiraju s materijom je puno manji od onog za neelastične sudare nabijenih čestica s materijom, pa je dubina prodiranja u materiju puno veća od one nabijenih čestica.

Poznato je da se puštanjem kolimiranog snopa fotona kroz apsorber intenzitet snopa eksponencijalno smanjuje s debljinom apsorbera, Lambert-Beer-Bouguerov zakon:

$$I(x) = I_0 e^{-\mu x} (2.3)$$

gdje je I_0 intenzitet upadnog zračenja, x debljina apsorbera, a μ linearni koeficijent atenuacije. Ova ovisnost je posljedica procesa interakcije fotona s materijom. Interakcijom gama zračenja s materijom, dolazi do potpunog uklanjanja fotona iz snopa. U slučaju kolimiranog snopa, vrijedi da se fotonima koji ostaju u snopu ne mijenja energija. Uklonjeni fotoni se ili apsorbiraju ili rasprše. Zbog toga udarni presjek za uklanjanje fotona iz kolimiranog snopa ne ovisi o debljini apsorbera kroz koji je foton prethodno prošao.

Ako postoji N atoma po jedinici volumena u apsorberu, svaki od njih predstavlja površinu σ za uklanjanje fotona iz snopa. Vjerojatnost da foton bude apsorbiran u volumenu apsorbera debljine dx i površine A, dana je omjerom ukupne površine (za uklanjanje fotona iz snopa) svih atoma $N\sigma \cdot Adx$, te ukupne površine apsorbera, A. Vjerojatnost je također dana omjerom promjene broja upadnih fotona i broja fotona na ulazu u apsorber, pa slijedi:

$$-\frac{dn}{n} = N\sigma x \qquad \longrightarrow \qquad n(x) = n_0 e^{-N\sigma x} = n_0 e^{-\mu x}$$
(2.4)

gdje je $\mu = N\sigma$ linearni koeficijent atenuacije, koji ovisi o materijalu i energiji gama zračenja. Inverzna vrijednost linearnog koeficijenta atenuacije naziva se srednji slobodni put fotona. Kada foton prijeđe put od $1/\mu$ u materijalu, vjerojatnost da nije apsorbiran je 1/e = 36%.

Udarni presjek, za uklanjanje fotona iz kolimiranog snopa, predstavlja sumu udarnih presjeka od niza interakcija fotona i atoma u apsorberu. Ako se uzimaju u obzir samo glavna tri procesa interakcije fotona s materijom, linearni koeficijent atenuacije je:

$$\mu = N \cdot (\sigma_{FE} + Z\sigma_C + \sigma_{TP}) \tag{2.5}$$

gdje je N broj atoma po jedinici volumena, Z njihov redni broj, σ_{FE} i σ_{TP} udarni presjeci po atomu za fotoelektrični efekt i tvorbu parova, a σ_C udarni presjek po elektronu za komptonsko raspršenje. Na slici 2.3 prikazana je ovisnost masenog atenuacijskog koeficijenta o energiji upadnog fotona. Maseni koeficijent atenuacije, $\mu_{\rho} = \mu/\rho$ (ρ je gustoća materijala), za razliku od linearnog koeficijenta ne mijenja se jako od materijala do materijala u području energija od 1 MeV, zbog čega je obično u tablicama dana vrijednost masenog apsorpcijskog koeficijenta.

Slika 2.3: Ovisnost ukupnog udarnog presjeka te pojednih doprinosa od mogućih procesa za interakciju fotona u materijalu BaF_2 o energiji upanih fotona. Crna linija prikazuje ukupni udarni presjek, točkasta linija doprinos komptonskog raspršenja ukupnom udarnom presjeku, roza linija doprinos fotoelektičnog efekta, te plava linija doprinos tvorbe parova ukupnom udarnom presjeku. [8]

2.3.1 Fotoelektrični efekt

U fotoelektričnom efektu dolazi do apsorpcije fotona u materijalu. Apsorpcijom fotona dolazi do izbacivanja vezanih elektrona s kinetičkom energijom $E = h\nu_0 - B$, gdje je $h\nu_0$ energija upadnog fotona, a B energija vezanja elektrona. Izbačeni elektron dalje interagira s materijom i pobuđuje elektrone. Ukupna energija koja se dobije vraćanjem svih pobuđenih elektrona u osnovno stanje približno je jednaka energiji upadnog fotona.

2.3.2 Tvorba parova

Druga vrsta interakcije fotona i materije je tvorba elektron-pozitron parova. Do tvorbe parova može doći samo ako je energija upadnih fotona veća od $2 \cdot m_e c = 1.022 MeV$. Tada zbog interakcije između fotona i polja atomskih jezgara nastaju parovi elektron-pozitron čija je zajednička energija umanjena od energije upadnog fotona za 1.022 MeV (koliko je potrošeno za stvaranje para). Nastali pozitron brzo se anihilira s jednim elektronom u materijalu i dolazi do emisije dva fotona energije 0.511 MeV.

2.3.3 Komptonsko raspršenje

Komptonsko raspršenje je raspršenje fotona na slobodnom elektronu (energija vezanja elektrona puno manja od energija gama zrake) pri čemu elektron primi dio energije upadnog fotona (slika 2.4).

Slika 2.4: Shematski prikaz komptonskog raspršenja. Slika preuzeta iz [9].

Vrijednost energije raspršenog fotona ovisi o kutu raspršenja. Prema zakonu očuvanja energije ukupna energija fotona i elektrona prije sudara mora biti jednaka ukupnoj energiji fotona i elektrona poslije sudara:

$$h\nu + m_e c^2 = h\nu' + E'_e \tag{2.6}$$

gdje je $E'_e = \sqrt{(m_e c^2)^2 + (p'_e c)^2}$. Primjenom zakona očuvanja impulsa može se dobiti sljedeća veza između impulsa: $p'^2_e = p^2 + p'^2 - 2pp'\cos\theta$. Uvrštavanjem u jednadžbu (2.6) dobiva se veza između energije raspršenog fotona i kuta raspršenja: $h\nu' = \frac{h\nu}{1 + \frac{h\nu}{m_e c^2}(1 - \cos\theta)}$, ili :

$$k' = \frac{k_0 \cdot \mu}{\mu + k_0 \left(1 - \cos\theta\right)}$$
(2.7)

gdje je $\mu = mc^2$, a k_0 i k' iznos valnog vektora upadnog te raspršenog fotona.

Udarni presjek za komptonsko raspršenje izveli su Klein i Nishina 1929. godine koristeći principe kvantne elektrodinamike. Formula za udarni presjek komptonskog raspršenja po njima je nazvana Klein-Nishina formula[10]:

$$\frac{d\sigma}{d\Omega} = \frac{1}{4}r_0^2 \left(\frac{k'}{k_0}\right)^2 \left(\frac{k_0}{k'} + \frac{k'}{k_0} - 2 + 4\cos^2\Theta\right)$$

gdje je:

 $r_0 = \frac{e^2}{mc^2}$ klasični radijus elektrona

 k_0 iznos valnog vektora fotona prije rapršenja

$$k'$$
 iznos valnog vektora fotona nakon raspršenja

 Θ kut između vektora polarizacije fotona prije i poslije raspršenja $(\angle \overrightarrow{e_0}, \overrightarrow{e})$

Vektor polarizacije fotona nakon raspršenja \overrightarrow{e} , može se rastaviti na dvije komponente, e_{\perp} i $e_{\parallel}[10]$:

- komponenta e_{\perp} je komponenta vektora \overrightarrow{e} okomita na vektor polarizacije fotona prije raspršenja $\overrightarrow{e_0}$, iz čega slijedi da je $\cos \Theta \equiv (\overrightarrow{e_0} \cdot \overrightarrow{e_{\perp}}) = 0$,
- komponenta e_{\parallel} je komponenta vektora \overrightarrow{e} u istoj ravnini s $\overrightarrow{e_0}$, tj. u ravnini $\left(\overrightarrow{k'} \overrightarrow{e_0}\right)$, iz čega slijedi da je

$$\cos^2 \Theta = 1 - \sin^2 \theta \cos^2 \phi$$

gdje je θ kut između smjera gibanja upadnog i raspršenog fotona $\left(\angle \vec{k_0}, \vec{k'} \right)$, te ϕ kut između ravnina $\left(\vec{k_0}, \vec{k'} \right)$ i $\left(\vec{k_0}, \vec{e_0} \right)$ (slika 2.5).

Udarni presjek može se sada rastaviti na dva člana, $\frac{d\sigma}{d\Omega} \perp$ koji dolazi od okomite komponente vektora \overrightarrow{e} i $\frac{d\sigma}{d\Omega} \parallel$ koji dolazi od komponente vektora \overrightarrow{e} u ravnini $(\overrightarrow{k'} \overrightarrow{e_0})$. Zbrajanjem ta dva člana dobije se poznata formula za udarni presjek komptonskog raspršenja polariziranog fotona:

$$\frac{d\sigma}{d\Omega} = \frac{1}{2}r_0^2 \left(\frac{k'}{k_0}\right)^2 \left(\frac{k_0}{k'} + \frac{k'}{k_0} - 2\sin^2\theta\cos^2\phi\right)$$
(2.8)

Iz ove formule vidi se da je najveća vjerojatnost da se foton rasprši okomito na smjer polarizacije, tj. pod azimutalnim kutem od $\phi = 90^{\circ}$.

Poznati oblik Klein-Nishina formule dobiva se usrednjavanjem formule 2.8 po kutu ϕ , što daje udarni presjek za nepolarizirane fotone:

$$\left(\frac{d\sigma}{d\Omega}\right)_{np} = \frac{1}{2}r_0^2 \left(\frac{k'}{k_0}\right)^2 \left(\frac{k_0}{k'} + \frac{k'}{k_0} - 2\sin^2\theta\right)$$
(2.9)

Slika 2.5: Raspršenje polariziranog fotona $\overrightarrow{\mathbf{k}}_0$, vektora polarizacije \overrightarrow{e}_0 , pod kutom θ u odnosu na foton $\overrightarrow{\mathbf{k}}'$ te azimutalnim kutom ϕ (kut između \overrightarrow{e}_0 i ravnine $(\overrightarrow{\mathbf{k}}_0, \overrightarrow{\mathbf{k}})$).

2.4 Princip mjerenja polarizacijskih korelacija

Mjerenje polarizacijskih korelacija između dvaju anihilacijskih fotona temelji se na činjenici da vjerojatnost smjera raspršenja polariziranih fotona na slobodnim elektronima ovisi o njihovoj polarizaciji. Kutna raspodjela vjerojatnosti opisana je Klein-Nishina formulom (2.8).

Uz pretpostavku da se oba anihilacijska fotona $(\vec{k}_1 \ i \ \vec{k}_2 = -\vec{k}_1)$ rasprše pod kutem θ , promatrajući koincidentno raspršene fotone $(\vec{k}'_1 \ i \ \vec{k}'_2)$ u dva slučaja (i) i (ii) prikazana na slici 2.6, može se dobiti podatak o korelaciji polarizacija dvaju fotona prije raspršenja. U slučaju:

(i)
$$\overline{\mathbf{k}}_{2}'$$
 se nalazi u ravnini $\overline{\mathbf{k}}_{1}, \overline{\mathbf{k}}_{2}'$

(ii) $\overrightarrow{\mathbf{k}}_{2}'$ se nalazi u ravnini okomitoj na ravninu $\overrightarrow{\mathbf{k}}_{1}, \overrightarrow{\mathbf{k}}_{1}'$

Što se tiče smjerova polarizacije fotona prije raspršenja, poznato je da su vektori polarizacije međusobno okomiti (poglavlje 2.1.3). Znači da postoje dva slučaja:

(a)
$$\overrightarrow{e}_1$$
 je u ravnini $\left(\overrightarrow{k}_1, \overrightarrow{k}_1'\right)$, što znači da je \overrightarrow{e}_2 okomit na tu ravninu, udarni presjek za foton 1 je $\left(\frac{d\sigma}{d\Omega_1}\right)_{\parallel} = \frac{1}{2}r_0^2 \left(\frac{k'_1}{k_0}\right)^2 \left(\frac{k_0}{k'_1} + \frac{k'_1}{k_0} - 2\sin^2\theta_1\right)$

(b) \overrightarrow{e}_1 je okomit na ravninu $\left(\overrightarrow{k}_1, \overrightarrow{k}_1'\right)$, što znači da je \overrightarrow{e}_2 u ravnini $\left(\overrightarrow{k}_1, \overrightarrow{k}_1'\right)$, udarni presjek za foton 1 je $\left(\frac{d\sigma}{d\Omega_1}\right)_{\perp} = \frac{1}{2}r_0^2 \left(\frac{k_1'}{k_0}\right)^2 \left(\frac{k_0}{k_1'} + \frac{k_1'}{k_0}\right)$

Slika 2.6: Raspršenje anihilacijskih fotona pod kutem θ . Lijevo, slučaj (i) \overrightarrow{k}_2' se nalazi u ravnini $\overrightarrow{k}_1, \overrightarrow{k}_1'$. Desno, slučaj (ii) \overrightarrow{k}_2' se nalazi u ravnini okomitoj na ravninu $\overrightarrow{k}_1, \overrightarrow{k}_1'$.

