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= 5.02 TeV

J. Adam et al.
*

(ALICE Collaboration)
(Received 18 December 2015; published 3 June 2016)

The pseudorapidity density of charged particles, dNch=dη, at midrapidity in Pb-Pb collisions has been
measured at a center-of-mass energy per nucleon pair of

ffiffiffiffiffiffiffiffi

sNN
p ¼ 5.02 TeV. For the 5% most central

collisions, we measure a value of 1943� 54. The rise in dNch=dη as a function of
ffiffiffiffiffiffiffiffi

sNN
p

is steeper than that
observed in proton-proton collisions and follows the trend established by measurements at lower energy.
The increase of dNch=dη as a function of the average number of participant nucleons, hNparti, calculated in
a Glauber model, is compared with the previous measurement at

ffiffiffiffiffiffiffiffi

sNN
p ¼ 2.76 TeV. A constant factor of

about 1.2 describes the increase in dNch=dη from
ffiffiffiffiffiffiffiffi

sNN
p ¼ 2.76 to 5.02 TeV for all centrality classes, within

the measured range of 0%–80% centrality. The results are also compared to models based on different
mechanisms for particle production in nuclear collisions.

DOI: 10.1103/PhysRevLett.116.222302

The theory describing the strong interaction, quantum
chromodynamics (QCD), predicts the existence of a
deconfined phase of matter, the quark-gluon plasma, at
high temperature and energy density. Ultrarelativistic
collisions of nuclei achieve the conditions necessary for
the formation of this strongly interacting matter [1,2].
The multiplicity of produced particles is an important

property of the collisions related to the collision geometry,
the initial parton densities, and the energy density pro-
duced. Its dependence on the impact parameter is sensitive
to the interplay between particle production from hard and
soft processes and coherence effects between individual
nucleon-nucleon scatterings. With an increase in the
collision energy, the role of hard processes, i.e., parton
scatterings with large momentum transfer, increases. After
a two-year-long shutdown, the Large Hadron Collider
(LHC) restarted operation in June 2015 and produced
Pb-Pb collisions at a per nucleon center-of-mass energy
of

ffiffiffiffiffiffiffiffi

sNN
p ¼ 5.02 TeV in November 2015. This is the

highest energy achieved in the laboratory to date and offers
the possibility to further constrain particle production
models by studying their

ffiffiffiffiffiffiffiffi

sNN
p

dependence.
Collisions of extended objects such as nuclei can be

classified according to their centrality, which is related to
the overlap area of the nuclei. This results in different
numbers of nucleons participating in the collision. The
number of these participants, Npart, can be calculated by a

Monte Carlo (MC) sampling technique in the Glauber
model [3].
Previous measurements of dNch=dη for nucleus-nucleus

(AA) collisions were performed at the LHC by ALICE [4],
ATLAS [5], and CMS [6] at

ffiffiffiffiffiffiffiffi

sNN
p ¼ 2.76 TeV and at

lower energies, in the range
ffiffiffiffiffiffiffiffi

sNN
p ¼ 9–200 GeV, with

experiments at the Super Proton Synchrotron (SPS) and
Relativistic Heavy Ion Collider (RHIC) [7–12]. They show
that the increase of dNch=dη with energy is steeper in
nucleus-nucleus compared to proton-proton collisions. The
centrality dependence of ð2=hNpartiÞhdNch=dηi in Pb-Pb at
ffiffiffiffiffiffiffiffi

sNN
p ¼ 2.76 TeV is very similar to that measured
in

ffiffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV collisions at RHIC, pointing to a

similar mechanism of particle production at the two
energies.
In this Letter, we present the measurement of the

charged-particle pseudorapidity density averaged in the
interval jηj < 0.5, hdNch=dηi, and its centrality depend-
ence. The pseudorapidity is defined by η≡ − ln tan ðθ=2Þ,
with θ the emission angle of the particle relative to the beam
axis. The primary charged particles are defined as prompt
particles produced in the collision including all decay
products, except products from weak decays of light flavor
hadrons and of muons.
The data were recorded with the ALICE detector in

November 2015 at
ffiffiffiffiffiffiffiffi

sNN
p ¼ 5.02 TeV. Full details on the

ALICE apparatus [13] and its operational performance [14]
are given elsewhere. A brief description of the most
relevant elements, along with the experimental conditions,
follows. The observed interaction rate was around 300 Hz,
of which about 25 Hz were from hadronic interactions, the
remainder being a background from electromagnetically
induced processes. A total of about 105 hadronic events are
used. The interaction probability per bunch crossing (dur-
ing which bunches of ions from each beam are arranged to