Budući da vjerojatnost da je \overrightarrow{e}_1 u ravnini $(\overrightarrow{k}_1, \overrightarrow{k}_1)$ iznosi 1/2 te vjerojatnost da je \overrightarrow{e}_1 okomit na ravninu $(\overrightarrow{k}_1, \overrightarrow{k}_1)$ također 1/2, vjerojatnost da je raspršeni foton 1 imao polarizaciju prije raspršenja u ravnini $(\overrightarrow{k}_1, \overrightarrow{k}_1)$, odnosno foton 2 polarizaciju okomito na ravninu $(\overrightarrow{k}_1, \overrightarrow{k}_1)$ iznosi:

$$P_{\parallel} = \frac{\left(\frac{d\sigma}{d\Omega_{1}}\right)_{\parallel}}{\left(\frac{d\sigma}{d\Omega_{1}}\right)_{\parallel} + \left(\frac{d\sigma}{d\Omega_{1}}\right)_{\perp}} = \frac{\left(\frac{k_{0}}{k_{1}'} + \frac{k_{1}'}{k_{0}} - 2\sin^{2}\theta_{1}\right)}{2\left(\frac{k_{0}}{k_{1}'} + \frac{k_{1}'}{k_{0}} - \sin^{2}\theta_{1}\right)}$$
(2.10)

dok vjerojatnost da je raspršeni foton 1 imao polarizaciju prije raspršenja okomito na ravninu $\left(\overrightarrow{k}_{1}, \overrightarrow{k}_{1}'\right)$, odnosno foton 2 polarizaciju u ravnini $\left(\overrightarrow{k}_{1}, \overrightarrow{k}_{1}'\right)$, iznosi:

$$P_{\perp} = \frac{\left(\frac{d\sigma}{d\Omega_{1}}\right)_{\perp}}{\left(\frac{d\sigma}{d\Omega_{1}}\right)_{\parallel} + \left(\frac{d\sigma}{d\Omega_{1}}\right)_{\perp}} = \frac{\left(\frac{k_{0}}{k_{1}'} + \frac{k_{1}'}{k_{0}}\right)}{2\left(\frac{k_{0}}{k_{1}'} + \frac{k_{1}'}{k_{0}} - \sin^{2}\theta_{1}\right)}$$
(2.11)

Koristeći jednadžbe 2.9, 2.10 i 2.11 može se dobiti diferencijalni udarni presjek dvaju fotona:

$$\begin{aligned} \frac{d\sigma}{d\Omega_1 d\Omega_2} &= \left(\frac{d\sigma}{d\Omega_1}\right)_{np} \left[P_\perp \frac{1}{2} r_0^2 \frac{k_2'^2}{k_0^2} \left(b_2 - 2\sin^2\theta_2 \cos^2\phi\right) + P_\parallel \frac{1}{2} r_0^2 \frac{k_2'^2}{k_0^2} \left(b_2 - 2\sin^2\theta_2 \cos^2\left(\phi - \frac{\pi}{2}\right)\right) \right] \\ \text{gdje je } b_2 &= \frac{k_0}{k_2'} + \frac{k_2'}{k_0}. \end{aligned}$$

Ako se uzme da je $\theta_1 = \theta_2 \equiv \theta$, i $k_0 = \mu$, iz jednadžbe 2.7 slijedi da je $k'_1 = k'_2 \equiv k' = \frac{k_0}{2 - \cos \theta}$, pa diferencijalni udarni presjek dvaju fotona iznosi:

$$\frac{d\sigma}{d\Omega_1 d\Omega_2} = \frac{1}{4} r_0^4 \left(\frac{k'}{k_0}\right)^4 \left[b^2 - 2b\sin^2\theta + 2\sin^4\theta\sin^2\phi\right]$$
(2.12)

gdje je $b = \frac{k_0}{k'} + \frac{k'}{k_0} = \frac{1 + (2 - \cos \theta)^2}{2 - \cos \theta}.$

Sada se može dobiti omjer broja događaja izmjerenih u slučaju (i) i (ii):

$$\rho_1 = \frac{n\,(ii)}{n\,(i)} = 1 + \frac{2\sin^4\theta}{b^2 - 2b\sin^2\theta} \tag{2.13}$$

Za kut raspršenja $\theta = 90^{\circ}$ omjer iznosi 2.6, dok se najveći omjer (asimetrija) dobiva za kut $\theta = 82^{\circ}$ i iznosi 2.85 (slika 2.7 lijevo). Ove vrijednosti omjera odgovaraju idealanom slučaju, kada su dimenzije raspršivača beskonačno male, te kut koji pokriva detektor za detekciju raspršenih fotona beskonačno mali.

Za konačnu geometriju potrebno je integrirati diferencijalne udarne presjeke za dva fotona (jedn. 2.12) po kutovima koje pokrivaju detektori. Na slici 2.7 desno, preuzetoj iz [11], prikazana je asimetrija ρ_1 izračunata za konačnu geometriju. Integriranje je napravljeno oko maksimuma asimetrije $\theta = 82^{\circ}$.

Slika 2.7: Lijevo: asimetrija (formula 2.9) kao funkcija kuta raspršenja. Desno: asimetrija za konačnu geometriju, kao funkcija puluraspona u θ , za različite poluraspone azimutalnog kuta, $\alpha = \frac{1}{2}\phi$. Slike preuzete iz [11].

Wu i Shankov su 1950.g. dobili omjer od (2.04 ± 0.08) [12]. Očekivani omjer za korišten geometrijski postav bio je 2.00. U korištenom mjernom postavu kolimiranjem snopova anihilacijskih fotona dobivenih iz radioaktivnog ⁶⁴Cu postigli su da je širenje snopa manje od 3°. Kolimirani snop fotona raspršivao se na cilindričnom aluminijskom raspršivaču radijusa 0.64 cm te duljine 2.54 cm. Detektori za detekciju raspršenih fotona bili su postavljeni pod kutem od $\theta = 90^{\circ}$, a kut koji su pokrivali iznosio je $\Delta \phi = \Delta \theta = 43^{\circ}$.

Ako se napravi još mjerenje broja ko
incidencija za slučaj kada je azimutalni kut između dvaju raspršenih foton
a $\phi = 45^{\circ}$, mogu se dobiti dodatna dva omjera (idealna geometrija):

$$\rho_2 = \frac{\frac{d\sigma}{d\Omega_1 d\Omega_2} |_{\phi=45^{\circ}}}{\frac{d\sigma}{d\Omega_1 d\Omega_2} |_{\phi=0^{\circ}}} = 1 + \frac{\sin^4 \theta}{b^2 - 2b \sin^2 \theta}$$
(2.14)

$$\rho_3 = \frac{\frac{d\sigma}{d\Omega_1 d\Omega_2}}{\frac{d\sigma}{d\Omega_1 d\Omega_2}} \Big|_{\phi=45^\circ} = 1 + \frac{\sin^4 \theta}{b^2 - 2b \sin^2 \theta + \sin^4 \theta}$$
(2.15)

U slučaju kada je kut raspršenja $\theta=90^\circ,$ omjeri iznos
e $\rho_2=1.8,$ te $\rho_3=1.4.$

3 Eksperimentalni postav

Mjerenje polarizacijskih korelacija između dvaju anihilacijskih fotona rađeno je s četiri cilindrična scintilacijska detektora (slika 3.1), dva BaF_2 detektora (detektori 19 i 20), te dva LSO detektora (detektori 1 i 2).

Dimenzije scintilacijskih kristala BaF₂ detektora 19 i 20 su sljedeće: radijus r = 1.75 cm, debljina x = 2.35 cm.

Dimenzije scintilacijskih kristala LSO detektora 1 i 2 su sljedeće: radijus $r = 1.55 \, cm$, debljina $x = 1.3 \, cm$.

Slika 3.1: Prikaz eksperimentalnog postava s dva BaF_2 detektora, dva LSO detektora, te izvorom pozitrona.

Korištena su dva izvora visokog napona, Ortec 556, i Canberra 3002D. Detektori BaF_2 spojeni su na izvor visokog napona Canberra, te je postavljen napon od -2100 V. LSO detektori spojeni su na izvor visokog napona Ortec, te je postavljen napon od -1800 V.

3.1 Scintilacijski detektori

3.1.1 Općenita svojstva scintilacijskih detektora

Scintilacijski detektori za detekciju zračenja koriste svojstva posebnih, scintilacijskih materijala. Scintilacijski materijali imaju svojstvo da stvaraju fotone u vidljivom ili UV dijelu spektra kada su ozračeni ionizirajućim zračenjem. Nekada su se ovi svjetlosni impulsi promatrali okom. Danas se koriste fotomultiplikatori, optički spojeni sa scintilacijskim materijalom, ili direktno ili putem svjetlovoda, koji nastale svjetlosne impulse pretvaraju u električne signale.

Važne karakteristike koje scintilacijski materijali moraju zadovoljavati, da bi se koristili u scintilacijskim detektorima, su:

- scintilacijska efikasnost konverzija energije upadnog zračenja u emitiranu vidljivu svjetlost (luminiscentno zračenje)
- linearnost konverzije količina emitiranih fotona proporcionalna energiji koju je upadno zračenje ostavilo u scintilacijskom materijalu
- transparentnost materijala na luminiscentno zračenje
- kratko vrijeme potrebno za deekscitaciju pobuđenih elektrona

Tri različite luminiscencije mogu se javiti u scintilacijskim materijalima: fluorescencija, fosforescencija i zakašnjela fluorescencija. Fluorescencijom se naziva proces emisije vidljivog spektra zračenja odmah nakon apsorpcije (~ $10^{-8} s$). Fosforescencija se javlja pobuđenjem u metastabilno stanje, čime dolazi do emisije zračenja veće valne duljine i duljeg vremena potrebnog za emijsiju (od nekoliko μs do nekoliko sati, ovisno o scintilacijskom materijalu). Zakašnjela fluorescencija ima isti emisijski spektar kao fluorescencija, ali s dužim vremenom potrebnim za emisiju.

Obično se vremenska emisija može opisati s dvokomponentnom eksponencijalnom krivuljom:

$$N = A \operatorname{e}^{-t/\tau_f} + B \operatorname{e}^{-t/\tau_s}$$

gdje je N broj fotona emitiran u vremenu t, τ_f konstanta raspada brze komponente, te τ_s konstanta raspada spore komponente.

Glavna podjela scintilacijskih materijala je na organske scintilatore i anorganske kristale. Za detekciju gama zračenja obično se biraju anorganski kristali zbog većeg atomskog broja (Z) i veće gustoće. Također, anorganski kristali imaju bolju scintilacijsku efikasnost i linearnost konverzije preko većeg intervala energija upadnog zračenja. U ovom radu korištena su četiri anorganska scintilacijska detektora, dva sa scintilacijskim kristalom BaF₂, te dva sa scintilacijskim kristalom LSO.

Energijska stanja anorganskih kristala određena su njihovom kristalnom strukturom. Kod čistih kristala, luminiscentna emisija je otežana zbog rezonantne apsorpcije emitiranih fotona koji nastaju prelaskom pobuđenih elektrona iz vodljive direktno u valentnu vrpcu. Da bi anorganski kristali bili prozirni na luminiscentno zračenje moraju se aktivirati malim količinama nečistoća (aktivatori). Dodavanjem nečistoća u kristal pojavljuju se posebna energijska stanja (luminiscentni centri) unutar zabranjene vrpce energetskog spektra. Na slici 3.2 prikazana je energijska vrpčasta struktura kristalnog scintilatora aktiviranog s malom količinom nečistoća. Deekscitacijom pobuđenih elektrona preko luminiscentnih centara emisijsko zračenje manje je valne duljine od zračenja koje dolazi od direktnog prijelaza iz vodljive u valentnu vrpcu. Dobiveno emisijsko zračenje više se rezonantno ne apsorbira u materijalu, čime se dobiva tražena transparentnost na luminiscentno zračenje.

3.1.2 BaF_2 scintilator

Barijev fluorid, BaF_2 , spada u skupinu neaktiviranih brzih anorganskih kristala. Jedan je od anorganskih kristala s najbržim vremenom odgovora (vrijeme deekscitacije manje od 1 ns). Ima

Slika 3.2: Energijska vrpčasta struktura aktiviranog kristalnog scintilatora [13].

dvije komponente raspada, brzu s vremenom deekscitacije od 0.6 ns i sporu s vremenom deekscitacije od 630 ns. Na slici 3.3 prikazan je scintilacijski emisijski spektar BaF₂ izmjeren na različitim temperaturama[14]. Brzoj komponenti odgovaraju dva mala vrha na manjim valnim duljinama (195 nm i 220 nm). Brza komponenta ne pokazuje jaku ovisnost o temperaturi. Sporoj komponenti odgovara veći vrh na približno 310 nm. Za razliku od brze komponente spora komponenta pokazuje jaku temeraturnu ovisnost.