*Full author list given at the end of the article.
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be coincident at the ALICE interaction point) was suffi-
ciently small that the chance of two hadronic interactions
occurring together, so-called pileup events, was negligible.
The measurement relies on the ALICE inner tracking

system, the innermost two layers of which form the silicon
pixel detector (SPD). It consists of arrays of pixels arranged
with an approximate cylindrical geometry at radii of 3.9
and 7.6 cm covering intervals of jηj < 2.0 and jηj < 1.4 for
the inner and outer layers, respectively. The SPD is situated
in a solenoidal magnet, with its principal axis along the
beam line, providing a 0.5 T magnetic field. The interaction
trigger is provided by two detectors, V0A and V0C, which
consist of arrays of scintillators, covering the full azimuth
and more than four units of pseudorapidity, in the ranges
2.8 < η < 5.1 and −3.7 < η < −1.7, respectively. In all
cases, the η coverage refers to collisions at the nominal
interaction point. A signal must be present in both V0
detectors to trigger the recording of the interaction. The V0
detectors also provide a signal proportional to the number
of charged particles striking them which is used to classify
the events into centrality classes, defined in terms of
percentiles of the hadronic cross section. In addition, an
offline event selection employs the information from two
zero degree calorimeters (ZDCs) positioned 112.5 m from
the interaction point on either side. Beam background
events are removed by using the V0 timing information and
the correlation between the sum and the difference of times
measured in each of the ZDCs [14].
The analysis is restricted to the 80% most central

events. The classification of events into centrality classes
is done by using the summed amplitudes of the signals in
the V0A and V0C detectors, following the method
developed previously [15,16]. The V0 amplitude is fitted
with an MC implementation of the Glauber model
coupled with a two-component model assuming that the
effective number of particle-producing sources is given by
f × Npart þ ð1 − fÞ × Ncoll, where Npart is the number of
participating nucleons, Ncoll is the number of binary
nucleon-nucleon collisions, and f ∼ 0.8 quantifies their
relative contributions. The number of particles produced by
each source is distributed according to a negative binomial
distribution (NBD), parametrized with μ and k, where μ is
the mean multiplicity per source and k controls the
contribution at high multiplicity. In the Monte Carlo
Glauber calculation, the nuclear density for 208Pb is
modeled by a Woods-Saxon distribution for a spherical
nucleus with a radius of 6.62� 0.06 fm and a skin
thickness of 0.546� 0.010 fm, based on data from low-
energy electron-nucleus scattering experiments [17], and a
hard-sphere exclusion distance between nucleons of
0.4� 0.4 fm. For

ffiffiffiffiffiffiffiffi

sNN
p ¼ 5.02 TeV collisions, an inelas-

tic nucleon-nucleon cross section of 70� 5 mb, obtained
by interpolation [18], is used. The fit was restricted to a
region where the effects of trigger inefficiency and con-
tamination by electromagnetic processes are negligible.

The NBD-Glauber fit provides a good description of the
observed V0 amplitude in this region, which corresponds to
the most central 90% of the cross section. All events in the
sample corresponding to 0%–80% of the hadronic cross
section are found to have a well-defined primary vertex,
extracted by correlating hits in the two SPD layers.
The dNch=dη measurement is performed by using short

track segments, termed tracklets [19]. Tracklet candidates
are formed using the position of the primary vertex and a
pair of hits, one in each SPD layer. For each of the hits in
the pair, two angles are determined with respect to the
reconstructed interaction vertex, and the angular
differences, Δφ in the bending plane and Δθ in the polar
direction, are calculated for each pair of hits. In order to
reject candidates produced by the random combination of
two hits, tracklets are selected by a cut on the sum of the
squares, δ2 ¼ ðΔφ=σφÞ2 þ ðΔθ=σθÞ2 < 1.5, where σφ ¼
60 mrad and σθ ¼ 25 sin2 θmrad. This selection effectively
allows the reconstruction of charged particles with trans-
verse momentum (pT) above the 50 MeV=c cutoff deter-
mined by particle absorption in the material.
The acceptance region in η depends on the position

of the interaction vertex along the beam line, z. Events
with jzj < 7 cm are used, corresponding to a coverage of
jηj < 0.5 with an approximately constant acceptance.
A correction is needed to account for the acceptance and