Glavna svojstva BaF_2 detektora dana su u tablici 3.1. U zadnjem redu tablice dane su prosječne vrijednosti broja scintilacijskih fotona dobivenih apsorpcijom energije od 1 keV. Oko 15% fotona dolazi od brze komponente raspada, dok preostalih 85% dolazi od spore komponente.

Brza komponenta važna je za precizna određivanja vremena pojave signala na detektoru, kao na primjer kod mjerenja koincidencija signala, dok je spora komponenta važna za mjerenje energije signala (85% fotona dolazi od spore komponente).

	komponenta raspada	BaF_2
gustoća $[g/cm^3]$		4.89
temperatura taljenja [K]		1627
make valina duliina [nm]	brza	220(195)
maks.vaijna Guijina [iiiii]	spora	310
wijeme deekscitacije [ns]	brza	0.6 - 0.8
vi ijeme deekschacije [iis]	spora	630
broi fotona / keV	brza	1.8
	spora	10

Relativna rezolucija BaF₂ detektora na 662 keV iznosi ~ 12% [16].

Tablica 3.1: Glavna svojstva BaF₂ detektora [15].

Slika 3.3: Scintilacijski emisijski spektar BaF₂ izmjeren na različitim temperaturama. Brza komponenta (dva mala vrha na manjim valnim duljinama 195 nm i 220 nm) ne pokazuje jaku ovisnost o temperaturi za razliku od spore komponente (veliki vrh na približno 310 nm)[14].

3.1.3 LSO scintilator

Lutecijev oksiortosilikat, $Lu_2(SiO_4)O$, ili skraćeno LSO, pripada skupini brzih anorganskih kristala aktiviranih cerijem. LSO ima relativno brzo vrijeme raspada u odnosu na ostale anorganske kristale (47ns). Lutecij ima veliki atomski broj (Z = 71), što ga čini pogodnim za detekciju gama zračenja. Lutecij sadrži radioaktivni izotop ¹⁷⁶Lu, koji se raspada nuklearnim β^- raspadom. Energija koju produkti raspada izotopa lutecija ostave u scintilacijskom materijalu javlja se kao nepoželjna pozadina u energijskom spektru. Pozadina koja dolazi od radioaktivnog izotopa lutecija može se znatno potisnuti ako se gledaju koincidencije signala s dva ili više detektora.

Emisija (deekscitacija) se odvija samo preko jedne komponente s vremenom raspada od 47 ns. Ne postoji sporija komponenta raspada kao u slučaju BaF_2 materijala.

Relativna rezolucija LSO detektora na 662 keV iznosi oko 10%.

Glavna svojstva LSO detektora dana su u tablici 3.2.

	LSO
gustoća $[g/cm^3]$	7.40
maks.valjna duljina [nm]	420
vrijeme deekscitacije [ns]	47
broj fotona / keV	25

Tablica 3.2: Glavna svojstva LSO detektora[13].

3.2 Digitalizator signala DRS4

DRS4 digitalizator radi slično kao i digitalni osciloskop: kada nađe signal koji prelazi zadani prag okidača (eng. trigger threshold) snima oscilogram tog signala. Na primjer, za srednju frekvenciju skupljanja uzoraka od 5 GS/s (Giga Samples per Second) svakih 0.2 ns bilježi iznos napona u tom trenutku te se tako dobiva izgled signala u dostupnom vremenskom intervalu, u ovom slučaju od 204.8 ns.

Glavna pogodnost digitalizatora DRS4 je mogućnost mijenjanja frekvencije uzorkovanja (eng. sampling speed) sve do 5 GS/s, što znači da svakih 0.2 ns može uzimati novi uzorak. Dozvoljeni broj uzoraka je 1024, čime se dobije, u slučaju korištenja frekvencije uzorkovanja od 5 GS/s, vremenski interval od $t = 1024 \cdot 0.2 ns = 204.8 ns$.

Glavne karakteristike DRS4 digitalizatora signala[17]:

- 4 kanala
- mogućnost mijenjanja frekvencije uzorkovanja (eng. sampling speed) od 0.7 GS/s do 5 GS/s
- 1024 uzorka (eng. sampling points)
- mogućnost logičkih kombinacija okidanja
- spremanje podataka u binarnom ili ASCII obliku

Vjernija slika signala dobiva se većom frekvencijom uzorkovanja, ali zbog ograničenog broja uzoraka, postoji mogućnost da signal izađe iz dostupnog vremenskog intervala. Zbog toga je za korištene detektore potrebno odabrati optimalanu srednju frekvenciju uzorkovanja, tj. optimalan vremenski prozor, što je opisano u poglavlju 3.3.1.

Podatke prikupljene s DRS4 digitalizatorom moguće je spremati u ASCII ili u binarnom formatu. Zapisivanje u binarni format je brže i zahtjeva manje memorije, pa se češće koristi od ASCII formata. Primjer zapisa u binarni format dan je u dodatku A.

3.3 Odabir eksperimentalnih postavki

3.3.1 Odabir srednje frekvencije uzorkovanja

Kao što je već rečeno u prethodnom poglavlju, potrebno je izabrati optimalnu srednju frekvenciju uzorkovanja DRS4 digitalizatora za korištene detektore. Za odabir optimalne srednje frekvencije uzorkovanja, f, tražila se najbolja relativna energijska rezolucija na 511 keV za različite vrijednosti f.

Prikupljani su podaci s parova detektora LSO 1 i LSO 2, te BaF₂ detektora 19 i 20. Između odgovarajućih parova nalazio se radioaktivni izvor ²²Na. Uvjet za okidanje, tj. snimanje signala, bila je koincidencija signala iz detektora, te prag od -50 mV za LSO detektore, i -80 mV za BaF₂ detektore. Za svaki par detektora skupljeno je 1000 koincidencijskih događaja. Energijski spektar dobiven je integracijom snimljenih točaka. Na vrh, koji odgovara energiji anihilacijskih fotona (511 keV), u dobivenom energijskom spektru, prilagođena je Gaussova funkcija, te su dobivene srednje vrijednosti i pripadne standardne devijacije. Vrijednosti relativne rezolucije izračunate su iz srednjih vrijednosti (\overline{x}) i pripadnih standardnih devijacija (σ) za odgovarajuće frekvencije uzorkovanja, $R = \frac{FWHM}{\overline{x}}$, gdje je $FWHM = 2\sigma\sqrt{2\ln(2)} = 2.35\sigma$ puna širina na pola maksimuma.

Slika 3.4: Optimalizacija srednje frekvencije uzorkovanja na temelju mjerenja relativne rezolucije na 511 keV, za LSO detektore 1 i 2 (lijevo) i za BaF₂ detektore 19 i 20 (desno).

Na slici 3.4 lijevo prikazane su vrijednosti relativne rezolucije za odgovarajuće srednje frekvencije uzorkovanja za par detektora LSO, a na slici 3.4 desno za par detektora BaF₂. Na grafovima se vidi da je ovisnost relativne rezolucije o srednjoj frekvencije uzorkovanja drugačija za detektore LSO i za detektore BaF₂. Do toga dolazi zbog različitih oblika signala koji se dobivaju s jedne i s druge vrste detektora (slika 3.5).

Kod BaF_2 detektora dolazi do pogoršanja rezolucije s povećanjem frekvencije uzorkovanja, što je na prvi pogled suprotno od očekivanog. BaF_2 ima vrlo kratko vrijeme porasta, pa je za očekivati da se bolja rezolucija dobije s većom frekvencijom uzorkovanja. Do toga ne dolazi zbog druge karakteristike signala dobivenog s BaF_2 detektora, a to je vrlo dugo vrijeme pada signala (spora luminiscencija). Zbog toga "rep" signala izlazi iz dozvoljenog vremenskog prozora, čime dolazi do

Slika 3.5: Primjer oblika signala s detektora BaF₂ (gore) i LSO (dolje) dobivenih sa srednjom frekvencijom uzorkovanja DRS4 digitalizatora od 1GS/s.

gubitka informacije o energiji signala.

Kod LSO detektora vrijeme porasta signala je duže, ali je ukupno vrijeme "trajanja" signala kraće od ukupnog vremena trajanja signala koji dolazi iz BaF₂ detektora. Zbog toga dolazi do očekivanog poboljšanja rezolucije porastom frekvencije uzorkovanja. Ali već kod frekvencije uzorkovanja od 4GS/s neki veći signali izlaze iz dozvoljenog vremenskog prozora, pa dolazi do pogoršanja rezolucije. Na frekvenciji od 5GS/s nije bilo moguće dobiti energijski spektar zbog izlaska više od polovice signala iz dozvoljenog vremenskog prozora.

Za optimalnu srednju frekvenciju uzorkovanja uzeta je vrijednost od 1GS/s. Ova srednja frekvencija uzorkovanja odabrana je samo na temelju podataka za detektore BaF₂. Rezoluciju kod LSO signala moguće je popraviti na drugi način. Za popravak rezolucije signala koji dolaze s LSO detektora potrebno je optimalizirati broj točaka za integraciju signala (poglavlje 3.3.2).

Kada je srednja frekvencija uzorkovanja 1GS/s, to znači da se novi uzorak uzima prosječno svakih 1 ns. DRS4 digitalizator ne uzima nove uzorke točno svakih 1 ns, tj. razmaci između točaka nisu svi jednaki, kao što se vidi u primjeru binarne datoteke u dodatku A. Na slici 3.6 prikazan je primjer raspodjele vremenskih udaljenosti susjednih točaka za dva kanala DRS4 digitalizatora. Na slici se vidi da postoji neka raspodjela oko srednje vrijednosti udaljenosti susjednih točaka od 0.993 ns. Razlog zašto nije srednja vrijednost točno 1 ns je taj što DRS4 ne dozvoljava točnu vrijednost od 1 GS/s, već 1.007 GS/s ($\frac{1}{1.007} = 0.993$).

Slika 3.6: Raspodjela vrijednosti vremenskih udaljenosti između susjednih točaka za kanal 1 (lijevo) i za kanal 2 (desno) DRS4 digitalizatora signala za srednju frekvenciju uzorkovanja 1.007 GS/s.

3.3.2 Odabir vremenskog prozora za integraciju signala

Traženjem optimalanog broja točaka za integraciju signala dobivenih s LSO detektora na odabranoj frekvenciji uzorkovanja od 1GS/s, može se dobiti najbolji vremenski prozor za integraciju signala. Za odabir optimalnog broja točaka, N, tražila se najbolja relativna rezolucija vrhova u spektrima vrijednosti integriranih signala, dobivenim za različite vrijednosti N.

Integracija signala radi se tako što se zbrajaju vrijednosti napona kroz određeni broj točaka. Za integriranu vrijednost signala uzima se da je proporcionalna energiji ostavljenoj u detektoru. U dodatku B.2 dani su programi *read_binaryP.C*, koji čita podatke zapisane u binarnoj datoteci i zapisuje ih u ROOT datoteku, te program *analizaPP.C* koji obrađuje podatke zapisane u ROOT datoteci stvorenoj programom *read_binaryP.C* i zapisuje ih u drugu ROOT datoteku.

Interval za integraciju signala određuje se prema točki t_0 , u kojoj signal prijeđe neki zadani prag. Integracija signala počinje 10 točaka prije točke t_0 , a završava N - 10 točaka nakon t_0 točke. N je parametar koji se optimalizira za LSO detektore. Kod BaF₂ detektora, kraj integracije se određuje uvjetom da je vrijednost napona u 3 susjedne točke iznad šuma (vrijednost kada nema signala). Obično se ne uspije ispuniti ovaj uvjet (spora komponenta deekscitacije iz pobuđenog stanja). U tom slučaju integracija signala ide sve do zadnje točke.

Za optimalizaciju broja točaka, snimljeni su podaci dobiveni snimanjem koincidencije signala većih od praga okidača (-30mV) koji dolaze iz detektora LSO 1 i LSO 2 postavljenih jedan nasuprot drugog. Korišteni radioaktivni izvor bio je ^{22}Na , postavljen između detektora, te je skupljeno 10 000 događaja (koincidencija). Snimljeni podaci analizirani su s kodom *analizaPP.C* u kojem se mijenjao broj točaka za integraciju, N. Za svaki N dobiven je različiti spektar vrijednosti integriranog signala. Na vrh u spektrima koji odgovara energiji od 511 keV (anihilacijski fotoni) prilagođena je Gaussova raspodjela, te su dobivene relativne rezolucije (slika 3.7).

Za optimalnu vrijednost broja točaka za integraciju signala s LSO detektora 1 i 2, uzeta je vrijednost od N = 120 točaka za oba detektora.

Slika 3.7: Optimalizacija broja točaka za integraciju signala (N).

3.3.3 Određivanje pragova za pojednine detektore

Kod određivanja pragova detektora bilo je važno da prag bude što niži kako se ne bi odbacili potencijalni signali malih energija koji dolaze od komptonskog raspršenja. Pragovi su određeni snimanjem signala sa svakog detektora posebno. Izvor ²²Na bio je prislonjen uz osjetljivu površinu detektora za koji je tražen prag za okidača. Zahtjevalo se da prag bude što manji, ali da bude dovoljno velik da ne detektira šum. Na slici 3.8 dan je primjer tri spektra vrijednosti integriranog signala dobivenih s detektora BaF₂ 19, za tri praga, -2.5 mV, -5 mV i -30 mV. Kod spektra dobivenog s pragom od -2.5 mV vidi se da dominira šum, dok je kod spektra s pragom od -30 mV odrezan priličan dio signala malih energija. Na temelju ovog principa određeni su pragovi za korištene detektore (tablica 3.3). Signali s detektora LSO 2 su približno dva puta jači od signala s LSO 1, stoga je i vrijednost praga za detektor LSO 2 dva puta veća.

Slika 3.8: Spektri vrijednosti integriranog signala dobivenih s detektora BaF_2 19 za pragove -2.5 mV (lijevo), -5 mV (sredina), i -30 mV (desno).

	prag
BaF_2 detektor 19	-15 mV
BaF_2 detektor 20	-15 mV
LSO detektor 1	-10 mV
LSO detektor 2	-20 mV

Tablica 3.3: Pragovi za prihvaćanje signala.

3.4 Kalibracija detektora

Kalibracija detektora napravljena je pomoću četiri radioaktivna izvora s dobro definiranim spektrom zračenja, ^{137}Cs , ^{60}Co , ^{22}Na i ^{241}Am (sheme raspada na slici 3.9). Kalibracija se radi kako bi se dobila veza između energije signala i integrirane vrijednosti napona dobivenog s detektora.

Slika 3.9: Sheme raspada radioaktivnih izvora korištenih za kalibraciju detektora [5].

Za svaki detektor napravljena su mjerenja signala dobivenih s izvorima ^{137}Cs , ^{22}Na , ^{60}Co i ^{241}Am direktno prislonjenim uz osjetljivu površinu detektora, te mjerenje pozadine, tj. signala koji se javljaju bez radioaktivnog izvora. Pozadina je normirana na vrijeme mjerenja snimanja podataka i oduzeta od svakog spektra dobivenog s radioaktivnim izvorom pomoću programa oduSum.C (dodatak B.3). U gornjem redu slike 3.10 prikazani su spektri vrijednosti integriranih signala dobivenih s detektora BaF₂ 19 prije oduzimanja (lijevo), te poslije oduzimanja šuma (desno). U donjem redu slike 3.10 prikazani su spektri vrijednosti integriranih signala dobivenih s detektora BaF₂ 19 prije oduzimanja (lijevo), te poslije oduzimanja ja juma (desno). U donjem redu slike 3.10 prikazani su spektri vrijednosti integriranih signala dobivenih s detektora LSO 1 prije oduzimanja (lijevo), te poslije oduzimanja šuma (desno). Korišteni radioaktivni izvor bio je ^{22}Na . Kod spektra dobivenog s LSO 1 detektora (prije oduzimanja pozadine) vidi se veliki doprinos pozadine koja dolazi od radioaktivnog izotopa lutecija. Kao što je spomenuto u poglavlju 3.1.3, osim direktnog mjerenja signala i oduzimanja pozadine, pozadina se može znatno potisnuti snimanjem koincidencija signala s dva ili više detektora. Na slici 3.11 prikazani je spektar vrijednosti integriranih signala dobivenih mjerenjem koincidencije signala s LSO 1 i LSO 2 detektora.

Prilagođavanjem zbroja Gaussove funkcije za opis foto vrhova i eksponencijalne funkcije za opis

Slika 3.10: Spektar signala s detektoru BaF₂ 19 (gornji red), te s detektora LSO 1, u slučaju kada je korišten izvor ^{22}Na . Lijevo, prije oduzimanja pozadine. Desno, nakon oduzimanja pozadine.

preostale pozadine ispod gausijana na vrhove u dobivenim spektrima (nakon oduzimanja pozadine) koji odgovaraju foto vrhovima poznatih energija, dobivene su srednje vrijednosti integriranog signala i pripadne standardne devijacije. Ovisnost energija gama zračenja iz radioaktivnih izvora o dobivenim srednjim vrijednostima položaja pripadnih vrhova u spektru prikazana je na slici 3.12. Šest foto vrhova korištenih za kalibraciju su (vrijednosti energija uzete iz [5]):

- foto vrh od americija ^{241}Am na energiji 59.5409 $1~{\rm keV}$
- foto vrhovi od natrija ^{22}Na na energijama 511.0 keV i 1274.537 $7~{\rm keV}$
- foto vrh od cezija ^{137}Cs na energiji 661.657 $\it 3~keV$
- foto vrh od kobalta ^{60}Co na energijama 1173.228 $\it 3$ keV i 1332.492 $\it 4$ keV

Slika 3.11: Spektar vrijednosti integriranih signala dobivenih mjerenjem koincidencije signala s LSO 1 (lijevo) i LSO 2 detektora (desno), dobivenih korištenjem radioaktivnog izvora ^{22}Na , smještenog između detektora.

Slika 3.12: Točke za kalibraciju, te prilagođeni kalibracijski pravci za svaki od korištenih detektora.

Na dobivenim točkama napravljena je linearna prilagodba, te su dobivene vrijednosti koeficijenata kalibracijskih pravaca (tablica 3.4).

Na slici 3.13 prikazani su kalibrirani energijski spektri dobiveni snimanjem koincidencija signala

LSO detektor 1	$A = (11.95 \pm 0.06) \cdot 10^{-3} \text{MeV}$	$B = (7 \pm 4) \cdot 10^{-3} \text{ MeV}$
LSO detektor 2	$A = (5.66 \pm 0.03) \cdot 10^{-3} \text{ MeV}$	$B = (8 \pm 5) \cdot 10^{-3} \text{ MeV}$
BaF_2 detektor 19	$A = (50.8 \pm 0.4) \cdot 10^{-3} \text{ MeV}$	$B = (-15 \pm 7) \cdot 10^{-3} \text{ MeV}$
BaF_2 detektor 20	$A = (47.6 \pm 0.5) \cdot 10^{-3} \text{ MeV}$	$B = (-27 \pm 10) \cdot 10^{-3} \text{ MeV}$

Tablica 3.4: Vrijednosti koeficijenata kalibracijskih pravaca (y = Ax + B), dobivenih za svaki od korištenih detektora.

s para detektora BaF₂ 19 i 20 (gornji red) te para detektora LSO 1 i 2, između kojih se nalazio radioaktivni izvor ${}^{22}Na$. Na svakom od spektara jasno se vidi anihilacijski vrh na 511 keV. Relativne energijske rezolucije na 511 keV su: BaF₂ detektor 19 R = 14%, BaF₂ detektor 20 R = 16%, LSO detektor 1 R = 17%, te LSO detektor 2 R = 16%.

Slika 3.13: Kalibrirani energijski spektri dobiveni s detektora, BaF_2 19 i 20 (gornji red), te LSO 1 i 2 (doljnji red). Snimane su koincidencije signala s parova detektora između kojih se nalazio radioaktivni izvor ²²Na. U gornjem redu, lijevo (kanal 1) prikazan je energijski spektar dobiven s BaF_2 detektora 19, dok je desno (kanal 3) prikazan energijski spektar dobiven s BaF_2 detektora 20. U donjem redu, lijevo (kanal 2) nalazi se spektar s LSO 1 detektora, te desno (kanal 4) spektar s LSO 2 detektora.

3.5 Postupak mjerenja

Princip mjerenja polarizacijskih korelacija između dva anihilacijska fotona opisan je u poglavlju 2.4. Za dobivanje anihilacijskih fotona korišten je radioaktivni izvor natrija, ²²Na. Kao raspršivači anihilacijskih fotona korišteni su BaF₂ detektori. Promatranjem koincidencije signala s dva BaF₂ detektora, postavljenih jedan nasuprot drugog, mogu se izdvojiti samo signali koji dolaze od anihilacijskih fotona. Detektiranje komptonski raspršenih fotona rađeno je pomoću LSO detektora, postavljenih tako da hvataju fotone raspršene pod kutem od 90°. Promatranjem broja raspršenih fotona, detektiranih u LSO detektorima kada su postavljeni u istoj ravnini i u okomitim ravninama, trebao bi se dobiti očekivani omjer asimetrije $\rho_1 = 2.6$ (formula 2.13), odnosno ako se uzme u obzir konačna geometrija raspršivača i detektora za detekciju raspršenih fotona prikladno modificiran omjer asimetrije (prema grafu danom na slici 2.7). Broj fotona komptonski raspršenih i detektiranih u LSO detektorima dobiva se promatranjem četverostrukih koincidencija, koincidencija signala sa sva četiri korištena detektora te primjenom odgovarajućih uvjeta (cut-ova) na energije signala i na razlike u vremenu dolaska signala na detektore.

Odabir BaF₂ detektora kao detektora za detekciju i raspršivanje anihilacijskog zračenja temeljen je na njegovom kratkom vremenu odgovora i većoj propusnosti gama zračenja. Kratko vrijeme odgovora je bilo važno zbog što boljeg određivanja koincidencije signala (od anihilacijskog zračenja) dobivenih s detektora 19 i detektora 20, dok je veća propusnost bila važna zbog potrebe da komptonski raspršeno gama zračenje izađe iz detektora.

Traženje četverostrukih koincidencija rađeno je na podacima dobivenim mjerenjem trostrukih koincidencija, koincidencija signala s dva detektora raspršivača (BaF₂ detektori 19 i 20) te signala s jednog od detektora za detekciju komptonski raspršenih fotona (LSO 1). Zbog vrlo malog broja četverostrukih koincidencija bilo je potrebno snimati podatke samo kada se na tri detektora pojavi signal. Kada su snimani podaci s uvjetom na koincidenciju signala samo s dva detektora raspršivača, datoteke su bile prevelike, te je analiza podataka trajala predugo.

3.5.1 Geometrijske konfiguracije

Mjerenja su rađena s dvije različite konfiguracije, konfiguracije A i B prikazane na slici 3.14. BaF₂ detektori postavljeni su jedan nasuprot drugog kako bi hvatali dvije anihilacijske gama zrake emitirane pod kutem od 180°. Za detektiranje komptonski raspršenih gama zraka u BaF₂, korišteni LSO detektori, postavljeni su pod 90° u odnosu na BaF₂ detektore. U konfiguraciji A (slika 3.14 lijevo), detektor LSO 1 koji je korišten kao jedan od okidača za trostruku koincidenciju, smješten je s jedne strane detektora BaF₂ 19. Položaj drugog detektora za detekciju raspršenih fotona, LSO 2, mijenjan je tako da zatvara kuteve od $\phi = 0^\circ$, 45°, 90°, 135° i 180° s detektora DSO 1. U konfiguraciji B (slika 3.14 desno), detektor LSO 1 postavljen je na suprotnu stranu detektora BaF₂ 19. U ovoj konfiguraciji napravljena su mjerenja za tri položaja LSO 2 detektora, s kutevima između detektora LSO 1 i LSO 2 $\phi = 90^\circ$, 135° i 180°. U tablici 3.5 nabrojana su mjerenja napravljena u konfiguracijama A i B.

Korištene su dvije konfiguracije da bi se dobilo više mjerenja i time smanjile eventualne sistematske pogreške. Na slici 3.14 vidi se da su mjerenja u konfiguraciji A, u slučaju kada je kut između

Slika 3.14: Konfiguracije za mjerenje polarizacijskih korelacija anihilacijskih fotona. Lijevo, konfiguracija A, za fiksirane detektore BaF₂ 19 i 20, te LSO 1, mijenjan je položaj detektora LSO 2, tako da je kut koji zatvaraju detektori LSO 1 i 2 išao od vrijednosti $\phi = 0^{\circ}$ (tamniji crveni cilindar) pa sve do $\phi = 180^{\circ}$. Desno, konfiguracija B, za fiksirane detektore BaF₂ 19 i 20, te LSO 1, mijenjan je položaj detektora LSO 2, tako da je kut koji zatvaraju detektori LSO 1 i 2 išao od vrijednosti $\phi = 0^{\circ}$ (tamniji crveni cilindar) pa sve do $\phi = 180^{\circ}$. 2, tako da je kut koji zatvaraju detektori LSO 1 i 2 išao od vrijednosti $\phi = 90^{\circ}$ do $\phi = 180^{\circ}$ (tamniji crveni cilindar).

konfiguracija A	$\phi = 0^{\circ}$	$\phi = 45°$	$\phi = 90^{\circ}$	$\phi = 135^{\circ}$	$\phi = 180^{\circ}$
konfiguracija B			$\phi = 90^{\circ}$	$\phi = 135^{\circ}$	$\phi = 180^{\circ}$

Tablica 3.5: Mjerenja u konfiguracijama A i B. Za sva mjerenja kut θ bio je 90°.