efficiency of a primary track to generate a tracklet,
including the extrapolation to zero pT , and for the removal
of combinatorial background tracklets. This is computed by
using simulated data from the HIJING event generator [20]
transported through a GEANT3 [21] simulation of ALICE,
where the centrality definition is adjusted so that the
particle density is similar to that in real data for the same
centrality classes. A reweighting of the generator output is
performed to reproduce the pT distributions of inclusive
charged hadrons and the relative abundances of pions,
protons, kaons, and other strange particles as measured in
Pb-Pb collisions at

ffiffiffiffiffiffiffiffi

sNN
p ¼ 2.76 TeV [22–25]. Using

results from
ffiffiffiffiffiffiffiffi

sNN
p ¼ 2.76 TeV is justified, because the

relative abundances at
ffiffiffiffiffiffiffiffi

sNN
p ¼ 2.76 TeV change very little

from those at
ffiffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV. Any variation with the

increase in
ffiffiffiffiffiffiffiffi

sNN
p

to 5.02 TeV will be much smaller than the
differences between the default and reweighted HIJING

simulations, which lead to differences in the results within
the systematic uncertainties estimated below.
The correction takes into account any inactive channels

present at the time of data taking as well as losses due to
physical processes like absorption and scattering, which
may result in a charged particle not creating a tracklet. The
fractions of active pixels in the inner and outer SPD layers
were about 85% and 97.5%, respectively. The estimated
combinatorial background amounts to about 18% in the
most central (0%–2.5%) and 1% in the most peripheral
(70%–80%) centrality classes. A correction of about 2% for
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contamination by secondaries from weak decays is applied
based on the same simulation.
Several sources of systematic uncertainty were inves-

tigated. The centrality determination introduces an uncer-
tainty via the fitting of the V0 amplitude distribution to the
hadronic cross section, due to the contamination from
electromagnetically induced reactions at small multiplicity.
The fraction of the hadronic cross section (10%) at the
lowest multiplicity, where the trigger and event selection are
not fully efficient and the contamination is non-negligible,
was varied by an uncertainty of �0.5%. This uncertainty
was estimated by varying NBD-Glauber fitting conditions
and by fitting a different centrality estimator, based on the
hits in the SPD. The uncertainty from the centrality
estimation results in an uncertainty of 0.5% for central
0%–2.5% collisions, increasing in the more peripheral
collision classes, reaching 7.5% for the 70%–80% sample,
where it is the largest contribution. Conversely, the uncer-
tainty due to the subtraction of the background is largest for
the central event sample, where it is about 2%, and becomes
smaller as the collisions become more peripheral, amount-
ing to only 0.2% for the 70%–80% event class. This
uncertainty is estimated by using an alternative method
where fake hits are injected into real events.
All other sources of systematic uncertainty are indepen-

dent of centrality. The uncertainty resulting from the
subtraction of the contamination from weak decays of
strange hadrons is estimated, from the tuned MC simu-
lations, to amount to about 0.5% by varying the strangeness
content by �30%. The uncertainty due to the extrapolation
down to zero pT is estimated to be about 0.5% by varying
the number of particles below the 50 MeV=c low-pT cutoff
by �30%. An uncertainty of 1% for variations in detector
acceptance and efficiency was evaluated by carrying out the
analysis for different slices of the z position of the
interaction vertex distribution and with subsamples in
azimuth.
Other effects due to particle composition, background

events, pileup, material budget, and tracklet selection
criteria were found to be negligible. The final systematic
uncertainties assigned to the measurements are the quad-
ratic sums of the individual contributions and range from
2.6% in central 0%–2.5% collisions to 7.6% in 70%–80%
peripheral collisions, of which 2.3% and 7.5%, respec-
tively, are centrality dependent and 1.2% are centrality
independent.
The results for hdNch=dηi are shown in Table I. In order

to compare bulk particle production at different energies
and in different collision systems, specifically for a direct
comparison to pp and pp̄ collisions, the charged-particle
density is divided by the average number of participating
nucleon pairs, hNparti=2. The hNparti values are calculated
with an MC-Glauber for centrality classes defined by
classifying the events according to their impact parameter
and are also listed in Table I. The systematic uncertainty on