LSO detektora $\phi = 90^{\circ}, 135^{\circ} i 180^{\circ}$, identična onima u konfiguraciji B, s kutem $\phi = 90^{\circ}, 135^{\circ} i 180^{\circ}$. Zbog toga se rezultati dobiveni za ova tri slučaja u konfiguracijama A i B, mogu tretirati kao nezavisna mjerenja iste konfiguracije. Srednja vrijednost nezavisnih mjerenja dobiva se težinskim zbajanjem dobivenih rezultata.

Sto se tiče mjerenja u istoj konfiguraciji za različite kutove, prema Klein-Nishina formuli, trebao bi se dobiti isti broj raspršenih fotona za kutove $\phi = 45^{\circ}$ i 135°, te za kutove $\phi = 0^{\circ}$ i 180°. Do toga ne dolazi zbog načina simanja signala. Uvjet za snimanje signala je trostruka koincidencija signala s detektora BaF₂ 19 i 20, te detektora LSO 1. Zbog vrlo malog srednjeg slobodnog puta raspršenih fotona u materijalu BaF₂, većina detektiranih fotona dolazi od onih fotona koji su se raspršili u detektoru BaF₂ 19 u blizini LSO 1 detektora. Anihilacijski foton, koji dolazi iz iste anihilacije, upada u detektor BaF₂ 20 na suprotnu stranu od one na kojoj je LSO 2 detektor, u slučaju kada je kut između LSO detektora $\phi = 0^{\circ}$, dok u slučaju kada je kut između LSO detektora $\phi = 180^{\circ}$, upada na detektor u blizini LSO 2 detektora, jako utječe na vjerojatnost detekcije raspršenog fotona u detektoru LSO 2. Kao što se vidi na slici 3.15, kada je kut fi između LSO detektora 0°, raspršeni foton mora prijeći puno duži put da bi izašao iz detektora BaF₂ 20. Zbog toga se očekuje puno veći broj četverostrukih koincidencija u slučaju kada je kut između LSO detektora $\phi = 180^{\circ}$. Isto vrijedi i za kutove $\phi = 45^{\circ}$ i 135°, samo što bi razlika u broju trebala biti manja, zbog manje razlike u putevima.

Slika 3.15: Put koji raspršeni foton mora proći da bi izašao iz detektora BaF₂ 19, odnosno 20. Lijevo, u slučaju kada je kut između LSO detektora $\phi = 0^{\circ}$. Desno, u slučaju kada je kut između LSO detektora $\phi = 180^{\circ}$.

3.5.2 Utjecaj odabira geometrije na očekivani iznos omjera asimetrije

Isprobane su razne udaljenosti između detektora, te je odabrana udaljenost od 3 cm između BaF₂ detektora i LSO detektora, te udaljenost od 5 cm od BaF₂ detektora do izvora (slika 3.16). Idealno bi bilo izvor staviti u kolimator, imati što manje promjere cilindričnog detektora raspršivača te što manji kut koji pokriva detektor za detekciju raspršenih fotona. Kao alternativa izboru veličine detektora mogu se povećati udaljenosti (čime će se smanjiti mogući smjerovi upadnih fotona na raspršivač, te kutovi koje pokriva detektor za detekciju raspršenih fotona). Zbog male akceptancije i efikasnosti detektora, dobiva se mali broj četverostrukih koincidencija. Iako se za veće udaljenosti dobiva veća asimetrija ρ_1 (omjer broja četverostrukih koincidencija za kut između LSO detektora $\phi = 90^{\circ}$ i $\phi = 0^{\circ}$ ili $\phi = 180^{\circ}$), da bi se dobila dovoljna statistika potrebno je bilo izabrati što manje udaljenosti.

Slika 3.16: Udaljenosti detektora. Konfiguracija A s kutem između LSO detektora $\phi = 180^{\circ}$.

Odabrane udaljenosti detektora te dimenzije detektora određuju konačnu geometriju potrebnu za popravak omjera asimetrije.

Ako se uzme kao srednja vrijednost položaja, u kojem dolazi do komptonskog raspršenja fotona,

središte BaF₂ detektora, efektivni poluraspon azimutalnog kuta koji zatvara LSO detektor, može se izračunati iz udaljenosti središta BaF₂ detektora i krajeva LSO detektora (slika 3.17 lijevo). Za veći poluraspon dobiva se vrijednost od $\alpha_1 = 18^\circ$, dok za manji poluraspon vrijednost $\alpha_2 = 14^\circ$. Za efektivni poluraspon azimutalnog kuta koji zatvara LSO detektor može se uzeti srednja vrijednost ovih dvaju poluraspona $\alpha = 16^\circ$. Efektivni poluraspon kuta raspršenja, zbog simetrije cilindričnog detektora, je isti. Prema grafu na slici 2.7 omjer asimetrije za korištenu geometriju iznosi $\rho_1 = 2.3$.

Slika 3.17: Lijevo: efektivni poluraspon azimutalnog kuta koji pokriva LSO detektor kada je za srednju vrijednost položaja, u kojem dolazi do komptonskog raspršenja fotona, uzeto središte BaF_2 detektora. Desno, azimutalni kut koji pokriva LSO detektor kada je za srednju vrijednost položaja, u kojem dolazi do komptonskog raspršenja fotona, uzeta točka dobivena integracijom vjerojatnosti komptonskog raspršenja anihilacijskog fotona po dubini detektora BaF_2 te integracijom vjerojatnosti da komptonski raspršen foton izađe iz BaF_2 detektora po dužini detektora BaF_2 .

Za srednju vrijednost položaja, u kojem dolazi do komptonskog raspršenja fotona, može se uzeti i točka dobivena integracijom vjerojatnosti komptonskog raspršenja anihilacijskog fotona po dubini detektora BaF_2 , te integracijom vjerojatnosti da komptonski raspršen foton izađe iz BaF_2 detektora po dužini detektora BaF_2 .

Neka je koordinatni sustav postavljen tako da se detektori BaF₂ nalaze na z-osi, a detektor LSO 1 paralelno s y-osi. Vjerojatnost da se anihilacijski foton komptonski raspršio nakon što je prešao duljinu z duž z-osi u BaF₂ detektoru, opisana je (prema formuli 2.4) s $P_C = 1 - \exp(-\mu_C z)$, gdje je μ_C linearni atenuacijski koeficijent komptonskog raspršenja. Linearni atenuacijski koeficijent ovisi o energiji fotona, te o vrsti materijala. Energija anihilacijskih fotona iznosi 511 keV, pa linearni atenuacijski koeficijent za komptonsko raspršenje u materijalu BaF₂ iznosi $\mu_C = 0.3516 \, cm^{-1}$ [8]. Srednja vrijednost prijeđenog puta fotona prije nego se rasprši iznosi:

$$\overline{z} = \frac{\int_0^{2.35} dz \, z \, \left(1 - \exp\left(-\mu_C \, z\right)\right)}{\int_0^{2.35} dz \, \left(1 - \exp\left(-\mu_C \, z\right)\right)} = 1.52 \, cm$$

gdje je za maksimalni prijeđeni put uzeta vrijednost debljine cilindričnog BaF_2 detektora.

Ako se ishodište postavi na položaj izvora, z koordinata točke koja označava srednju vrijednost položaja u kojem dolazi do komptonskog raspršenja fotona u BaF_2 detektoru, iznosi 6.52. Za

određivanje v koordinate potrebno je naći srednju vrijednost udaljenosti koju prijeđe komptonski raspršeni foton a da se ne rasprši ili apsorbira (raspršeni foton mora izaći iz BaF₂ detektora). Vjerojatnost da foton ne interagira s materijom nakon prijeđenog puta y, dana je s (formula 2.4) $P = \exp(-\mu_{uk} y)$, gdje je μ_{uk} ukupni linearni atenuacijski koeficijent. Kako linearni atenuacijski koeficijent ovisi o energiji fotona, potrebno je poznavati vrijednost energije raspršenog fotona. Energija fotona raspršenog pod kutem θ dana je s formulom 2.7, iz čega slijedi da, ako je energija fotona prije raspršenja 511 keV (m_ec^2), te kut raspršenja $\theta = 90^\circ$, energija raspršenih fotona iznosi 255.5 keV. Budući da je fotonu ostala polovica početne energije, elektron na kojem se foton raspršio dobio je drugu polovicu početne energije fotona (255.5 keV). Ukupni linearni atenuacijski koeficijent za fotone energije 255.5 keV, u materijalu BaF₂, iznosi $\mu_{uk} = 1.0643 \, cm^{-1}$ [8]. Srednja vrijednost udaljenosti koju će prijeći foton a da se ne rasprši iznosi:

$$\overline{y} = \frac{\int_0^{3.5} dy \, y \, \exp\left(-\mu_{uk} \, y\right)}{\int_0^{3.5} dy \, \exp\left(-\mu_{uk} \, y\right)} = 0.85 \, cm$$

gdje je za maksimalni prijeđeni put uzeta vrijednost dijametra cilindričnog BaF₂ detektora.

Koordinate točke koja označava srednju vrijednost položaja u kojem dolazi do komptonskog raspršenja fotona u BaF₂ detektoru su (0, -0.9, 6.52). Na slici 3.17 desno prikazan je slučaj traženja efektivnog poluraspona azimutalnog kuta koji zatvara LSO detektor iz položaja dobivene točke i krajeva LSO detektora. Za azimutalni kut koji zatvara LSO detektor, dobije se vrijednost od $\beta = 38^{\circ}$. Iz čega slijedi da je efektivni poluraspon azimutalnog kuta koji zatvara LSO detektor $\alpha = 19^{\circ}$. Ista vrijednost uzeta je i za efektivni poluraspon kuta raspršenja. Prema grafu na slici 2.7 omjer asimetrije za korištenu geometriju iznosi $\rho_1 = 2.1$.

3.5.3 Odabir događaja

Za dobivanje broja fotona komptonski raspršenih i detektiranih u LSO detektorima, na snimljene podatke dobivene trostrukom koincidencijom signala s detektora BaF_2 19 i 20 i s detektora LSO 1, primjenjeni su razni uvjeti (cut-ovi) na energije signala i na razlike u vremenu dolaska signala na detektore.

Uvjeti na energije i razlike u vremenu dolaska na detektor su isti za par detektora BaF_2 19 i LSO 1 te za par detektora BaF_2 20 i LSO 2. Energije koje je anihilacijski foton ostavio u detektorima BaF_2 19 i 20 označene su s el i e3, dok su energije koje je raspršeni foton ostavio u detektorima LSO 1 i 2 označene s e2 i e4. Uvjeti za par detektora 19 i 1 su sljedeći :

- $e1 > 0 \, keV$ signal se pojavio u detektoru BaF₂ 19
- $e1 < 400 \, keV$ upadni anihilacijski foton nije predao svu energiju u BaF₂ detektoru, već je izašao iz detektora, najvjerojatnije komptonski se raspršivši
- $e2 > 50 \, keV$ signal se pojavio u detektoru LSO 1
- $e2 < 500 \, keV$ foton koji je došao na LSO detektor nije stigao direktno iz izvora, nego je negdje prvo izgubio energiju

- $e1 + e2 > 410 \, keV$ odbacuje višestruka komptonska raspršenja
- $e1 + e2 < 600 \, keV$ vrijednost zbroja energija manja od srednje vrijednosti $+3\sigma$
- abs(t1 t2 + 3.2 ns) < 2 ns što uzima u obzir koincidenciju događaja (raspršeni foton detektira se prosječno 3.2 ns nakon anihilacijskog fotona)

Slika 3.18: Energijski spektri signala dobivenih s četiri korištena detektora. Spektri s BaF_2 detektora 19 i 20 prikazani su na dvije gornje slike (lijevo detektor 19, desno detektor 20). Spektri s detektora LSO 1 i 2 prikazani su na dvije doljnje slike (lijevo detektor 1, desno detektor 2). Uvjeti na energije signala dani su iznad svakog histograma.

Na slici 3.18 prikazani su energijski spektri dobiveni s detektora BaF_2 19 i 20 (gore), te detektora LSO 1 i 2 (dolje), u slučaju kada se signal pojavi na detektoru, te kada je energija signala manja od 700 keV. Na slici se vidi značajna razlika u spektrima za detektore 19 i 20. Do razlike dolazi zbog načina snimanja podataka, uvjet na snimanje je bila trostruka koincidencija signala s detektora 19, 20 te detektora 1. Znači, detektor 19 snima podatke samo kada se i na detektoru LSO 1 pojavi signal, tj. kada se detektirani foton komptonski rasprši i izađe iz detektora. Na energijskim spektrima s detektora 19 i 1 vidi se očekivani vrh na 255 keV koji odgovara energiji komptonski raspršenog anihilacijskog fotona (u detektoru LSO1), te energiji elektrona na kojem se foton komptonski raspršio (u detektoru BaF₂ 19). Što se tiče energijskog spektra dobivenog s

detektora LSO 2 (e4), također se vidi vrh na 255 keV, ali je broj događaja znatno manji, jer se uvjetom da je e4 > 0 dobiva četverostruka koincidencija (snimane su trostruke koincidencije).

Slika 3.19: Uvjeti na energije i vrijeme dolaska signala na detektore.

Energijski spektri s primjenjenim gore navedenim uvjetima prikazani su na slici 3.19. U prvom redu prikazani su spektri dobiveni zbrajanjem energija s BaF₂ detektora 19 (e1) i LSO detektora 1 (e2) te zbrajanjem energija s BaF₂ detektora 20 (e3) i LSO detektora 2 (e4), uz uvjete da se foton komptonski rasprši u detektoru raspršivaču ($e1 < 400 \, keV$), izađe iz njega i detektira se u detektoru za detekciju raspršenih fotona ($e2 < 500 \, keV$). Zbrajanjem energija ostavljenih u ovim parovima detektora, dobio se očekivani vrh na 500 keV. U drugom redu slike 3.19, na spektre iz prijašnjeg reda dodana su još dva uvjeta: uvjet da se foton samo jednom komptonski rasprši u detektoru raspršivaču ($e1 + e2 < 410 \, keV$) te uvjet da je gornja granica energije na 3σ od srednje vrijednosti položaja vrha. U zadnjem redu slike 3.19, na prijašnje uvjete dodan je još i uvjet na razliku u vremenu dolaska signala na detektor raspršivač te na detektor za detekciju raspršenih fotona (abs (t1 - t2 + 3.2) < 2).

Primjenom svih navedenih uvjeta, i za par BaF_2 19 i LSO 1, i za par BaF_2 20 i LSO 2, dobiva se broj 'dobrih' događaja, tj. broj anihilacijskih fotona koji su se komptonski raspršili pod odgovarajućim kutem. U slučaju podataka snimljenih u mjerenju korištenom za dobivanje energijskih spektara prikazanih na slici 3.19, dobiva se vrijednost od 122 dobra događaja, u ukupno snimljenih 135 526 trostrukih koincidencija.

4 Rezultati

Ukupno je napravljeno osam mjerenja, pet u konfiguraciji A, te tri u konfiguraciji B. Za svako mjerenje skupljen je različiti broj trostrukih koincidencija. Postavljanjem energijskih i vremenskih uvjeta na signale snimljene na 4 korištena detektora, tražio se broj anihilacijskih fotona komptonski raspršenih i detektiranih u detektorima LSO 1 i 2.

Iz broja četverostrukih koincidencija (dobrih događaja), dobivenih nakon primjene opisanih uvjeta na snimljene podatke, izračunat je broj četverostrukih koincidencija u 10 000 snimljenih trostrukih koincidencija. Na slici 4.1 prikazana je ovisnost broja dobrih događaja u 10 000 trostrukih koincidencija o kutu između LSO detektora (ϕ). U tablici 4.1 dane su za svako mjerenje vrijednosti dobivenog apsolutnog broja dobrih događaja (n) u ukupnom broju snimljenih događaja (trostrukih koincidencija) (N), te broj dobrih događaja u 10 000 trostrukih koincidencija (x).

Slika 4.1: Rezultati dobiveni za osam merenja. Pet mjerenja u kofiguraciji A, $(\phi = 0^{\circ}, 45^{\circ}, 90^{\circ}, 135^{\circ}, \text{te } 180^{\circ})$, te tri mjerenja u konfiguraciji B, $(\phi = 90^{\circ}, 135^{\circ}, \text{te } 180^{\circ})$. Prikazana je ovisnost broja dobrih događaja, u 10 000 trostrukih koincidencija, x, o kutu između LSO detektora, ϕ . Za svaku točku, nacrtana je statistička pogreška, koja je uzeta kao korijen iz apsolutnog broja dobrih događaja, i skalirana na 10 000 trostrukih koincidencija.

Podaci dobiveni u konfiguraciji A s kutovima $\phi = 90^{\circ}$, 135°, i 180°, mogu se težinski zbrojiti s podacima dobivenim u konfiguraciji B s kutovima $\phi = 90^{\circ}$, 135°, i 180° (identična mjerenja, poglavlje 3.5.1). Težinskim zbrajanjem broja dobrih događaja x za kutove $\phi = 90^{\circ}$, 135°, i 180° dobivenih u konfiguracijama A i B dobivaju se sljedeće srednje vrijednosti i pripadne statističke pogreške ovih mjerenja (slika 4.2):

- za kut $\phi = 90^{\circ}$ dobiva se vrijednost $x_{90} = (8.6 \pm 0.5)$
- za kut $\phi = 135^{\circ}$ dobiva se vrijednost $x_{135} = (7.0 \pm 0.5)$
- za kut $\phi = 180^{\circ}$ dobiva se vrijednost $x_{180} = (5.7 \pm 0.5)$

		N	n	x
$\phi = 0^{\circ}$	konfig. A	157185	(54.0 ± 7.4)	(3.4 ± 0.5)
$\phi = 45^{\circ}$	konfig. A	157737	(89.0 ± 9.4)	(5.6 ± 0.6)
$\phi = 90^{\circ}$	konfig. A	135526	(122 ± 11)	(9.0 ± 0.8)
$\psi = 50$	konfig. B	152600	(125 ± 11)	(8.2 ± 0.7)
$\phi = 135^{\circ}$	konfig. A	108741	(88.0 ± 9.4)	(8.1 ± 0.9)
$\psi = 150$	konfig. B	154339	(93.0 ± 9.6)	(6.0 ± 0.6)
$\phi = 180^{\circ}$	konfig. A	112273	(61.0 ± 7.8)	(5.4 ± 0.7)
$\psi = 100$	konfig. B	158568	(94.0 ± 9.7)	(5.9 ± 0.6)

Tablica 4.1: Rezultati dobiveni za osam merenja. Pet mjerenja u kofiguraciji A, $(\phi = 0^{\circ}, 45^{\circ}, 90^{\circ}, 135^{\circ}, \text{te } 180^{\circ})$, te tri mjerenja u konfiguraciji B, $(\phi = 90^{\circ}, 135^{\circ}, \text{te } 180^{\circ})$. N predstavlja ukupan broj snimljenih događaja (trostruka koincidencija), n broj četverostrukih koincidencija, te x broj četverostrukih koincidencija u 10 000 trostrukih koincidencija.

Slika 4.2: Ovisnost broja dobrih događaja u 10 000 trostrukih koincidencija, x, o kutu između LSO detektora, ϕ . Crne točke prikazuju iste vrijednosti kao i u grafu na slici 4.1 (vrijednosti dobivene u konfiguraciji A za kuteve $\phi = 0^{\circ}$ i 45°). Plave točke prikazuju srednje vrijednosti dobivene težinskim zbrajanjem vrijednosti dobivenih u konfiguracijama A i B. Za svaku točku na grafu, nacrtana je i pripadna statistička pogreška.

Iz podataka danih u tablici 4.1, vidi se da je dobivena razlika u broju dobrih događaja u konfiguraciji A za kuteve $\phi = 0^{\circ}$ i 180°, te za kuteve $\phi = 45^{\circ}$ i 135°. Obzirom da se očekuje simetrija u navedenim kutevima, ova razlika može se smatrati kao sistematska pogreška korištenog mjernog postava (poglavlje 3.5.1).

Za konačne vrijednosti broja dobrih događaja u 10 000 trostrukih koincidencija dobivene su sljedeće srednje vrijednosti, te pripadajuće statističke i sistematske pogreške (prva pogreška je statistička, druga sistematska) (slika 4.3):

- za kut $\phi = 90^{\circ}$ vrijednost ostaje $x_{90} = (8.6 \pm 0.5 \pm 0)$
- za kut $\phi = 45^{\circ}$ dobiva se vrijednost $x_{45} = (6.3 \pm 0.4 \pm 0.7)$

• za kut $\phi = 0^{\circ}$ dobiva se vrijednost $x_0 = (4.6 \pm 0.3 \pm 1.2)$

Slika 4.3: Ovisnost broja dobrih događaja u 10 000 trostrukih koincidencija, x, o kutu između LSO detektora, ϕ . Prikazane vrijednosti broja dobrih događaja dobivene su uzimanjem srednje vrijednosti broja dobrih događaja dobivenih u konfiguraciji A za kut $\phi = 0^{\circ}$ (odnosno 45°), te srednjeg broja dobrih događaja za kut $\phi = 180^{\circ}$ (odnosno 135°). Crnom bojom prikazane su statističke pogreške, dok su crvenom bojom prikazane sistematske pogreške.

Iz ovih vrijednosti slijedi da dobiveni omjer asimetrije iznosi $\rho_1^{exp} = (1.9 \pm 0.2 \pm 0.5).$

Omjer asimetrije za idealnu geometriju iznosi 2.6 (poglavlje 2.4). Ako se uzmu u obzir popravke zbog konačne geometrije, omjer se smanji na vrijednost 2.1 (poglavlje 3.5.2). Eksperimentalno je dobivena vrijednost omjera asimetrije, koja se slaže s očekivanom vrijednosti asimetrije za korištenu konačnu geometriju, unutar statističke i sistematske pogreške.

Dva dodatna omjera koja se mogu odrediti iz napravljenih mjerenja su omjeri $\rho_2^{exp} = \frac{x_{45}}{x_0} = (1.4 \pm 0.1 \pm 0.4)$, te $\rho_3^{exp} = \frac{x_{90}}{x_{45}} = (1.4 \pm 0.1 \pm 0.2)$. Odgovarajući teorijski omjeri za idealnu geometriju iznose $\rho_2 = 1.8$, te $\rho_3 = 1.4$. Dobivena vrijednost omjera ρ_3^{exp} slaže se s teorijskom vrijednosti omjera za idealnu geometriju, dok se teorijska vrijednost omjera za idealnu geometriju ρ_2 nalazi unutar sistematske pogreške eksperimentalno dobivene vrijednosti ρ_3^{exp} . Na temelju korekcije za konačnu geometriju za ρ_1 , može se i ovdje očekivati razlika od ~ 20%.

5 Zaključak

U ovom radu, na primjeru jednostavnog eksperimentalnog postava, koji se sastojao od 4 scintilacijska detektora te digitalizatora impulsa DRS4, ispitivane su polarizacijske korelacije anihilacijskih fotona dobivenih anihilacijom pozitrona iz radioaktivnog izvora ^{22}Na . Ispitivanje polarizacijskih korelacija rađeno je tako što su snimane trostruke koincidencije, koincidencije signala s dva detektora raspršivača i s jednog detektora za detekciju komptonski raspršenih fotona. Od snimljenih trostrukih koincidencija naknadnom analizom odabrane su četverostruke koincidencije, koincidencije signala sa sva četiri korištena detektora, koje zadovoljavaju uvjete komptonskog raspršenja. Za provjeru postojanja polarizacijskih korelacija tražio se omjer broja raspršenih fotona pod različitim azimutalnim kutovima.

Eksprimentalno su dobiveni sljedeći omjeri asimetrije: $\rho_1^{exp} = (1.9 \pm 0.2 \pm 0.5), \quad \rho_2^{exp} = (1.4 \pm 0.1 \pm 0.1), \quad \text{te} \quad \rho_3^{exp} = (1.4 \pm 0.1 \pm 0.2), \quad \text{gdje} \quad \rho_1^{exp} \text{ predstavlja omjer broja parova anihilacij-skih fotona koji su se raspršili okomito jedan u odnosu na drugog te broja parova anihilacijskih fotona raspršenih paralelno jedan u odnosu na drugog. Omjer <math>\rho_2^{exp}$ predstavlja omjer broja parova anihilacij-skih fotona koji su se raspršili pod međusobnim kutem od 45° te broja parova anihilacij-skih fotona raspršenih paralelno jedan u odnosu na drugog. Omjer ρ_3^{exp} predstavlja omjer broja parova anihilacij-skih fotona raspršenih paralelno jedan u odnosu na drugog. Omjer ρ_3^{exp} predstavlja omjer broja parova anihilacij-skih fotona koji su se raspršili okomito jedan u odnosu na drugog. Omjer ρ_3^{exp} predstavlja omjer broja parova anihilacij-skih fotona koji su se raspršili okomito jedan u odnosu na drugog te broja parova anihilacijskih fotona koji su se raspršili okomito jedan u odnosu na drugog te broja parova anihilacijskih fotona koji su se raspršili okomito jedan u odnosu na drugog te broja parova anihilacijskih fotona koji su se raspršili okomito jedan u odnosu na drugog te broja parova anihilacijskih fotona koji su se raspršili okomito jedan u odnosu na drugog te broja parova anihilacijskih fotona raspršenih pod međusobnim kutem od 45°. Slaganjem eksperimentalno dobivenih omjera asimetrije s predviđenim teorijskim omjerima, pokazano je da se polarizacijske korelacije mogu mjeriti i pomoću ovako jednostavnog mjernog postava. Bolji rezultati mogli bi se dobiti stavljanjem izvora u kolimator te optimalizacijom geometrijske konfiguracije.