hNparti is obtained by independently varying the parameters
of the Glauber model within their estimated uncertainties.
For the most central 0%–5% collisions, a density of
primary charged particles at midrapidity hdNch=dηi ¼
1943� 54 was measured and, normalized per participant
pair, corresponds to ð2=hNpartiÞhdNch=dηi ¼ 10.1� 0.3.
In Fig. 1, this value is compared to the existing data for
central Pb-Pb and Au-Au collisions from experiments at the
LHC [4–6], RHIC [8–12], and SPS [7]. The data shown are
for 0%–5% except for the results from PHOBOS [11] and
ATLAS [5], which are for 0%–6%. The dependence of
ð2=hNpartiÞhdNch=dηi on the center-of-mass energy can be
fitted with a power law of the form asb. This gives an
exponent, under the assumption of uncorrelated uncertain-
ties, of b ¼ 0.155� 0.004. It is a much stronger s
dependence than for proton-proton collisions, where a
value of b ¼ 0.103� 0.002 is obtained from a fit to the
same function [28]. The fit results are plotted with their
uncertainties shown as shaded bands. The result at

ffiffiffiffiffiffiffiffi

sNN
p ¼

5.02 TeV confirms the trend established by lower-energy
data, since b is not significantly different when the new
point is excluded from the fit. It can also be seen in the
figure that the values of ð2=hNpartiÞhdNch=dηimeasured by
ALICE for p-Pb [18] and PHOBOS for d-Au [11]
collisions fall on the curve for proton-proton collisions,
indicating that the strong rise in AA is not solely related to
the multiple collisions undergone by the participants, since
the proton in p-A collisions also encounters multiple
nucleons.
The centrality dependence of ð2=hNpartiÞhdNch=dηi is

shown in Fig. 2. The point-to-point centrality-dependent
uncertainties are indicated by error bars, whereas the
shaded bands show the correlated contributions. The
statistical uncertainties are negligible. The data are plotted
as a function of hNparti and a strong dependence is
observed, with ð2=hNpartiÞhdNch=dηi decreasing by a

TABLE I. The hdNch=dηi and ð2=hNpartiÞhdNch=dηi values
measured in jηj < 0.5 for 11 centrality classes. The values of
hNparti obtained with the Glauber model are also given. The
errors are total uncertainties, the statistical contribution being
negligible.

Centrality hdNch=dηi hNparti ð2=hNpartiÞhdNch=dηi
0%–2.5% 2035� 52 398� 2 10.2� 0.3
2.5%–5.0% 1850� 55 372� 3 9.9� 0.3
5.0%–7.5% 1666� 48 346� 4 9.6� 0.3
7.5%–10% 1505� 44 320� 4 9.4� 0.3
10%–20% 1180� 31 263� 4 9.0� 0.3
20%–30% 786� 20 188� 3 8.4� 0.3
30%–40% 512� 15 131� 2 7.8� 0.3
40%–50% 318� 12 86.3� 1.7 7.4� 0.3
50%–60% 183� 8 53.6� 1.2 6.8� 0.3
60%–70% 96.3� 5.8 30.4� 0.8 6.3� 0.4
70%–80% 44.9� 3.4 15.6� 0.5 5.8� 0.5
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factor of 1.8 from the most central collisions, large hNparti,
to the most peripheral, small hNparti. There appears to be a
smooth trend towards the value measured in minimum bias
p-Pb collisions [18]. The Pb-Pb data measured at

ffiffiffiffiffiffiffiffi

sNN
p ¼

2.76 TeV [4] are also shown, scaled by a factor 1.2, which
is calculated from the observed s0.155 dependence of the
results in the most central collisions and which describes
well the increase for all centralities. The proton-proton
result at the same energy [26] is scaled by a factor of 1.13
from the s0.103 dependence. The ratio between the data
measured at the two collision energies is consistent with
being independent of Npart, within the uncertainties, which
are largely uncorrelated. While, in general, the uncertainties
related to the tracklet measurement are correlated between
the two analyses, the subtraction of the background and the
centrality classification are, instead, uncorrelated, depend-
ing on the determination of the usable fraction of the
hadronic cross section and therefore on the run and detector
conditions [15].
Figure 3 shows a comparison of the data to some of the

models which were compared to the measurements at lower
energy. The curves shown are predictions of the models,
without any retuning of the parameters based on the new
data presented here.