Mjerenje polarizacijskih korelacija je interesantno i važno jer potencijalno može biti korisno u primjenama poput PET-a[1, 2].

A Dodatak: Primjer zapisa u binarni format

Primjer binarne datoteke u koju DRS4 digitalizator sprema oscilograme. U danom primjeru su dva od ukupno 4 kanala uključena.

Word	Byte 0	Byte 1	Byte 2	Byte 3	Contents	
0	۲٢	۲۱٬	۲Μ٬	'E'	Time Header	
1	`B' `‡'		Board number		Board serial number	
2	101	107	101	111	Channel 1 header	
3		Time Bin	Width #0	•		
4		Time Bin	Width #1		Effective time bin width in ns for channel 1 encoded in 4-Byte floating point format	
1026		Time Bin W	Vidth #1023]	
1027	1C7	107	107	121	Channel 2 header	
1028		Time Bin	Width #0			
1029		Time Bin	Width #1		Effective time bin width in ns for	
					floating point format	
2051		Time Bin W	idth #1023			
2052	`E'	`H'	יםי	'R'	Event Header	
2053		Event Ser:	ial Number		Serial number starting with 1	
2054	Year		Month			
2055	Da	ау	Hour		Event date/time 16-bit values	
2056	Min	ute	Second		Event date time 10-on values	
2057	Milli	second	rese	rved	1	
2058	`B '	`#'	Board	number	Board serial number	
2059	۲٢	`#'	Trigge	r cell	Number of first readout cell	
2060	`C'	101	101	111	Channel 1 header	
2061	Voltage	Bin ‡0	Voltage	Bin ‡1		
2062	Voltage	Bin ‡2	Voltage	Bin ‡3	Channel 1 waveform data encoded	
					65535=+0.5V	
2572	Voltage 1	Bin ‡ 1022	Voltage Bin \$1023			
2573	1C1	101	101	<u>`2'</u>	Channel 2 header	
2574	Voltage	Bin ‡0	Voltage Bin ‡1			
2575	575 Voltage Bin #2		Voltage Bin ‡3 		Channel 2 waveform data encoded in 2-Byte integers. 0=-0.5V and 65535=+0.5V	
3085	Voltage 1	Bin # 1022	Voltage Bin #1023		1	
3086	`E'	`H'	יםי	'R'	Next Event Header	
					1	

Slika A.1: Binarna datoteka. Preuzeto iz [17].

B Dodatak: Programi

B.1 Program za čitanje binarne datoteke

Program *read_binaryP.C* čita podatke zapisane u binarnoj datoteci, te ih sprema u root datoteku. Program je napravljen po uzoru na program read_binary.C priložen u dokumentaciji dobivenoj s drs4 software-om.

```
1
   #include <stdio.h>
\mathbf{2}
   #include <fcntl.h>
3
   #include <unistd.h>
   \#include <string.h>
 4
5
   #include <math.h>
   #include "TROOT.h"
6
   #include "TFile.h"
7
   #include "TTree.h"
8
9
   #include <TString.h>
10
   #include <iostream>
11
12
    typedef struct {
13
       char
                       time header [4];
14
       char
                       bn [2];
15
       unsigned short board_serial_number;
16
    } THEADER;
17
    typedef struct {
18
19
                       event header [4];
       char
20
       unsigned int
                       event serial number;
21
       unsigned short year;
22
       unsigned short month;
23
       unsigned short day;
24
       unsigned short hour;
25
       unsigned short minute;
26
       unsigned short second;
27
       unsigned short millisecond;
28
       unsigned short range;
29
       char
                       bs [2];
30
       unsigned short board serial number;
31
       char
                        tc [2];
32
       unsigned short trigger cell;
33
    } EHEADER;
34
35
   int read_binaryP(const char inFile[], char outFile[]) {
36
37
       THEADER th;
38
       EHEADER eh;
       char hdr [4];
39
40
       unsigned short voltage [1024];
41
       double waveform [4] [1024];
42
       float bin width [4] [1024];
43
       int i, j, ch, n, chn_index;
       int nCh; // broj detektiranih kanala
44
       UInt t s;
45
46
       Double_t tw [4] [1024], vol [4] [1024];
       UInt_t trig_cell;
47
48
       // open the binary waveform file
49
50
       FILE *fIn = fopen(Form("\%s", inFile), "r");
       if (fIn == NULL) {
51
          printf("Cannot find file \'%s\'\n", inFile);
52
53
          return 0;
```

```
54
        }
 55
        TFile *fOut = new TFile(Form("%s.root", outFile), "RECREATE");
        TTree * dat = new TTree("data", "dat");
 56
        TTree *timew = new TTree("twidth","timew");
 57
        dat->Branch("serial", &s, "s/i");
 58
        dat \rightarrow Branch("triggercell", &trig_cell, "trig_cell/i");
 59
 60
        // read time header
 61
        fread(\&th, sizeof(th), 1, fIn);
 62
        printf("\n Found data for board #%d\n", th.board serial number);
 63
 64
 65
        // read time bin widths
 66
        memset(bin width, sizeof(bin width), 0);
 67
        for (ch=0 ; ch<5 ; ch++) {
 68
           fread(hdr, sizeof(hdr), 1, fIn);
 69
           if (hdr[0] != 'C') {
 70
               // event header found
 71
              fseek(fIn, -4, SEEK CUR);
 72
              break;
 73
           i = hdr[3] - '0' - 1;
 74
 75
           printf("Found timing calibration for channel \# d \in , i+1);
 76
           fread(&bin width[i][0], sizeof(float), 1024, fIn);
        }
 77
        nCh = i+1;
 78
 79
        printf("broj detektiranih kanal %d\n", nCh);
 80
 81
        for (int k=1; k <= nCh; k++) {
 82
 83
          char tName [4];
 84
          char t Desc [12];
 85
 86
          char tNameTmp[4] = "t0";
 87
          strcpy(tName, tNameTmp);
 88
          tName[1] = '0' + k;
 89
          char tDescTmp[12] = "t0[1024]/D";
 90
 91
          strcpy(tDesc, tDescTmp);
 92
          t D e s c [1] = '0' + k;
 93
 94
          timew \rightarrow Branch(tName, (Double t*) \&tw[k-1], tDesc);
 95
        }
96
 97
        for (int k=1; k <= nCh; k++) {
98
99
          char chName [4];
100
          char chDesc[12];
101
102
          char chNameTmp[4] = "ch0";
103
          strcpy(chName, chNameTmp);
104
          chName[2] = ,0, + k;
105
          char chDescTmp[12] = "ch0[1024]/D";
106
107
          strcpy(chDesc, chDescTmp);
          chDesc[2] = 0, + k;
108
109
110
          dat \rightarrow Branch(chName, (Double t*) \&vol[k-1], chDesc);
111
        }
112
        //stavlja u root bin\_width
113
114
        for (ch=0 ; ch<nCh ; ch++)
115
          for (i=0; i<1024; i++) {
```

```
116
            tw[ch][i] = (Double_t)bin_width[ch][i];
            }
117
118
119
        timew \rightarrow Fill();
120
121
        // loop over all events in the data file
        for (n=0; n++) {
122
            // read event header
123
            i = (int) fread(\&eh, sizeof(eh), 1, fIn);
124
125
            if (i < 1)
126
               break;
127
128
            \mathbf{if}(\mathbf{eh}.\mathbf{range}!=0)
       printf("\n Found event #%d\n", eh.event serial number);
129
130
       printf("range ili reserved je %i\n", eh.range);
131
            }
132
133
            s = (UInt t) eh.event serial number;
134
            trig cell =(UInt t) eh.trigger cell;
135
136
            // reach channel data
137
            for (ch=0 ; ch<nCh ; ch++) {
138
               i = (int) fread(hdr, sizeof(hdr), 1, fIn);
139
               if (i < 1)
140
                  break;
               if (hdr[0] != 'C') {
141
                  // event header found
142
143
                  fseek(fIn, -4, SEEK_CUR);
144
                  break:
145
               }
146
               chn index = hdr[3] - '0' - 1;
147
               fread (voltage, sizeof(short), 1024, fIn);
148
               for ( i\!=\!0 ; i\!<\!1024 ; i\!+\!+\!) {
149
                  // convert data to volts
150
151
          waveform [chn index][i] = (voltage[i] / 65536. + eh.range / 1000.0 - 0.5)
               *1000; //u mV
152
           vol[chn index][i] = waveform[chn index][i];
153
154
155
            dat \rightarrow Fill();
156
        }
157
        dat->Write("", TObject::kOverwrite);
158
        timew->Write("", TObject :: kOverwrite);
159
160
        fOut->Close();
161
        fclose(fIn);
162
        return 1;
163
    }
```