〉
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| < 0.5 η|

FIG. 2. The ð2=hNpartiÞhdNch=dηi for Pb-Pb collisions at
ffiffiffiffiffiffiffiffi

sNN
p ¼ 5.02 TeV in the centrality range 0%–80%, as a function
of hNparti in each centrality class. The error bars indicate the
point-to-point centrality-dependent uncertainties, whereas the
shaded band shows the correlated contributions. Also shown is
the result from nonsingle diffractive p-Pb collisions at the same
ffiffiffiffiffiffiffiffi

sNN
p

[18]. Data from lower-energy (2.76 TeV) Pb-Pb and pp
collisions [4,26], scaled by a factor of 1.2 and 1.13, respectively,
are shown for comparison. The error bars for p-Pb at

ffiffiffiffiffiffiffiffi

sNN
p ¼

5.02 TeV and lower-energy Pb-Pb and pp collisions indicate the
total uncertainty.
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FIG. 3. The ð2=hNpartiÞhdNch=dηi for Pb-Pb collisions at
ffiffiffiffiffiffiffiffi

sNN
p ¼ 5.02 TeV in the centrality range 0%–80%, as a function
of hNparti in each centrality class, compared to model predictions
[31–39].
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FIG. 1. Values of ð2=hNpartiÞhdNch=dηi for central Pb-Pb [4–7]
and Au-Au [8–12] collisions (see the text) as a function of ffiffiffiffiffiffiffiffi

sNN
p

.
Measurements for inelastic pp and pp̄ collisions as a function of
ffiffiffi

s
p

are also shown [26–28] along with those from nonsingle
diffractive p-A and d-A collisions [29,30]. The s dependencies of
the AA and pp (pp̄) collision data are well described by the
functions s0.155NN (solid line) and s0.103NN (dashed line), respectively.
The shaded bands show the uncertainties on the extracted power-
law dependencies. The central Pb-Pb measurements from CMS
and ATLAS at 2.76 TeV have been shifted horizontally for clarity.

PRL 116, 222302 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
3 JUNE 2016

222302-4



Predictions from commonly used Monte Carlo gener-
ators, HIJING [33] and EPOS LHC [39], are also shown.
HIJING combines perturbative-QCD (pQCD) processes with
soft interactions and includes a strong impact parameter
dependence of parton shadowing. The data at

ffiffiffiffiffiffiffiffi

sNN
p ¼

2.76 TeV were previously compared to HIJING using gluon
shadowing parameter, sg, values of 0.20 and 0.23 [4]. The
higher value gave a better estimate of the overall normali-
zation, the lower one a better agreement with the shape. At
ffiffiffiffiffiffiffiffi

sNN
p ¼ 5.02 TeV, a larger sg value of 0.28 is required to
limit the multiplicity per participant, leading to a centrality
dependence which does not reproduce the data. EPOS is a
model based on the Gribov-Regge theory at the parton level
which incorporates collective effects treated via a flow
parametrization in the EPOS LHC version. It provides a
good description of the data.
Saturation-inspired models (rcBK-MC, with the MV

initial conditions [35,36], Kharzeev, Levin, and Nardi
[38] and Armesto, Salgado, and Wiedemann [37]) rely
on pQCD and use an initial-state gluon density to fix an
energy-dependent scale at which the quark and gluon
densities saturate, thereby limiting the number of produced
partons and, in turn, of particles. This results in a factori-
zation of the energy and centrality dependences of the
multiplicity in the models, as observed in the experimental
data. The rcBK-MC and Armesto, Salgado, and
Wiedemann models provide a better description of the
data, in particular of the shape, than the Kharzeev, Levin,
and Nardi model.
The EKRT model [31,32] combines collinearly factor-

ized next-to-leading-order pQCD minijet cross sections
with a conjecture of gluon saturation to suppress soft parton
production. Impact-parameter-dependent EPS09s parton
distribution functions [40] are used. The space-time evo-
lution of the system with the computed initial conditions is
described with relativistic viscous hydrodynamics event by
event. The normalization is fixed by exploiting the 0%–5%
most central multiplicity measurement [19]. The EKRT
model can broadly describe both the shape and the overall
magnitude of the dependence of multiplicity on centrality.
In general, theoretical models need some sort of mecha-
nism to limit the growth of multiplicity in order to describe
the centrality and energy evolution of the multiplicity.
In summary, we have measured the charged-particle

pseudorapidity density hdNch=dηi in Pb-Pb collisions at the
highest available center-of-mass energy and observe a 20%
increase for the most central collisions with respect to
similar measurements at 2.76 TeV, in agreement with the
previously established power-law dependence of this quan-
tity. The centrality dependence of dNch=dη is very similar
to that previously measured in lower-energy AA collisions,
with a factor of 1.8 increase from peripheral to central
collisions. Most of the models which were able to repro-
duce the data at

ffiffiffiffiffiffiffiffi

sNN
p ¼ 2.76 TeV are able to describe the

data at
ffiffiffiffiffiffiffiffi

sNN
p ¼ 5.02 TeV. Our results provide further

constraints for models describing high-energy heavy-ion
collisions.
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