B.2 Program za analizu podataka

Program analizaPP. C čita i obrađuje podatke iz root datoteke stvorene programom read binaryP. C

```
1 #include <iostream>
2 #include <fstream>
3 #include <TROOT.h>
4 #include <TTree.h>
5 #include <TGraph.h>
```

```
#include <TPad.h>
 6
   #include <TFile.h>
 7
   #include <TString.h>
 8
   #include <TCanvas h>
 9
    #include <TAxis h>
10
11
   #include <TH1F.h>
   #include <TH1D h>
12
13
    void analizaPP (const char inFile[], char outFile[]) {
14
15
16
       UInt_t s; //serial number
                        // broj koincidencija na sva 4 detektora
17
       UInt t nkoin;
       Double t tw [4] [1024], vol [4] [1024]; //sirina time binova u ns i voltage u
18
           mV
19
       UInt_t trig_cell; //in each event the readout starts at a different
           position of the DRS4 chip
20
       Double t t [4][1024];
21
       int i, j, k, n, z;
22
        \textbf{double} \ t1 \ , \ t2 \ , \ dt \ ; \\
23
       int ndt;
24
       double prag;
25
       z = 0;
26
27
       //def BROJ CH i max broj događaja
28
       const int nCh = 4;
29
       UInt t smax=5;
       UInt<sup>t</sup> maxcan=10;
30
       double intCh[nCh];
31
                              //integrirani signal
32
       double en [nCh]; // en ergija
33
       double tpg[nCh];
                            // vrijeme kada signal prede prag
34
35
       // Inicijalizacija
36
       for (int i=0; i<4; i++){
37
         for (int j=0; j<1024; j++){
38
           tw[i][j]=-9999;
39
         }
40
       }
41
42
       TFile *fIn = TFile::Open(Form("%s.root", inFile), "read");
43
       if (fIn = 0) {
         printf("ERROR: Can't open file ! \ n");
44
45
         return:
46
47
       TTree * tree1 = (TTree*) fIn ->Get("data");
48
       tree1 -> SetBranchAddress("serial", &s);
      tree1 -> SetBranchAddress("serial", &s);

tree1 -> SetBranchAddress("triggercell", &trig_cell);

tree1 -> SetBranchAddress("ch1",&vol[0]); //vol je u mV

tree1 -> SetBranchAddress("ch2",&vol[1]);

tree1 -> SetBranchAddress("ch3",&vol[2]);

tree1 -> SetBranchAddress("ch4",&vol[3]);
49
50
51
52
53
54
55
56
       TTree * tree2 = (TTree*) fIn \rightarrow Get("twidth");
      57
58
59
60
61
62
       TFile *fOut = new TFile(Form("%s.root", outFile), "RECREATE");
63
       TTree *pod = new TTree("pod", "pod");
64
65
       pod->Branch("serial", &s, "s/i");
```

```
45
```

```
66
        pod = Branch("int1", &intCh[0], "int1/D");
        pod = Branch("int2", &intCh[1], "int2/D");
 67
        pod=Branch("int3", & intCh[2], "int3/D");
pod=Branch("int4", & intCh[3], "int4/D");
 68
 69
        pod = Branch("e1", &en[0], "e1/D");
 70
        pod = Branch("e2", &en[1], "e2/D");
 71
 72
        pod = Branch("e3", &en[2], "e3/D");
        pod=Branch("e4", &en[3], "e4/D");
pod=Branch("t1", &tpg[0], "t1/D");
 73
 74
        pod->Branch("t2", &tpg[1], "t2/D");
pod->Branch("t3", &tpg[2], "t3/D");
 75
 76
        pod = Branch("t4", &tpg[3], "t4/D");
 77
 78
 79
        TH1D *h[nCh]; //def histograma za kanale
 80
        TH1D *hen[nCh];
 81
        float \min = -10;
 82
        float max= 400;
 83
        for (int n=0 ; n<nCh; n++) {
          h[n] = new TH1D (Form("h\%i", n+1), Form("histogram za ch\%i", n+1), abs(min-1)
 84
               \max) *8, \min, \max);
          hen[n] = new TH1D (Form("hen%i", n+1), Form("en histo za ch%i", n+1), abs
 85
               (-100-2500), -100, 2500);
 86
        }
 87
 88
        Int t nEvents = tree1->GetEntries();
        printf("broj događaja = \%d \ \ n", nEvents);
 89
 90
 91
        tree2 \rightarrow GetEntry(0);
 92
 93
        TCanvas *c[maxcan];
 94
        TGraph *g[maxcan];
 95
 96
        //petlja po događajima
 97
        for ( int k=0 ; k < nEvents ; k++) {
 98
          tree1 \rightarrow GetEntry(k);
 99
          tree2 \rightarrow GetEntry(0);
100
          if(s \leq smax) printf(" \setminus n serial number = \%i \setminus n", s);
101
102
          for (int n=0 ; n<nCh ; n++) {
             for (i=0; i<1024; i++)
103
        \quad \mathbf{for} \quad ( \ j = 0 \ , t \ [ \ n \ ] \ [ \ i \ ] = 0 \quad ; \quad j < i \quad ; \quad j + +) \\
104
105
          t[n][i] += tw[n][(j+trig cell)%1024];
106
             ł
107
          }
108
109
          // align cell \#0 of all channels
110
          t1 = t[0][(1024 - trig_cell)\%1024];
111
          for (int ch=1 ; ch<nCh ; ch++) {
112
             t2 = t [ch][(1024 - trig_cell)\%1024];
             d\,t \ = \ t\,1 \ - \ t\,2 \ ;
113
114
             for (i=0; i<1024; i++){
115
        t [ch] [i] += dt;
116
          }
117
118
119
           //racunanje baseline
          Double t baseline [nCh];
120
121
          int poc base[nCh];
122
          int kon base[nCh];
123
          int n base[nCh];
124
```

```
125
                     for (int n=0 ; n<nCh ; n++) { //petlja po kanalima
126
                          poc base [n] = 10;
127
                          kon base[n] = 90;
128
                          n base[n] = kon base[n] - poc base[n];
129
                          baseline[n]=0;
130
                          for (int i= poc_base[n] ; i <= kon base[n]; i++) 
131
                 baseline[n] += vol[n][i];
132
133
                          baseline [n] /= n base [n];
134
135
                          if (s < smax)
                               printf("baseline za ch%i je %f \mid n", n, baseline[n]);
136
137
                     }
138
139
                                                           //u mV
                     int prag [4];
                     prag[0] = -10;
                                                           //detektor 19 BaF
140
                                                           //detektor 1 LSO
141
                     prag[1] = -10;
142
                                                           //detektor 20 BaF
                     prag[2] = -10;
143
                     prag[3] = -20;
                                                           //detektor 2 LSO
144
145
                   int binprag[nCh];
146
                      //find peak in channel n above threshold + BASELINE !!!
147
148
                     for (int n=0 ; n<nCh ; n++)  {
149
                          binprag[n]=0;
150
                          t pg[n] = 0;
151
                          prag[n] = prag[n] + baseline[n];
152
                          for (int i=0; i<250; i++)
                if (vol[n][i] > prag[n] \& vol[n][i+1] \le prag[n]) {
153
154
                     tpg[n] = t[n][i]+(prag[n]-vol[n][i]) / (vol[n][i+1]-vol[n][i]) * (t[n][i+1]-t]) + (t[n][i
                               [n][i]);
155
                      binprag[n] = i;
156
                     break;
157
                }
                          if (s < smax)
158
159
                printf("prag za ch%i u t = %f n", n, tpg[n]);
160
                     }
161
162
                     //trazenje kraja signala
163
                     int binkraj[nCh];
164
                     for (int n=0 ; n<nCh ; n++) {
165
                          binkraj[n]=0;
                          for (int i=binprag[n]; i<1021; i++) {
166
167
                if(vol[n][i]>baseline[n] \&\& vol[n][i+1]>baseline[n] \&\& vol[n][i+2]>baseline[n]
                         [n]) {
168
                      binkraj[n] = i;
169
                     break;
170
                }
171
                     }
172
173
174
                      // INTEGRACIJA signala
175
                     float v[4][1024];
176
177
                     for (int n=0 ; n<nCh ; n++)  {
178
                          int binstart = binprag[n]-5;
179
                          int kraj = 120;
                          intCh[n] = 0.0;
180
181
                          en[n] = 0.0;
182
                          int p=0;
                          double time = 0.0;
183
```

```
184
            if (n==0 || n==2) { ( //BaF su na kanalima 1 i 3
185
186
       for (int k=binstart ; k<1022 ; k++) {
187
          if ((k < binkraj[n] || binkraj[n] == 0) \&\& binstart > 0) {
188
            v[n][k] = vol[n][k] - baseline[n];
189
            p++
190
            double tt = (t[n][k]-t[n][k-1])/2 + (t[n][k+1]-t[n][k])/2;
            time += tt;
191
192
            intCh[n] += tt *v[n][k];
193
         }
       }
194
195
       if(time!=0.0) int Ch [n]=(-1*int Ch [n])/time; //prom jena + u - ! int Ch je u mV
196
       if (n==0)\{ // det 19
197
198
          en[n] = 50.8 * int Ch[n] - 15;
199
          en[n] = 1.04; // korekcija na kalibraciju
200
201
202
       if (n=2) \{ //det 20 \}
203
          en[n] = 47.6 * int Ch[n] - 27;
204
          en[n] = 1.08; // korekcija na kalibraciju
205
       }
206
            }
207
            if(n=1 || n =3) \{
                                        // LSO su na kanalima 2 i 4
208
       for (int k=binstart ; k< binstart+kraj ; k++) {
209
210
          if (binstart >0) {
211
            \mathbf{v}[\mathbf{n}][\mathbf{k}] = \mathbf{vol}[\mathbf{n}][\mathbf{k}] - \mathbf{baseline}[\mathbf{n}];
212
            p++
213
            double tt = (t[n][k]-t[n][k-1])/2 + (t[n][k+1]-t[n][k])/2;
214
            time += tt;
215
            intCh[n] += tt *v[n][k];
216
          }
217
218
       intCh[n] = (-1 * intCh[n]) / time; // promjena + u - !!
219
       if (n==1) en [n]=11.95*intCh[n]-7; // det LSO 1
       if (n=3) en[n]=5.66*intCh[n]-8;
                                                 // det LSO 2
220
221
222
       if(binprag[n] = = 0 || baseline[n] < -40) en[n] = -999.00;
223
            }
224
          }
225
         pod \rightarrow Fill();
226
227
228
          //punjenje histograma
229
          for (int n=0 ; n<nCh ; n++) {
            if (s{<\!\!\rm smax}) printf("en za ch%i je %f \n", n+1, en[n]);
230
231
            h[n] \rightarrow Fill(intCh[n]);
232
            hen[n] \rightarrow Fill(en[n]);
233
          }
234
235
          //graf \rightarrow oscilogrami
236
          if (s < 4 | | (s = signali \&\& s < 40))
                                                   - {
237
            c[s] = new TCanvas (Form("c\%i", s), Form("dogadaj \%i \ n", s));
238
            c[s] -> Divide(1,2);
239
240
            for (int n=0 ; n<2 ; n++)
241
       c[s] - cd(n+1);
       g[s] = new TGraph (1024, t[n], vol[n]);
242
       g[s]->GetXaxis()->SetTitle("vrijeme [ns]");
243
       g[s] \rightarrow GetYaxis() \rightarrow SetTitle("napon [mV]");
244
```

```
245
         g[s] \rightarrow SetTitle(Form("ch \%d", n+1));
246
         g[s] -> Get Xaxis() -> Set Limits(-40., 1100.);
         g\left[ \;s\right] -\!> Draw\left( \;\right) \;;
247
248
              }
249
            }
250
         }
251
252
         //crtanje histograma
         TCanvas * ch = new TCanvas();
253
254
         ch \rightarrow Divide(1, nCh);
255
         for (int n=0 ; n<nCh ; n++) {
256
257
            ch \rightarrow cd(n+1);
           h[n] \rightarrow Get Xaxis() \rightarrow Set Title("voltage[V]");
258
259
           h[n] \rightarrow Draw();
260
         }
261
262
         TCanvas * che = new TCanvas();
263
         che \rightarrow Divide(1, nCh);
264
         for (int n=0 ; n<nCh ; n++) {
265
266
            che \rightarrow cd(n+1);
267
            hen[n] \rightarrow GetXaxis() \rightarrow SetTitle("energija[keV]");
268
            hen[n] \rightarrow Draw();
269
         }
270
271
         ch->DrawClone();
272
         che->DrawClone();
273
274
         fOut \rightarrow cd();
275
         for (int n=0 ; n < nCh ; n++) {
276
           h[n] \rightarrow Write();
277
            hen[n] \rightarrow Write();
         }
278
279
280
         pod->Write("", TObject::kOverwrite);
281
         ch \rightarrow Write();
282
         che \rightarrow Write();
283
284
         fIn \rightarrow Close();
285
         fOut \rightarrow Close();
286
      }
```

B.3 Program za oduzimanje šuma

Program oduSum.C skalira šum na temelju vremena mjerenja te ga oduzima od podataka izmjerenih s jednim od radioaktivih uzoraka korištenih za kalibraciju.

```
#include <iostream>
1
   #include <fstream>
2
   #include <TROOT.h>
3
   #include <TTree.h>
4
   #include <TGraph.h>
5
  #include <TPad h>
6
7
   #include <TFile.h>
   #include <TString h>
8
   #include <TCanvas.h>
9
10
   #include <TAxis.h>
11
   #include <TH1F.h>
12
```

```
void oduSum (float t1, float t2, const char inFile1 [], char inFile2 []) {
13
14
      TFile *fIn = TFile::Open(Form("../slKalib/%s.root", inFile1), "read");
15
16
      if (fIn = 0) \{
         printf("ERROR: Can't open file!\n");
17
18
         return;
19
      }
20
21
      TH1F *h1 = (TH1F*) fIn \rightarrow Get("hist ch1");
22
23
      TFile *fSum = TFile::Open(Form("../slKalib/%s.root", inFile2), "read");
24
      if (fIn = 0) {
         printf("ERROR: Can't open file!\n");
25
26
         return ;
27
      TH1F *h2 = (TH1F*)fSum \rightarrow Get("hist ch1");
28
29
30
      TFile *fOut = new TFile(Form("../slKalib/%s bezS.root", inFile1), "RECREATE
           "):
31
      TTree *pod = new TTree("pod", "pod");
32
      float t;
33
34
      t = t 2 / t 1;
35
      printf("norm je %f n", t);
36
      int a = h2 \rightarrow Get Xaxis() \rightarrow Get Nbins();
37
38
      printf("broj binova je %d \setminus n", a);
39
40
      h2 \rightarrow Scale(1/t);
41
      h1 \rightarrow Add(h2, -1);
42
43
      h1->GetXaxis()->SetTitle("voltage [V]");
44
      h1 \rightarrow Draw();
45
      h1 \rightarrow Write();
46
      fOut \rightarrow Close();
47
48 }
```

Literatura

- McNamara, A. L., Toghyani, M., Gillam, J. E., Wu, K. and Kuncic, Z., Towards optimal imaging with PET: an in silico feasibility study, *Phys. Med. Biol.* 59(2014) 7587-7600
- [2] Kuncic, Z., McNamara, A., Wu, K. and Boardman, D., Polarization enhanced x-ray imaging for biomedicine, *Nucl. Instrum. Methods* A 648(2011) 208-210
- [3] Dirac, P., On the annihilation of electrons and protons, Math. Proc. Camb. Phil. Soc. 26(1930) 361-375
- [4] Leo, W. R. Techniques for nuclear and particle physics experiments. 1st ed. Berlin Heidelberg
 : Springer-Verlag, 1987.
- [5] http://www.nndc.bnl.gov/nudat2/
- [6] Harpen M.D., 2003 Positronium: Review of symmetry, conserved quantities and decay for the radiological physicist
- [7] Feynman lectures: http://www.feynmanlectures.caltech.edu/III_toc.html
- [8] http://physics.nist.gov/cgi-bin/Xcom/
- [9] http://universe-review.ca/I15-72-Compton1.jpg/
- [10] Heitler, W., Quantum Theory of Radiation. 3rd ed., Oxford University Press, 1954.
- [11] Snyder, H. S., Pasternak, S. and Hornbostel, J., 1948. Phys. Rev. 73 440-8
- [12] Wu, C. S. and Shaknov, I., 1950 Phys. Rev. 77 136
- [13] Knoll, G., Radiation detection and measurement. 3rd ed., John Wiley & Sons, Inc., 2000.
- [14] Schotanus, P., Van Eijk, C.W.E., Hollander, R.W. and Pijpelink, J., Temperature dependence of BaF2 scintillation light yield, *Nucl. Inst. and Meth.* A 238 (1985) 564
- [15] http://www.crystals.saint-gobain.com/
- [16] Wisshak, K. and Kaeppeler, F., Large barium fluoride detectors, Nucl. Inst. and Meth. A 227 (1984) 91
- [17] DRS4 Evaluation Board User's Manual: https://www.psi.ch/drs/DocumentationEN/manual rev50.pdf